JP2006253776A - OVERLOAD AND SHORT-CIRCUIT PROTECTING CIRCUIT OF SLAVE FOR AS-i - Google Patents

OVERLOAD AND SHORT-CIRCUIT PROTECTING CIRCUIT OF SLAVE FOR AS-i Download PDF

Info

Publication number
JP2006253776A
JP2006253776A JP2005063604A JP2005063604A JP2006253776A JP 2006253776 A JP2006253776 A JP 2006253776A JP 2005063604 A JP2005063604 A JP 2005063604A JP 2005063604 A JP2005063604 A JP 2005063604A JP 2006253776 A JP2006253776 A JP 2006253776A
Authority
JP
Japan
Prior art keywords
circuit
resistor
current
sensor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005063604A
Other languages
Japanese (ja)
Other versions
JP4543973B2 (en
Inventor
Toshio Nodera
俊夫 野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2005063604A priority Critical patent/JP4543973B2/en
Publication of JP2006253776A publication Critical patent/JP2006253776A/en
Application granted granted Critical
Publication of JP4543973B2 publication Critical patent/JP4543973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enhanced overload and short-circuit protecting circuit of a slave for an interface (AS-i) for an input/output apparatus including an actuator, a sensor and a load. <P>SOLUTION: To the overload and short-circuit protecting circuit comprising transistors T1 to T4, resistors R1 to R7, and a capacitor C1 or the like provided to the slave 1 including a slave main circuit 1A and receiving an AS-i power supply, a capacitor C3 is attached to prevent the overload and short-circuit protecting circuit from being operated at an overcurrent whose duration time is a prescribed time or below, and further a resistor R10 (or a series circuit comprising a resistor and a PTC thermister) is provided to supply a current I2 to the overload and short-circuit protecting circuit via the resistor R10 even when the overload and short-circuit protecting circuit is activated so as to prevent a sensor power supply current I from being zero thereby attenuating a rush current at sensor connection and to be capable of normally supplying power to the sensor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、プロセス入出力機器として用いられるアクチュエータ,センサおよび負荷等に対してインタフェースを司るアクチュエータ,センサインタフェース回路(Actuator Sensor interface、以下、AS−iとも略記する)用スレーブの過負荷・短絡保護回路に関する。   The present invention relates to an actuator used as a process input / output device, an actuator that controls an interface with a sensor, a load, and the like, and a slave overload / short circuit protection for a sensor interface circuit (Actuator Sensor interface, hereinafter also abbreviated as AS-i). Regarding the circuit.

AS−iはIEC規格(IEC62026−2)およびEN規格(EN50295)で規定された、主にビットレベルの信号を取り扱うネットワークで、フィールドネットワークの中で最下位層に位置する。
図7にAS−iのネットワーク構成例を示す。上位にマスタ2があり、このマスタ2から通信と電源を兼用した2本の電線が延びている(AS−i+(正),AS−i−(負))。AS−i+とAS−i−には、DC30V電源と通信信号を減衰させないためのデカップリング回路を内蔵したAS−i専用電源(AS−i電源)3が接続される。4はDC24Vの電源である。スレーブ11〜14はここでは4台示すが、最大で31台接続される(近年は62台まで接続可能である)。
AS-i is a network that mainly handles bit-level signals defined by the IEC standard (IEC620262-2) and EN standard (EN50295), and is located in the lowest layer in the field network.
FIG. 7 shows an example of the AS-i network configuration. There is a master 2 at the upper level, and two wires extending from the master 2 are used for both communication and power (AS-i + (positive), AS-i- (negative)). The AS-i + and AS-i- are connected to a DC30V power supply and an AS-i dedicated power supply (AS-i power supply) 3 having a built-in decoupling circuit for preventing a communication signal from being attenuated. 4 is a DC 24V power source. Although four slaves 11 to 14 are shown here, a maximum of 31 slaves are connected (in recent years, up to 62 can be connected).

スレーブ11〜14としては、負荷を制御するための出力のみを持ったもの(スレーブ11)、センサまたはアクチュエータの信号を取り入れる入力を持ったもの(スレーブ14)、または出力および入力の両方を持ったもの(スレーブ12,13)等の種類がある。また、スレーブの入力には、上記のようにセンサまたはアクチュエータの信号を入力するが、スレーブはセンサの電源も供給できるようにセンサ電源を内蔵している。51〜54は各種の入出力機器を示す。
マスタ2はプログラマブルコントローラ(PLC)と組み合わされており、センサおよびアクチュエータの入力に対して要求される負荷の動作をさせるため、マスタ2で必要なプログラムを組み、動作の制御をするようにしている。
The slaves 11 to 14 have only an output for controlling a load (slave 11), have an input for taking in a sensor or actuator signal (slave 14), or have both an output and an input. There are types of things (slave 12, 13) and the like. In addition, as described above, the sensor or actuator signal is input to the slave input, but the slave has a built-in sensor power supply so that the sensor power can also be supplied. Reference numerals 51 to 54 denote various input / output devices.
The master 2 is combined with a programmable controller (PLC), and in order to operate the load required for the inputs of the sensor and actuator, a necessary program is assembled in the master 2 to control the operation. .

図8にスレーブの従来例を示す。
これらの回路では、AS−i+側は、逆接続防止用のダイオードD1を通して、AS−iスレーブ用のIC回路(ASIC)を内蔵したスレーブ主回路1AおよびコイルL1に接続される。また、AS−i−側はスレーブ主回路1AおよびコイルL2に接続される。コイルL1とL2間にはコンデンサC2が接続され、これらのコイルとコンデンサによりフィルタを形成し、これ以降の回路に信号がのらないようにして、コンデンサC2間の電圧をセンサ用電源に使用する。センサに供給される電圧は、AS−i+とAS−i−間に接続されたAS−i電源から供給される。また、スレーブ主回路1Aには入力取り込み用の端子部INがあり、この端子部に印加される電圧レベルまたはこの端子部に流れ込む電流レベルでスレーブ主回路1Aは入力状態を判断し、判断した入力状態の信号をAS−i+とAS−i−間にのせる。
FIG. 8 shows a conventional example of a slave.
In these circuits, the AS-i + side is connected to a slave main circuit 1A incorporating an AS-i slave IC circuit (ASIC) and a coil L1 through a diode D1 for preventing reverse connection. The AS-i- side is connected to the slave main circuit 1A and the coil L2. A capacitor C2 is connected between the coils L1 and L2, and a filter is formed by these coils and the capacitor, and a signal between the capacitors C2 is used as a power source for the sensor so that no signal is transmitted to the subsequent circuits. . The voltage supplied to the sensor is supplied from an AS-i power source connected between AS-i + and AS-i-. Further, the slave main circuit 1A has a terminal portion IN for capturing the input. The slave main circuit 1A determines the input state based on the voltage level applied to the terminal portion or the current level flowing into the terminal portion, and the determined input. A state signal is placed between AS-i + and AS-i-.

通常の状態では、トランジスタT3は抵抗R2を通してベース電流が流れ、オンとなっている(T4はオフ)。したがって、T3によりT1にベース電流が供給され、通常ではT1はオン状態になっている。これにより、センサ消費電流IがトランジスタT1のコレクタ・エミッタ間を流れる。センサ消費電流が増大するにつれて、抵抗R1間の電圧が増大してくる。抵抗R1は過負荷・短絡保護回路が動作する電流値を決定するもので、例えばR1=Vbe2/Iopの値に設定される。ここに、Vbe2はトランジスタT2のベース・エミッタ間電圧、Iopは過負荷・短絡保護回路の動作電流を示す。   In a normal state, the transistor T3 is turned on because a base current flows through the resistor R2 (T4 is turned off). Therefore, a base current is supplied to T1 by T3, and T1 is normally in an ON state. Thereby, the sensor consumption current I flows between the collector and the emitter of the transistor T1. As the sensor current consumption increases, the voltage across the resistor R1 increases. The resistor R1 determines the current value at which the overload / short-circuit protection circuit operates, and is set to a value of R1 = Vbe2 / Iop, for example. Here, Vbe2 represents the base-emitter voltage of the transistor T2, and Iop represents the operating current of the overload / short-circuit protection circuit.

R1間の電圧がVbe2以上になる電流Iが流れると、T2にベース電流が流れT2がオンとなる。コンデンサC1は通常の場合は約30Vに充電されているが、過負荷あるいは短絡電流が流れてT2がオンすると、瞬時に放電され約0Vになる。そのため、T4のベース電流が抵抗R2および抵抗R6を通して流れ、T4が瞬時にオンとなる。T4がオンするとT3のベース電位が上昇してT3がオフし、これによりT1がオフとなる。
コンデンサC1は抵抗7を通る電流I1とトランジスタT4のベース電流I2により充電され、徐々に電圧が上昇する。そして、コンデンサC1の端子間電圧Vcが、
Vc≒[30×R5/(R2+R5)]−Vbe4
になったとき、T4は再びオフとなる。なお、Vbe4はトランジスタT4のベース・エミッタ間電圧を示す。
When a current I that causes the voltage across R1 to be equal to or higher than Vbe2 flows, a base current flows through T2 and T2 is turned on. The capacitor C1 is normally charged to about 30V. However, when an overload or short-circuit current flows and T2 is turned on, the capacitor C1 is instantaneously discharged to about 0V. Therefore, the base current of T4 flows through the resistor R2 and the resistor R6, and T4 is turned on instantaneously. When T4 is turned on, the base potential of T3 rises and T3 is turned off, whereby T1 is turned off.
The capacitor C1 is charged by the current I1 passing through the resistor 7 and the base current I2 of the transistor T4, and the voltage gradually increases. And the voltage Vc between terminals of the capacitor C1 is
Vc≈ [30 × R5 / (R2 + R5)] − Vbe4
T4 is turned off again. Vbe4 represents the base-emitter voltage of the transistor T4.

T4のオフにより、トランジスタT3およびT1がオンするが、過電流が流れているため瞬時にT2がオンしてC1の電荷を放電し、T1をオフにする。抵抗R2,R3,R5およびトランジスタT3,T4からなる回路は、オンレベルとオフレベルにヒステリシスを持たせるためのシュミット回路を形成する。このシュミット回路と抵抗R6,R7およびC1で決定された周期で、トランジスタT1の瞬時のオンを繰り返す。電圧Vc,Vaの波形変化を図9に示す。T1は瞬時のオンなので、電流はほとんどシャットダウンされる。こうして、センサ電源を過負荷電流または短絡電流から保護するようにしている。   When T4 is turned off, the transistors T3 and T1 are turned on. However, since overcurrent flows, T2 is turned on instantaneously to discharge C1 and turn off T1. A circuit composed of resistors R2, R3, R5 and transistors T3, T4 forms a Schmitt circuit for providing hysteresis on the on level and off level. The transistor T1 is turned on instantaneously at a cycle determined by the Schmitt circuit and the resistors R6, R7 and C1. FIG. 9 shows changes in the waveforms of the voltages Vc and Va. Since T1 is instantaneously on, the current is almost shut down. Thus, the sensor power supply is protected from an overload current or a short-circuit current.

上記のような過負荷・短絡保護回路では、瞬時の過負荷電流が流れても、その電流を検知して過負荷・短絡保護回路が動作する。しかし、通常のセンサは内部にコンデンサを内蔵しているため、電源接続時に突入電流が流れる。そのため、従来の回路はセンサ接続時に、センサの突入電流が瞬時でも設定値を越えると過負荷・短絡保護回路が動作してしまい、センサに電源が供給されない場合が生じ、使用できるセンサが制限されることになる。   In the overload / short circuit protection circuit as described above, even if an instantaneous overload current flows, the overload / short circuit protection circuit operates by detecting the current. However, since a normal sensor has a built-in capacitor, an inrush current flows when the power is connected. For this reason, when the sensor's inrush current exceeds the set value even when the sensor is connected, the overload / short-circuit protection circuit will operate, and the sensor may not be supplied with power, limiting the sensors that can be used. Will be.

そこで、出願人は先に特許文献1に示す図10のような回路を提案した。
これは、図8に示すものに対し、トランジスタT4のベースにコンデンサC3を接続し、このC3により図11に示すように遅延時間tdを設けるものである。その結果、過負荷または短絡電流が流れると、T1は図11に示すように遅延時間tdだけオンした後オフとなる動作を、周期Tで繰り返す。そのため、過負荷・短絡状態の場合は、センサ電源から供給される電流Iは、周期T内の微小時間tdだけ過負荷・短絡電流Ipが流れるだけになり、センサ電源が保護されることになる。
Therefore, the applicant previously proposed a circuit as shown in FIG.
This is different from that shown in FIG. 8 in that a capacitor C3 is connected to the base of the transistor T4, and a delay time td is provided by this C3 as shown in FIG. As a result, when an overload or short-circuit current flows, T1 repeats the operation of turning off after turning on for a delay time td as shown in FIG. Therefore, in the case of an overload / short circuit state, the current I supplied from the sensor power supply only flows the overload / short circuit current Ip for a minute time td within the period T, thereby protecting the sensor power supply. .

特開2003−218673号公報(第3頁、図1−2)Japanese Unexamined Patent Publication No. 2003-218673 (page 3, FIG. 1-2)

しかしながら、センサの中には遅延時間td内では突入電流が過負荷・短絡保護回路が動作するレベル以下には収まらないものもあり、このようなセンサはセンサ接続時に過負荷・短絡保護回路が動作してしまい、その結果センサに電源供給がなされないという問題が生じる。
したがって、この発明の課題は、比較的長時間の大きな突入電流が流れる場合でもセンサへの電源供給を可能とし、使用できるセンサ(種別)が制限を受けないようにすることにある。
However, some sensors have inrush current that does not fall below the level at which the overload / short-circuit protection circuit operates within the delay time td. For such sensors, the overload / short-circuit protection circuit operates when the sensor is connected. As a result, there arises a problem that power is not supplied to the sensor.
Accordingly, an object of the present invention is to enable power supply to a sensor even when a large inrush current flows for a relatively long time, and to prevent a sensor (type) that can be used from being restricted.

このような課題を解決するため、請求項1の発明では、スレーブ主回路を有し、アクチュエータ,センサおよび負荷を含む入出力機器とのインタフェースを司るアクチュエータ,センサインタフェース回路(AS−i)から電源を供給され、かつ、センサ接続用電源端子を持つAS−i用スレーブに対し、
前記センサ接続用電源(−)端子に第1トランジスタのコレクタを接続し、この第1トランジスタのエミッタを第1抵抗および第2トランジスタのベースに接続し、第1トランジスタのベースを第3トランジスタのコレクタと第3抵抗との接続点に接続し、第3トランジスタのエミッタを第2抵抗に接続しかつベースを第4トランジスタのコレクタと第5抵抗との接続点に接続し、第4トランジスタのエミッタを第3トランジスタのエミッタに、ベースを第6抵抗に接続し、第6抵抗の他端を第7抵抗,第1コンデンサおよび第2トランジスタのコレクタに接続し、第7抵抗の他端を第2抵抗の第3トランジスタが接続されていない側に接続するとともに、ダイオードを通してAS−i電源(+)端子に接続された第1コイルの他端とセンサ接続用電源(+)端子に接続し、第1コンデンサの第6抵抗に接続されていない側を第1,第3および第5抵抗の各トランジスタが接続されていない側に接続するとともに、AS−i電源(−)端子に接続された第2コイルの他端に接続し、第2コンデンサの一端を第4トランジスタのベースに、他端を第2と第7の抵抗の接続点に接続したAS−i用スレーブの過負荷・短絡保護回路において、
前記第1トランジスタのコレクタと前記第2トランジスタのエミッタ間に第8抵抗を接続したことを特徴とする。
In order to solve such a problem, in the invention of claim 1, a power source is provided from an actuator, sensor interface circuit (AS-i), which has a slave main circuit and manages an interface with an input / output device including an actuator, a sensor and a load. And an AS-i slave having a power supply terminal for sensor connection,
The collector of the first transistor is connected to the power source (−) terminal for sensor connection, the emitter of the first transistor is connected to the base of the first resistor and the second transistor, and the base of the first transistor is connected to the collector of the third transistor. And the third resistor are connected to each other, the emitter of the third transistor is connected to the second resistor, the base is connected to the connection point between the collector of the fourth transistor and the fifth resistor, and the emitter of the fourth transistor is connected. The base of the third transistor is connected to the sixth resistor, the other end of the sixth resistor is connected to the seventh resistor, the first capacitor and the collector of the second transistor, and the other end of the seventh resistor is connected to the second resistor. And the other end of the first coil connected to the AS-i power source (+) terminal through the diode and the sensor. The side of the first capacitor that is not connected to the sixth resistor is connected to the side of the first capacitor that is not connected to the sixth resistor. The first, third, and fifth resistors are connected to the side that is not connected. AS connected to the other end of the second coil connected to the i power source (−) terminal, one end of the second capacitor connected to the base of the fourth transistor, and the other end connected to the connection point of the second and seventh resistors. -I overload / short-circuit protection circuit for slave
An eighth resistor is connected between the collector of the first transistor and the emitter of the second transistor.

上記請求項1の発明においては、前記第8抵抗と直列にPTCサーミスタを接続することができる(請求項2の発明)。
すなわち、過負荷・短絡保護回路が動作しても、センサ電源電流Iが完全にオフ(ゼロ)になる時間をなくし、抵抗を介して電流I2を流すことにより、センサ接続時の突入電流を減衰させる。突入電流値が遅延時間内に過電流動作レベル以下にならないようなセンサを接続した場合でも、突入電流減衰値が過電流動作レベル以下になれば過負荷・短絡保護動作は解除され、センサには正常に電源供給ができるようになる。
In the first aspect of the present invention, a PTC thermistor can be connected in series with the eighth resistor (the second aspect of the present invention).
In other words, even if the overload / short-circuit protection circuit is activated, the inrush current at the time of sensor connection is attenuated by eliminating the time that the sensor power supply current I is completely turned off (zero) and allowing the current I2 to flow through the resistor. Let Even if a sensor whose inrush current value does not fall below the overcurrent operating level within the delay time is connected, if the inrush current decay value falls below the overcurrent operating level, the overload / short circuit protection operation is canceled and the sensor The power can be supplied normally.

この発明によれば、センサ接続時などに比較的長時間の大きな突入電流の場合でも、センサへは正常に電源(電流)供給できるようにしたので、接続(使用)可能なセンサの制限がなくなり自由度が増大するという利点が得られる。   According to the present invention, even when a large inrush current is relatively long when the sensor is connected, the power (current) can be normally supplied to the sensor, so that there is no limitation on the sensors that can be connected (used). The advantage is that the degree of freedom is increased.

図1はこの発明の実施の形態を示す回路図である。
図1からも明らかなように、この回路は図10に示すものに対し、トランジスタT1のコレクタとT2のエミッタ間に抵抗R10を接続した点が特徴である。これにより、通常の状態(過負荷・短絡保護回路が動作していない時)でセンサ電源から供給される電流Iは、過電流検知用抵抗R1を流れる電流I1と、抵抗R10を流れる電流I2とに分流される。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
As is apparent from FIG. 1, this circuit is different from that shown in FIG. 10 in that a resistor R10 is connected between the collector of the transistor T1 and the emitter of T2. As a result, the current I supplied from the sensor power supply in a normal state (when the overload / short-circuit protection circuit is not operating) includes the current I1 flowing through the overcurrent detection resistor R1 and the current I2 flowing through the resistor R10. To be diverted to

電流Iの増大で電流I1が増大し、
I1×R1≒I×R1×R10/(R1+R10)=Vbe2
になったとき(Vbe2:トランジスタT2のベース・エミッタ間電圧)、トランジスタT2がオンし、遅延時間td後にトランジスタT1がオフになる。トランジスタT1がオフのときは、電流Iは抵抗R10を通して流れる電流I2のみとなり、電流値は抵抗R10で制限される値になる。
Increasing the current I increases the current I1,
I1 * R1≈I * R1 * R10 / (R1 + R10) = Vbe2
(Vbe2: Base-emitter voltage of the transistor T2), the transistor T2 is turned on, and the transistor T1 is turned off after the delay time td. When the transistor T1 is off, the current I is only the current I2 flowing through the resistor R10, and the current value is a value limited by the resistor R10.

過負荷または短絡電流が流れたときの電流Iの波形を、図4に示す。図11に示す従来回路の波形との違いは、トランジスタT1がオフのときにも電流Iは0にならないで、I2の電流が流れるということである。つまり、センサ接続時の突入電流で過負荷・短絡保護回路が動作しても、センサにはI2の充電電流が流れる。そのため、周期T後に過負荷・短絡検知するときは、センサをI2で充電している分だけ突入電流が減衰する。このI2の充電電流によりセンサ突入電流が減衰し、検知レベル以下になれば過負荷・短絡保護動作は解除され、センサには正常に電源(電流)供給されるようになる。   A waveform of the current I when an overload or short-circuit current flows is shown in FIG. The difference from the waveform of the conventional circuit shown in FIG. 11 is that the current I does not become 0 and the current I2 flows even when the transistor T1 is off. That is, even if the overload / short-circuit protection circuit is activated by the inrush current when the sensor is connected, the charging current of I2 flows through the sensor. Therefore, when overload / short circuit detection is performed after the period T, the inrush current is attenuated by the amount that the sensor is charged with I2. The inrush current of the sensor is attenuated by the charging current of I2, and when it becomes below the detection level, the overload / short-circuit protection operation is canceled, and power (current) is normally supplied to the sensor.

上記電流I2の値はなるべく大きく(R10をなるべく小さく)した方がセンサへの充電が早くなり、センサ突入電流を急速に減衰させることができ、センサ突入電流許容値を拡大することができるが、I2を大きくするとR10でのワットロスが大きくなるため、このワットロスを考慮してR10の値を決定する。完全短絡時(端子1と端子3間短絡時)のR10でのワットロスWRは、WR≒Vs2/R10となる(遅延時間tdは、周期Tに対し充分に小さい時間である。)。 If the value of the current I2 is as large as possible (R10 is as small as possible), the sensor can be charged more quickly, the sensor inrush current can be rapidly attenuated, and the sensor inrush current allowable value can be increased. When I2 is increased, the watt loss at R10 increases, so the value of R10 is determined in consideration of this watt loss. Wattorosu W R in R10 when a dead short (time between terminals 1 and 3 short) is a W R ≒ Vs 2 / R10 (delay time td is sufficiently small time to the period T.).

図2にこの発明の第2の実施の形態を示す。
図1との相違点は、R10と直列にPTCサーミスタ(Positive temperature Coefficient Thermistor:正温度係数サーミスタ)Rpを接続したことにある。PTCサーミスタは、温度が上がると抵抗値が増加する正特性をもったサーミスタで、過大な電流が流れると発熱して急激に抵抗値が上昇し、回路を流れる電流を制限する。また、過電流の原因が取り除かれ、発熱が収まると元の低い抵抗値に戻る自己復帰機能がある。
FIG. 2 shows a second embodiment of the present invention.
The difference from FIG. 1 is that a PTC thermistor (Positive temperature Coefficient Thermistor) Rp is connected in series with R10. The PTC thermistor is a thermistor having a positive characteristic in which the resistance value increases as the temperature rises. When an excessive current flows, the PTC thermistor generates heat and suddenly increases its resistance value, thereby limiting the current flowing through the circuit. In addition, there is a self-recovery function that returns to the original low resistance value when the cause of overcurrent is removed and heat generation is stopped.

このようなサーミスタは各メーカで発売しており、いろいろな特性を持つものが用意されている。電流検知用としては、上記のように通常では抵抗値が1Ω以下〜数十Ωと小さい値であるが、過電流が流れると急激に抵抗値が上昇し電流を制限する。このようなPTCサーミスタは、各メーカ独自の呼び方でポジスタ(R),ポジアール(R),ポリスイッチ(R)などと呼ばれている。   Such thermistors are sold by various manufacturers, and various thermistors are available. For current detection, the resistance value is usually a small value of 1Ω or less to several tens of Ω as described above. However, when an overcurrent flows, the resistance value rapidly increases to limit the current. Such a PTC thermistor is called a posistor (R), a positive (R), a polyswitch (R) or the like in a unique name of each manufacturer.

図2では、このようなPTCサーミスタRpと抵抗R10との直列回路を、トランジスタT1のコレクタとT2のエミッタ間に接続している。PTCサーミスタRpは上記のように、過大な電流が流れると抵抗値が急激に上昇し電流制限するため、直列抵抗R10の値を小さくすることができる。PTCサーミスタで急激に抵抗が上昇する電流値をI2Tとすると、抵抗R10での最大ワットロスは、R10×(I2T2に抑えることができる。I2Tは、PTCサーミスタの動作電流またはトリップ電流と呼ばれる。 In FIG. 2, such a series circuit of the PTC thermistor Rp and the resistor R10 is connected between the collector of the transistor T1 and the emitter of T2. As described above, since the resistance value of the PTC thermistor Rp suddenly increases and current is limited when an excessive current flows, the value of the series resistance R10 can be reduced. If the current value at which the resistance suddenly increases with the PTC thermistor is I 2T , the maximum power loss at the resistor R10 can be suppressed to R10 × (I 2T ) 2 . I 2T is called the operating current or trip current of the PTC thermistor.

図1では抵抗R10のみであるため、抵抗R10でのワットロスを考慮すると、あまり小さな値にすることはできなかったが、図2の例では上記の理由から小さくでき、過負荷・短絡保護が動作しT1がオフになった直後には大きな電流I2を流すことができる。そのため、センサへの充電が速やかに行なわれ、センサ突入電流を急速に減衰させる。こうすることで、センサ接続時などに比較的長時間に及ぶ大きな突入電流が発生する場合でも、過負荷・短絡保護回路が動作し続けることはないので、センサには正常に電流が供給される。   Since only the resistor R10 is shown in FIG. 1, considering the watt loss at the resistor R10, the value could not be made very small. However, in the example of FIG. A large current I2 can flow immediately after T1 is turned off. As a result, the sensor is quickly charged and the sensor inrush current is rapidly attenuated. By doing this, even when a large inrush current that occurs for a relatively long time occurs when the sensor is connected, the overload / short-circuit protection circuit does not continue to operate, so the current is normally supplied to the sensor. .

ここで、図2の動作について説明する。
通常の状態(過負荷・短絡保護回路が動作していない時)でセンサ電源から供給される電流Iは、過電流検知用抵抗R1を流れる電流I1と、PTCサーミスタRpと抵抗R10との直列回路を流れる電流I2とに分流される。このときのI2は、I2≒I×R1/(R1+Rp+R10)であるが、過電流検知するまではPTCサーミスタが動作しないように、R10およびPTCサーミスタRpを選定し、I2を決定する。
Here, the operation of FIG. 2 will be described.
The current I supplied from the sensor power supply in a normal state (when the overload / short circuit protection circuit is not operating) is a series circuit of a current I1 flowing through the overcurrent detection resistor R1, a PTC thermistor Rp, and a resistor R10. Is shunted to a current I2 flowing through At this time, I2 is I2≈I × R1 / (R1 + Rp + R10), but R10 and the PTC thermistor Rp are selected and I2 is determined so that the PTC thermistor does not operate until an overcurrent is detected.

電流Iの増大で電流I1が増大し、
I1×R1≒I×R1×(Rp+R10)/(R1+Rp+R10)=Vbe2
になったとき(Vbe2:トランジスタT2のベース・エミッタ間電圧)、トランジスタT2がオンし、遅延時間td後にトランジスタT1がオフになる。トランジスタT1がオフのときは、電流IはPTCサーミスタRpと抵抗R10を通して流れる電流I2のみとなり、電流値はPTCサーミスタRpと抵抗R10との直列回路で制限される値になる。RpとR10は比較的小さい値であるため、トランジスタT1がオフのときの初期段階のI2は、比較的大きな電流値にすることができる。
Increasing the current I increases the current I1,
I1 × R1≈I × R1 × (Rp + R10) / (R1 + Rp + R10) = Vbe2
(Vbe2: Base-emitter voltage of the transistor T2), the transistor T2 is turned on, and the transistor T1 is turned off after the delay time td. When the transistor T1 is off, the current I is only the current I2 flowing through the PTC thermistor Rp and the resistor R10, and the current value is a value limited by the series circuit of the PTC thermistor Rp and the resistor R10. Since Rp and R10 are relatively small values, the initial stage I2 when the transistor T1 is off can be set to a relatively large current value.

センサ接続時の突入電流は、このI2でセンサが充電されるため急速に減衰し、その結果、過負荷・短絡保護動作はすぐに解除され、センサには正常に電源供給される。過負荷・短絡電流が流れ続けると、PTCサーミスタの特性に従って抵抗値Rpが上昇して電流I2を制限するので、電流Iが小さくなり過負荷・短絡保護動作するようになる。
図5に、図2における過負荷・短絡保護動作時の電流波形を示す。初期のI2は比較的大きな値であるが、PTCサーミスタの特性に従って抵抗値Rpが増大してI2が減少し、制限された電流になる。
The inrush current when the sensor is connected is rapidly attenuated because the sensor is charged with this I2, and as a result, the overload / short-circuit protection operation is immediately released and the sensor is normally supplied with power. If the overload / short-circuit current continues to flow, the resistance value Rp increases according to the characteristics of the PTC thermistor to limit the current I2, so that the current I becomes small and the overload / short-circuit protection operation starts.
FIG. 5 shows a current waveform during the overload / short-circuit protection operation in FIG. The initial I2 is a relatively large value, but the resistance value Rp increases and I2 decreases according to the characteristics of the PTC thermistor, resulting in a limited current.

図3はこの発明の第3の実施の形態を示す回路図である。
これは、図2のスレーブ主回路1Aの直後に定電圧回路1Bを付加し、センサに24V供給するようにしたもので、基本的には図2と同じなので説明は省略する。
なお、図6のようにPTCサーミスタRpのみで過負荷・短絡保護回路とすることも可能であるが、PTCサーミスタは一般に動作電流のばらつきが大きく、周囲温度でも変動する。そのため、精度良く過負荷・短絡保護するには適していない。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention.
This is a circuit in which a constant voltage circuit 1B is added immediately after the slave main circuit 1A in FIG. 2 and 24 V is supplied to the sensor. This is basically the same as FIG.
Although an overload / short-circuit protection circuit can be formed by using only the PTC thermistor Rp as shown in FIG. 6, the PTC thermistor generally has a large variation in operating current and fluctuates even at the ambient temperature. Therefore, it is not suitable for overload / short-circuit protection with high accuracy.

これに対し、図2,図3の回路の場合、通常の状態(過負荷・短絡保護回路が動作していない時)で、PTCサーミスタに流れる電流I2をI1に対して充分小さな値になるように選定しておけば、PTCサーミスタの抵抗値RpがばらつきI2がばらついても、I1へのその影響は少なくて済む。そのため、過電流検知電圧I1×R1のばらつきは小さくすることができ、精度が落ちることはない。また、通常の状態(過負荷・短絡保護動作していない状態)の電流I2は、PTCサーミスタの動作電流より充分小さな値に設定されているため、温度に対するPTCサーミスタ動作電流値のばらつきの影響を受けることもない。   On the other hand, in the case of the circuits of FIGS. 2 and 3, the current I2 flowing through the PTC thermistor is set to a sufficiently small value with respect to I1 in a normal state (when the overload / short circuit protection circuit is not operating). If the resistance value Rp of the PTC thermistor varies and the variation I2 varies, the influence on I1 can be reduced. Therefore, the variation of the overcurrent detection voltage I1 × R1 can be reduced, and the accuracy is not lowered. In addition, the current I2 in the normal state (the state where the overload / short-circuit protection operation is not performed) is set to a value sufficiently smaller than the operating current of the PTC thermistor. I don't get it.

この発明の第1の実施の形態を示す回路図1 is a circuit diagram showing a first embodiment of the present invention. この発明の第2の実施の形態を示す回路図Circuit diagram showing a second embodiment of the present invention この発明の第3の実施の形態を示す回路図Circuit diagram showing a third embodiment of the present invention 図1の動作説明図FIG. 1 is an explanatory diagram of the operation. 図2,図3の動作説明図Operation explanatory diagram of FIG. 2 and FIG. 図2または図3から想定可能な回路図Circuit diagram that can be assumed from FIG. 2 or FIG. 一般的なAS−iネットワーク構成例を示す構成図Configuration diagram showing a typical AS-i network configuration example AS−iスレーブの過負荷・短絡保護回路の従来例を示す回路図Circuit diagram showing conventional example of AS-i slave overload / short-circuit protection circuit 図8の動作説明図Operation explanatory diagram of FIG. 特許文献1に開示の回路図Circuit diagram disclosed in Patent Document 1 図10の動作説明図Explanation of operation in FIG.

符号の説明Explanation of symbols

1…AS−iスレーブ、1A…スレーブ主回路、1B…定電圧回路、L1,L2…コイル、C1〜C3…コンデンサ、R1〜R7,R10…抵抗、Rp…PTCサーミスタ、T1〜T4…トランジスタ、D1…ダイオード。

DESCRIPTION OF SYMBOLS 1 ... AS-i slave, 1A ... Slave main circuit, 1B ... Constant voltage circuit, L1, L2 ... Coil, C1-C3 ... Capacitor, R1-R7, R10 ... Resistance, Rp ... PTC thermistor, T1-T4 ... Transistor, D1 is a diode.

Claims (2)

スレーブ主回路を有し、アクチュエータ,センサおよび負荷を含む入出力機器とのインタフェースを司るアクチュエータ,センサインタフェース回路(AS−i)から電源を供給され、かつ、センサ接続用電源端子を持つAS−i用スレーブに対し、
前記センサ接続用電源(−)端子に第1トランジスタのコレクタを接続し、この第1トランジスタのエミッタを第1抵抗および第2トランジスタのベースに接続し、第1トランジスタのベースを第3トランジスタのコレクタと第3抵抗との接続点に接続し、第3トランジスタのエミッタを第2抵抗に接続しかつベースを第4トランジスタのコレクタと第5抵抗との接続点に接続し、第4トランジスタのエミッタを第3トランジスタのエミッタに、ベースを第6抵抗に接続し、第6抵抗の他端を第7抵抗,第1コンデンサおよび第2トランジスタのコレクタに接続し、第7抵抗の他端を第2抵抗の第3トランジスタが接続されていない側に接続するとともに、ダイオードを通してAS−i電源(+)端子に接続された第1コイルの他端とセンサ接続用電源(+)端子に接続し、第1コンデンサの第6抵抗に接続されていない側を第1,第3および第5抵抗の各トランジスタが接続されていない側に接続するとともに、AS−i電源(−)端子に接続された第2コイルの他端に接続し、第2コンデンサの一端を第4トランジスタのベースに、他端を第2と第7の抵抗の接続点に接続したAS−i用スレーブの過負荷・短絡保護回路において、
前記第1トランジスタのコレクタと前記第2トランジスタのエミッタ間に第8抵抗を接続したことを特徴とするAS−i用スレーブの過負荷・短絡保護回路。
AS-i which has a slave main circuit, is supplied with power from an actuator and sensor interface circuit (AS-i) that controls an interface with an input / output device including an actuator, a sensor and a load, and has a power terminal for sensor connection For slave for
The collector of the first transistor is connected to the power source (−) terminal for sensor connection, the emitter of the first transistor is connected to the base of the first resistor and the second transistor, and the base of the first transistor is connected to the collector of the third transistor. And the third resistor are connected to each other, the emitter of the third transistor is connected to the second resistor, the base is connected to the connection point between the collector of the fourth transistor and the fifth resistor, and the emitter of the fourth transistor is connected. The base of the third transistor is connected to the sixth resistor, the other end of the sixth resistor is connected to the seventh resistor, the first capacitor and the collector of the second transistor, and the other end of the seventh resistor is connected to the second resistor. And the other end of the first coil connected to the AS-i power source (+) terminal through the diode and the sensor. The side of the first capacitor that is not connected to the sixth resistor is connected to the side of the first capacitor that is not connected to the sixth resistor. The first, third, and fifth resistors are connected to the side that is not connected. AS connected to the other end of the second coil connected to the i power source (−) terminal, one end of the second capacitor connected to the base of the fourth transistor, and the other end connected to the connection point of the second and seventh resistors. -I overload / short-circuit protection circuit for slave
8. An AS-i slave overload / short-circuit protection circuit, wherein an eighth resistor is connected between the collector of the first transistor and the emitter of the second transistor.
前記第8抵抗と直列にPTCサーミスタを接続したことを特徴とする請求項1に記載のAS−i用スレーブの過負荷・短絡保護回路。

2. The AS-i slave overload / short-circuit protection circuit according to claim 1, wherein a PTC thermistor is connected in series with the eighth resistor.

JP2005063604A 2005-03-08 2005-03-08 AS-i slave overload / short-circuit protection circuit Expired - Fee Related JP4543973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063604A JP4543973B2 (en) 2005-03-08 2005-03-08 AS-i slave overload / short-circuit protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063604A JP4543973B2 (en) 2005-03-08 2005-03-08 AS-i slave overload / short-circuit protection circuit

Publications (2)

Publication Number Publication Date
JP2006253776A true JP2006253776A (en) 2006-09-21
JP4543973B2 JP4543973B2 (en) 2010-09-15

Family

ID=37093829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063604A Expired - Fee Related JP4543973B2 (en) 2005-03-08 2005-03-08 AS-i slave overload / short-circuit protection circuit

Country Status (1)

Country Link
JP (1) JP4543973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895944A (en) * 2013-07-22 2020-03-20 弗朗霍夫应用科学研究促进协会 Audio decoder, audio encoder, method and program for providing audio signal
CN114362092A (en) * 2021-12-14 2022-04-15 深圳拓邦股份有限公司 Load short-circuit protection circuit and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234251A (en) * 1993-05-03 1995-09-05 Fluke Corp Coupled circuit for measuring instrument
JP2000252803A (en) * 1999-02-26 2000-09-14 Yazaki Corp Overcurrent detection circuit and overcurrent detection 1 protection circuit
JP2003111264A (en) * 2001-09-28 2003-04-11 Anden Power supply device with overcurrent protection function, load drive device and power supply device for vehicle
JP2003218673A (en) * 2002-01-23 2003-07-31 Fuji Electric Co Ltd OVERLOAD AND SHORT CIRCUIT PROTECTING CIRCUIT OF SLAVE FOR AS-i

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234251A (en) * 1993-05-03 1995-09-05 Fluke Corp Coupled circuit for measuring instrument
JP2000252803A (en) * 1999-02-26 2000-09-14 Yazaki Corp Overcurrent detection circuit and overcurrent detection 1 protection circuit
JP2003111264A (en) * 2001-09-28 2003-04-11 Anden Power supply device with overcurrent protection function, load drive device and power supply device for vehicle
JP2003218673A (en) * 2002-01-23 2003-07-31 Fuji Electric Co Ltd OVERLOAD AND SHORT CIRCUIT PROTECTING CIRCUIT OF SLAVE FOR AS-i

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895944A (en) * 2013-07-22 2020-03-20 弗朗霍夫应用科学研究促进协会 Audio decoder, audio encoder, method and program for providing audio signal
CN114362092A (en) * 2021-12-14 2022-04-15 深圳拓邦股份有限公司 Load short-circuit protection circuit and electronic equipment

Also Published As

Publication number Publication date
JP4543973B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5482055B2 (en) Power supply control device
JP5309641B2 (en) Semiconductor integrated circuit for charge control
JP5323451B2 (en) Power supply device and power supply method
JP2004046616A (en) Power circuit
CN107276571B (en) System and method for high side power switch
JP3784594B2 (en) Current control circuit
US6141198A (en) Solid state overload relay
JPH04217894A (en) Apparatus with motor having variable motor output
US5818674A (en) Solid state overload relay
JP4543973B2 (en) AS-i slave overload / short-circuit protection circuit
JP4948846B2 (en) Power supply device with inrush current suppression circuit
JP2001242947A (en) Stabilized power circuit and device for stabilized power
JP5524096B2 (en) Overcurrent protection device
JP2003218673A (en) OVERLOAD AND SHORT CIRCUIT PROTECTING CIRCUIT OF SLAVE FOR AS-i
JP2001526869A (en) Overheat protection circuit
JP5144292B2 (en) Switching power supply circuit and vehicle equipped with the same
JP3775554B2 (en) Overload and short circuit protection circuit for actuator and sensor interface slave
JP2011117947A (en) Overcurrent detection circuit
JP2007298288A (en) Electronic device, and contact state detection device of its connection part
JP2008216376A (en) Temperature control apparatus for fixing unit and image forming apparatus
JPH01246616A (en) Reset circuit
JP3069182B2 (en) Detection switch
JP2009171754A (en) Overheating protection circuit
JPS6096921A (en) Overcurrent detection circuit of electronic switch
KR100610747B1 (en) Microwave oven with a function of optimizing the electric power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees