JP2006251801A - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
JP2006251801A
JP2006251801A JP2006061411A JP2006061411A JP2006251801A JP 2006251801 A JP2006251801 A JP 2006251801A JP 2006061411 A JP2006061411 A JP 2006061411A JP 2006061411 A JP2006061411 A JP 2006061411A JP 2006251801 A JP2006251801 A JP 2006251801A
Authority
JP
Japan
Prior art keywords
optical fibers
channels
fiber
microscope
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006061411A
Other languages
English (en)
Inventor
Ulrich Sander
ザンダー ウルリヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems Schweiz AG
Original Assignee
Leica Microsystems Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems Schweiz AG filed Critical Leica Microsystems Schweiz AG
Publication of JP2006251801A publication Critical patent/JP2006251801A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】ファイバ(ケーブル)から光が出射する際の発散角を可及的に小さくすることが可能な照明装置を提供すること。
【解決手段】光源(9)と、入口側端部(8a)及び出口側端部(8b)とを備えるファイバケーブル装置(8)とを有する顕微鏡用照明装置であって、該光源(9)から放射される光が該ファイバケーブル装置(8)の該入口側端部(8a)に入射し、該ファイバケーブル装置(8)の該出口側端部(8b)から出射するよう構成された照明装置において、前記ファイバケーブル装置(8)は、1つ又は複数の光ファイバ(20;30)を有し、前記1つ又は複数の光ファイバ(20;30)の各々は、1つのファイバ体(20a、30a)によって形成されると共に、該1つ又は複数の光ファイバ(20、30)の各々の中心軸zに対して平行に該ファイバ体(20a、30a)を貫通して延在する少なくとも2つのチャネル(21、22;31、32;37)を有することを特徴とする。
【選択図】図2−a

Description

本発明は、請求項1の上位概念(前置部)に記載の顕微鏡用照明装置、並びにそのような照明装置を備えた請求項11の上位概念(前置部)に記載の顕微鏡に関する。即ち、本発明は、光源と、入口側端部及び出口側端部とを備えるファイバケーブル装置とを有する顕微鏡用照明装置であって、該光源から放射される光が該ファイバケーブル装置の該入口側端部に入射し、該ファイバケーブル装置の該出口側端部から出射するよう構成された照明装置に関する。更に、本発明は、そのような照明装置を備えた手術顕微鏡等の顕微鏡に関する。
顕微鏡の照明装置に関しては、種々の方式のものが知られている。これら既知の照明装置は、斜入射照明として顕微鏡の側方に取り付けられたり、照明角度を小さくするために顕微鏡の内部に直接組み込まれたりする。そのため、例えば、照明ビーム路が主対物レンズを介して又は顕微鏡の他の光学要素(複数)を介して案内されるように構成することも可能である。
光源としては、例えば、ハロゲンランプが使用される。光源から放射された光のスペクトル選択を行うことも知られている。例えば、有害なUV又はIRビームをフィルタ除去することができる。これに関連して、レーザも光源として使用される。
顕微鏡用の従来の照明装置では、光源から放射された光を観察対象に向けるためにファイバケーブル装置を使用することも同様に知られている。この種のファイバケーブル装置は、それぞれ所定の長さに引き延ばされた円柱体として構成された少なくとも1つの光ファイバを有する。
しかしながら、この種のファイバケーブルないし光ファイバでは、ファイバから出射する光、例えばレーザ光が、大きく発散(ビーム径拡開)されて進行するという欠点がある。従来のファイバケーブル装置から発散(ビーム径拡開)されて出射される光の様子を図4に示した。同図から、光軸41aを有する従来のファイバケーブル装置41から出射する光が、ファイバケーブル装置41の出口端部41bにおいて発散(ビーム径拡開)されることを見出すことができる。この発散光が顕微鏡用照明装置の枠(フレーム)内で使用されるべきであるなら、この発散は、結像(合焦)光学系によって補正されなければならない。図4には、結像(合焦)光学系が、2つのレンズ42、43によって模式的に示されている。この場合、比較的直径の大きな光線束40が生じる。
典型的に生じる発散角は凡そ60゜〜80゜と大きいので、直径が極めて大きい結像(合焦ないし収束)レンズが必要となるので、顕微鏡の構造寸法も拡大される。しかしながら、とりわけ手術用顕微鏡では、そのコンポーネントが可及的に小さく構成されることが望ましい。
グラスファイバ照明ないしファイバケーブル照明を有する顕微鏡では、上記の理由から顕微鏡を可及的に小型かつコンパクトに構成できるようにするために、ファイバケーブルから光が出射する際にその発散角が可及的に小さくなるよう調整されることが必要とされる。
それゆえ、本発明の課題は、ファイバ(ケーブル)から光が出射する際の発散角を可及的に小さくすることが可能な照明装置を提供することである。
上記の課題を解決するために、本発明の第1の視点により、光源と、入口側端部及び出口側端部とを備えるファイバケーブル装置とを有する顕微鏡用照明装置であって、該光源から放射される光が該ファイバケーブル装置の該入口側端部に入射し、該ファイバケーブル装置の該出口側端部から出射するよう構成された照明装置が提供される。この照明装置において、前記ファイバケーブル装置は、1つ又は複数の光ファイバを有し、前記1つ又は複数の光ファイバの各々は、1つのファイバ体によって形成されると共に、該1つ又は複数の光ファイバの各々の中心軸zに対して平行に該ファイバ体を貫通して延在する少なくとも2つのチャネルを有することを特徴とする(形態1・基本構成1)。
上記の課題を解決するために、本発明の第2の視点の手術用顕微鏡等の顕微鏡は、上記第1の視点及び該第1の視点に関連する種々の形態(後掲)の照明装置を有することを特徴とする(形態11・基本構成2)。
本発明の第1の視点の照明装置は、そのファイバ(ケーブル)から出射する光の発散角を可及的に小さくすることができる。また、そのような照明装置を有する本発明の第2の視点の顕微鏡は、小型かつコンパクトに構成されることができる。
更に、各従属請求項により付加的な効果がそれぞれ達成される。
以下に、本発明の好ましい実施の形態を、上記基本構成1及び2をそれぞれ形態1及び11として示すが、これらは従属請求項の対象でもある。
(形態1) 上掲。
(形態2) 上記形態1の照明装置において、前記1つ又は複数の光ファイバの各々は、該1つ又は複数の光ファイバの各々の前記中心軸zに沿って延在する1つの中央チャネルを有することが好ましい。
(形態3) 上記形態1又は2の照明装置において、前記1つ又は複数の光ファイバの各々の少なくとも2つのチャネルは、該1つ又は複数の光ファイバの各々の前記中心軸zからの等しい距離r(i=1、2、3、…)を有することが好ましい。
(形態4) 上記形態3の照明装置において、前記1つ又は複数の光ファイバの各々の前記少なくとも2つのチャネルは、該1つ又は複数の光ファイバの各々の横断面において互いに対し離隔する複数のチャネルから構成される少なくとも1つのリングを形成することが好ましい。
(形態5) 上記形態1〜4の照明装置において、少なくとも1つのチャネルは、円形又は環形の横断面を有することが好ましい。
(形態6) 上記形態1〜5の照明装置において、前記1つ又は複数の光ファイバの各々は、該1つ又は複数の光ファイバの各々の前記中心軸Zに沿って延在する直径Dの中央チャネルと、該中央チャネルに対して平行に延在する複数のチャネルとを有し、前記複数のチャネルは、前記中央チャネルに対して部分的に等しい距離r(i=1、2、3、…)を有しかつそれぞれD>dである直径dを有することが好ましい。
(形態7) 上記形態6の照明装置において、前記中央チャネルに対して平行に延在する複数のチャネルは、ハニカム構造を形成することが好ましい。
(形態8) 上記形態1〜7の照明装置において、前記1つ又は複数の光ファイバの各々の前記少なくとも2つのチャネルの少なくとも1つには、空気又は希ガス等のガスが充填されていることが好ましい。
(形態9) 上記形態1〜8の照明装置において、前記1つ又は複数の光ファイバの各々の前記少なくとも2つのチャネルの少なくとも1つには、少なくとも部分的に真空が形成されていることが好ましい。
(形態10) 上記形態1〜9の照明装置において、前記光源は、レーザ光源として構成されることが好ましい。
(形態11) 上掲。
(形態12) 上記形態11の顕微鏡は、ステレオ顕微鏡として構成されることが好ましい。
本発明の照明装置の一実施形態では、そのファイバケーブル装置が少なくとも2つのチャネルをそれぞれ有する複数の光ファイバを有し、これら少なくとも2つのチャネルが、それらが属する光ファイバにおいて、該光ファイバの中心軸に対しそれぞれ平行に当該光ファイバを貫通するよう延在するため、ファイバケーブル装置から出射する光は収束され、従来のファイバケーブル装置の場合のように発散することがないように構成することができる。従って、本発明の照明装置により、光源から放射される光を標的に対し極めて正確に照射することが可能となる。とりわけ、ファイバケーブル装置に後置される(下流に配される)べき結像(合焦ないし収束)光学系を省略すること、或いはこの種の光学系を従来の装置のものよりも格段に小さく構成することが可能となる。
1つ又は複数の光ファイバの各々が、当該光ファイバの中心軸zに沿って延在する1つの中央チャネルを有すると好都合であることが判明した。このような中央チャネルを有することよって、ファイバケーブル装置に入射される光、とりわけレーザ光の強度を中央チャネルの領域において集中的に大きくすることが可能となる。
本発明の照明装置の特に有利な一実施形態によれば、1つ又は複数の光ファイバの各々の少なくとも2つのチャネルは、各自が属する光ファイバの中心軸zからの等しい半径方向距離r(i=0、1、2、3、…)を有する。
とりわけ、そのように配置された複数のチャネルと中央チャネルとの協働によって、(1つ又は複数の)光ファイバの各々を貫通通過する光ビームのとりわけ強度の集中が達成可能となるため、(1つ又は複数の)光ファイバの各々ないしファイバケーブル装置の端部において収束されたビーム路が得られる。
この効果は、1つ又は複数の光ファイバの各々の少なくとも2つのチャネルが、該1つ又は複数の(少なくとも1つの)光ファイバの横断面において、互いに対し離隔して配される複数のチャネルから構成される少なくとも1つのリングを形成する(なお、リングを形成する個々のチャネルは中央チャネルに対して平行に延在する。)場合に表れる。このようなリングのひとつにおいて互いに隣接する個々のチャネル間の間隔は同じ大きさであると有利であるが、異なっていても良い。
少なくとも1つのチャネルは、円形又は円環形(円環状)の横断面を有すると都合がよい。通常は、各チャネルは円形横断面を有する。尤も、複数の円環形チャネルを1つの光ファイバ体に配することも可能である。例えば、1つの中央チャネルと、該中央チャネルを完全に同心的に包囲する少なくとも1つの円環形チャネルとを有するように構成することも可能である。
本発明の照明装置の特に有利な一実施形態では、1つ又は複数の光ファイバの各々が、当該1つ又は複数の光ファイバの各々の中心軸zに沿って延在する直径Dの1つの中央チャネルと、この中央チャネルに対して平行に延在する複数のチャネルとを有し、該複数のチャネルは、それぞれ、該中央チャネルに対する等しい距離r(i=1、2、3、…)を有し、かつD>dの直径dを有する。このように構成することにより、個々のチャネルに存在する物質ないし材料を適切に選択すると、中央チャネルに対して平行に延在する複数のチャネルが、中央チャネルと比べて実質的(実効的 effektiv)により大きい屈折率を有することが可能になる。これによりとりわけ有利な重ね合せ(重畳)効果(Ueberlagerungseffekten)が生じるため、このような光ファイバに入射される光ビームが中央チャネルに集中されるようにすることができる。とりわけ、個々のファイバから又はファイバケーブル装置から出射する光ビームのガウスプロファイル(正規分布)を形成することが可能となる。
他の有利な一実施形態によれば、中央チャネルに対して平行に延在する複数のチャネルがハニカム構造を形成するように配されることも可能である。この場合、中央チャネルを包囲する複数のチャネルは、それぞれ、横断面において規則的な六角形(正六角形)として構成されることが可能であるが、これら個々のチャネル間には薄壁が残置される。この実施形態では、これらの薄壁が光ファイバ体を形成する。ハニカム構造は光ファイバの横断面全体にわたって形成されることも可能であるが、例えば中央チャネルを直接包囲する領域のみに形成されることも可能である。
個々の光ファイバの少なくとも2つのチャネルの少なくとも1つが、とりわけ空気又は希ガス等のガスによって充填されるととりわけ有利である。このように構成することによって、チャネルの内部の光学的屈折率を、チャネルを包囲する(有利にはガラス、クオーツ又はプラスチック等の適切な材料から構成される)ファイバ体の材料の光学的屈折率よりも小さくすることを簡単な態様で保証することができる。このように構成された光ファイバでは、光の進行ないし伝播は、とりわけガス充填されたチャネルの内部において全反射が繰り返されることによって行われる。
例えばキセノン等の希ガスをチャネルに充填する場合、とりわけ、各光ファイバに入射される光のラマン効果に基づく波長シフトが回避可能になる。このラマン効果の回避は、例えば、少なくとも2つのチャネルの少なくとも1つに、少なくとも部分的に真空(空間)を形成することによって実現することができる。
本発明の照明装置の特に有利な一実施形態では、光源は、LED、白熱ランプ、蛍光灯(放電管)又はレーザ光源として構成される。このような光源によって、上述の中央チャネルの内部又はその周囲における光の集中ないし強度最大化の効果、及び当該効果に伴って生じる出射光の収束が、とりわけ効果的に達成されることが可能になる。
更に、これに関連して、中央チャネル及び/又は該中央チャネルに対して平行に延在する更なる複数のチャネルが、凡そ1マイクロメートルの直径を有するように構成することができ都合がよい。チャネルをこのような寸法に構成することにより、これらのチャネルを貫通通過する光子の赤色(方向への波長)シフト(赤方偏移)を生じさせることができる。このような赤色(方向への波長)シフトによって、上記のラマン効果によって引き起こされるような青色(方向への波長)シフトを補償することができる。
本発明の照明装置は、とりわけステレオ顕微鏡等の手術用顕微鏡で使用すると有利であることが判明している。
上述の特徴及び後述する実施例から看取される特徴は、本書に記載された組み合わせだけではなく、本発明の枠を逸脱しない範囲において、その他の組み合わせ又は単独でも実施することができる。
以下に、本発明の実施例を図面を参照して詳細に説明する。なお、以下の実施例は発明の理解の容易化のためのものであり、本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加・転換・削除等の適用を排除することは意図しない。また、特許請求の範囲に付した図面参照符号も発明の理解の容易化のためのものであり、本発明を図示の態様に限定することは意図しない。
図1は、全体として符号100が付された顕微鏡の一例の模式的構造を示す。
接眼レンズ1を有する鏡胴2、(任意的な)ズームシステム5及び主対物レンズ10によって、観察ビーム路12aは、主対物レンズ10の光軸12に沿って案内される。鏡胴2内では、観察ビーム路12aは、接眼レンズ1の光軸1aの方向に偏向される。顕微鏡がステレオ顕微鏡として構成される場合、左右の観察ビーム路は、図1の模式的側面図では互いに重なり合うように延在するため、結局図示の顕微鏡の観察光路と同様に1本の線で示されることになる。ステレオ顕微鏡として構成される場合、鏡胴2は、相応に2つの接眼レンズ1を備える両眼観察筒として構成される。
対象物(不図示)は光軸12と対象物面11との交点に配置される。
本発明の照明装置の特別な一実施例が、全体として符号15で示されている。この照明装置は、光源9と、本発明による少なくとも1つの光ファイバを有するファイバケーブル装置8と、結像(収束)光学系7とを有する。コンポーネント7、8、9はすべて図示を簡単にするため模式的にのみ示されている。
光源9から生成された光は、照明光13として、ファイバケーブル装置8及び収束光学系7並びに偏向要素6を介して観察対象物、例えば観察されるべき患者の眼に向けられる。ファイバケーブル装置8ないし光源9の長軸は符号9aで示されている。
本発明に応じて構成された光ファイバを以下、図2−a、図2−b、図2−c及び図3に基づいて説明する。
図2−aは、本発明に応じて使用可能な光ファイバの第1実施例を示す。光ファイバはこの図では符号20で示されている。光ファイバはファイバ体20aを有するが、このファイバ体には、中心軸zに沿って延在する中央チャネル21と、この中央チャネル21に対して平行に延在する複数のチャネル22が形成されている。図から明らかなとおり、チャネル22は、それぞれ、中央チャネル21を中心とする同心のリングを形成しており、1つのリングのチャネルは、それぞれ、軸zに対して半径方向に等しい距離(中心間距離)r、r、rを有する。チャネル21、22には、ガスとりわけ空気が充填されている。ファイバ体20aは、適切なガラス、クオーツ又はプラスチックからなる。チャネル21、22の光学的屈折率は、ファイバ体20aの光学的屈折率よりも小さい。
更に、図から明らかなとおり、中央チャネル21の直径Dは、中央チャネル21に対して平行に延在する個々のチャネル22の直径dよりも大きい。このため、チャネル22は、中央チャネル21よりも実質的(実効的)により大きい屈折率を有する。
全体として、屈折率が上述のように構成されているため、光ファイバ20に光ビームを入射すると、光ビームないし光ビームの強度が中央チャネル21内に集中する重ね合せ(干渉)(Ueberlagerung)が生じる。このような光ファイバから出射する光は、その最大ないし極大が中央チャネルの中心部に位置するガウスプロファイル(正規分布)を有する。更に、このような光ファイバから出射する光は、以下に図3に関連してさらに詳細に説明するように、収束的に伝播(進行)する。
ここに完全を期すために言及するが、図2−aに横断面で示されたチャネル構造は、光ファイバ20全体(全長)にわたって延在していることに注意すべきである。更に、図示の寸法関係、とりわけチャネル径とファイバ径との間の寸法関係は、必ずしも現実に合致しているわけではなく、発明の理解の容易化のため多少デフォルメされて記載されていることに注意すべきである。同様のことが後述する図2−b及び図2−cにも当てはまる。
図2−bは、本発明に応じて使用可能な光ファイバの第2実施例を示す。光ファイバの中心軸zに沿って延在する中央チャネルは、符号31で示されている。このチャネル31は、実質的に六角形に構成された複数のチャネル32によって包囲されており、これらのチャネル32は全体でハニカム構造を形成する。個々のチャネル32の間には、それぞれ薄壁構造体が形成されている。この薄壁構造体は、図2−bに符号30aで示したファイバ体の一部である。ハニカム構造はファイバ体の横断面全体にわたって形成されることもできるが、ファイバ体の外側の領域を厚い壁によって或いは全長にわたって適切な材料によって形成することも可能である。
ファイバ体30aないしはチャネル32間の壁は、それぞれ、空気等のガスで充満されたチャネル31、32よりもより大きい光学的屈折率を有する。更に、中央チャネル31は、当該中央チャネル31を包囲するチャネル32よりもより大きな直径を有するため、この実施例の場合でも、チャネル32は中央チャネル31よりも実質的(実効的)により大きい屈折率を有する。全体としては、図2−aに関連して既に説明したように、同様の光案内効果が達成される。
図2−cは、本発明に応じて使用可能な光ファイバの第3実施例を示す。ファイバは、幾つかの観点から図2−aのファイバに相当するため、部分的に同じ図面参照符号を使用している。図2−cのファイバは、中央チャネル21を有しないという点で図2−aに示したファイバとは本質的に異なる。更に、チャネル37(複数)は、それぞれ、光ファイバの中心軸zを中心とする六角形構造ないしリングを形成する。光ファイバのこのようなチャネル構造によっても、図2−a及び図2−bに関連して既に説明したように、同様の光案内効果を達成することができる。
既に述べたように、本発明のガラスファイバの出口側端部では、光は、拡散的に出射するのではなく、収束的に出射する。この効果は図3に明示されている。
図3は、本発明に応じ複数のグラスファイバを有するファイバケーブル装置8を示す。図から明らかなとおり、ファイバケーブル装置8から出射する光は、まず焦点50に収束され、その後初めて拡開(ビーム径拡大)ないし発散される。その結果、この拡開を補正するための結像(合焦ないし収束)光学系を従来のシステムと比較して格段に小さく構成することができる。このような結像(合焦ないし収束)光学系を、(模式的に)レンズ7で示した。この結像(合焦ないし収束)光学系から出射する光線束52は、従来技術と比較して格段により小さい直径を有する。
本発明の照明装置の一例を有する顕微鏡の一例の模式的側面図。 本発明の照明装置において使用可能な光ファイバの第1実施例の模式的断面図。 本発明の照明装置において使用可能な光ファイバの第2実施例の模式的断面図。 本発明の照明装置において使用可能な光ファイバの第3実施例の模式的断面図。 本発明の照明装置の一例を断面で示した模式的側面図。 従来のファイバケーブル照明装置を断面で示した模式的側面図。
符号の説明
1 接眼レンズ
1a 接眼レンズ1の光軸
2 鏡胴
5 ズームシステム
6 偏向要素
7 結像(収束)光学系
8 ファイバケーブル装置
8a ファイバケーブル装置8の入口側端部
8b ファイバケーブル装置8の出口側端部
9 光源
9a ファイバケーブル装置8又は光源9の長軸
10 主対物レンズ
11 対象物面
12 光軸
12a 観察ビーム路
13 照明光
15 照明装置
20 光ファイバ
20a ファイバ体
21 中央チャネル
22 チャネル
30a ファイバ体
31 中央チャネル
32 チャネル
37 チャネル
40 光線束
41 光軸
41a 光軸
41b 出口端部
42 レンズ
43 レンズ
50 焦点
52 光線束
100 顕微鏡
z 中心軸

Claims (12)

  1. 光源(9)と、入口側端部(8a)及び出口側端部(8b)とを備えるファイバケーブル装置(8)とを有する顕微鏡用照明装置であって、該光源(9)から放射される光が該ファイバケーブル装置(8)の該入口側端部(8a)に入射し、該ファイバケーブル装置(8)の該出口側端部(8b)から出射するよう構成された照明装置において、
    前記ファイバケーブル装置(8)は、1つ又は複数の光ファイバ(20;30)を有し、
    前記1つ又は複数の光ファイバ(20;30)の各々は、1つのファイバ体(20a、30a)によって形成されると共に、該1つ又は複数の光ファイバ(20、30)の各々の中心軸zに対して平行に該ファイバ体(20a、30a)を貫通して延在する少なくとも2つのチャネル(21、22;31、32;37)を有すること
    を特徴とする照明装置。
  2. 前記1つ又は複数の光ファイバ(20;30)の各々は、該1つ又は複数の光ファイバ(20;30)の各々の前記中心軸zに沿って延在する1つの中央チャネル(21;31)を有すること
    を特徴とする請求項1に記載の照明装置。
  3. 前記1つ又は複数の光ファイバ(20;30)の各々の少なくとも2つのチャネル(22;32;37)は、該1つ又は複数の光ファイバ(20;30)の各々の前記中心軸zからの等しい距離r(i=1、2、3、…)を有すること
    を特徴とする請求項1又は2に記載の照明装置。
  4. 前記1つ又は複数の光ファイバ(20;30)の各々の前記少なくとも2つのチャネルは、該1つ又は複数の光ファイバ(20;30)の各々の横断面において互いに対し離隔する複数のチャネル(22;32;37)から構成される少なくとも1つのリングを形成すること
    を特徴とする請求項3に記載の照明装置。
  5. 少なくとも1つのチャネル(21、22;37)は、円形又は環形の横断面を有すること
    を特徴とする請求項1〜4の何れか一項に記載の照明装置。
  6. 前記1つ又は複数の光ファイバ(20;30)の各々は、該1つ又は複数の光ファイバの各々の前記中心軸Zに沿って延在する直径Dの中央チャネル(21;31)と、該中央チャネル(21;31)に対して平行に延在する複数のチャネル(22;32)とを有し、
    前記複数のチャネル(22;32)は、前記中央チャネルに対して部分的に等しい距離r(i=1、2、3、…)を有しかつそれぞれD>dである直径dを有すること
    を特徴とする請求項1〜5の何れか一項に記載の照明装置。
  7. 前記中央チャネル(21;31)に対して平行に延在する複数のチャネル(22;32)は、ハニカム構造を形成すること
    を特徴とする請求項6に記載の照明装置。
  8. 前記1つ又は複数の光ファイバの各々の前記少なくとも2つのチャネル(21、22;31,32;37)の少なくとも1つには、空気又は希ガス等のガスが充填されていること
    を特徴とする請求項1〜7の何れか一項に記載の照明装置。
  9. 前記1つ又は複数の光ファイバの各々の前記少なくとも2つのチャネル(21、22;31,32;37)の少なくとも1つには、少なくとも部分的に真空が形成されていること
    を特徴とする請求項1〜8の何れか一項に記載の照明装置。
  10. 前記光源(9)は、レーザ光源として構成されること
    を特徴とする請求項1〜9の何れか一項に記載の照明装置。
  11. 請求項1〜10の何れか一項に記載の照明装置を有する手術用顕微鏡等の顕微鏡。
  12. ステレオ顕微鏡として構成されることを特徴とする請求項11に記載の顕微鏡。
JP2006061411A 2005-03-09 2006-03-07 照明装置 Withdrawn JP2006251801A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005010887A DE102005010887A1 (de) 2005-03-09 2005-03-09 Beleuchtungseinrichtung

Publications (1)

Publication Number Publication Date
JP2006251801A true JP2006251801A (ja) 2006-09-21

Family

ID=36914669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061411A Withdrawn JP2006251801A (ja) 2005-03-09 2006-03-07 照明装置

Country Status (3)

Country Link
US (1) US20060203507A1 (ja)
JP (1) JP2006251801A (ja)
DE (1) DE102005010887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138196A (ko) * 2014-03-25 2016-12-02 엔케이티 포토닉스 에이/에스 미세 구조 광섬유 및 초연속 광원

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049626A1 (de) 2007-10-12 2009-04-16 Jenoptik Laser, Optik, Systeme Gmbh Verfahren und Vorrichtung zur Beleuchtung einer optischen Abbildungseinrichtung
DE102008052829A1 (de) 2008-10-16 2010-04-22 Carl Zeiss Surgical Gmbh Beleuchtungsvorrichtung für ein optisches Beobachtungsgerät

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404966B1 (en) * 1998-05-07 2002-06-11 Nippon Telegraph And Telephone Corporation Optical fiber
DK1118887T3 (da) * 2000-01-21 2007-03-05 Sumitomo Electric Industries Foton-krystalglasfiber (PCF) med flere kappelag
JP4671463B2 (ja) * 2000-03-24 2011-04-20 オリンパス株式会社 照明光学系及び照明光学系を備えた顕微鏡
US6418258B1 (en) * 2000-06-09 2002-07-09 Gazillion Bits, Inc. Microstructured optical fiber with improved transmission efficiency and durability
DE10115589B4 (de) * 2000-06-17 2020-07-30 Leica Microsystems Cms Gmbh Konfokales Scanmikroskop
US6829421B2 (en) * 2002-03-13 2004-12-07 Micron Technology, Inc. Hollow core photonic bandgap optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138196A (ko) * 2014-03-25 2016-12-02 엔케이티 포토닉스 에이/에스 미세 구조 광섬유 및 초연속 광원
KR102489690B1 (ko) * 2014-03-25 2023-01-19 엔케이티 포토닉스 에이/에스 미세 구조 광파이버 및 초연속 광원
US11619778B2 (en) 2014-03-25 2023-04-04 Nkt Photonics A/S Source of supercontinuum radiation and microstructured fiber

Also Published As

Publication number Publication date
DE102005010887A1 (de) 2006-09-14
US20060203507A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
CN106415359B (zh) 照明装置、方法与医疗成像系统
US7621638B2 (en) Delivering a short Arc lamp light for eye imaging
EP2521480B1 (en) Colour-tunable light source unit with phosphor element
JP4815445B2 (ja) 照明光学装置及び光学装置
US8926152B2 (en) Ring light illuminator, beam shaper and method for illumination
JP6108772B2 (ja) 顕微鏡及び暗視野対物レンズ
JP2015016022A (ja) 照明装置
CN101923210B (zh) 用于医用光学观察设备的照明装置的光源布置
JP2016105190A (ja) リングライト照明器およびリングライト照明器用のビームシェーパー
US20130271830A1 (en) Device For Converting Laser Radiation Into Laser Radiation Having an M Profile
JP2015223463A (ja) 照明装置、照明方法及び内視鏡
US11825588B2 (en) Laser sustained plasma and endoscopy light source
JP2006251801A (ja) 照明装置
JP2002543467A (ja) 改善された、小さなアークランプからより大きな目標への光の結合
RU2631542C2 (ru) Устройство для освещения внутренней стороны цилиндра светом и устройство для преобразования лучей для такого устройства
JP2008257123A (ja) 観察光学系
KR102506747B1 (ko) 광학 영상 장비의 초점 심도 향상 장치
US20200096755A1 (en) Light source for a surgical microscope
KR101533130B1 (ko) 균질화된 라이트 빔을 형성하는 장치 및 방법
JP6763180B2 (ja) 光源装置
JP2004234006A (ja) 照明システムを有する顕微鏡
US6318885B1 (en) Method and apparatus for coupling light and producing magnified images using an asymmetrical ellipsoid reflective surface
WO2023058700A1 (ja) ビーム整形レンズ、ビーム整形素子、内視鏡用光源装置、および、内視鏡
JP2019002964A (ja) 光路切替装置および光路切替方法
US20220373779A1 (en) Phase-contrast microscope

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512