JP2006248949A - Nucleoside derivative, nucleotide derivative and manufacturing method thereof - Google Patents

Nucleoside derivative, nucleotide derivative and manufacturing method thereof Download PDF

Info

Publication number
JP2006248949A
JP2006248949A JP2005066320A JP2005066320A JP2006248949A JP 2006248949 A JP2006248949 A JP 2006248949A JP 2005066320 A JP2005066320 A JP 2005066320A JP 2005066320 A JP2005066320 A JP 2005066320A JP 2006248949 A JP2006248949 A JP 2006248949A
Authority
JP
Japan
Prior art keywords
general formula
derivative
nucleoside
group
derivative represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066320A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hayakawa
芳宏 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2005066320A priority Critical patent/JP2006248949A/en
Publication of JP2006248949A publication Critical patent/JP2006248949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a nucleoside derivative and a nucleotide derivative having controlled stereostructures. <P>SOLUTION: The nucleoside derivative and the nucleotide derivative represented by each general formula (B, B<SB>1</SB>and B<SB>2</SB>are each selected from hydrogen, an OH group, a nucleobase and its derivative; Z is S or Se; R<SB>1</SB>and R<SB>2</SB>are mutually different and each selected from hydrocarbon groups in which hydrogen atom may be partially substituted; Q is an OH-protecting group) have controlled configurations derived from an asymmetric phosphorus atom. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、立体配置を高い選択性をもって制御したヌクレオシド誘導体及びその製造方法、並びにヌクレオチド誘導体及びその製造方法に関する。   The present invention relates to a nucleoside derivative whose steric configuration is controlled with high selectivity and a method for producing the same, and a nucleotide derivative and a method for producing the same.

ウイルス性疾患遺伝子、ガン遺伝子などのように発現を抑制したい遺伝子に対して、その遺伝子の翻訳を阻害し、蛋白質の生成を抑えるDNA人工修飾体、すなわちアンチセンスDNAが近年医薬品として広く注目されている。   In recent years, artificially modified DNA that inhibits the translation of genes and suppresses the production of proteins, such as anti-sense DNA, has been gaining widespread attention as a pharmaceutical product for genes that want to suppress expression, such as viral disease genes and cancer genes. Yes.

そのような分子の一つに20量体程度のDNAオリゴマーのリン酸ジエステル(ホスフェート)部位をすべてチオリン酸ジエステル(ホスホロチオエート)に置き換えたオリゴデオキシリボヌクレオチドホスホロチオエート(all-PS-DNAオリゴマー)があり、その高い薬理効果が近年大きな注目を集めている。   One such molecule is an oligodeoxyribonucleotide phosphorothioate (all-PS-DNA oligomer) in which the phosphodiester (phosphate) sites of a 20-mer DNA oligomer are all replaced with thiophosphate diester (phosphorothioate). High pharmacological effects have attracted much attention in recent years.

しかしながら、all-PS-DNAオリゴマーはヌクレアーゼ耐性、細胞膜透過性などの点で優れているものの、DNAやRNAへの二重鎖結合能において通常のオリゴデオキシリボヌクレオチドに比べて劣る、血清や細胞内タンパク質との相互作用が強く毒性がある、などの欠点をもつ。   However, although all-PS-DNA oligomers are superior in terms of nuclease resistance and cell membrane permeability, they are inferior to ordinary oligodeoxyribonucleotides in terms of double-stranded binding ability to DNA and RNA. It has the disadvantages that the interaction with is strong and toxic.

そのため、この欠点を軽減させる目的でインターヌクレオチド部の一部のみをホスホロチオエートに置換したホスフェート/ホスホロチオエート混合型オリゴマー(PO/PS-混成DNAオリゴマー)が最近創製され、注目を浴びている。   Therefore, a phosphate / phosphorothioate mixed oligomer (PO / PS-hybridized DNA oligomer) in which only a part of the internucleotide portion is substituted with phosphorothioate for the purpose of alleviating this drawback has recently been created and attracting attention.

ところで、これらのインターヌクレオチド部修飾体のホスホロチオエート部のリン原子は不斉原子になるため、化合物の生物学的性質(生理活性)の相違をもたらす可能性がある。そのためジアステレオマー混合物を用いると予期せぬ副作用を生じる恐れがあり、臨床的にはホスホロチオエート部の立体化学が単一なものを使用することが重要となる。   By the way, since the phosphorus atom of the phosphorothioate part of these modified internucleotide parts becomes an asymmetric atom, it may cause a difference in the biological properties (bioactivity) of the compounds. Therefore, when a diastereomer mixture is used, unexpected side effects may occur, and clinically, it is important to use a single stereochemistry of the phosphorothioate moiety.

立体化学が制御されたPO/PS-混成DNAオリゴマーを合成する方法は、1998年にStecらによって立体化学的に単一な化合物をチオエート部位の構成単位に基質を用いることで開発されている(非特許文献1:下記反応式参照)。   A method for synthesizing PO / PS-hybridized DNA oligomers with controlled stereochemistry was developed by Stec et al. In 1998 using a stereochemically single compound as a structural unit for the thioate moiety ( Non-patent document 1: See the following reaction formula).

Figure 2006248949
Figure 2006248949

しかしながらこの方法では、通常の合成によって別のジアステレオマーとの混合物として得られるために精製等の煩雑な操作を必要とし、また長鎖オリゴマーの収率も低い。更に立体化学の異なる二種類(R体、S体)のホスホロチオエート体を合成するのに、それぞれに対応する前駆体(合成中間体)を二種類調製しなくてはいけないため完璧な方法とは言い難い。
Deoxyribonucleoside 3'-O-(2-Thio- and 2-Oxo-"spiro"-4,4- pentamethylene-1,3,2-oxathiaphospholane)s: Monomers for Stereocontrolled Synthesis of Oligo(deoxyribonucleoside phosphorothioate)s and Chimeric PS/PO Oligonucleotides Stec, W. J.; Karwowski, B.; Boczkowska, M.; Guga, P.; Koziolkiewicz, M.; Sochacki, M.; Wicczorek, M. W.; Blaszczyk, J. J. Am. Chem. Soc. 1998, 120, 7156-7167.
However, in this method, since it is obtained as a mixture with another diastereomer by ordinary synthesis, complicated operations such as purification are required, and the yield of the long-chain oligomer is low. Furthermore, in order to synthesize two kinds of phosphorothioate forms with different stereochemistry (R form and S form), it is said that it is a perfect method because two kinds of precursors (synthesis intermediates) corresponding to each must be prepared. hard.
Deoxyribonucleoside 3'-O- (2-Thio- and 2-Oxo- "spiro" -4,4-pentamethylene-1,3,2-oxathiaphospholane) s: Monomers for Stereocontrolled Synthesis of Oligo (deoxyribonucleoside phosphorothioate) s and Chimeric PS / PO Oligonucleotides Stec, WJ; Karwowski, B .; Boczkowska, M .; Guga, P .; Koziolkiewicz, M .; Sochacki, M .; Wicczorek, MW; Blaszczyk, JJ Am. Chem. Soc. 1998, 120, 7156 -7167.

本発明は上記実情に鑑みなされたものであり、立体構造が制御されたPO/PS-混成DNAオリゴマーを得ることを目的として、PO/PS-混成DNAオリゴマーの構成要素、前駆体になりうる化合物であるヌクレオシド誘導体及びヌクレオチド誘導体、並びにそれらの製造方法を提供することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and for the purpose of obtaining a PO / PS-hybridized DNA oligomer having a controlled three-dimensional structure, a compound that can be a constituent element and a precursor of a PO / PS-hybridized DNA oligomer It is an object to be solved to provide a nucleoside derivative and a nucleotide derivative, and methods for producing them.

上記課題を解決する目的で本発明者らは鋭意研究を行った結果以下の知見を得た。すなわち、PO/PS-混成DNAオリゴマーの構成単位となる立体化学的に単一なチオリン酸トリエステルを立体選択的に合成し、一つの中間体から異なる処理をすることでチオエート部に絶対配置の異なる二つのジアステレオマーが得られることを見いだした。更に数段階を経て、より効率的な立体化学が制御されたPO/PS-混成DNAオリゴマーの創成にも成功した。   In order to solve the above problems, the present inventors have conducted intensive research and obtained the following findings. In other words, stereoselective synthesis of stereochemically single thiophosphoric acid triesters, which are the building blocks of PO / PS-hybridized DNA oligomers, is carried out by different treatment from one intermediate and the absolute configuration of the thioate moiety. We found that two different diastereomers were obtained. After several steps, we succeeded in creating a PO / PS-hybridized DNA oligomer with more efficient stereochemistry.

(1)ヌクレオシド誘導体及びヌクレオチド誘導体の製造方法
(1−1)本発明のヌクレオシド誘導体の製造方法は、下記一般式(1)に示すデオキシリボヌクレオシド誘導体と、一般式(2):R1OPXY(R1は一部水素が置換されていても良い炭化水素基である。;X、Yは、Cl、Br、ジアルキル置換アミンである−NRR’(R、R’は一部水素が置換されていても良い炭化水素基からそれぞれ独立して選択される。R及びR’は一緒になって環を形成しても良い。)からそれぞれ独立して選択される。)に示すホスフィン誘導体とを、アゾール、酸アゾール複合体及びカルボン酸から選択される酸化合物の存在下で反応させて、下記一般式(3a)及び/又は(3b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を生成する第1工程と、
前記ヌクレオシド環状亜リン酸トリエステル誘導体に、S化剤又はSe化剤を反応させて下記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を得る第2工程と、を有することを特徴とする。
(1) Method for Producing Nucleoside Derivatives and Nucleotide Derivatives (1-1) A method for producing a nucleoside derivative of the present invention comprises a deoxyribonucleoside derivative represented by the following general formula (1) and a general formula (2): R 1 OPXY (R 1 is a hydrocarbon group which may be partially substituted with hydrogen; X and Y are Cl, Br and dialkyl-substituted amines —NRR ′ (R and R ′ are partially substituted with hydrogen; And R and R ′ may be combined together to form a ring.) Are each independently selected from phosphine derivatives represented by And a nucleoside cyclic phosphite triester derivative represented by the following general formula (3a) and / or (3b) by reacting in the presence of an acid compound selected from an acid azole complex and a carboxylic acid A first step that,
A second step of obtaining a nucleoside cyclic phosphite triester derivative represented by the following general formula (4a) and / or (4b) by reacting the nucleoside cyclic phosphite triester derivative with a S agent or Se agent: It is characterized by having.

Figure 2006248949
Figure 2006248949

(式(1)、(3a)、(3b)、(4a)及び(4b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;R1は一般式(2)のR1と同じ基である;ZはO、S又はSeである。)
一般式(1)に示すデオキシリボヌクレオシド誘導体に、一般式(2)に示すホスフィン誘導体を、アゾール、酸アゾール複合体及びカルボン酸から選択される酸化合物の存在下で反応させることで、概ね一般式(3a)又は(3b)に示すヌクレオシド誘導体が等量合成される。
R 1 in R 1 of the general formula (2); (Formula (1), (3a), (3b), (4a) and (4b) in, B is selected from hydrogen, OH group, a nucleobase or a derivative thereof And Z is O, S or Se.)
By reacting the deoxyribonucleoside derivative represented by the general formula (1) with the phosphine derivative represented by the general formula (2) in the presence of an acid compound selected from azole, acid azole complex and carboxylic acid, the general formula An equivalent amount of the nucleoside derivative shown in (3a) or (3b) is synthesized.

その後、S化剤又はSe化剤を反応させることで、一般式(3a)に示す化合物からは一般式(4a)に示すヌクレオシド誘導体が、一般式(3b)に示す化合物からは一般式(4b)に示すヌクレオシド誘導体が、それぞれ合成される。ここで、一般式(3a)及び(3b)に示すヌクレオシド誘導体の混合物の状態で、必要に応じて高温に保持することで、一般式(3b)に示すヌクレオシド誘導体は、一般式(3a)に示すヌクレオシド誘導体に異性化することができるので、一般式(4a)に示すヌクレオシド誘導体を主生成物とすることができる。従って、得られる化合物の立体構造を制御することができる。   Thereafter, by reacting with a S agent or a Se agent, the nucleoside derivative represented by the general formula (4a) is converted from the compound represented by the general formula (3a), and the compound represented by the general formula (3b) is represented by the general formula (4b). The nucleoside derivatives shown in FIG. Here, the nucleoside derivative represented by the general formula (3b) is represented by the general formula (3a) by maintaining the mixture at a high temperature as necessary in the state of the mixture of the nucleoside derivatives represented by the general formulas (3a) and (3b). Since it can be isomerized to the nucleoside derivative shown, the nucleoside derivative shown in the general formula (4a) can be used as the main product. Therefore, the three-dimensional structure of the obtained compound can be controlled.

そして、前記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を出発物質として、R2OH溶液中(R2は一部水素が置換されていても良い炭化水素基であって、前記R1とは異なる基である。)でR2OHのアルコラートを反応させることで、下記一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を得ることができる。一般式(4a)に示す化合物からは一般式(5a)に示すヌクレオシド誘導体が、一般式(4b)に示す化合物からは一般式(5b)に示すヌクレオシド誘導体が、得られる。この反応は立体選択性が非常に高く、目的の立体構造をもつ化合物を合成することができる。 Then, starting from the nucleoside cyclic phosphite triester derivative represented by the general formula (4a) and / or (4b) in the R 2 OH solution (R 2 is a hydrocarbon which may be partially substituted with hydrogen) A nucleoside derivative represented by the following general formula (5a) and / or (5b) can be obtained by reacting an alcoholate of R 2 OH with a group different from R 1 . From the compound represented by the general formula (4a), the nucleoside derivative represented by the general formula (5a) is obtained, and from the compound represented by the general formula (4b), the nucleoside derivative represented by the general formula (5b) is obtained. This reaction has a very high stereoselectivity, and a compound having the desired stereostructure can be synthesized.

Figure 2006248949
Figure 2006248949

(式(5a)及び(5b)中、Bは前記一般式(1)にて説明したBと同じ基であり;R1は前記一般式(2)にて説明したR1と同じ基である。;R2は一部水素が置換されていても良い炭化水素基であって、前記R1とは異なる基である。;式(5a)中のZは前記一般式(4a)のZと同じ基であり;式(5b)中のZは前記一般式(4b)のZと同じ基である。)
なお、ここで説明したB、R1、X、Yなどの説明は後述する他の説明についても特に断りがない限り妥当する。つまり、各一般式における記号は本明細書において特に説明がない限り一貫性をもって使用している。
(In the formulas (5a) and (5b), B is the same group as B explained in the general formula (1); R 1 is the same group as R 1 explained in the general formula (2). R 2 is a hydrocarbon group which may be partially substituted with hydrogen and is a group different from R 1 ; Z in the formula (5a) is the same as Z in the general formula (4a) Z is the same group as Z in the general formula (4b).
Note that the description of B, R 1 , X, Y, etc. described here is applicable to other descriptions described later unless otherwise specified. That is, the symbols in the general formulas are used consistently unless otherwise specified in this specification.

(1−2)他の本発明のヌクレオシド誘導体の製造方法は、不斉リン原子に由来する立体配置が制御された下記一般式(5)に示すヌクレオシド誘導体に、脱R1剤又は脱R2剤を反応させて不斉リン原子に由来する立体配置が制御された下記一般式(6)又は(7)に示すヌクレオシド誘導体を得ることを特徴とする。 (1-2) Another method for producing a nucleoside derivative according to the present invention includes a de-R 1 agent or a de-R 2 in a nucleoside derivative represented by the following general formula (5) in which the configuration derived from an asymmetric phosphorus atom is controlled. It is characterized in that a nucleoside derivative represented by the following general formula (6) or (7) in which the configuration derived from an asymmetric phosphorus atom is controlled by reacting an agent is obtained.

つまり、R1及びR2のいずれの基を脱離するかによって、不斉リン原子に由来する立体配置が変化するという発見により本発明を完成したものである。R1を脱離した場合は、R2を脱離した場合と比較して、R1及びR2が等価だとした場合の不斉リン原子に由来する立体配置が反対になる。従って、不斉リン原子に由来する立体配置を任意に制御することができる。 That is, the present invention has been completed by the discovery that the configuration derived from the asymmetric phosphorus atom changes depending on which group of R 1 and R 2 is eliminated. When R 1 is eliminated, the configuration derived from the asymmetric phosphorus atom when R 1 and R 2 are equivalent is opposite to that when R 2 is eliminated. Therefore, the configuration derived from the asymmetric phosphorus atom can be arbitrarily controlled.

Figure 2006248949
Figure 2006248949

(式(5)〜(7)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはO、S又はSeであり;R1及びR2は互いに異なる一部水素が置換されていても良い炭化水素基から選択される;QはOH基の保護基である。)
一般式(5)に示す化合物は、OH基に保護基を導入したこと以外、前述の一般式(5a)又は(5b)に相当する化合物である。目的とする一般式(6)又は(7)の化合物の立体構造に応じて一般式(5a)又は(5b)に相当する化合物から選択する。
(In the formulas (5) to (7), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is O, S or Se; R 1 and R 2 are partially substituted with different hydrogens. Selected from hydrocarbon groups which may be substituted; Q is a protecting group for the OH group.)
The compound represented by the general formula (5) is a compound corresponding to the above general formula (5a) or (5b) except that a protective group is introduced into the OH group. It selects from the compound corresponding to general formula (5a) or (5b) according to the three-dimensional structure of the target compound of general formula (6) or (7).

前記一般式(5)〜(6)におけるR1及びR2は、メチル基、アリル基(−CH2CH=CH2)及びシアノエチル基から選択されることが望ましい。その場合に、脱メチル剤としてはモノアルキルアミン、脱アリル剤としては0価パラジウム又はNaI、脱シアノエチル剤としてはトリアルキルアミン、アンモニア又はジアザビシクロウンデセン、から選択されることができる。 R 1 and R 2 in the general formulas (5) to (6) are preferably selected from a methyl group, an allyl group (—CH 2 CH═CH 2 ), and a cyanoethyl group. In that case, the demethylating agent can be selected from monoalkylamine, the deallylating agent can be selected from zerovalent palladium or NaI, and the decyanoethylating agent can be selected from trialkylamine, ammonia or diazabicycloundecene.

(1−3)本発明のヌクレオチド誘導体の製造方法は、不斉リン原子に由来する立体配置が制御された下記一般式(8)に示すヌクレオシド誘導体に、下記一般式(9)に示すヌクレオシド誘導体を反応させ、下記一般式(10)に示すヌクレオチド誘導体を合成する工程を有することを特徴とする。   (1-3) The method for producing a nucleotide derivative of the present invention includes a nucleoside derivative represented by the following general formula (9) in a nucleoside derivative represented by the following general formula (8) in which the configuration derived from an asymmetric phosphorus atom is controlled. And a step of synthesizing a nucleotide derivative represented by the following general formula (10).

Figure 2006248949
Figure 2006248949

(式(8)、(9)及び(10)中、B1及びB2は核酸塩基又はその誘導体から独立して選択され;ZはO、S又はSeである;R1は一部水素が置換されていても良い炭化水素基から選択される。QはOH基の保護基であり独立して選択できる。)一般式(8)に示す化合物としては、前述の一般式(6)又は(7)に示す化合物を採用することで、立体配置を制御できる。 (In formulas (8), (9) and (10), B 1 and B 2 are independently selected from nucleobases or derivatives thereof; Z is O, S or Se; R 1 is partially hydrogenated. It is selected from an optionally substituted hydrocarbon group, Q is a protecting group for the OH group and can be independently selected.) The compound represented by the general formula (8) includes the aforementioned general formula (6) or ( By adopting the compound shown in 7), the configuration can be controlled.

一般式(8)に示す化合物に一般式(9)に示す化合物を反応させる方法としてはいわゆる光延反応などの公知の方法が採用できる。   As a method for reacting the compound represented by the general formula (9) with the compound represented by the general formula (8), a known method such as a so-called Mitsunobu reaction can be employed.

(1−4)本発明のヌクレオチド誘導体の製造方法は、
(a)(a−1)上述の(1−1)に記載の製造方法により、前記一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を製造する工程と、
(a−2)前記一般式(5)に示すヌクレオシド誘導体として該一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を用いて、上述の(1−2)に記載の製造方法により、前記一般式(6)及び/又は(7)に示すヌクレオシド誘導体を製造する工程と、
(a−3)前記一般式(8)に示すヌクレオシド誘導体として該該一般式(6)及び/又は(7)に示すヌクレオシド誘導体を用いて、上述の(1−3)に記載の製造方法により、前記一般式(10)に示すヌクレオチド誘導体を製造する工程と、
を繰り返して立体配置を制御したヌクレオチド誘導体を合成する工程と、
(b)(b−1) 該ヌクレオチド誘導体合成工程で合成された該一般式(10)に示すヌクレオチド誘導体に対し、ホスホロアミダイト誘導体を反応させて、該一般式(10)に示すヌクレオチド誘導体及び該ホスホロアミダイト誘導体の間を縮合させてアミダイト化ヌクレオチド誘導体を生成する工程と、
(b−2)ヌクレオシド、ヌクレオシド誘導体(一般式(1)、(2)、(3a)、(3b)、(4a)、(4b)、(5)、(5a)、(5b)、(6)、(7)、(8)及び(9)のいずれかの化合物)又は該ヌクレオチド誘導体合成工程にて合成されたヌクレオチド誘導体を、前記アミダイト化ヌクレオチド誘導体に反応させるヌクレオチド誘導体付加工程と、
を繰り返して必要な長さのヌクレオチド誘導体を得るヌクレオチド誘導体伸長工程と、
を有することを特徴とする。
(1-4) The method for producing the nucleotide derivative of the present invention comprises:
(A) (a-1) a step of producing a nucleoside derivative represented by the general formula (5a) and / or (5b) by the production method described in (1-1) above;
(A-2) Using the nucleoside derivative represented by the general formula (5a) and / or (5b) as the nucleoside derivative represented by the general formula (5), the production method according to the above (1-2), A step of producing a nucleoside derivative represented by the general formula (6) and / or (7);
(A-3) Using the nucleoside derivative represented by the general formula (6) and / or (7) as the nucleoside derivative represented by the general formula (8), the production method according to the above (1-3) Producing a nucleotide derivative represented by the general formula (10);
A step of synthesizing a nucleotide derivative with controlled steric configuration,
(B) (b-1) A nucleotide derivative represented by the general formula (10) obtained by reacting the nucleotide derivative represented by the general formula (10) synthesized in the nucleotide derivative synthesis step with a phosphoramidite derivative; Condensing between the phosphoramidite derivatives to produce amidated nucleotide derivatives;
(B-2) Nucleoside, nucleoside derivative (general formulas (1), (2), (3a), (3b), (4a), (4b), (5), (5a), (5b), (6 ), (7), (8) and (9) compound) or a nucleotide derivative addition step of reacting the nucleotide derivative synthesized in the nucleotide derivative synthesis step with the amidated nucleotide derivative,
A nucleotide derivative extending step to obtain a nucleotide derivative of a necessary length by repeating
It is characterized by having.

つまり、立体配置が制御された一般式(10)に示す化合物を出発物質として、本発明者らが以前より提案しているいわゆるアミダイト法を適用することにより、必要な長さ・立体構造をもつヌクレオチド誘導体を伸長するができる。   In other words, by using the compound represented by the general formula (10) with controlled steric configuration as a starting material and applying the so-called amidite method proposed by the present inventors, it has the necessary length and steric structure. Nucleotide derivatives can be extended.

(2)ヌクレオシド誘導体及びヌクレオチド誘導体
本発明者らは上述のヌクレオシド誘導体及びヌクレオチド誘導体の製造方法を開発するに当たり、有用な新規化合物を多数得ることができた。
(2) Nucleoside Derivatives and Nucleotide Derivatives The present inventors have been able to obtain a number of useful novel compounds in developing the above-described methods for producing nucleoside derivatives and nucleotide derivatives.

(2−1)本発明のヌクレオシド誘導体は、下記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体である。   (2-1) The nucleoside derivative of the present invention is a nucleoside cyclic phosphite triester derivative represented by the following general formula (4a) and / or (4b).

Figure 2006248949
Figure 2006248949

(式(4a)及び(4b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeである。)
(2−2)本発明のヌクレオシド誘導体は下記一般式(5a)及び/又は(5b)に示す化合物である。
(In formulas (4a) and (4b), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is S or Se.)
(2-2) The nucleoside derivative of the present invention is a compound represented by the following general formula (5a) and / or (5b).

Figure 2006248949
Figure 2006248949

(式(5a)及び(5b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeであり;R1及びR2は互いに異なる一部水素が置換されていても良い炭化水素基から選択される。)
(2−3)本発明のヌクレオシド誘導体は不斉リン原子に由来する立体配置が制御された下記一般式(11)に示す化合物である。
(In the formulas (5a) and (5b), B is selected from hydrogen, OH group, nucleobase or derivative thereof; Z is S or Se; R 1 and R 2 are partially substituted with different hydrogens. Selected from hydrocarbon groups that may be present.)
(2-3) The nucleoside derivative of the present invention is a compound represented by the following general formula (11) in which the configuration derived from an asymmetric phosphorus atom is controlled.

Figure 2006248949
Figure 2006248949

(式(11)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeであり;R1は互いに異なる一部水素が置換されていても良い炭化水素基から選択される;QはOH基の保護基である。)
(2−4)本発明のヌクレオチド誘導体は不斉リン原子に由来する立体配置が制御された下記一般式(10)に示す化合物である。
(In the formula (11), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is S or Se; R 1 is a hydrocarbon group which may be partially substituted with different hydrogens. Q is a protecting group for the OH group.)
(2-4) The nucleotide derivative of the present invention is a compound represented by the following general formula (10) in which the configuration derived from an asymmetric phosphorus atom is controlled.

Figure 2006248949
Figure 2006248949

(式(10)中、B1及びB2は核酸塩基又はその誘導体から独立して選択され;ZはS又はSeである;R1は一部水素が置換されていても良い炭化水素基から選択される。QはOH基の保護基であり独立して選択できる。) (In formula (10), B 1 and B 2 are independently selected from nucleobases or derivatives thereof; Z is S or Se; R 1 is a hydrocarbon group that may be partially substituted with hydrogen. Q is a protecting group for the OH group and can be independently selected.)

本発明のヌクレオシド誘導体及びヌクレオチド誘導体の製造方法によると、不斉リン原子に由来する立体配置として必要な立体構造を有する化合物を効率的に得ることができる。そして、本発明のヌクレオシド誘導体及びヌクレオチド誘導体は不斉リン原子に由来する立体配置が制御されているので、不斉合成に応用した場合に、得られた反応生成物が高い立体選択性を有することが期待できると共に、これらの化合物自身についてもヌクレオシド(ヌクレオチド)誘導体であることから、何らかの薬理活性を有することが期待できる。   According to the method for producing a nucleoside derivative and a nucleotide derivative of the present invention, a compound having a steric structure necessary as a configuration derived from an asymmetric phosphorus atom can be efficiently obtained. And since the nucleoside derivative and nucleotide derivative of the present invention have a controlled configuration derived from an asymmetric phosphorus atom, the resulting reaction product has high stereoselectivity when applied to asymmetric synthesis. Since these compounds themselves are also nucleoside (nucleotide) derivatives, it can be expected to have some pharmacological activity.

(1)ヌクレオシド誘導体及びヌクレオチド誘導体及びその製造方法
本発明のヌクレオシド誘導体及びヌクレオチド誘導体及びその製造方法について以下詳細に説明する。主に製造方法について説明し、ヌクレオシド誘導体及びヌクレオチド誘導体については製造方法で併せて説明する。
(1) Nucleoside derivative and nucleotide derivative and method for producing the same The nucleoside derivative and nucleotide derivative of the present invention and the method for producing the same will be described in detail below. The production method will be mainly described, and the nucleoside derivative and the nucleotide derivative will be described together with the production method.

(1−1)本発明のヌクレオシド誘導体の製造方法は第1工程と第2工程とを有する。   (1-1) The method for producing a nucleoside derivative of the present invention includes a first step and a second step.

(a)第1工程は、上記一般式(1)に示すデオキシリボヌクレオシド誘導体と、上記一般式(2)に示すホスフィン誘導体とを、アゾール、酸アゾール複合体及びカルボン酸から選択される酸化合物の存在下で反応させて、上記一般式(3a)及び/又は(3b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を生成する工程である。   (A) In the first step, a deoxyribonucleoside derivative represented by the above general formula (1) and a phosphine derivative represented by the above general formula (2) are converted into an acid compound selected from an azole, an acid azole complex, and a carboxylic acid. This is a step of reacting in the presence to produce a nucleoside cyclic phosphite triester derivative represented by the above general formula (3a) and / or (3b).

第1工程の反応が行われる雰囲気は特に限定しないが、非プロトン溶媒を用いることが望ましい。コストなどの観点からアセトニトリルなどが好適に採用できる。特に、無水条件を採用することが好ましく、モレキュラーシーブスなどの脱水剤を共存させて反応を進行させたり、外部からの水分の侵入を防止する何らかの手段(ドライボックスなど)を採用することが望ましい。   The atmosphere in which the reaction in the first step is performed is not particularly limited, but it is desirable to use an aprotic solvent. Acetonitrile and the like can be suitably employed from the viewpoint of cost and the like. In particular, it is preferable to employ anhydrous conditions, and it is desirable to employ some means (such as a dry box) for allowing the reaction to proceed in the presence of a dehydrating agent such as molecular sieves or preventing moisture from entering from the outside.

各化合物の混合比は特に限定しないが、反応をより確実に進行できること、且つ、反応終了後の夾雑物の分離性などの観点から、一般式(1)に示す化合物に対して、一般式 (2)に示す化合物及び酸化合物の添加量を僅かに過剰量にすることが望ましい。   The mixing ratio of each compound is not particularly limited, but the compound represented by the general formula (1) can be used with respect to the compound represented by the general formula (1) from the viewpoints of allowing the reaction to proceed more reliably and separating the impurities after the completion of the reaction. It is desirable that the addition amount of the compound and acid compound shown in 2) is slightly excessive.

反応温度は特に限定しない。室温などの温和な条件でも充分に反応が進行するものと推測できる。特に、副生成物の生成などの不都合が問題にならない限度で高い温度を選択することもできる。ここで、本第1工程が終了した後に、高温状態に保持することで、一般式(3b)に示す化合物が一般式(3a)に示す化合物に異性化することが判明しており、不斉リン原子に由来する立体配置を制御することができる。高温としては用いる化合物によっても異なるが40℃〜80℃程度が好ましく、50℃〜60℃程度がより好ましい。   The reaction temperature is not particularly limited. It can be presumed that the reaction proceeds sufficiently even under mild conditions such as room temperature. In particular, a high temperature can be selected as long as inconveniences such as by-product formation do not become a problem. Here, after the completion of the first step, it has been found that the compound represented by the general formula (3b) is isomerized into the compound represented by the general formula (3a) by maintaining at a high temperature state, and the asymmetric The configuration derived from the phosphorus atom can be controlled. Although it changes with compounds to be used as high temperature, about 40 to 80 degreeC is preferable and about 50 to 60 degreeC is more preferable.

なお、高温状態にて保持する場合には第1工程における反応生成物を特に精製等の分離を行うことなく、そのまま供することが可能である。特に、酸化合物の存在下にて高温状態に保持することで異性化が促進されるものと推測される。   In addition, when hold | maintaining in a high temperature state, it is possible to use the reaction product in a 1st process as it is, without performing separation, such as refinement | purification. In particular, it is presumed that isomerization is promoted by maintaining a high temperature in the presence of an acid compound.

一般式(1)に示す化合物はデオキシリボースを骨格とする化合物である。上述の一般式(1)では、煩雑になるので記載しなかったが、骨格であるデオキシリボースの各水素原子は何らかの置換基で置換されることが可能である。例えば、一般式(1)の化合物は、下記一般式(1’)で示されるような化合物を含んでいる。以下の構造式においても省略しているが、一般式(1)に対応する部分については一般式(1’)で示したような化学構造が導入できる。   The compound represented by the general formula (1) is a compound having deoxyribose as a skeleton. In the above general formula (1), since it becomes complicated, it is not described, but each hydrogen atom of deoxyribose which is a skeleton can be substituted with any substituent. For example, the compound of the general formula (1) includes a compound represented by the following general formula (1 ′). Although omitted in the following structural formulas, a chemical structure represented by the general formula (1 ') can be introduced for the portion corresponding to the general formula (1).

Figure 2006248949
Figure 2006248949

(式(1’)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;X1は水素、ハロゲン原子、保護基で置換されたOH基、炭素数1〜6のアルコキシ基から選択され;X2は水素原子、炭素数1〜6のアルキル基及び芳香族性の置換基から選択される。;なお、前述のアルコキシ基、アルキル基、アルケニル基及びCn2nには直鎖状及び分枝を有するもの並びに水素原子の一部がハロゲンで置換されたものも含む。また、X1がアルコキシ基で且つX2がアルキル基の場合には、X1とX2とを結合させて環を形成しても良い。)
Bとして結合する置換基は水素、OH基、核酸塩基又はその誘導体である。核酸塩基としては自然界に存在する塩基やその誘導体(プリン塩基(アデニン、グアニンなど)、ピリミジン塩基(シトシン、チミン、ウラシルなど)や、その誘導体など。誘導体としては保護基などを導入したものも含む)はもちろん、その他の自然界には一般的に存在しない塩基を採用することもできる。また、塩基を有していないデオキシリボースを採用しても同様の反応が進行することが予測されるので、Bとしては水素又はOH基である場合も含ませているが、最終的にヌクレオチド(誘導体)として利用する場合にはBの位置に核酸塩基が挿入されることが一般的であると考えられる。
(In the formula (1 ′), B is selected from hydrogen, OH group, nucleobase or derivative thereof; X 1 is selected from hydrogen, halogen atom, OH group substituted with a protecting group, and alkoxy group having 1 to 6 carbon atoms. X 2 is selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms and an aromatic substituent, and the above alkoxy group, alkyl group, alkenyl group and C n H 2n are In addition, those having a chain and a branch, and those in which a part of hydrogen atoms are substituted with halogen, and when X 1 is an alkoxy group and X 2 is an alkyl group, X 1 and X 2 are It may be bonded to form a ring.)
The substituent bonded as B is hydrogen, OH group, nucleobase or derivative thereof. Nucleobase includes naturally occurring bases and derivatives thereof (purine bases (adenine, guanine, etc.), pyrimidine bases (cytosine, thymine, uracil, etc.) and derivatives thereof. Of course, other bases that do not generally exist in nature can also be employed. In addition, since it is predicted that the same reaction will proceed even if deoxyribose having no base is employed, B may be a hydrogen or OH group. When used as a derivative), it is generally considered that a nucleobase is inserted at the position B.

一般式(2)に示す化合物はR1OPXYで示される化合物である。R1は一部水素が置換されていても良い炭化水素基である。例えば、直鎖・分岐を問わない炭化水素基であり、アルキル基、アルケニル基、フェニル基、シアノアルキレン基などである。具体的にはメチル基、アリル基、エチル基、プロピル基、イソプロピル基、ブチル基、フェニル基、シアノエチル基などである。 The compound represented by the general formula (2) is a compound represented by R 1 OPXY. R 1 is a hydrocarbon group which may be partially substituted with hydrogen. For example, it is a hydrocarbon group that may be linear or branched, and includes an alkyl group, an alkenyl group, a phenyl group, a cyanoalkylene group, and the like. Specific examples include a methyl group, an allyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group, and a cyanoethyl group.

X、YはCl、Br、ジアルキル置換アミンである−NRR’からそれぞれ独立して選択される。ここで、R、R’は一部水素が置換されていても良い炭化水素基からそれぞれ独立して選択される。炭化水素基としては先述したR1と同様の基から選択することができる。更に、R及びR’は一緒になって環を形成しても良い。 X and Y are each independently selected from Cl, Br and -NRR 'which is a dialkyl-substituted amine. Here, R and R ′ are each independently selected from hydrocarbon groups that may be partially substituted with hydrogen. The hydrocarbon group can be selected from the same groups as R 1 described above. Further, R and R ′ may be combined to form a ring.

酸化合物はアゾール、酸アゾール複合体及びカルボン酸から選択される化合物である。アゾールとしては1H-テトラゾール、ベンズイミダゾール、イミダゾール、5-(p-ニトロフェニル)-1H-テトラゾール、5-(エチルチオ)-1H-テトラゾール、4,5-ジシアノイミダゾール、2-ブロモ4,5-ジシアノイミダゾールピリジン、1-メチルイミダゾール、1-フェニルイミダゾール、1-(4-アセトキシフェニル)イミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、2-メチルベンズイミダゾール、2-フェニルベンズイミダゾール、N-メチルアニリン等アルキルアニリン類、トリアゾールが例示できる。酸アゾール複合体としてはベンズイミダゾール−トリフルオロメタンスルホン酸複合体、ベンズイミダゾール−過塩素酸複合体、ベンズイミダゾール−トリフルオロ酢酸複合体、ベンズイミダゾール−テトラフルオロホウ酸複合体、ベンズイミダゾール−ヘキサフルオロリン酸複合体、イミダゾール−トリフルオロメタンスルホン酸複合体、イミダゾール−過塩素酸複合体、イミダゾール−トリフルオロ酢酸複合体、N-メチルアニリン−トリフルオロ酢酸複合体、1-フェニルイミダゾール−トリフルオロメタンスルホン酸複合体、1-フェニルイミダゾール−過塩素酸複合体、1-メチルイミダゾール−トリフルオロメタンスルホン酸複合体、1-メチルイミダゾール−過塩素酸複合体、ピリジン−塩酸複合体が例示できる。カルボン酸としては酢酸、ギ酸、プロピオン酸、酪酸、安息香酸などのモノカルボン酸や、マレイン酸、フタル酸、マロン酸、こはく酸、グルタル酸、フタル酸、酒石酸、シクロヘキサンジカルボン酸などのジカルボン酸などが例示できる。特に好ましい酸化合物としては、1Hテトラゾール、ベンズイミダゾール−トリフルオロメタンスルホン酸複合体、イミダゾール−トリフルオロメタンスルホン酸複合体を挙げることができる。   The acid compound is a compound selected from azoles, acid azole complexes and carboxylic acids. As azoles, 1H-tetrazole, benzimidazole, imidazole, 5- (p-nitrophenyl) -1H-tetrazole, 5- (ethylthio) -1H-tetrazole, 4,5-dicyanoimidazole, 2-bromo-4,5-dicyano Imidazolepyridine, 1-methylimidazole, 1-phenylimidazole, 1- (4-acetoxyphenyl) imidazole, 2-phenylimidazole, 4-phenylimidazole, 2-methylbenzimidazole, 2-phenylbenzimidazole, N-methylaniline, etc. Examples include alkylanilines and triazoles. Examples of acid azole complexes include benzimidazole-trifluoromethanesulfonic acid complex, benzimidazole-perchloric acid complex, benzimidazole-trifluoroacetic acid complex, benzimidazole-tetrafluoroboric acid complex, benzimidazole-hexafluoroline. Acid complex, imidazole-trifluoromethanesulfonic acid complex, imidazole-perchloric acid complex, imidazole-trifluoroacetic acid complex, N-methylaniline-trifluoroacetic acid complex, 1-phenylimidazole-trifluoromethanesulfonic acid complex And 1-phenylimidazole-perchloric acid complex, 1-methylimidazole-trifluoromethanesulfonic acid complex, 1-methylimidazole-perchloric acid complex, and pyridine-hydrochloric acid complex. Examples of carboxylic acids include monocarboxylic acids such as acetic acid, formic acid, propionic acid, butyric acid, and benzoic acid, and dicarboxylic acids such as maleic acid, phthalic acid, malonic acid, succinic acid, glutaric acid, phthalic acid, tartaric acid, and cyclohexanedicarboxylic acid. Can be illustrated. Particularly preferred acid compounds include 1H tetrazole, benzimidazole-trifluoromethanesulfonic acid complex, and imidazole-trifluoromethanesulfonic acid complex.

(b)第2工程は一般式(3a)及び/又は(3b)に示す化合物であるヌクレオシド環状亜リン酸トリエステル誘導体に、S化剤又はSe化剤を反応させて上記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を得る工程である。   (B) In the second step, the nucleoside cyclic phosphite triester derivative, which is a compound represented by the general formula (3a) and / or (3b), is reacted with a S agent or a Se agent, and the above general formula (4a) And / or a step of obtaining a nucleoside cyclic phosphite triester derivative shown in (4b).

ここで、S化剤(又はSe化剤)はリン原子が有する電子対を攻撃してS化(Se化)する。S化剤としては特に限定しないが、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(TEST)や3H-1,2-ベンゾジチオール-3-オン 1,1-ジオキシド、テトラエチルチウラム ジスルフィド、2,4-ビス(4-メトキシフェニル)-1,3-ジチア-2,4-ジホスフェタン-2,4-ジスルフィド、ビスベンゼンスルホニル ジスルフィドが例示できる。また、Se化剤としてはセレン、ジフェニルジセレニド、ジベンジルジセレニドが例示できる。S化剤やSe化剤を添加する量についても特に限定されず、一般式(1)に示す化合物に対して僅かに過剰な量を添加することで反応が円滑に進行する。   Here, the S agent (or Se agent) attacks the electron pair possessed by the phosphorus atom to form S (Se). Although it does not specifically limit as an S agent, bis [3- (triethoxysilyl) propyl] tetrasulfide (TEST), 3H-1,2-benzodithiol-3-one 1,1-dioxide, tetraethylthiuram disulfide, 2 4, bis (4-methoxyphenyl) -1,3-dithia-2,4-diphosphetane-2,4-disulfide, bisbenzenesulfonyl disulfide. Examples of the Se agent include selenium, diphenyl diselenide, and dibenzyl diselenide. The amount of the S agent or Se agent added is not particularly limited, and the reaction proceeds smoothly by adding a slightly excessive amount to the compound represented by the general formula (1).

(c)そして、前記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を出発物質として反応を進行させることで、上記一般式(5a)及び/又は(5b)に示す化合物を得ることができる。   (C) The reaction is allowed to proceed using the nucleoside cyclic phosphite triester derivative represented by the general formula (4a) and / or (4b) as a starting material, so that the above general formula (5a) and / or (5b) Can be obtained.

反応条件としてはR2OHのアルコラートをR2OHに溶解させた溶液中に溶解させたものである。ここで、R2に相当する置換基を導入することで一般式(4a)又は(4b)に示す化合物が生成する。R2としては、前述のR1と基本的に同様の置換基が採用できるが、後に行う識別の要請からR1とは異なる官能基を選択する。R2OHのアルコラートとしては金属としてアルカリ金属(ナトリウムやカリウムなど)を含むものが例示できる。 As reaction conditions, R 2 OH alcoholate was dissolved in a solution of R 2 OH. Here, a compound represented by the general formula (4a) or (4b) is generated by introducing a substituent corresponding to R 2 . As R 2 , a substituent basically similar to R 1 described above can be adopted, but a functional group different from R 1 is selected from a request for identification to be performed later. Examples of the R 2 OH alcoholate include those containing an alkali metal (such as sodium or potassium) as the metal.

ここで、一般式(5a)及び(5b)に示す化合物における、B、Z及びR1はそれぞれ一般式(4a)及び(4b)における対応する基がそのまま残存する。 Here, in the compounds represented by the general formulas (5a) and (5b), the corresponding groups in the general formulas (4a) and (4b) remain as they are for B, Z, and R 1 , respectively.

この反応は、非常に立体選択性が高く、一般式(4a)に示す化合物からは一般式(5a)に示すヌクレオシド誘導体が、一般式(4b)に示す化合物からは一般式(5b)に示すヌクレオシド誘導体が得られる。なお、副反応として下記一般式(12)に示す化合物が副生するので、それら化合物を分離して精製する。   This reaction has very high stereoselectivity. From the compound represented by the general formula (4a), the nucleoside derivative represented by the general formula (5a) is represented by the general formula (5b). A nucleoside derivative is obtained. In addition, since the compound shown in the following general formula (12) is by-produced as a side reaction, these compounds are separated and purified.

Figure 2006248949
Figure 2006248949

(式(12)中、B、Z、R1及びR2は出発物質である一般式(4a)又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体に存する置換基がそのまま残存する。)
(1−2)本発明のヌクレオシド誘導体の製造方法は、不斉リン原子に由来する立体配置が制御された上述の一般式(5)に示すヌクレオシド誘導体に、脱R1剤又は脱R2剤を反応させて不斉リン原子に由来する立体配置が制御された上述の一般式(6)又は(7)の化合物を得ることを特徴とする。
(In the formula (12), B, Z, R 1 and R 2 are the substituents present in the nucleoside cyclic phosphite triester derivative represented by the general formula (4a) or (4b) as a starting material).
(1-2) The method for producing a nucleoside derivative of the present invention includes a de-R 1 agent or a de-R 2 agent in addition to the nucleoside derivative represented by the above general formula (5) in which the configuration derived from an asymmetric phosphorus atom is controlled. To obtain a compound of the above general formula (6) or (7) in which the configuration derived from the asymmetric phosphorus atom is controlled.

つまり、脱離する置換基を選択することで不斉リン原子に由来する立体配置を制御している。従って、R1及びR2の組み合わせは互いにあまり影響を与えずにそれぞれ自由に脱離できる組み合わせを採用することが望ましい。 That is, the configuration derived from the asymmetric phosphorus atom is controlled by selecting the substituent to be eliminated. Therefore, it is desirable to employ a combination of R 1 and R 2 that can be desorbed freely without affecting each other.

例えば、メチル基、アリル基、シアノエチル基などから任意の2つの組み合わせを選択する組み合わせを採用することが好ましく、更にはメチル基及びアリル基の組み合わせを採用することがより好ましい。特に、R1にアリル基を、R2にメチル基をそれぞれ採用することが望ましい。 For example, it is preferable to employ a combination of selecting any two combinations from a methyl group, an allyl group, a cyanoethyl group, and the like, and it is more preferable to employ a combination of a methyl group and an allyl group. In particular, it is desirable to employ an allyl group for R 1 and a methyl group for R 2 .

脱メチル剤としてはt−ブチルアミン、メチルアミン、ジエチルアミン、n-ブチルアミン、フェニレンジアミンなどのアルキルアミンが好ましい化合物として例示できる。脱アリル剤としてはPd2(ジベンジリデンアセトン)3・CHCl3、テトラキストリフェニルホスフィンパラジウムなどの0価パラジウムや、NaI、ヨウ化カリウム、ヨウ化カルシウムなどのヨウ化物イオンが望ましい。脱シアノエチル剤としてはジアザビシクロウンデセン、トリエチルアミン、メチルアミン、ジエチルアミン、ジイソプロピルエチルアミンなどのトリアルキルアミン、アンモニア水などが好ましい化合物として例示できる。 Examples of the demethylating agent include t-butylamine, methylamine, diethylamine, n-butylamine, and alkylamines such as phenylenediamine as preferable compounds. Desirable deallylating agents are zero-valent palladium such as Pd 2 (dibenzylideneacetone) 3 .CHCl 3 and tetrakistriphenylphosphine palladium, and iodide ions such as NaI, potassium iodide and calcium iodide. Examples of the decyanoethyl agent include diazabicycloundecene, triethylamine, methylamine, diethylamine, dialkylethylamine and other trialkylamines, and aqueous ammonia.

例えば、R1としてアリル基をR2としてメチル基を採用し、ZとしてSをQとしてDMTr(ジメトキシトリチル基)を採用した式(5’)に示す化合物(右旋性:この化合物は上記反応における一般式(3a)から、(4a)及び(5a)へと続く系列により合成される化合物である)について、脱アリルを行うと、式(6’)に示す化合物(左旋性)が得られ、脱メチルを行うと式(7’)に示す化合物(右旋性)がそれぞれ定量的に得られるものである。 For example, a compound represented by the formula (5 ′) in which an allyl group is employed as R 1 and a methyl group is employed as R 2 , DMTr (dimethoxytrityl group) is employed as Z as S and Q (dextrorotation: this compound is the above reaction) Is a compound synthesized by the series following (4a) and (5a) from the general formula (3a) in (1), the compound (left-handed) shown in the formula (6 ′) is obtained by dearylation. When demethylation is performed, the compound (dextrorotatory) represented by the formula (7 ′) can be obtained quantitatively.

なお、一般式(B)に示す化合物(Z、R1及びR2は一般式(5)と同様の基である;Cで表した部分は任意の化学構造を有することができる。)についても脱R1剤及び脱R2剤のうちのいずれかを反応させることで、不斉リン原子に由来する立体配置を制御することができる。例えば、不斉リン原子を含有し、立体配置が問題になるような化合物(医薬品や農薬など)に応用でき、立体構造を制御できる。 The compound represented by the general formula (B) (Z, R 1 and R 2 are the same groups as in the general formula (5); the portion represented by C can have any chemical structure). by reacting any of the de-R 1 agents and de R 2 agent, it is possible to control the configuration derived from the asymmetric phosphorus atom. For example, it can be applied to compounds (such as pharmaceuticals and agricultural chemicals) that contain an asymmetric phosphorus atom and the configuration is problematic, and the steric structure can be controlled.

Figure 2006248949
Figure 2006248949

(1−3)本発明のヌクレオチド誘導体の製造方法は、不斉リン原子に由来する立体配置が制御された上述の一般式(8)に示すヌクレオシド誘導体に、上述の一般式(9)に示すヌクレオシド誘導体を反応させ、上述の一般式(10)に示すヌクレオチド誘導体を合成する工程を有することを特徴とする。   (1-3) The method for producing a nucleotide derivative of the present invention is represented by the above-described general formula (9) in the nucleoside derivative represented by the above general formula (8) in which the configuration derived from the asymmetric phosphorus atom is controlled. It comprises a step of reacting a nucleoside derivative to synthesize a nucleotide derivative represented by the above general formula (10).

この反応としてはいわゆる光延反応を採用することが望ましい。例えば、溶媒としてTHFなどの非プロトン溶媒を用い、ジエチルアゾジカルボキシレート及びPRR’R”(R、R’及びR”アルキル基、アルケニル基、フェニル基などからそれぞれ独立して選択される。特にすべてフェニル基にすることが望ましい。)の存在下反応を進行させる。本反応において光延反応は不斉リン原子に由来する立体配置を保存する反応である。   It is desirable to employ the so-called Mitsunobu reaction as this reaction. For example, an aprotic solvent such as THF is used as a solvent, and each is independently selected from diethyl azodicarboxylate and PRR′R ″ (R, R ′ and R ″ alkyl groups, alkenyl groups, phenyl groups, etc. The reaction is allowed to proceed in the presence of all phenyl groups. In this reaction, the Mitsunobu reaction is a reaction that preserves the configuration derived from the asymmetric phosphorus atom.

ここで、一般式(8)に示す化合物としては、前述の一般式(6)又は(7)に示す化合物を採用し、その立体配置を維持することが望ましい。   Here, as the compound represented by the general formula (8), it is desirable to employ the compound represented by the above general formula (6) or (7) and maintain the steric configuration.

なお、本反応は副反応として一般式(9)に示す化合物が一般式(8)に示す化合物に結合する位置が、一般式(10)に示す化合物では酸素原子を介していたのに対して、硫黄原子を介して結合するものが生成する。従って、この副生物を必要に応じて除去する。   In this reaction, as a side reaction, the position at which the compound represented by the general formula (9) is bonded to the compound represented by the general formula (8) was mediated by an oxygen atom in the compound represented by the general formula (10). , Which is bonded via a sulfur atom. Therefore, this by-product is removed as necessary.

(1−4)本発明のヌクレオチド誘導体の製造方法は、
(a)上述した(1−1)から(1−3)までで説明した製造方法を組み合わせることで、一般式(1)に示す化合物から目的の立体構造をもつ一般式(10)に示す化合物を必要量だけ製造した後、
(b)(b−1)それら一般式(10)に示す立体配置が制御されたヌクレオチド誘導体に対して、ホスホロアミダイト誘導体を反応させて、アミダイト化ヌクレオチド誘導体を生成する工程と、
(b−2)ヌクレオシド、ヌクレオシド誘導体(前記一般式(1)、(2)、(3a)、(3b)、(4a)、(4b)、(5)、(5a)、(5b)、(6)、(7)、(8)及び(9)のいずれかに記載の化合物)又は(a)にて製造したヌクレオチド誘導体を、前記アミダイト化ヌクレオチド誘導体に反応させるヌクレオチド誘導体付加工程と、
を繰り返して必要な長さのヌクレオチド誘導体を得るヌクレオチド誘導体伸長工程と、を有する。
(1-4) The method for producing the nucleotide derivative of the present invention comprises:
(A) A compound represented by general formula (10) having a target steric structure from a compound represented by general formula (1) by combining the production methods described in (1-1) to (1-3) above. After producing only the required amount,
(B) (b-1) reacting a phosphoramidite derivative with a nucleotide derivative in which the configuration shown in the general formula (10) is controlled to produce an amidated nucleotide derivative;
(B-2) Nucleoside, nucleoside derivative (general formulas (1), (2), (3a), (3b), (4a), (4b), (5), (5a), (5b), ( 6), a nucleotide derivative addition step of reacting the nucleotide derivative produced in (a) with the compound described in any of (7), (8) and (9), or the amidated nucleotide derivative;
And a nucleotide derivative extension step of obtaining a nucleotide derivative having a necessary length by repeating the above.

ここで、(b−1)におけるホスホロアミダイト誘導体としては特に限定されず、一般的な化合物が採用できる。例えば、下記一般式(13)に示す化合物が挙げられる。   Here, it does not specifically limit as a phosphoramidite derivative in (b-1), A general compound is employable. For example, the compound shown to the following general formula (13) is mentioned.

Figure 2006248949
Figure 2006248949

(式(13)中、X37はそれぞれ独立してハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、フェニル基、−Cn2nCN、−Si(X93、−Cn2nSi(X93、−Cn2nOSi(X93及び−Cn2n−S−Si(X93から選択され;X8は−O−、−S−及び−N(X9)−から選択され;上述のX9はそれぞれ独立して炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基及びフェニル基から選択される。;なお、前述のアルコキシ基、アルキル基、アルケニル基及びCn2nには直鎖状及び分枝を有するもの並びに水素原子の一部がハロゲンで置換されたものも含む。)
ここで、X8は酸素原子とすることが望ましい。また、X5は最終的に生成するヌクレオチド誘導体中に残存することを考慮して選択されることが望ましい。
(In the formula (13), X 3 ~ 7 are each independently a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a phenyl group, -C n H 2n CN, -Si ( X 9) 3, -C n H 2n Si (X 9) 3, -C n H 2n OSi (X 9) 3 and -C n H 2n -S-Si ( X 9) is selected from 3; X 8 is Selected from —O—, —S— and —N (X 9 ) —; each of the aforementioned X 9 is independently selected from an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms and a phenyl group. In addition, the above-mentioned alkoxy group, alkyl group, alkenyl group and C n H 2n include those having linear and branched groups and those in which a part of hydrogen atoms are substituted with halogen.
Here, X 8 is preferably an oxygen atom. X 5 is preferably selected in consideration of remaining in the nucleotide derivative finally produced.

ホスホロアミダイト誘導体を(1H−)テトラゾールやベンズイミダゾールトリフルオロメタンスルホン酸複合体などの促進剤の存在下にて反応させることでアミダイト化ヌクレオチド誘導体を得ることができる。なお、一般式(10)に示す化合物は下方(3位)(必要に応じて上方(5位)でも良い)のOQ基のQ(保護基)を脱離してOH基にした状態で反応させるものである。   An amidite nucleotide derivative can be obtained by reacting a phosphoramidite derivative in the presence of an accelerator such as (1H-) tetrazole or a benzimidazole trifluoromethanesulfonic acid complex. In addition, the compound represented by the general formula (10) is reacted in a state in which Q (protecting group) of the lower OQ group (position 3 (position 5 may be higher if necessary)) is eliminated to form an OH group. Is.

ここで、X8に−N(X9)−を採用することで、下記一般式(14)で示される化合物を得ることができる。 Here, a compound represented by the following general formula (14) can be obtained by employing —N (X 9 ) — for X 8 .

Figure 2006248949
Figure 2006248949

(式(14)中、X1013は一般式(13)に示す化合物が有するX37、9のうちの脱離せずに残存した基における対応するものである;Aで示される部分は一般式(10)に示す化合物又は一般式(10)に示す化合物の長さを伸長した化合物を示している)
一般式(14)に示す化合物を(1−1)において用いている一般式(2)の化合物に替えて採用し、その後の反応も同様に行うことで、一般式(13)に由来する不斉リン原子の立体配置についても制御することが可能である。
(In the formula (14), X 10 to 13 correspond to X 3 to 7 and 9 of the compound represented by the general formula (13) which remain in the group remaining without leaving; the portion represented by A Represents a compound obtained by extending the length of the compound represented by the general formula (10) or the compound represented by the general formula (10))
By adopting the compound represented by the general formula (14) in place of the compound represented by the general formula (2) used in (1-1) and performing the subsequent reaction in the same manner, The configuration of the chiral phosphorus atom can also be controlled.

以下、本発明のヌクレオシド誘導体及びヌクレオチド誘導体及びそれの製造方法について、詳細に行った実験に基づいて説明する。なお、(実施例)欄において各化合物に付けた番号は上述の各一般式に付けた番号とは関連がない。   Hereinafter, the nucleoside derivative and nucleotide derivative of the present invention and the production method thereof will be described based on experiments conducted in detail. In addition, the number given to each compound in the (Example) column is not related to the number given to each general formula.

(デオキシリボヌクレオシド-3',5'-環状チオリン酸トリエステルの立体選択的合成)
・デオキシリボヌクレオシド-3',5'-環状チオリン酸トリエステルの立体選択的合成の反応を以下のように行なった(Scheme 2)。
(Stereoselective synthesis of deoxyribonucleoside-3 ', 5'-cyclic thiophosphate triester)
-The reaction of the stereoselective synthesis of deoxyribonucleoside-3 ', 5'-cyclic thiophosphate triester was carried out as follows (Scheme 2).

Figure 2006248949
Figure 2006248949

アセトニトリル中、モレキュラーシーブス3A存在下、デオキシリボヌクレオシド1aとアリルオキシビス(ジイソプロピルアミノ)ホスフィンを1H-テトラゾールを促進剤として反応させ、ヌクレオシド-3’-5’-環状亜リン酸トリエステルをシス体2aとトランス体3aの混合物として得た。31P-NMRのスペクトル分析によりシス体とトランス体はほぼ1:1で得られることがわかった。アリルオキシビス(ジイソプロピルアミノ)ホスフィンの消失を確認した後、55℃に加熱してシス体2aとトランス体3a間で熱平衡異性化を起こさせた。その結果、反応の進行が見られなかったデオキシリボヌクレオシド 1d 以外は、シス体 3a が主生成物として得られた。その後、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(TEST)を用いて硫化し、目的のデオキシリボヌクレオシド-3’,5’-環状チオリン酸トリエステル4aを収率 70%で得た(表1)。同様にして、デオキシリボヌクレオシド 1b、1c 及び 1e から、環状亜リン酸化、熱平衡異性化、硫化を経て、目的のデオキシリボヌクレオシド-3’,5’-環状チオリン酸トリエステル4bを収率 23%、4cを収率 79%、4eを収率 22%で得た。 In the presence of molecular sieves 3A in acetonitrile, deoxyribonucleoside 1a and allyloxybis (diisopropylamino) phosphine are reacted with 1H-tetrazole as an accelerator to give nucleoside-3'-5'-cyclic phosphite triester 2a And a mixture of trans isomer 3a. The spectrum analysis of 31 P-NMR showed that the cis and trans isomers were almost 1: 1. After confirming the disappearance of allyloxybis (diisopropylamino) phosphine, the mixture was heated to 55 ° C. to cause thermal equilibrium isomerization between the cis isomer 2a and the trans isomer 3a. As a result, cis isomer 3a was obtained as the main product except for deoxyribonucleoside 1d in which no progress of the reaction was observed. Thereafter, it was sulfurized using bis [3- (triethoxysilyl) propyl] tetrasulfide (TEST) to obtain the desired deoxyribonucleoside-3 ′, 5′-cyclic thiophosphate triester 4a in a yield of 70% ( Table 1). Similarly, from deoxyribonucleoside 1b, 1c and 1e, the target deoxyribonucleoside-3 ′, 5′-cyclic thiophosphate triester 4b is obtained in 23% yield, 4c through cyclic phosphorylation, thermal equilibrium isomerization and sulfurization. Was obtained in a yield of 79%, and 4e in a yield of 22%.

Figure 2006248949
Figure 2006248949

・詳細な実験方法
モレキュラーシーブス3Aを真空下250℃で3時間加熱乾燥させ、室温に下がるまで放置した。その中に1c (4.84 g ,20.0 mmol)、1H-テトラゾール (4.20 g, 60.0 mmol)、アセトニトリル (250 mL) を加え、室温で30分撹拌した。その溶液にアリルオキシビス(N,N-ジイソプロピルアミノ)ホスフィン (7.67 mL, 24.0 mmol) のジクロロメタン (25.0 mL) 溶液を0℃で滴下し30分撹拌し、その後室温に戻して4時間撹拌した。
Detailed Experimental Method Molecular Sieves 3A was heat-dried under vacuum at 250 ° C. for 3 hours and left to cool to room temperature. 1c (4.84 g, 20.0 mmol), 1H-tetrazole (4.20 g, 60.0 mmol) and acetonitrile (250 mL) were added thereto, and the mixture was stirred at room temperature for 30 minutes. A solution of allyloxybis (N, N-diisopropylamino) phosphine (7.67 mL, 24.0 mmol) in dichloromethane (25.0 mL) was added dropwise to the solution at 0 ° C., and the mixture was stirred for 30 minutes.

原料消失を確認した後、反応溶液を55℃で24時間撹拌し、異性化反応を行なった。更に、室温に戻してビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(11.8 mL, 24.0 mmol) を加え、室温で3時間撹拌した。反応終了後、反応溶液を濾過し、濃縮した。   After confirming disappearance of the raw materials, the reaction solution was stirred at 55 ° C. for 24 hours to carry out an isomerization reaction. Furthermore, it returned to room temperature, bis [3- (triethoxysilyl) propyl] tetrasulfide (11.8 mL, 24.0 mmol) was added, and it stirred at room temperature for 3 hours. After completion of the reaction, the reaction solution was filtered and concentrated.

残渣を酢酸エチル(200mL)に溶解させ、飽和炭酸水素ナトリウム水溶液(200mL)で洗浄した後、水層を更に酢酸エチル(200mL)で二回洗浄した。得られた有機層を飽和食塩水(300mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。   The residue was dissolved in ethyl acetate (200 mL), washed with a saturated aqueous sodium hydrogen carbonate solution (200 mL), and the aqueous layer was further washed twice with ethyl acetate (200 mL). The obtained organic layer was washed with saturated brine (300 mL), dried over anhydrous sodium sulfate, and filtered.

残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:2)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、4cを5.68g (79%)得た。   The residue was subjected to silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 2), and the fraction containing the target product was concentrated to give a colorless amorphous substance, yielding 5.68 g (79%) of 4c. It was.

4c;TLC:Rf=0.41(展開溶媒;酢酸エチル:ヘキサン=1:2);1H-NMR(400MHz,CDCl3):δ1.96(s,3H), 2.53-2.64(m,2H), 3.94(dt,J=4.8 and 10.0Hz,1H), 4.45(dt,J=2.0 and 10.8Hz,1H), 4.53-4.72(m,3H), 4.77-4.84(m,1H), 5.34(dd,J=0.8 and 10.4Hz,1H), 5.45(dd,J=1.2 and 17.2Hz,1H), 5.97-6.10(m,2H), 6.98(d,J=1.2Hz,1H), 9.05(br,1H)ppm;13C-NMR(100MHz,CDCl3):δ12.5, 35.2(d,J=8.2Hz), 69.2(d,J=4.2Hz), 70.0(d,J=11.5Hz), 73.9(d,J=7.4Hz), 77.2(d,J=8.2Hz), 86.1, 112.0, 119.4, 132.0(d,J=7.4Hz), 136.2, 149.8, 163.4ppm; 31P-NMR(162MHz,CDCl3):δ61.0ppm; HRMS(ESI+):m/z calcd for C13H17N2O6PS(M+Na)+ 383.04, found383.07.
同様の方法で4a、4b及び4eを得た。
4c; TLC: R f = 0.41 (developing solvent; ethyl acetate: hexane = 1: 2); 1 H-NMR (400 MHz, CDCl 3 ): δ 1.96 (s, 3H), 2.53-2.64 (m, 2H) , 3.94 (dt, J = 4.8 and 10.0Hz, 1H), 4.45 (dt, J = 2.0 and 10.8Hz, 1H), 4.53-4.72 (m, 3H), 4.77-4.84 (m, 1H), 5.34 (dd , J = 0.8 and 10.4Hz, 1H), 5.45 (dd, J = 1.2 and 17.2Hz, 1H), 5.97-6.10 (m, 2H), 6.98 (d, J = 1.2Hz, 1H), 9.05 (br, 1H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ 12.5, 35.2 (d, J = 8.2 Hz), 69.2 (d, J = 4.2 Hz), 70.0 (d, J = 11.5 Hz), 73.9 (d, J = 7.4Hz), 77.2 (d, J = 8.2Hz), 86.1, 112.0, 119.4, 132.0 (d, J = 7.4Hz), 136.2, 149.8, 163.4ppm; 31 P-NMR (162MHz, CDCl 3 ): δ 61.0ppm; HRMS (ESI + ): m / z calcd for C 13 H 17 N 2 O 6 PS (M + Na) + 383.04, found383.07.
4a, 4b and 4e were obtained in the same manner.

(2.2.デオキシリボヌクレオシド-3',5'-環状チオリン酸トリエステルの位置選択的及び立体選択的加メタノール分解)
デオキシリボヌクレオシド-3',5'-環状チオリン酸トリエステル 4aをメタノール中、ナトリウムメトキシドを用いて、室温で24時間加メタノール分解を行なった結果、2 種類の混合物が得られた(Scheme 3)。
(2.2. Regioselective and stereoselective methanolysis of deoxyribonucleoside-3 ', 5'-cyclic thiophosphate triester)
Deoxyribonucleoside-3 ', 5'-cyclic thiophosphoric acid triester 4a was decomposed in methanol with sodium methoxide for 24 hours at room temperature, resulting in two mixtures (Scheme 3) .

Figure 2006248949
Figure 2006248949

これらをNMRによるスペクトル解析を行なった結果、主生成物として5'側で開環した 6a (収率70%)と副生成物として3'側で開環した 7aであることがわかった(位置選択性 6a:7a = 92:8)。更に6aに関しては立体化学的に単一な化合物であることがわかった(表2)。同様にして、デオキシリボヌクレオシド-3',5'-環状チオリン酸トリエステル 4b 及び 4c から、6b を収率 80%、6c を収率 83%で得た(位置選択性 6b:7b = 90:10、6c:7c = 90:10)。   As a result of spectral analysis by NMR, it was found that the main product was 6a ring-opened on the 5 ′ side (yield 70%) and the by-product 7a ring-opened on the 3 ′ side (position) Selectivity 6a: 7a = 92: 8). Furthermore, 6a was found to be a stereochemically single compound (Table 2). Similarly, from deoxyribonucleoside-3 ′, 5′-cyclic thiophosphoric acid triesters 4b and 4c, 6b was obtained in a yield of 80% and 6c was obtained in a yield of 83% (regioselectivity 6b: 7b = 90: 10 6c: 7c = 90:10).

Figure 2006248949
Figure 2006248949

・詳細な実験方法
4c(1.80g,5.00mmol)をメタノール(50.0mL)に溶解させ、別途調整したナトリウム(345mg,15.0mmol)のメタノール(50.0mL)溶液を0℃で滴下した。その後、室温に戻して24時間撹拌した。反応終了後、反応溶液に酢酸エチル(500mL)を加え、飽和塩化アンモニウム水溶液(100mL)で洗浄した後、水層を更に酢酸エチル(200mL)で二回洗浄した。
Detailed experimental method
4c (1.80 g, 5.00 mmol) was dissolved in methanol (50.0 mL), and a separately prepared solution of sodium (345 mg, 15.0 mmol) in methanol (50.0 mL) was added dropwise at 0 ° C. Then, it returned to room temperature and stirred for 24 hours. After completion of the reaction, ethyl acetate (500 mL) was added to the reaction solution, and after washing with a saturated aqueous ammonium chloride solution (100 mL), the aqueous layer was further washed twice with ethyl acetate (200 mL).

その後、得られた有機層を飽和食塩水(300mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:2)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、6cを1.63g(83%)得た。   Thereafter, the obtained organic layer was washed with saturated brine (300 mL), dried over anhydrous sodium sulfate, and filtered. The residue was subjected to silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 2), and the fraction containing the target product was concentrated to give a colorless amorphous substance to obtain 1.63 g (83%) of 6c. It was.

6c;TLC:Rf=0.37(展開溶媒;酢酸エチル:ヘキサン=1:2);1H-NMR(400MHz,CDCl3):δ1.85(s,3H),2.49(dd,J=4.4 and 7.2Hz,1H),2.58(br,1H),3.78(d,J=13.6Hz,3H),3.89-3.97(m,1H),4.24(dd,J=2.4 and 5.2Hz,1H),4.58(ddt,J=1.2,5.6 and 10.4Hz,1H),5.18-5.23(m,1H),5.29(dd,J=0.4 and 11.2Hz,1H),5.39(ddd,J=1.6,2.8 and 17.2Hz,1H),5.90-5.99(m,1H),6.20(t,J=7.2Hz,1H),7.37(s,1H),8.61(br,1H)ppm;13C-NMR(100MHz,CDCl3):δ12.5,38.2(d,J=5.7Hz),54.7(d,J=5.7Hz),62.1,69.1(d,J=4.9Hz),78.2(d,J=4.9Hz),85.5(d,J=5.7Hz),86.5,111.3,118.8,132.1(d,J=7.4Hz),136.6,150.4,163.7ppm;31P-NMR(162MHz,CDCl3):δ66.2ppm;HRMS(ESI+):m/z calcd for C14H21N2O7PS(M+Na)+415.07,found415.09.
同様の方法で6a及び6bを得た。
6c; TLC: R f = 0.37 (developing solvent; ethyl acetate: hexane = 1: 2); 1 H-NMR (400 MHz, CDCl 3 ): δ1.85 (s, 3H), 2.49 (dd, J = 4.4 and 7.2Hz, 1H), 2.58 (br, 1H), 3.78 (d, J = 13.6Hz, 3H), 3.89-3.97 (m, 1H), 4.24 (dd, J = 2.4 and 5.2Hz, 1H), 4.58 ( ddt, J = 1.2,5.6 and 10.4Hz, 1H), 5.18-5.23 (m, 1H), 5.29 (dd, J = 0.4 and 11.2Hz, 1H), 5.39 (ddd, J = 1.6,2.8 and 17.2Hz, 1H), 5.90-5.99 (m, 1H ), 6.20 (t, J = 7.2Hz, 1H), 7.37 (s, 1H), 8.61 (br, 1H) ppm; 13 C-NMR (100MHz, CDCl 3): δ12.5, 38.2 (d, J = 5.7Hz), 54.7 (d, J = 5.7Hz), 62.1, 69.1 (d, J = 4.9Hz), 78.2 (d, J = 4.9Hz), 85.5 (d, J = 5.7 Hz), 86.5, 111.3, 118.8, 132.1 (d, J = 7.4 Hz), 136.6, 150.4, 163.7 ppm; 31 P-NMR (162 MHz, CDCl 3 ): δ 66.2 ppm; HRMS (ESI + ): m / z calcd for C 14 H 21 N 2 O 7 PS (M + Na) + 415.07, found415.09.
6a and 6b were obtained in the same way.

(デオキシリボヌクレオシド-3'-ホスホロチオエートの5'-水酸基部の保護)
デオキシリボヌクレオシド-3'-ホスホロチオエート 6a をN, N-ジメチルホルムアミド、ピリジン中、4,4'-ジメトキシトリチルクロリドを用いて、室温で7時間撹拌させた(Scheme 4)。その結果、目的のジメトキシトリチル化体 8a を収率 58%で得た(Table 3)。同様の方法で、デオキシリボヌクレオシド-3'-ホスホロチオエート 6c から8c を収率 91%で得た。一方、デオキシリボヌクレオシド-3'-ホスホロチオエート 6bは、ピリジン中、4,4'-ジメトキシトリチルクロリド、ジクロロ酢酸、トリエチルアミンを用いて 0℃ で3 時間撹拌することで 8b を収率 52% で得た。
(Protection of the 5'-hydroxyl moiety of deoxyribonucleoside-3'-phosphorothioate)
Deoxyribonucleoside-3'-phosphorothioate 6a was stirred with 4,4'-dimethoxytrityl chloride in N, N-dimethylformamide, pyridine for 7 hours at room temperature (Scheme 4). As a result, the target dimethoxytritylated compound 8a was obtained in a yield of 58% (Table 3). In the same manner, 8c was obtained from deoxyribonucleoside-3'-phosphorothioate 6c in a yield of 91%. On the other hand, deoxyribonucleoside-3′-phosphorothioate 6b was stirred at 0 ° C. for 3 hours with 4,4′-dimethoxytrityl chloride, dichloroacetic acid and triethylamine in pyridine to obtain 8b in a yield of 52%.

Figure 2006248949
Figure 2006248949

Figure 2006248949
Figure 2006248949

・詳細な実験方法
方法1:6b(1.14g,3.02mmol)をピリジン(15.0mL)に溶解させ、0℃に保ち、ジクロロ酢酸(0.27mL,3.32mmol)、トリエチルアミン(0.46mL,3.32mmol)を加え、更に、4,4’-ジメトキシトリチルクロリド(1.23g,3.62mmol)を三回に分けて加えた。反応溶液を0℃で3時間撹拌させ、反応終了後、反応溶液にジクロロメタン(100mL)を加え、飽和炭酸水素ナトリウム水溶液(30mL)で洗浄した後、水層を更にジクロロメタン(50mL)で二回洗浄した。
Detailed experimental method Method 1: 6b (1.14 g, 3.02 mmol) was dissolved in pyridine (15.0 mL) and kept at 0 ° C., and dichloroacetic acid (0.27 mL, 3.32 mmol) and triethylamine (0.46 mL, 3.32 mmol) were added. In addition, 4,4′-dimethoxytrityl chloride (1.23 g, 3.62 mmol) was added in three portions. The reaction solution was allowed to stir at 0 ° C. for 3 hours.After completion of the reaction, dichloromethane (100 mL) was added to the reaction solution, and after washing with a saturated aqueous sodium hydrogen carbonate solution (30 mL), the aqueous layer was further washed twice with dichloromethane (50 mL). did.

その後、得られた有機層を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ジクロロメタン:メタノール=15:1)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、8bを1.06g(52%)得た。   Thereafter, the obtained organic layer was washed with saturated brine (50 mL), dried over anhydrous sodium sulfate, and filtered. The residue was subjected to silica gel column chromatography (developing solvent; dichloromethane: methanol = 15: 1), and the fraction containing the target product was concentrated to give a colorless amorphous substance, yielding 1.06 g (52%) of 8b. .

8b;TLC:Rf=0.50(展開溶媒;ジクロロメタン:メタノール=15:1);1H-NMR(400MHz,CDCl3):δ2.26-2.32(m,1H), 2.77(ddd,J=3.2,5.6 and 14.0Hz,1H), 3.46(d,J=3.2Hz,2H), 3.66(d,J=14.0Hz,3H), 3.80(s,6H), 4.28(d,J=3.2Hz,1H), 4.53-4.56(m,2H), 5.24-5.41(m,3H), 5.87-5.97(m,1H), 6.36(t,J=6.0Hz,1H), 6.85(d,J=8.8Hz,4H), 7.22-7.41(m,10H), 7.87(d,J=7.6Hz,1H)ppm; 13C-NMR(100MHz,CDCl3):δ40.1(d,J=4.9Hz), 54.5(d,J=5.8Hz), 55.2, 62.6, 69.0(d,J=4.9Hz), 77.9(d,J=5.0Hz), 84.5(d,J=5.7Hz), 86.0, 87.0, 93.8, 113.3, 118.8, 127.0, 128.0, 128.2, 130.1, 132.1(d,J=7.4Hz), 135.2, 135.3, 141.3, 144.2, 158.7, 165.4ppm; 31P-NMR(162MHz,CDCl3):δ68.4ppm; HRMS(ESI+):m/z calcd for C34H38N3O8PS(M+Na)+ 702.20, found 702.23.
方法2:6c(834mg,2.12mmol)をN,N-ジメチルホルムアミド(20.0mL)とピリジン(4.00mL)に溶解させ、0℃に保ち、4,4’-ジメトキシトリチルクロリド(1.01g,2.97mmol)を三回に分けて加えた。反応溶液を0℃で30分撹拌後、室温に戻して7時間反応させた。反応終了後、反応溶液に酢酸エチル(100mL)を加え、飽和炭酸水素ナトリウム水溶液(30mL)で洗浄した後、水層を更に酢酸エチル(100mL)で二回洗浄した。
8b; TLC: R f = 0.50 (developing solvent; dichloromethane: methanol = 15: 1); 1 H-NMR (400 MHz, CDCl 3 ): δ2.26-2.32 (m, 1H), 2.77 (ddd, J = 3.2 , 5.6 and 14.0Hz, 1H), 3.46 (d, J = 3.2Hz, 2H), 3.66 (d, J = 14.0Hz, 3H), 3.80 (s, 6H), 4.28 (d, J = 3.2Hz, 1H ), 4.53-4.56 (m, 2H), 5.24-5.41 (m, 3H), 5.87-5.97 (m, 1H), 6.36 (t, J = 6.0Hz, 1H), 6.85 (d, J = 8.8Hz, 4H), 7.22-7.41 (m, 10H ), 7.87 (d, J = 7.6Hz, 1H) ppm; 13 C-NMR (100MHz, CDCl 3): δ40.1 (d, J = 4.9Hz), 54.5 ( d, J = 5.8Hz), 55.2, 62.6, 69.0 (d, J = 4.9Hz), 77.9 (d, J = 5.0Hz), 84.5 (d, J = 5.7Hz), 86.0, 87.0, 93.8, 113.3, 118.8, 127.0, 128.0, 128.2, 130.1, 132.1 (d, J = 7.4Hz), 135.2, 135.3, 141.3, 144.2, 158.7, 165.4ppm; 31 P-NMR (162MHz, CDCl 3): δ68.4ppm; HRMS ( ESI + ): m / z calcd for C 34 H 38 N 3 O 8 PS (M + Na) + 702.20, found 702.23.
Method 2: 6c (834 mg, 2.12 mmol) was dissolved in N, N-dimethylformamide (20.0 mL) and pyridine (4.00 mL), kept at 0 ° C., and 4,4′-dimethoxytrityl chloride (1.01 g, 2.97 mmol). ) Was added in three portions. The reaction solution was stirred at 0 ° C. for 30 minutes, then returned to room temperature and reacted for 7 hours. After completion of the reaction, ethyl acetate (100 mL) was added to the reaction solution and washed with a saturated aqueous sodium hydrogen carbonate solution (30 mL), and then the aqueous layer was further washed twice with ethyl acetate (100 mL).

その後、得られた有機層を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:1)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、8cを1.34g(91%)得た。   Thereafter, the obtained organic layer was washed with saturated brine (50 mL), dried over anhydrous sodium sulfate, and filtered. The residue was subjected to silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 1), and the fraction containing the target product was concentrated to give a colorless amorphous substance, yielding 1.34 g (91%) of 8c. It was.

8c;TLC:Rf=0.43(展開溶媒;酢酸エチル:ヘキサン=1:1);1H-NMR(400MHz,CDCl3):δ1.42(s,3H), 2.37-2.43(m,1H), 2.59-2.63(m,1H), 3.42-3.48(m,2H), 3.69(d,J=13.6Hz,3H), 3.80(s,6H), 4.27(d,J=2.0Hz,1H), 4.57(dd,J=5.6 and 10.4Hz,2H), 5.27-5.40(m,3H), 5.88-5.97(m,1H), 6.44(dd,J=5.2 and 8.4Hz,1H), 6.81-6.84(m,4H), 7.22-7.38(m,9H), 7.56(s,1H), 8.25(br,1H)ppm; 13C-NMR(100MHz,CDCl3):δ11.7, 39.2(d,J=5.7Hz), 54.6(d,J=5.8Hz), 55.3, 63.3, 69.0(d,J=5.0Hz), 78.8(d,J=4.2Hz), 84.4, 84.7(d,J=5.0Hz), 87.2, 111.5, 113.4, 118.8, 127.2, 128.1(x2), 130.1, 132.1(d,J=7.4Hz), 135.2(x2), 144.2, 150.1, 163.3ppm; 31P-NMR(162MHz,CDCl3):δ68.5ppm; HRMS(ESI+):m/z calcd for C35H39N2O9PS(M+Na)+ 717.20, found717.24.
同様の方法で8aを得た。
8c; TLC: R f = 0.43 (developing solvent; ethyl acetate: hexane = 1: 1); 1 H-NMR (400 MHz, CDCl 3 ): δ1.42 (s, 3H), 2.37-2.43 (m, 1H) , 2.59-2.63 (m, 1H), 3.42-3.48 (m, 2H), 3.69 (d, J = 13.6Hz, 3H), 3.80 (s, 6H), 4.27 (d, J = 2.0Hz, 1H), 4.57 (dd, J = 5.6 and 10.4Hz, 2H), 5.27-5.40 (m, 3H), 5.88-5.97 (m, 1H), 6.44 (dd, J = 5.2 and 8.4Hz, 1H), 6.81-6.84 ( m, 4H), 7.22-7.38 (m, 9H), 7.56 (s, 1H), 8.25 (br, 1H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ11.7, 39.2 (d, J = 5.7Hz), 54.6 (d, J = 5.8Hz), 55.3, 63.3, 69.0 (d, J = 5.0Hz), 78.8 (d, J = 4.2Hz), 84.4, 84.7 (d, J = 5.0Hz), 87.2, 111.5, 113.4, 118.8, 127.2, 128.1 (x2), 130.1, 132.1 (d, J = 7.4Hz), 135.2 (x2), 144.2, 150.1, 163.3ppm; 31 P-NMR (162MHz, CDCl 3): δ68.5ppm; HRMS (ESI + ): m / z calcd for C 35 H 39 N 2 O 9 PS (M + Na) + 717.20, found 717.24.
8a was obtained in a similar manner.

(デオキシリボヌクレオシド-3'-ホスホロチオエートの脱アリル化、脱メチル化反応によるデオキシリボヌクレオシド-3'-ホスホロチオエートジエステルの合成)
まず、デオキシリボヌクレオシド-3'-ホスホロチオエート 8aの立体化学保持による脱メチル化の検討を行なった(Scheme 5)。デオキシリボヌクレオシド-3'-ホスホロチオエート 8aを tert-ブチルアミン中、35℃ で24 時間撹拌することで、脱メチル化されたデオキシリボヌクレオシド-3'-ホスホロチオエートジエステル 9a を収率 95%で得た。同様の方法で、デオキシリボヌクレオシド-3'-ホスホロチオエート 8b及び8cの立体化学保持による脱メチル化を行なった結果、9b を収率 93%、9c を収率 92%で得た。
(Synthesis of deoxyribonucleoside-3'-phosphorothioate diester by deallylation and demethylation of deoxyribonucleoside-3'-phosphorothioate)
First, demethylation of deoxyribonucleoside-3′-phosphorothioate 8a by maintaining the stereochemistry was examined (Scheme 5). Demethylribonucleoside-3′-phosphorothioate 8a was stirred in tert-butylamine at 35 ° C. for 24 hours to obtain demethylated deoxyribonucleoside-3′-phosphorothioate diester 9a in a yield of 95%. In the same manner, demethylation was carried out by retaining the stereochemistry of deoxyribonucleoside-3′-phosphorothioate 8b and 8c. As a result, 9b was obtained in 93% yield and 9c was obtained in 92% yield.

次に、デオキシリボヌクレオシド-3'-ホスホロチオエート 8aの立体化学保持による脱アリル化の検討を行なった(Scheme 5)。デオキシリボヌクレオシド-3'-ホスホロチオエート 8aをテトラヒドロフラン中、触媒量のトリス(ジベンジリデンアセトン)ジパラジウム・クロロホルム付加体、トリフェニルホスフィンを加え撹拌後、n-ブチルアミンとギ酸を作用させ、室温で2時間撹拌した結果、脱アリル化されたデオキシリボヌクレオシド-3'-ホスホロチオエートジエステル 10a を収率 80%で得た。同様の方法で、デオキシリボヌクレオシド-3'-ホスホロチオエート 8b及び8cの立体化学保持による脱アリル化を行なった結果、10b を収率 62%、10c を収率 88%で得た。これにより、純粋な立体化学をもつ2種類のヌクレオシド-3'-ホスホロチオエートジエステルの合成に成功した。   Next, deallylation of deoxyribonucleoside-3′-phosphorothioate 8a by maintaining the stereochemistry was investigated (Scheme 5). Add deoxyribonucleoside-3'-phosphorothioate 8a in tetrahydrofuran with a catalytic amount of tris (dibenzylideneacetone) dipalladium / chloroform adduct and triphenylphosphine, stir, then allow n-butylamine and formic acid to act, stir at room temperature for 2 hours As a result, deallylated deoxyribonucleoside-3′-phosphorothioate diester 10a was obtained in a yield of 80%. In the same manner, deallylation of deoxyribonucleoside-3′-phosphorothioate 8b and 8c by retaining the stereochemistry was carried out. As a result, 10b was obtained with a yield of 62% and 10c with a yield of 88%. As a result, we succeeded in synthesizing two nucleoside-3'-phosphorothioate diesters with pure stereochemistry.

Figure 2006248949
Figure 2006248949

・詳細な実験方法
脱メチル化:8c(1.00g,1.44mmol)をtert-ブチルアミン(25.0mL)に溶解させ、35℃で24時間反応させた。反応終了後、反応溶液を濃縮し、残渣をジクロロメタン(20mL)に溶解させ、0.1M炭酸水素トリエチルアンモニウム水溶液(10mL)で二回洗浄した。
Detailed Experimental Method Demethylation: 8c (1.00 g, 1.44 mmol) was dissolved in tert-butylamine (25.0 mL) and reacted at 35 ° C. for 24 hours. After completion of the reaction, the reaction solution was concentrated, and the residue was dissolved in dichloromethane (20 mL) and washed twice with 0.1 M aqueous triethylammonium hydrogencarbonate (10 mL).

その後、得られた有機層を無水硫酸マグネシウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ジクロロメタン:メタノール=9:1)に供し、目的物を含む画分を濃縮し、更にジクロロメタン(20mL)に溶解させ、0.1M炭酸水素トリエチルアンモニウム水溶液(10mL)で二回洗浄した。   Thereafter, the obtained organic layer was dried over anhydrous magnesium sulfate and filtered. The residue was subjected to silica gel column chromatography (developing solvent; dichloromethane: methanol = 9: 1), and the fraction containing the target product was concentrated, further dissolved in dichloromethane (20 mL), and 0.1 M aqueous triethylammonium hydrogen carbonate solution (10 mL). And washed twice.

その後、得られた有機層を無水硫酸マグネシウムで乾燥、濾過をした。残渣を濃縮した後、ジクロロメタン(1.0mL)に溶解、石油エーテル(200mL)にて粉体化をさせ、無色のアモルファス状物質をして、9cを1.04g(92%)得た。   Thereafter, the obtained organic layer was dried over anhydrous magnesium sulfate and filtered. The residue was concentrated, dissolved in dichloromethane (1.0 mL), and pulverized with petroleum ether (200 mL) to give a colorless amorphous substance to obtain 1.04 g (92%) of 9c.

9c;TLC:Rf=0.37(展開溶媒;ジクロロメタン:メタノール=9:1);1H-NMR(400MHz,DMSO-d6):δ1.16(t,J=7.2Hz,9H), 1.34(s,3H), 2.24-2.40(m,2H), 3.05-3.15(m,7H), 3.27-3.30(m,1H), 3.74(s,6H), 4.16-4.28(m,3H), 5.03(dd,J=1.6 and 10.4Hz,2H), 5.19(ddd,J=2.0,4.0 and 17.2Hz,1H), 5.82-5.91(m,1H), 6.20(dd,J=5.6 and 8.4Hz,1H), 6.87-6.89(m,4H), 7.22-7.39(m,9H), 9.23(br,1H), 11.31(s,1H)ppm; 13C-NMR(100MHz,DMSO-d6):δ8.56, 11.5, 39.5(d,J=3.3Hz), 45.6, 55.2, 64.0, 67.0(d,J=5.8Hz), 77.2(d,J=4.2Hz), 84.7, 85.6(d,J=5.8Hz), 87.0, 111.1, 113.3, 116.2, 127.0, 128.0, 128.2, 130.2, 134.6(d,J=9.0Hz), 135.4, 135.6, 135.9, 144.4, 150.4, 163.7ppm; 31P-NMR(162MHz,DMSO-d6):δ52.8ppm; HRMS(ESI-):m/z calcd for C40H52N3O9PS(M-H-Et3N)- 679.19, found679.27.
同様の方法で9a及び9bを得た。
9c; TLC: R f = 0.37 (developing solvent; dichloromethane: methanol = 9: 1); 1 H-NMR (400 MHz, DMSO-d 6 ): δ 1.16 (t, J = 7.2 Hz, 9H), 1.34 ( s, 3H), 2.24-2.40 (m, 2H), 3.05-3.15 (m, 7H), 3.27-3.30 (m, 1H), 3.74 (s, 6H), 4.16-4.28 (m, 3H), 5.03 ( dd, J = 1.6 and 10.4Hz, 2H), 5.19 (ddd, J = 2.0,4.0 and 17.2Hz, 1H), 5.82-5.91 (m, 1H), 6.20 (dd, J = 5.6 and 8.4Hz, 1H) , 6.87-6.89 (m, 4H), 7.22-7.39 (m, 9H), 9.23 (br, 1H), 11.31 (s, 1H) ppm; 13 C-NMR (100 MHz, DMSO-d 6 ): δ 8.56 , 11.5, 39.5 (d, J = 3.3Hz), 45.6, 55.2, 64.0, 67.0 (d, J = 5.8Hz), 77.2 (d, J = 4.2Hz), 84.7, 85.6 (d, J = 5.8Hz) , 87.0, 111.1, 113.3, 116.2, 127.0, 128.0, 128.2, 130.2, 134.6 (d, J = 9.0 Hz), 135.4, 135.6, 135.9, 144.4, 150.4, 163.7 ppm; 31 P-NMR (162 MHz, DMSO-d 6): δ52.8ppm; HRMS (ESI -): m / z calcd for C 40 H 52 N 3 O 9 PS (MH-Et 3 N) - 679.19, found679.27.
9a and 9b were obtained in the same way.

脱アリル化:8c(69.5mg,100mmol)をテトラヒドロフラン(1.00mL)に溶解させ、トリス(ジベンジリデンアセトン)ジパラジウム・クロロホルム付加体(5.18mg,5.00mmol)、トリフェニルホスフィン(6.56mg,25.0mmol)を加え室温で30分間撹拌した。その後、反応溶液を0℃に保ち、n-ブチルアミン(19.0mL,200mmol)とギ酸(7.50mL,200mmol)を滴下して、室温に戻して2時間撹拌した。   Deallylation: 8c (69.5 mg, 100 mmol) dissolved in tetrahydrofuran (1.00 mL), tris (dibenzylideneacetone) dipalladium / chloroform adduct (5.18 mg, 5.00 mmol), triphenylphosphine (6.56 mg, 25.0 mmol) ) And stirred at room temperature for 30 minutes. Thereafter, the reaction solution was kept at 0 ° C., n-butylamine (19.0 mL, 200 mmol) and formic acid (7.50 mL, 200 mmol) were added dropwise, and the mixture was returned to room temperature and stirred for 2 hours.

反応終了後、反応溶液を濃縮し、残渣をジクロロメタン(5.0mL)に溶解させ、0.1M炭酸水素トリエチルアンモニウム水溶液(3.0mL)で二回洗浄した。その後、得られた有機層を無水硫酸マグネシウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ジクロロメタン:メタノール=9:1)に供し、目的物を含む画分を濃縮し、更にジクロロメタン(5.0mL)に溶解させ、0.1M炭酸水素トリエチルアンモニウム水溶液(3.0mL)で二回洗浄した。   After completion of the reaction, the reaction solution was concentrated, and the residue was dissolved in dichloromethane (5.0 mL) and washed twice with 0.1 M aqueous triethylammonium hydrogencarbonate (3.0 mL). Thereafter, the obtained organic layer was dried over anhydrous magnesium sulfate and filtered. The residue was subjected to silica gel column chromatography (developing solvent; dichloromethane: methanol = 9: 1), and the fraction containing the target product was concentrated, further dissolved in dichloromethane (5.0 mL), and 0.1 M aqueous triethylammonium hydrogencarbonate (3.0%). 2) mL).

その後、得られた有機層を無水硫酸マグネシウムで乾燥、濾過をした。残渣を濃縮した後、ジクロロメタン(1.0mL)に溶解、石油エーテル(100mL)にて粉体化をさせ、無色のアモルファス状物質をして、10cを66.5mg(88%)得た。   Thereafter, the obtained organic layer was dried over anhydrous magnesium sulfate and filtered. The residue was concentrated, dissolved in dichloromethane (1.0 mL), and pulverized with petroleum ether (100 mL) to give a colorless amorphous substance to obtain 66.5 mg (88%) of 10c.

10c;TLC:Rf=0.21(展開溶媒;ジクロロメタン:メタノール=9:1);1H-NMR(400MHz,DMSO-d6):δ1.16(t,J=7.2Hz,9H), 1.36(s,3H), 2.24-2.38(m,2H), 3.06(q,J=7.2Hz,6H), 3.14(dd,J=2.8 and 10.4Hz,1H), 3.28-3.30(m,1H), 3.73(s,6H), 4.09-4.11(m,1H), 4.97-5.04(m,1H), 6.17(dd,J=6.0 and 8.4Hz,1H), 6.87-6.89(m,4H), 7.21-7.47(m,9H), 9.47(br,1H), 11.31(s,1H)ppm; 13C-NMR(100MHz,DMSO-d6):δ8.62, 11.6, 39.8(d,J=4.1Hz), 45.7, 52.9(d,J=6.5Hz), 55.2, 63.9, 76.5(d,J=4.9Hz), 84.7, 85.1(d,J=5.8Hz), 87.0, 111.1, 113.3, 127.0, 127.9, 128.2, 130.1, 135.4, 135.6, 135.8, 144.4, 150.4, 163.8ppm; 31P-NMR(162MHz,DMSO-d6):δ54.3ppm; HRMS(ESI-):m/z calcd for C38H50N3O9PS(M-H-Et3N)- 653.17, found653.26.
同様の方法で10a及び10bを得た。
10c; TLC: R f = 0.21 (developing solvent; dichloromethane: methanol = 9: 1); 1 H-NMR (400 MHz, DMSO-d 6 ): δ 1.16 (t, J = 7.2 Hz, 9H), 1.36 ( s, 3H), 2.24-2.38 (m, 2H), 3.06 (q, J = 7.2Hz, 6H), 3.14 (dd, J = 2.8 and 10.4Hz, 1H), 3.28-3.30 (m, 1H), 3.73 (s, 6H), 4.09-4.11 (m, 1H), 4.97-5.04 (m, 1H), 6.17 (dd, J = 6.0 and 8.4Hz, 1H), 6.87-6.89 (m, 4H), 7.21-7.47 (m, 9H), 9.47 (br, 1H), 11.31 (s, 1H) ppm; 13 C-NMR (100 MHz, DMSO-d 6 ): δ 8.62, 11.6, 39.8 (d, J = 4.1 Hz), 45.7, 52.9 (d, J = 6.5Hz), 55.2, 63.9, 76.5 (d, J = 4.9Hz), 84.7, 85.1 (d, J = 5.8Hz), 87.0, 111.1, 113.3, 127.0, 127.9, 128.2, 130.1, 135.4, 135.6, 135.8, 144.4, 150.4, 163.8ppm; 31 P-NMR (162MHz, DMSO-d 6): δ54.3ppm; HRMS (ESI -): m / z calcd for C 38 H 50 N 3 O 9 PS (MH-Et 3 N ) - 653.17, found653.26.
10a and 10b were obtained in the same way.

(ヌクレオシド-3'-ホスホロチオエートジエステルと5'-O-無保護ヌクレオシドの光延反応に基づくジヌクレオシドホスホロチオエートの立体選択的合成)
ヌクレオシド-3'-ホスホロチオエートジエステルと5'-O-無保護ヌクレオシドの光延反応に基づくジヌクレオシドホスホロチオエートの立体選択的合成の検討を行なった(Scheme 6)。
(Stereoselective synthesis of dinucleoside phosphorothioate based on Mitsunobu reaction of nucleoside-3'-phosphorothioate diester and 5'-O-unprotected nucleoside)
A stereoselective synthesis of dinucleoside phosphorothioate based on Mitsunobu reaction of nucleoside-3'-phosphorothioate diester and 5'-O-unprotected nucleoside was investigated (Scheme 6).

Figure 2006248949
Figure 2006248949

テトラヒドロフラン中、0℃ でジエチルアゾカルボキシレート(DEAD)とトリフェニルホスフィンを撹拌し、光延試薬の調整を行なった。その後、ヌクレオシド-3'-ホスホロチオエートジエステル 9a と5'-O-無保護ヌクレオシド 11a を加えて、55℃で3時間撹拌した結果、完全に立体化学を保持したまま反応は進行し、目的とするジヌクレオシドホスホロチオエート 12a を収率 32%で得た。高い立体選択性で反応は進行するが、官能基選択性(O/S 選択性)は低かった(表4)。同様の方法で、ジヌクレオシドホスホロチオエートの立体選択的合成の検討を行なった結果、12b を収率 59%、 12c を収率 27%、12d を収率 25%、12e を収率 53%、12f を収率 50%で得た。   The Mitsunobu reagent was prepared by stirring diethyl azocarboxylate (DEAD) and triphenylphosphine in tetrahydrofuran at 0 ° C. After that, nucleoside-3'-phosphorothioate diester 9a and 5'-O-unprotected nucleoside 11a were added and stirred at 55 ° C for 3 hours. The nucleoside phosphorothioate 12a was obtained with a yield of 32%. Although the reaction proceeded with high stereoselectivity, the functional group selectivity (O / S selectivity) was low (Table 4). As a result of examining the stereoselective synthesis of dinucleoside phosphorothioates using the same method, 12b yield 59%, 12c yield 27%, 12d yield 25%, 12e yield 53%, and 12f yield. Yield was 50%.

Figure 2006248949
Figure 2006248949

更に、9c とは立体化学の異なるヌクレオシド-3'-ホスホロチオエートジエステル 10a と、
5'-O-無保護ヌクレオシド 11a の光延反応に基づくジヌクレオシドホスホロチオエートの立体選択的合成の検討を行なった(Scheme 7)。
Furthermore, 9c is a nucleoside-3'-phosphorothioate diester 10a having a different stereochemistry,
A stereoselective synthesis of dinucleoside phosphorothioates based on the Mitsunobu reaction of 5'-O-unprotected nucleoside 11a was investigated (Scheme 7).

Figure 2006248949
Figure 2006248949

高い立体選択性で反応は進行するが、官能基選択性(O/S 選択性)は低かった(表5)。同様の方法で、ジヌクレオシドホスホロチオエートの立体選択的合成の検討を行なった結果、14b を収率 20% 、14c を収率 51%、14d を収率 15%で得た。ただし、14d に関しては、縮合剤の当量数を変えることで収率を 62%まで向上することができた。   Although the reaction proceeded with high stereoselectivity, the functional group selectivity (O / S selectivity) was low (Table 5). As a result of examining the stereoselective synthesis of dinucleoside phosphorothioates by the same method, 14b was obtained in a yield of 20%, 14c was obtained in a yield of 51%, and 14d was obtained in a yield of 15%. However, for 14d, the yield could be improved to 62% by changing the number of equivalents of the condensing agent.

Figure 2006248949
Figure 2006248949

・詳細な実験方法
トリフェニルホスフィン(202mg,770mmol)をテトラヒドロフラン(12.0mL)に溶解させ、反応溶液を0℃に保ち、ジエチルアゾカルボキシレート40%トルエン溶液(350mL,770mmol)を滴下して、30分間撹拌させた。
Detailed experimental method Triphenylphosphine (202 mg, 770 mmol) was dissolved in tetrahydrofuran (12.0 mL), the reaction solution was kept at 0 ° C., diethyl azocarboxylate 40% toluene solution (350 mL, 770 mmol) was added dropwise, 30 Stir for minutes.

その溶液に9c(460mg,590mmol)及び11d(335mg,1.18mmol)を加えてしばらく撹拌させた後、反応溶液を60℃に保ち、3時間撹拌させた。反応終了後、31P-NMRのスペクトル分析により12f、13f及び他の化合物の収率を換算した。そして、反応溶液に酢酸エチル(50mL)を加え、飽和塩化アンモニウム水溶液(20mL)で洗浄した後、水層を更に酢酸エチル(50mL)で二回洗浄した。 9c (460 mg, 590 mmol) and 11d (335 mg, 1.18 mmol) were added to the solution and stirred for a while, and then the reaction solution was kept at 60 ° C. and stirred for 3 hours. After completion of the reaction, yields of 12f, 13f and other compounds were converted by 31 P-NMR spectral analysis. Then, ethyl acetate (50 mL) was added to the reaction solution, and after washing with a saturated aqueous ammonium chloride solution (20 mL), the aqueous layer was further washed twice with ethyl acetate (50 mL).

その後、得られた有機層を飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ジクロロメタン:メタノール=9:1、酢酸エチル:ヘキサン:メタノール=3:1:0.1)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、12fを279mg(50%)得た。   Thereafter, the obtained organic layer was washed with saturated brine (20 mL), dried over anhydrous sodium sulfate, and filtered. The residue was subjected to silica gel column chromatography (developing solvent; dichloromethane: methanol = 9: 1, ethyl acetate: hexane: methanol = 3: 1: 0.1), and the fraction containing the target product was concentrated to give a colorless amorphous substance. As a result, 279 mg (50%) of 12f was obtained.

12f;TLC:Rf=0.43(展開溶媒;酢酸エチル:ヘキサン:メタノール=3:1:0.1);1H-NMR(400MHz,CDCl3):δ1.47(s,3H), 1.94(s,3H), 2.10-2.19(m,4H), 2.35-2.44(m,2H), 2.60(dd,J=5.6 and 12.8Hz,1H), 3.46(d,J=2.4Hz,2H), 3.80(s,6H), 4.13-4.35(m,4H), 4.60(dd,J=5.6 and 10.8Hz,2H), 5.21-5.41(m,4H), 5.88-5.97(m,1H), 6.36(dd,J=5.6 and 9.2Hz,1H), 6.41(dd,J=5.2 and 8.4Hz,1H), 6.85(d,J=8.8Hz,4H), 7.22-7.40(m,10H), 7.58(s,1H), 8.81(s,1H), 8.85(s,1H)ppm; 13C-NMR(100MHz,CDCl3):δ11.7, 12.5, 21.0, 37.0, 39.0(d,J=5.8Hz), 55.2, 63.2, 67.4(d,J=6.6Hz), 69.3(d,J=4.9Hz), 74.3, 79.5(d,J=4.1Hz), 82.5(d,J=9.0Hz), 84.4, 84.5, 84.6(d,J=5.8Hz), 87.2, 111.6, 111.8, 113.3, 119.4, 127.1, 128.0(x2), 130.0, 131.6(d,J=7.4Hz), 133.0, 134.8, 135.0, 135.1, 144.1, 150.4, 163.5, 163.7, 170.3ppm; 31P-NMR(162MHz,CDCl3):δ67.0ppm; 同様の方法で12a、12b、12c、12d、12e、14a、14b、14c及び14dを得た。 12f; TLC: R f = 0.43 (developing solvent; ethyl acetate: hexane: methanol = 3: 1: 0.1); 1 H-NMR (400 MHz, CDCl 3 ): δ 1.47 (s, 3H), 1.94 (s, 3H), 2.10-2.19 (m, 4H), 2.35-2.44 (m, 2H), 2.60 (dd, J = 5.6 and 12.8Hz, 1H), 3.46 (d, J = 2.4Hz, 2H), 3.80 (s , 6H), 4.13-4.35 (m, 4H), 4.60 (dd, J = 5.6 and 10.8Hz, 2H), 5.21-5.41 (m, 4H), 5.88-5.97 (m, 1H), 6.36 (dd, J = 5.6 and 9.2Hz, 1H), 6.41 (dd, J = 5.2 and 8.4Hz, 1H), 6.85 (d, J = 8.8Hz, 4H), 7.22-7.40 (m, 10H), 7.58 (s, 1H) , 8.81 (s, 1H), 8.85 (s, 1H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ 11.7, 12.5, 21.0, 37.0, 39.0 (d, J = 5.8 Hz), 55.2, 63.2 , 67.4 (d, J = 6.6Hz), 69.3 (d, J = 4.9Hz), 74.3, 79.5 (d, J = 4.1Hz), 82.5 (d, J = 9.0Hz), 84.4, 84.5, 84.6 (d , J = 5.8Hz), 87.2, 111.6, 111.8, 113.3, 119.4, 127.1, 128.0 (x2), 130.0, 131.6 (d, J = 7.4Hz), 133.0, 134.8, 135.0, 135.1, 144.1, 150.4, 163.5, 163.7, 170.3 ppm; 31 P-NMR (162 MHz, CDCl 3 ): Δ67.0 ppm; 12a, 12b, 12c, 12d, 12e, 14a, 14b, 14c and 14d were obtained in the same manner.

(ジヌクレオシドホスホロチオエート-3'-水酸基保護基の除去及びホスホロアミダイト化)
ジヌクレオシドホスホロチオエート-3'-水酸基保護基の除去(脱アセチル化)の検討を行なった(Scheme 8 and 9)。
(Removal and phosphoramidite formation of dinucleoside phosphorothioate-3'-hydroxyl protecting group)
The removal (deacetylation) of the dinucleoside phosphorothioate-3'-hydroxyl protecting group was investigated (Scheme 8 and 9).

Figure 2006248949
Figure 2006248949

Figure 2006248949
Figure 2006248949

ジヌクレオシドホスホロチオエート 12f をメタノール中、ナトリウムメトキシドを用いて、室温で4時間撹拌した結果、脱アセチル化されたジヌクレオシドホスホロチオエート16 を収率 88%で得た。同様の方法で 17 を収率 84%で得た。   Dinucleoside phosphorothioate 12f was stirred with sodium methoxide in methanol at room temperature for 4 hours. As a result, deacetylated dinucleoside phosphorothioate 16 was obtained in a yield of 88%. In the same manner, 17 was obtained in a yield of 84%.

次に、得られたジヌクレオシドホスホロチオエート 16 及び 17 のホスホロアミダイト化の検討を行なった(Scheme 10 and 11)。   Next, phosphoramidite formation of the obtained dinucleoside phosphorothioates 16 and 17 was examined (Scheme 10 and 11).

Figure 2006248949
Figure 2006248949

Figure 2006248949
Figure 2006248949

アセトニトリル中、モレキュラーシーブス3A存在下、ジヌクレオシドホスホロチオエート16とアリルオキシビス(ジイソプロピルアミノ)ホスフィンを、ジイソプロピルアンモニウムテトラゾリドを促進剤として反応させ、室温で3 時間撹拌した結果、目的とするホスホロアミダイト 18 を収率 71%で得た。更に、メチルオキシビス(ジイソプロピルアミノ)ホスフィンを用いて同様の方法で 19 を収率 75%で得た。   In the presence of Molecular Sieves 3A in acetonitrile, dinucleoside phosphorothioate 16 and allyloxybis (diisopropylamino) phosphine were reacted with diisopropylammonium tetrazolide as an accelerator and stirred for 3 hours at room temperature, resulting in the desired phosphoramidite. 18 was obtained in 71% yield. Further, 19 was obtained in a similar manner using methyloxybis (diisopropylamino) phosphine in a yield of 75%.

・詳細な実験方法
保護基の除去:12f(103mg,109mmol)をメタノール(4.00mL)に溶解させ、別途調整した1.0Mナトリウムメトキシドメタノール溶液(55.0mL,55.0mmol)を0℃で滴下した。その後、室温に戻して4時間撹拌した。反応終了後、反応溶液に酢酸エチル(20mL)を加え、飽和塩化アンモニウム水溶液(5.0mL)で洗浄した後、水層を更に酢酸エチル(20mL)で二回洗浄した。
Detailed Experimental Method Removal of protecting group: 12f (103 mg, 109 mmol) was dissolved in methanol (4.00 mL), and 1.0 M sodium methoxide methanol solution (55.0 mL, 55.0 mmol) prepared separately was added dropwise at 0 ° C. Then, it returned to room temperature and stirred for 4 hours. After completion of the reaction, ethyl acetate (20 mL) was added to the reaction solution, and after washing with a saturated aqueous ammonium chloride solution (5.0 mL), the aqueous layer was further washed twice with ethyl acetate (20 mL).

その後、得られた有機層を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ジクロロメタン:メタノール=9:1)に供し、目的物を含む画分を濃縮して無色のアモルファス状物質をして、16を86.8mg(88%)得た。   Thereafter, the obtained organic layer was washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, and filtered. The residue was subjected to silica gel column chromatography (developing solvent; dichloromethane: methanol = 9: 1), and the fraction containing the target product was concentrated to give a colorless amorphous substance to obtain 86.8 mg (88%) of 16. .

16;TLC:Rf=0.53(展開溶媒;ジクロロメタン:メタノール=9:1);1H-NMR(400MHz,CDCl3):δ1.48(s,3H), 1.92(s,3H), 2.10-2.17(m,1H), 2.35-2.45(m,2H), 2.60(dd,J=5.6 and 13.2Hz,1H), 3.46(d,J=2.4Hz,2H), 3.80(s,6H), 4.08-4.32(m,4H), 4.46(t,J=2.8Hz,1H), 4.59(dd,J=5.6 and 10.8Hz,2H), 5.26-5.40(m,3H), 5.87-5.97(m,1H), 6.32(t,J=6.4Hz,1H), 6.41(dd,J=5.2 and 8.8Hz,1H), 6.85(d,J=9.2Hz,4H), 7.22-7.40(m,10H), 7.56(d,J=1.2Hz,1H), 9.36(s,1H), 9.53(s,1H)ppm; 13C-NMR(100MHz,CDCl3):δ11.8, 12.6, 39.0(d,J=4.9Hz), 40.1, 55.3, 63.4, 67.6(d,J=6.6Hz), 69.3(d,J=4.1Hz), 71.3, 79.6(d,J=4.9Hz), 84.5, 84.6(d,J=8.2Hz), 84.7(d,J=4.1Hz), 85.1, 87.3, 111.5, 111.9, 113.4, 119.3, 127.2, 128.0, 128.1, 130.1, 131.8(d,J=7.4Hz), 132.1, 135.1, 135.2, 135.6, 144.2, 150.7, 150.9, 164.0, 164.2ppm; 31P-NMR(162MHz,CDCl3):δ65.7ppm;
同様の方法で17を得た。
16; TLC: R f = 0.53 (developing solvent; dichloromethane: methanol = 9: 1); 1 H-NMR (400 MHz, CDCl 3 ): δ1.48 (s, 3H), 1.92 (s, 3H), 2.10- 2.17 (m, 1H), 2.35-2.45 (m, 2H), 2.60 (dd, J = 5.6 and 13.2Hz, 1H), 3.46 (d, J = 2.4Hz, 2H), 3.80 (s, 6H), 4.08 -4.32 (m, 4H), 4.46 (t, J = 2.8Hz, 1H), 4.59 (dd, J = 5.6 and 10.8Hz, 2H), 5.26-5.40 (m, 3H), 5.87-5.97 (m, 1H ), 6.32 (t, J = 6.4Hz, 1H), 6.41 (dd, J = 5.2 and 8.8Hz, 1H), 6.85 (d, J = 9.2Hz, 4H), 7.22-7.40 (m, 10H), 7.56 (d, J = 1.2Hz, 1H), 9.36 (s, 1H), 9.53 (s, 1H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ11.8, 12.6, 39.0 (d, J = 4.9 Hz), 40.1, 55.3, 63.4, 67.6 (d, J = 6.6 Hz), 69.3 (d, J = 4.1 Hz), 71.3, 79.6 (d, J = 4.9 Hz), 84.5, 84.6 (d, J = 8.2 Hz), 84.7 (d, J = 4.1 Hz), 85.1, 87.3, 111.5, 111.9, 113.4, 119.3, 127.2, 128.0, 128.1, 130.1, 131.8 (d, J = 7.4 Hz), 132.1, 135.1, 135.2, 135.6 , 144.2, 150.7, 150.9, 164.0, 164.2 ppm; 31 P-NMR (162 MHz, CDCl 3 ): δ 65.7 ppm;
17 was obtained in a similar manner.

ホスホロアミダイト化:モレキュラーシーブス3Aを真空下250℃で3時間加熱乾燥させ、室温に下がるまで放置した。その中に16(49.0mg,54.1mmol)、ジイソプロピルアンモニウム-1H-テトラゾリド(18.5mg,108mmol)、アセトニトリル(1.00mL)を加え、室温で30分撹拌した。その溶液にアリルオキシビス(N,N-ジイソプロピルアミノ)ホスフィン(25.9mL,81.1mmol)を滴下し、2時間撹拌させた。反応終了後、反応溶液を濾過し、濃縮した。残渣を酢酸エチル(10mL)に溶解させ、飽和炭酸水素ナトリウム水溶液(5.0mL)で洗浄した後、水層を更に酢酸エチル(10mL)で二回洗浄した。その後、得られた有機層を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過をした。残渣を濃縮した後、ジクロロメタン(1.0mL)に溶解、石油エーテル(100mL)にて粉体化をさせ、無色のアモルファス状物質をして、18を42.0mg(71%)得た。   Phosphoramididation: Molecular sieves 3A was heat-dried under vacuum at 250 ° C. for 3 hours and left to cool to room temperature. 16 (49.0 mg, 54.1 mmol), diisopropylammonium-1H-tetrazolide (18.5 mg, 108 mmol) and acetonitrile (1.00 mL) were added thereto, and the mixture was stirred at room temperature for 30 minutes. To the solution, allyloxybis (N, N-diisopropylamino) phosphine (25.9 mL, 81.1 mmol) was added dropwise and allowed to stir for 2 hours. After completion of the reaction, the reaction solution was filtered and concentrated. The residue was dissolved in ethyl acetate (10 mL), washed with saturated aqueous sodium hydrogen carbonate solution (5.0 mL), and the aqueous layer was further washed twice with ethyl acetate (10 mL). Thereafter, the obtained organic layer was washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, and filtered. The residue was concentrated, dissolved in dichloromethane (1.0 mL), and pulverized with petroleum ether (100 mL) to give a colorless amorphous substance to obtain 18 (42.0 mg, 71%).

18;TLC:Rf=0.39(展開溶媒;酢酸エチル:ヘキサン=2:1);1H-NMR(400MHz,CDCl3):δ1.16(d,J=6.8Hz,12H), 1.43(s,3H), 1.91(s,3H), 2.05-2.14(m,1H), 2.36-2.49(m,2H), 2.56-2.61(m,1H), 3.40-3.47(m,2H), 3.55-3.63(m,2H), 3.79(s,6H), 4.06-4.24(m,6H), 4.45-4.61(m,3H), 5.12(d,J=10.4Hz,1H), 5.23-5.39(m,4H), 5.87-5.96(m,2H), 6.31(t,J=6.4Hz,1H), 6.41(t,J=7.2Hz,1H), 6.84(d,J=8.8Hz,4H), 7.22-7.40(m,10H), 7.58(s,1H), 8.92(br,2H)ppm; 13C-NMR(100MHz,CDCl3):δ11.7, 12.6, 24.5(d,J=6.6Hz), 24.6(d,J=8.3Hz), 39.2(d,J=5.0Hz), 39.5, 43.2(d,J=12.3Hz), 55.3, 63.4, 64.3(d,J=17.3Hz), 67.3(d,J=6.0Hz), 69.3(d,J=6.6Hz), 72.8(d,J=1.7Hz), 73.0, 79.5(d,J=3.3Hz), 84.4, 84.8(d,J=5.8Hz), 85.0(d,J=7.4Hz), 87.3, 111.4, 111.7, 113.4, 115.9(d,J=13.2Hz), 119.3, 127.2, 128.0, 128.1, 130.0, 131.7(d,J=2.5Hz), 131.8(d,J=3.3Hz), 135.1, 135.2, 135.3, 135.4, 144.4, 150.4, 150.5, 150.9, 163.9(x2)ppm; 31P-NMR(162MHz,CDCl3):δ67.4, 147.5, 147.9ppm.
同様の方法で19を得た。
18; TLC: R f = 0.39 (developing solvent; ethyl acetate: hexane = 2: 1); 1 H-NMR (400 MHz, CDCl 3 ): δ 1.16 (d, J = 6.8 Hz, 12H), 1.43 (s , 3H), 1.91 (s, 3H), 2.05-2.14 (m, 1H), 2.36-2.49 (m, 2H), 2.56-2.61 (m, 1H), 3.40-3.47 (m, 2H), 3.55-3.63 (m, 2H), 3.79 (s, 6H), 4.06-4.24 (m, 6H), 4.45-4.61 (m, 3H), 5.12 (d, J = 10.4Hz, 1H), 5.23-5.39 (m, 4H ), 5.87-5.96 (m, 2H), 6.31 (t, J = 6.4Hz, 1H), 6.41 (t, J = 7.2Hz, 1H), 6.84 (d, J = 8.8Hz, 4H), 7.22-7.40 (m, 10H), 7.58 (s, 1H), 8.92 (br, 2H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ 11.7, 12.6, 24.5 (d, J = 6.6 Hz), 24.6 ( d, J = 8.3Hz), 39.2 (d, J = 5.0Hz), 39.5, 43.2 (d, J = 12.3Hz), 55.3, 63.4, 64.3 (d, J = 17.3Hz), 67.3 (d, J = 6.0Hz), 69.3 (d, J = 6.6Hz), 72.8 (d, J = 1.7Hz), 73.0, 79.5 (d, J = 3.3Hz), 84.4, 84.8 (d, J = 5.8Hz), 85.0 ( d, J = 7.4Hz), 87.3, 111.4, 111.7, 113.4, 115.9 (d, J = 13.2Hz), 119.3, 127.2, 128.0, 128.1, 130.0, 131.7 (d, J = 2.5Hz), 131.8 (d, J = 3.3Hz), 135.1, 135.2, 135.3, 135.4, 144.4, 150.4, 150.5, 150.9, 163.9 (x2) ppm; 31 P-NMR (162 MHz, CDCl 3 ): δ 67.4, 147.5, 147.9 ppm.
19 was obtained in a similar manner.

(ジヌクレオシドホスホロチオエート-3'-ホスホロアミダイトを構成単位に用いるホスホロチオエート/ホスフェート混合型オリゴヌクレオチドの立体選択的合成(液相合成))
ジヌクレオシドホスホロチオエート-3'-ホスホロアミダイト 18 を構成単位に用いるホスホロチオエート/ホスフェート混合型オリゴヌクレオチドの合成を行なった(Scheme 12)。
(Stereoselective synthesis of phosphorothioate / phosphate mixed oligonucleotides using dinucleoside phosphorothioate-3'-phosphoramidite as a building block (liquid phase synthesis))
A phosphorothioate / phosphate mixed oligonucleotide was synthesized using dinucleoside phosphorothioate-3′-phosphoramidite 18 as a building block (Scheme 12).

Figure 2006248949
Figure 2006248949

ジヌクレオシドホスホロチオエート-3'-ホスホロアミダイト 18 と5'-O-無保護ヌクレオシド 11d をアセトニトリル中、モレキュラーシーブス 3A 存在下、1H-テトラゾールを促進剤として室温で1時間反応させた。31P-NMR のスペクトル分析により、原料のアミダイトの消失を確認した後、t-ブチルヒドロキシペルオキシド-トルエン溶液により酸化させて目的の 20 を収率 70%で得た。同様の方法で、ジヌクレオシドホスホロチオエート-3'-ホスホロアミダイト 19 から 21 を収率 65%で得た(Scheme 13)。 Dinucleoside phosphorothioate-3′-phosphoramidite 18 and 5′-O-unprotected nucleoside 11d were reacted in acetonitrile in the presence of molecular sieves 3A for 1 hour at room temperature with 1H-tetrazole as a promoter. The disappearance of the starting amidite was confirmed by 31 P-NMR spectral analysis, and then oxidized with a t-butylhydroxyperoxide-toluene solution to obtain the target 20 in a yield of 70%. In a similar manner, dinucleoside phosphorothioate-3′-phosphoramidite 19 to 21 was obtained in 65% yield (Scheme 13).

Figure 2006248949
Figure 2006248949

・詳細な実験方法
モレキュラーシーブス3Aを真空下250℃で3時間加熱乾燥させ、室温に下がるまで放置した。その中に18(70.5mg,64.5mmol)、1H-テトラゾール(9.00mg,129mmol)、アセトニトリル(1.30mL)を加え、室温で30分撹拌した。その溶液に11d(27.5mg,96.8mmol)を加え、室温で1時間撹拌させた。原料のアミダイトの消失を確認した後、4.0Mt-ブチルヒドロキシペルオキシドートルエン溶液(47.8mL,194mmol)により酸化させて目的の20を58.4mg(70%)得た。
Detailed Experimental Method Molecular Sieves 3A was heat-dried under vacuum at 250 ° C. for 3 hours and left to cool to room temperature. 18 (70.5 mg, 64.5 mmol), 1H-tetrazole (9.00 mg, 129 mmol) and acetonitrile (1.30 mL) were added thereto, and the mixture was stirred at room temperature for 30 minutes. 11d (27.5 mg, 96.8 mmol) was added to the solution and allowed to stir at room temperature for 1 hour. After confirming disappearance of the starting amidite, it was oxidized with 4.0Mt-butylhydroxyperoxide-toluene solution (47.8 mL, 194 mmol) to obtain 58.4 mg (70%) of the target 20.

20;TLC:Rf=0.60(展開溶媒;酢酸エチル:ヘキサン:メタノール=3:1:0.5);1H-NMR(400MHz,CDCl3):δ1.44-1.46(m,3H), 1.87-1.94(m,6H), 2.10(s,3H), 2.21-2.31(m,2H), 2.37-2.45(m,2H), 2.51-2.64(m,2H), 3.38-3.79(m,2H), 3.80(s,6H), 4.15-4.37(m,6H), 4.58-4.61(m,4H), 5.06(t,J=6.0Hz,1H), 5.24-5.41(m,7H), 5.88-5.99(m,2H), 6.16-6.43(m,3H), 6.85(d,J=8.8Hz,4H), 7.22-7.42(m,11H), 7.56-7.58(m,1H), 9.11-9.37(m,3H)ppm; 13C-NMR(100MHz,CDCl3):δ11.7(x2), 12.5(x2), 36.9, 38.3(x2), 39.0(x3), 55.2, 63.4(x2), 67.0, 67.1, 67.5(x2), 68.9, 69.0(x2), 69.4, 69.5, 73.9, 77.2, 77.9, 79.8(x2), 79.9, 82.5, 82.6, 83.1, 83.2, 84.4, 84.7, 84.8, 84.9(x2), 85.5, 87.3, 111.7(x2), 111.8(x2), 113.4, 119.4, 119.5, 119.6, 127.2, 128.0, 128.1, 130.0, 131.6, 131.7(x2), 131.8, 135.0, 135.1(x2), 135.3, 144.1, 150.3, 150.4, 150.5, 150.6(x2), 150.7, 158.7, 158.8, 163.7(x2), 163.8, 170.5, 170.6ppm; 31P-NMR(162MHz,CDCl3):δ-2.64, -2.27, 66.7, 66.9ppm;
同様の方法で21を得た。
20; TLC: R f = 0.60 (developing solvent; ethyl acetate: hexane: methanol = 3: 1: 0.5); 1 H-NMR (400 MHz, CDCl 3 ): δ1.44-1.46 (m, 3H), 1.87- 1.94 (m, 6H), 2.10 (s, 3H), 2.21-2.31 (m, 2H), 2.37-2.45 (m, 2H), 2.51-2.64 (m, 2H), 3.38-3.79 (m, 2H), 3.80 (s, 6H), 4.15-4.37 (m, 6H), 4.58-4.61 (m, 4H), 5.06 (t, J = 6.0Hz, 1H), 5.24-5.41 (m, 7H), 5.88-5.99 ( m, 2H), 6.16-6.43 (m, 3H), 6.85 (d, J = 8.8Hz, 4H), 7.22-7.42 (m, 11H), 7.56-7.58 (m, 1H), 9.11-9.37 (m, 3H) ppm; 13 C-NMR (100 MHz, CDCl 3 ): δ 11.7 (x2), 12.5 (x2), 36.9, 38.3 (x2), 39.0 (x3), 55.2, 63.4 (x2), 67.0, 67.1, 67.5 (x2), 68.9, 69.0 (x2), 69.4, 69.5, 73.9, 77.2, 77.9, 79.8 (x2), 79.9, 82.5, 82.6, 83.1, 83.2, 84.4, 84.7, 84.8, 84.9 (x2), 85.5, 87.3, 111.7 (x2), 111.8 (x2), 113.4, 119.4, 119.5, 119.6, 127.2, 128.0, 128.1, 130.0, 131.6, 131.7 (x2), 131.8, 135.0, 135.1 (x2), 135.3, 144.1, 150.3, 150.4, 150.5, 150.6 (x2), 150.7, 158.7, 158.8, 163.7 (x2), 163.8, 170.5, 170.6 ppm; 31 P-NMR (162 MHz, CDCl 3 ): δ-2.64, -2.27, 66.7, 66.9 ppm;
21 was obtained in a similar manner.

(ジヌクレオシドホスホロチオエート-3'-ホスホロアミダイトを構成単位に用いるホスホロチオエート/ホスフェート混合型オリゴヌクレオチドの立体選択的合成(固相合成))
固相反応におけるホスホロチオエート/ホスフェート混合型オリゴヌクレオチドの立体選択的合成を行なった(Scheme 14)。構成単位としてジヌクレオシドホスホロチオエート-3'-(S)- ホスホロアミダイト 18 を用いるチミジンホスホロチオエート 15 量体 22 の合成を、固相担体(CPG (Controlled Pore Glass))上、トリフルオロメタンスルホン酸ベンズイミダゾリウム(BIT)を促進剤として用いた結果を示す。鎖長伸長は、Applied Biosystems 社製の Model 392 DNA/RNA Synthesizer 自動固相合成機上、表6 に示す一連の反応操作により行なった。
(Stereoselective synthesis of phosphorothioate / phosphate mixed oligonucleotides using dinucleoside phosphorothioate-3'-phosphoramidite as a building block (solid phase synthesis))
Stereoselective synthesis of phosphorothioate / phosphate mixed oligonucleotides in a solid phase reaction was performed (Scheme 14). Synthesis of thymidine phosphorothioate 15-mer 22 using dinucleoside phosphorothioate-3 '-(S) -phosphoramidite 18 as a building block on a solid support (CPG (Controlled Pore Glass)) benzimidazolium trifluoromethanesulfonate The result using (BIT) as an accelerator is shown. The chain length extension was performed by a series of reaction operations shown in Table 6 on a model 392 DNA / RNA Synthesizer automatic solid phase synthesizer manufactured by Applied Biosystems.

Figure 2006248949
Figure 2006248949

Figure 2006248949
Figure 2006248949

鎖長伸長終了後、脱アリル化(テトラヒドロフラン中、触媒量のトリス(ジベンジリデンアセトン)ジパラジウム・クロロホルム付加体、トリフェニルホスフィンを加え撹拌後、n-ブチルアミンとギ酸を作用させ、50℃で 12 時間撹拌した)の条件にて、リン酸部の保護基を除去した後、濃アンモニア水処理(25℃, 2 時間)を施して、ホスホロチオエート 15 量体 22 を収率 97% (overall)で得た。HPLC で精製することにより Fig. 1. に示すような純度で立体化学的に純粋なホスホロチオエート 15 量体 22 を得た。   After the end of chain extension, deallylation (catalytic amount of tris (dibenzylideneacetone) dipalladium / chloroform adduct and triphenylphosphine in tetrahydrofuran was added, stirred, and then reacted with n-butylamine and formic acid at 50 ° C. After removing the protecting group of the phosphoric acid moiety under the conditions of stirring for a long time, treatment with concentrated aqueous ammonia (25 ° C, 2 hours) gave phosphorothioate 15mer 22 in 97% yield (overall). It was. By purification by HPLC, stereochemically pure phosphorothioate 15-mer 22 with the purity shown in Fig. 1 was obtained.

・詳細な実験方法
固相合成は、AppliedBiosystems社製のModel392DNA/RNASynthesizer自動固相合成機を用いて行なった。試薬は、0.1Mジヌクレオシドホスホロチオエート-3’-ホスホロアミダイト/アセトニトリル溶液、0.1MBIT/アセトニトリル溶液、1.0MTBHP/トルエン溶液、キャッピング剤(無水酢酸/テトラヒドロフラン溶液、N-メチルイミダゾール/テトラヒドロフラン溶液)を用いて、固相担体0.5mmolにて行なった。脱保護は、テトラヒドロフラン中、触媒量のトリス(ジベンジリデンアセトン)ジパラジウム・クロロホルム付加体、トリフェニルホスフィンを加え撹拌後、n-ブチルアミンとギ酸を作用させ、50℃で12時間撹拌した。切り出しは、濃アンモニア水を用いて室温にて2時間で行ない、その後、濃アンモニア水を凍結遠心濃縮にて留去して、チミジンホスホロチオエート15量体22を白色固体として得た。
Detailed Experimental Method Solid phase synthesis was performed using an Applied Biosystems model 392DNA / RNASynthesizer automatic solid phase synthesizer. Use 0.1M dinucleoside phosphorothioate-3'-phosphoramidite / acetonitrile solution, 0.1MBIT / acetonitrile solution, 1.0MTBHP / toluene solution, capping agent (acetic anhydride / tetrahydrofuran solution, N-methylimidazole / tetrahydrofuran solution) Then, the solid phase carrier was 0.5 mmol. Deprotection was carried out by adding a catalytic amount of tris (dibenzylideneacetone) dipalladium / chloroform adduct and triphenylphosphine in tetrahydrofuran, followed by reaction with n-butylamine and formic acid, and stirring at 50 ° C. for 12 hours. The cutting was performed using concentrated aqueous ammonia at room temperature for 2 hours, and then concentrated aqueous ammonia was distilled off by freeze-centrifugation to obtain thymidine phosphorothioate 15-mer 22 as a white solid.

22;HRMS(ESI-):m/z calcd for C150H196N30O96P14S7(M-3H)- 1536.20,found1536.19. 22; HRMS (ESI -): m / z calcd for C 150 H 196 N 30 O 96 P 14 S 7 (M-3H) - 1536.20, found1536.19.

本発明のヌクレオシド誘導体及びヌクレオチド誘導体は生体に対して種々の薬理活性を発揮することが期待される。特に立体構造を制御しているので、特異な薬理活性の発現が期待できる。   The nucleoside derivatives and nucleotide derivatives of the present invention are expected to exhibit various pharmacological activities on living organisms. In particular, since the three-dimensional structure is controlled, expression of a specific pharmacological activity can be expected.

従って、ヌクレオシド誘導体及びヌクレオチド誘導体の製造方法についても、有用な化合物を高い選択性をもって得ることができる方法であるので、新規な薬理活性物質の製造・探索に資するものである。   Therefore, the method for producing nucleoside derivatives and nucleotide derivatives is also a method capable of obtaining useful compounds with high selectivity, and thus contributes to the production and search for novel pharmacologically active substances.

Claims (11)

下記一般式(1)に示すデオキシリボヌクレオシド誘導体と、一般式(2):R1OPXY(R1は一部水素が置換されていても良い炭化水素基である。;X、Yは、Cl、Br、ジアルキル置換アミンである−NRR’(R、R’は一部水素が置換されていても良い炭化水素基からそれぞれ独立して選択される。R及びR’は一緒になって環を形成しても良い。)からそれぞれ独立して選択される。)に示すホスフィン誘導体とを、アゾール、酸アゾール複合体及びカルボン酸から選択される酸化合物の存在下で反応させて、下記一般式(3a)及び/又は(3b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を生成する第1工程と、
前記ヌクレオシド環状亜リン酸トリエステル誘導体に、S化剤又はSe化剤を反応させて下記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を得る第2工程と、を有することを特徴とするヌクレオシド誘導体の製造方法。
Figure 2006248949
(式(1)、(3a)、(3b)、(4a)及び(4b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;R1は前記一般式(2)のR1と同じ基である;ZはO、S又はSeである。)
Deoxyribonucleoside derivative represented by the following general formula (1) and general formula (2): R 1 OPXY (R 1 is a hydrocarbon group which may be partially substituted with hydrogen. X and Y are Cl, Br, a dialkyl-substituted amine —NRR ′ (R and R ′ are each independently selected from a hydrocarbon group which may be partially substituted with hydrogen. R and R ′ together form a ring. And a phosphine derivative represented by the following formula) is reacted in the presence of an acid compound selected from an azole, an acid azole complex and a carboxylic acid. A first step of producing the nucleoside cyclic phosphite triester derivative shown in 3a) and / or (3b);
A second step of obtaining a nucleoside cyclic phosphite triester derivative represented by the following general formula (4a) and / or (4b) by reacting the nucleoside cyclic phosphite triester derivative with a S agent or Se agent: A process for producing a nucleoside derivative characterized by comprising:
Figure 2006248949
(In the formulas (1), (3a), (3b), (4a) and (4b), B is selected from hydrogen, an OH group, a nucleobase or a derivative thereof; R 1 is R in the general formula (2) 1 is the same group as Z; Z is O, S or Se.)
前記第1工程と前記第2工程との間に、前記一般式(3a)及び(3b)で示すヌクレオシド環状亜リン酸トリエステル誘導体の混合物を高温にて所定時間保持し、該一般式(3b)に示すヌクレオシド環状亜リン酸トリエステル誘導体を該一般式(3a)に示すヌクレオシド環状亜リン酸トリエステル誘導体に異性化させる熱平衡異性化工程を有する請求項1に記載のヌクレオシド誘導体の製造方法。   Between the first step and the second step, a mixture of the nucleoside cyclic phosphite triester derivative represented by the general formulas (3a) and (3b) is maintained at a high temperature for a predetermined time, and the general formula (3b The method for producing a nucleoside derivative according to claim 1, further comprising a thermal equilibrium isomerization step of isomerizing the nucleoside cyclic phosphite triester derivative represented by formula (3) into the nucleoside cyclic phosphite triester derivative represented by formula (3a). 前記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体に、R2OH溶液中(R2は一部水素が置換されていても良い炭化水素基であって、前記R1とは異なる基である。)でR2OHのアルコラートを反応させて、下記一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を得る工程を有する請求項1又は2に記載のヌクレオシド誘導体の製造方法。
Figure 2006248949
(式(5a)及び(5b)中、Bは前記一般式(1)にて説明したBと同じ基であり;R1は前記一般式(2)にて説明したR1と同じ基である。;R2は一部水素が置換されていても良い炭化水素基であって、R1とは異なる基である。;式(5a)中のZは前記一般式(4a)のZと同じ基であり;式(5b)中のZは前記一般式(4b)のZと同じ基である。)
In the nucleoside cyclic phosphite triester derivative represented by the general formula (4a) and / or (4b), in an R 2 OH solution (R 2 is a hydrocarbon group which may be partially substituted with hydrogen, The nucleoside derivative represented by the following general formula (5a) and / or (5b) is obtained by reacting an alcoholate of R 2 OH with a group different from R 1 . A method for producing a nucleoside derivative.
Figure 2006248949
(In the formulas (5a) and (5b), B is the same group as B explained in the general formula (1); R 1 is the same group as R 1 explained in the general formula (2). R 2 is a hydrocarbon group which may be partially substituted with hydrogen and is a group different from R 1 ; Z in the formula (5a) is the same as Z in the general formula (4a) Z in formula (5b) is the same group as Z in formula (4b).)
不斉リン原子に由来する立体配置が制御された下記一般式(5)に示すヌクレオシド誘導体に、脱R1剤又は脱R2剤を反応させて不斉リン原子に由来する立体配置が制御された下記一般式(6)又は(7)に示すヌクレオシド誘導体を得ることを特徴とするヌクレオシド誘導体の製造方法。
Figure 2006248949
(式(5)〜(7)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはO、S又はSeであり;R1及びR2は互いに異なる一部水素が置換されていても良い炭化水素基から選択される;QはOH基の保護基である。)
A nucleoside derivative represented by the following general formula configuration is controlled (5) derived from the asymmetric phosphorus atom, configuration derived from the asymmetric phosphorus atom by reacting the de-R 1, or de-R 2 agent is controlled A method for producing a nucleoside derivative, comprising obtaining a nucleoside derivative represented by the following general formula (6) or (7):
Figure 2006248949
(In the formulas (5) to (7), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is O, S or Se; R 1 and R 2 are partially substituted with different hydrogens. Selected from hydrocarbon groups which may be substituted; Q is a protecting group for the OH group.)
前記一般式(5)〜(6)におけるR1及びR2は、メチル基、アリル基及びシアノエチル基から選択され、
脱メチル剤としてはモノアルキルアミン、脱アリル剤としては0価パラジウム又はNaI、脱シアノエチル剤としてはトリアルキルアミン、アンモニア又はジアザビシクロウンデセン、から選択される請求項4に記載のヌクレオシド誘導体の製造方法。
R 1 and R 2 in the general formulas (5) to (6) are selected from a methyl group, an allyl group, and a cyanoethyl group,
The nucleoside derivative according to claim 4, wherein the demethylating agent is a monoalkylamine, the deallylating agent is zero-valent palladium or NaI, and the decyanoethylating agent is a trialkylamine, ammonia or diazabicycloundecene. Production method.
不斉リン原子に由来する立体配置が制御された下記一般式(8)に示すヌクレオシド誘導体に、下記一般式(9)に示すヌクレオシド誘導体を反応させ、下記一般式(10)に示すヌクレオチド誘導体を合成する工程を有することを特徴とするヌクレオチド誘導体の製造方法。
Figure 2006248949
(式(8)、(9)及び(10)中、B1及びB2は核酸塩基又はその誘導体から独立して選択され;ZはO、S又はSeである;R1は一部水素が置換されていても良い炭化水素基から選択される。QはOH基の保護基であり独立して選択できる。)
The nucleoside derivative represented by the following general formula (8) in which the configuration derived from the asymmetric phosphorus atom is controlled is reacted with the nucleoside derivative represented by the following general formula (9) to obtain a nucleotide derivative represented by the following general formula (10). A method for producing a nucleotide derivative, comprising a step of synthesizing.
Figure 2006248949
(In formulas (8), (9) and (10), B 1 and B 2 are independently selected from nucleobases or derivatives thereof; Z is O, S or Se; R 1 is partially hydrogenated. (Selected from an optionally substituted hydrocarbon group, Q is a protecting group for the OH group and can be independently selected.)
請求項3に記載の製造方法により、前記一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を製造する工程と、
前記一般式(5)に示すヌクレオシド誘導体として該一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体を用いて、請求項4又は5に記載の製造方法により、前記一般式(6)及び/又は(7)に示すヌクレオシド誘導体を製造する工程と、
前記一般式(8)に示すヌクレオシド誘導体として該該一般式(6)及び/又は(7)に示すヌクレオシド誘導体を用いて、請求項6に記載の製造方法により、前記一般式(10)に示すヌクレオチド誘導体を製造する工程と、
を繰り返して立体配置を制御したヌクレオチド誘導体を合成する工程と、
該ヌクレオチド誘導体合成工程で合成された該一般式(10)に示すヌクレオチド誘導体に対し、ホスホロアミダイト誘導体を反応させて、該一般式(10)に示すヌクレオチド誘導体及び該ホスホロアミダイト誘導体の間を縮合させてアミダイト化ヌクレオチド誘導体を生成する工程と、
ヌクレオシド、ヌクレオシド誘導体(前記一般式(1)、(2)、(3a)、(3b)、(4a)、(4b)、(5)、(5a)、(5b)、(6)、(7)、(8)及び(9)のいずれかに記載の化合物)又は該ヌクレオチド誘導体合成工程にて合成されたヌクレオチド誘導体を、前記アミダイト化ヌクレオチド誘導体に反応させるヌクレオチド誘導体付加工程と、
を繰り返して必要な長さのヌクレオチド誘導体を得るヌクレオチド誘導体伸長工程と、
を有するヌクレオチド誘導体の製造方法。
A step of producing a nucleoside derivative represented by the general formula (5a) and / or (5b) by the production method according to claim 3;
Using the nucleoside derivative represented by the general formula (5a) and / or (5b) as the nucleoside derivative represented by the general formula (5), the production method according to claim 4 or 5, wherein the general formula (6) and / Or the step of producing the nucleoside derivative shown in (7),
Using the nucleoside derivative represented by the general formula (6) and / or (7) as the nucleoside derivative represented by the general formula (8), the production method according to claim 6 shows the formula (10). Producing a nucleotide derivative;
A step of synthesizing a nucleotide derivative with controlled steric configuration,
The nucleotide derivative represented by the general formula (10) synthesized in the nucleotide derivative synthesizing step is reacted with a phosphoramidite derivative so that the gap between the nucleotide derivative represented by the general formula (10) and the phosphoramidite derivative is obtained. Condensing to produce an amidated nucleotide derivative;
Nucleosides, nucleoside derivatives (general formulas (1), (2), (3a), (3b), (4a), (4b), (5), (5a), (5b), (6), (7 ), A compound according to any one of (8) and (9)) or a nucleotide derivative addition step in which the nucleotide derivative synthesized in the nucleotide derivative synthesis step is reacted with the amidated nucleotide derivative;
A nucleotide derivative extending step to obtain a nucleotide derivative of a necessary length by repeating
A method for producing a nucleotide derivative having
下記一般式(4a)及び/又は(4b)に示すヌクレオシド環状亜リン酸トリエステル誘導体であるヌクレオシド誘導体。
Figure 2006248949
(式(4a)及び(4b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeである。)
A nucleoside derivative which is a nucleoside cyclic phosphite triester derivative represented by the following general formula (4a) and / or (4b).
Figure 2006248949
(In formulas (4a) and (4b), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is S or Se.)
下記一般式(5a)及び/又は(5b)に示すヌクレオシド誘導体。
Figure 2006248949
(式(5a)及び(5b)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeであり;R1及びR2は互いに異なる一部水素が置換されていても良い炭化水素基から選択される。)
A nucleoside derivative represented by the following general formula (5a) and / or (5b).
Figure 2006248949
(In the formulas (5a) and (5b), B is selected from hydrogen, OH group, nucleobase or derivative thereof; Z is S or Se; R 1 and R 2 are partially substituted with different hydrogens. Selected from hydrocarbon groups that may be present.)
不斉リン原子に由来する立体配置が制御された下記一般式(11)に示すヌクレオシド誘導体。
Figure 2006248949
(式(11)中、Bは水素、OH基、核酸塩基又はその誘導体から選択され;ZはS又はSeであり;R1は互いに異なる一部水素が置換されていても良い炭化水素基から選択される;QはOH基の保護基である。)
A nucleoside derivative represented by the following general formula (11) in which the configuration derived from an asymmetric phosphorus atom is controlled.
Figure 2006248949
(In the formula (11), B is selected from hydrogen, OH group, nucleobase or derivatives thereof; Z is S or Se; R 1 is a hydrocarbon group which may be partially substituted with different hydrogens. Q is a protecting group for the OH group.)
不斉リン原子に由来する立体配置が制御された下記一般式(10)に示すヌクレオチド誘導体。
Figure 2006248949
(式(10)中、B1及びB2は核酸塩基又はその誘導体から独立して選択され;ZはS又はSeである;R1は一部水素が置換されていても良い炭化水素基から選択される。QはOH基の保護基であり独立して選択できる。)
A nucleotide derivative represented by the following general formula (10) in which the configuration derived from an asymmetric phosphorus atom is controlled.
Figure 2006248949
(In formula (10), B 1 and B 2 are independently selected from nucleobases or derivatives thereof; Z is S or Se; R 1 is a hydrocarbon group that may be partially substituted with hydrogen. Q is a protecting group for the OH group and can be independently selected.)
JP2005066320A 2005-03-09 2005-03-09 Nucleoside derivative, nucleotide derivative and manufacturing method thereof Pending JP2006248949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066320A JP2006248949A (en) 2005-03-09 2005-03-09 Nucleoside derivative, nucleotide derivative and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066320A JP2006248949A (en) 2005-03-09 2005-03-09 Nucleoside derivative, nucleotide derivative and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006248949A true JP2006248949A (en) 2006-09-21

Family

ID=37089814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066320A Pending JP2006248949A (en) 2005-03-09 2005-03-09 Nucleoside derivative, nucleotide derivative and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006248949A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772474B2 (en) 2010-12-22 2014-07-08 Alios Biopharma, Inc. Cyclic nucleotide analogs
US8871737B2 (en) 2010-09-22 2014-10-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US9012427B2 (en) 2012-03-22 2015-04-21 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog
US9073960B2 (en) 2011-12-22 2015-07-07 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
JP2019069971A (en) * 2012-07-13 2019-05-09 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. Chiral control
WO2019200273A1 (en) * 2018-04-13 2019-10-17 Bristol-Myers Squibb Company Novel phosphorous (v)-based reagents, processes for the preparation thereof, and their use in making stereo-defined organophoshorous (v) compounds
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
JP2021521140A (en) * 2018-04-12 2021-08-26 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. Oligonucleotide composition and its usage
JP2022065127A (en) * 2018-05-02 2022-04-26 株式会社ナティアス Segment for oligonucleotide synthesis, production method for the same, and oligonucleotide synthesis method using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278990B2 (en) 2010-09-22 2016-03-08 Alios Biopharma, Inc. Substituted nucleotide analogs
US8871737B2 (en) 2010-09-22 2014-10-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US8772474B2 (en) 2010-12-22 2014-07-08 Alios Biopharma, Inc. Cyclic nucleotide analogs
US9365605B2 (en) 2010-12-22 2016-06-14 Alios Biopharma, Inc. Cyclic nucleotide analogs
US11021509B2 (en) 2011-12-22 2021-06-01 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9605018B2 (en) 2011-12-22 2017-03-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US9073960B2 (en) 2011-12-22 2015-07-07 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US10464965B2 (en) 2011-12-22 2019-11-05 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US10485815B2 (en) 2012-03-21 2019-11-26 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9856284B2 (en) 2012-03-21 2018-01-02 Alios Biopharma, Inc. Solid forms of a thiophosphoramidate nucleotide prodrug
US9394330B2 (en) 2012-03-21 2016-07-19 Alios Biopharma, Inc. Solid forms of a thiophosphoramidate nucleotide prodrug
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
US9012427B2 (en) 2012-03-22 2015-04-21 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog
JP2019069971A (en) * 2012-07-13 2019-05-09 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. Chiral control
US11643657B2 (en) 2012-07-13 2023-05-09 Wave Life Sciences Ltd. Chiral control
JP7004637B2 (en) 2012-07-13 2022-02-04 ウェイブ ライフ サイエンシズ リミテッド Chiral control
JP2021521140A (en) * 2018-04-12 2021-08-26 ウェイブ ライフ サイエンシズ リミテッドWave Life Sciences Ltd. Oligonucleotide composition and its usage
CN112236438A (en) * 2018-04-13 2021-01-15 百时美施贵宝公司 Novel phosphorus (V) -based reagents, method for the production thereof, and use thereof for producing sterically defined organic phosphorus (V) compounds
US11613554B2 (en) 2018-04-13 2023-03-28 Bristol-Myers Squibb Company Phosphorous (V)-based reagents, processes for the preparation thereof, and their use in making stereo-defined organophoshorous (V) compounds
WO2019200273A1 (en) * 2018-04-13 2019-10-17 Bristol-Myers Squibb Company Novel phosphorous (v)-based reagents, processes for the preparation thereof, and their use in making stereo-defined organophoshorous (v) compounds
JP7434171B2 (en) 2018-04-13 2024-02-20 ブリストル-マイヤーズ スクイブ カンパニー Novel phosphorus(V)-based reagents, methods for their production, and use in the production of stereoselective organophosphate(V) compounds
JP2022065127A (en) * 2018-05-02 2022-04-26 株式会社ナティアス Segment for oligonucleotide synthesis, production method for the same, and oligonucleotide synthesis method using the same

Similar Documents

Publication Publication Date Title
JP2006248949A (en) Nucleoside derivative, nucleotide derivative and manufacturing method thereof
JP3207915B2 (en) Methods and compounds for solid-phase synthesis of oligonucleotides and oligonucleotide analogs
JPH0411555B2 (en)
PT98931B (en) PROCESS FOR THE CONNECTION OF NUCLEOSIDES WITH A SILOXAN BRIDGE
KR102531388B1 (en) Alkoxy phenyl derivatives, nucleoside protectors and nucleotide protectors, methods for preparing oligonucleotides, and methods for removing substituents
KR20180101370A (en) Selective Synthesis of Diastereomers of Phosphate Derivatives and Gemcitabine Prodrug NUC-1031
EA003091B1 (en) Solution phase synthesis of oligonucleotides
WO1988004301A1 (en) alpha OLIGONUCLEOTIDES
CZ20022930A3 (en) Process for preparing phosphonothioate triesters
DE60109047T2 (en) SYNTHONE FOR THE MANUFACTURE OF OLIGONUCLEOTIDES
US20040033967A1 (en) Alkylated hexitol nucleoside analogues and oligomers thereof
AU2018332214B2 (en) Modified nucleoside phosphoramidites
WO2021153047A1 (en) Method for producing nucleic acid oligomer
WO2006095739A1 (en) Process for deblocking the 2&#39;-hydroxyl groups of ribonucleosides
JP3985103B2 (en) Novel complex and method for synthesizing oligonucleotide
WO2024024672A1 (en) Linker and solid phase carrier for nucleic acid synthesis
US6486313B1 (en) Oligonucleotides having alkylphosphonate linkages and methods for their preparation
JP7296636B2 (en) Alkoxyphenyl derivative, protected nucleoside and protected nucleotide, method for producing oligonucleotide, and method for removing substituent
JP7452549B2 (en) Phosphoramidite activator
WO2022191172A1 (en) Linker and carrier for nucleic acid solid phase synthesis
JP2009256335A (en) Preparation method of ribonucleic acid having alkyl protective group at position 2&#39;
JP2002501929A (en) Novel synthons for oligonucleotide synthesis
JP2004168684A (en) New phosphoramidite compound permitting short-step synthesis of nucleic acid
JPH06135988A (en) Nucleotide derivative
KR20240005930A (en) Chimeric nucleic acid oligomer containing phosphorothioate and boranophosphate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823