WO2006095739A1 - Process for deblocking the 2'-hydroxyl groups of ribonucleosides - Google Patents

Process for deblocking the 2'-hydroxyl groups of ribonucleosides Download PDF

Info

Publication number
WO2006095739A1
WO2006095739A1 PCT/JP2006/304399 JP2006304399W WO2006095739A1 WO 2006095739 A1 WO2006095739 A1 WO 2006095739A1 JP 2006304399 W JP2006304399 W JP 2006304399W WO 2006095739 A1 WO2006095739 A1 WO 2006095739A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydroxyl group
rna
hydroxyl
ribonucleoside
Prior art date
Application number
PCT/JP2006/304399
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Sekine
Hisao Saneyoshi
Kohji Seio
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Publication of WO2006095739A1 publication Critical patent/WO2006095739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for deprotecting the 2 ′ hydroxyl group of a ribonucleoside protected with a cyanoethyl group.
  • RNA is useful as a functional nucleic acid such as ribozyme, aptamer, siRNA, antisense nucleic acid, and nucleic acid pharmaceutical material (Nechiya Review Drug Discovery No. 3 318 2004).
  • ribozyme aptamer
  • siRNA siRNA
  • antisense nucleic acid and nucleic acid pharmaceutical material
  • RNA synthesis method currently in widespread use uses a quaternary butyldimethylsilyl group (TBDMS group) as a protecting group for the 2 'hydroxyl group (Journal of American Chemical Society, Reference No. 99, 7741 1977). .
  • TBDMS group quaternary butyldimethylsilyl group
  • this protecting group does not have sufficient chemical stability.
  • the TBDMS group is a bulky protecting group
  • the reaction that forms an internucleotide bond between the adjacent 3 'hydroxyl group and the 5' hydroxyl group of other nucleoside residues via a phosphorus atom is steric. And has problems such as a decrease in the yield of the internucleotide binding reaction and an increase in the required reaction time (Journal of American Chemical Society, Cited Reference No. 109, 7845 1987).
  • Non-patent Document 1 a 2'-O cyanoethyl nucleoside in which a cyanoethyl group is introduced into the 2 'hydroxyl group of a ribonucleoside.
  • Non-Patent Document 1 Nucleic Acid Research Symposium Series 48, 13-14 pages 2004
  • RNA synthesis using phosphoramidite method 5 Stable to the chemical reaction used in each process. 5) At the final stage of RNA synthesis, the base part, sugar part, phosphodiester part, etc. of the synthesized RNA are removed without significant damage. Conditions such as being able to be protected are required.
  • An object of the present invention is to provide a means for removing a cyanoethyl group from a 2 ′ O cyanonucleoside without greatly damaging the base part, sugar part, phosphodiester part and the like of RNA.
  • RNA containing 2'-O cyanoyl nucleoside As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that tetra (n-butyl) ammonium full-fluid is required for deprotection of RNA containing 2'-O cyanoyl nucleoside. It has been found that deprotection without damaging the base portion, sugar portion, etc. of RNA can be achieved by using an olido and the present invention has been completed.
  • the present invention provides the following (1) to (4).
  • X represents a hydrogen atom or a hydroxyl-protecting group
  • Y represents a hydrogen atom, a hydroxyl-protecting group, or a general formula (III):
  • R represents the same or different alkyl group, or a group in which R 1 and R are bonded to each other to form a ring which may contain a hetero atom
  • R 3 represents a protecting group for a phosphate group.
  • B represents a nucleobase residue.
  • a ribonucleoside derivative protected with a 2 ′ hydroxyl group or an RNA derivative containing this ribonucleoside derivative as a constituent unit is reacted with a fluorine-containing compound or a basic compound to give a general formula (II):
  • RNA containing the ribonucleoside as a structural unit Or a RNA containing the ribonucleoside as a structural unit. 2) A method for deprotecting a hydroxyl group.
  • RNA having a hydroxyl group protected with a cyanoethyl group that does not damage the base part, sugar part, phosphodiester part, etc. of RNA can be deprotected. This enables efficient RNA synthesis.
  • FIG. 1 is a diagram showing reverse phase HPLC profiles of 2′-O-cyanethylated uridylate dimer (A), uridylate dimer (B), and uridin (C).
  • FIG. 2 is a graph showing the relationship between the protecting group of the 2′-hydroxyl group of phosphoramidite and the phosphate ester formation reaction rate.
  • FIG. 4 is a diagram showing the ion exchange HPLC profile of purified RNA oligomer (GACUGACUGACU).
  • FIG. 5 is a diagram showing an ion exchange HPLC profile of a purified RNA oligomer (uridine 30-mer).
  • a ribonucleoside derivative protected with a 2 ′ hydroxyl group or an RNA derivative containing this ribonucleoside derivative as a constituent unit is reacted with a fluorine-containing compound or a basic compound to give a general formula (II):
  • RNA containing this ribonucleoside as a structural unit Or a RNA containing this ribonucleoside as a structural unit.
  • X in the general formulas (I) and (II) represents a hydrogen atom or a protecting group for a hydroxyl group.
  • a general protecting group used for protecting the 5′-hydroxyl group or the 3′-hydroxyl group of the nucleoside can be used.
  • a silyl group which may have a substituent for example, tert-butyl diphenyl). -Rusilyl group
  • 4-methoxytrityl group 4,4'-dimethoxytrityl group and the like
  • X may be combined with Y to form a protecting group. Examples of such protecting groups include 1, 1, 3, 3-tetraisopropyldisiloxa-lide. And cyclic silyl groups such as di (t-butyl) silane diyl.
  • Y in the general formulas (I) and (II) represents a hydrogen atom, a hydroxyl-protecting group, or the general formula (III): [0026] [Chemical Formula 6] D 2
  • R 2 represents the same or different alkyl group, or a group in which R 1 and R 2 are bonded to each other to form a ring which may contain a hetero atom
  • R 3 represents a protecting group for a phosphate group.
  • R 2 includes an isopropyl group
  • R 3 includes, but is not limited to, a 2-cyanoethyl group.
  • nucleobase refers to all nucleobases found in naturally occurring nucleic acids such as chromosomal DNA, plasmid DNA, messenger RNA, ribosomal RNA, transfer RNA, and small nuclear RNA of organisms. And all heteroaromatic rings optionally having substituents that can be used for nucleic acid synthesis.
  • Representative nucleobases include, but are not limited to, adenine, guanine, cytosine, uracil, thymine and the like. Nucleobases also include those having a protecting group.
  • RNA derivative containing a ribonucleoside derivative with a protected 2 'hydroxyl group represented by general formula (I) as a constituent unit is a formula obtained by removing X and Y in general formula (I). It means that the residue of the represented nucleoside derivative is contained in the RNA derivative.
  • RNA containing a ribonucleoside represented by the general formula (II) as a structural unit has the same meaning.
  • the fluorine-containing compound is not particularly limited as long as it can remove the cyanoethyl group.
  • Tetramethylammonium fluoride, tetraethylammonium fluoride, tetra (n-butyl) ammonium- Examples include tetraalkyl ammonium fluoride such as um fluoride. Tetraalkyl ammonium fluoride contains tetra (n —Butyl) ammonium fluoride (TBAF) is particularly preferred.
  • the amount of the fluorine-containing compound used in the reaction is not particularly limited.
  • the basic compound is not particularly limited as long as the cyanoethyl group can be eliminated, and examples thereof include ammonia, primary amine, secondary amine, tertiary amine, amidine compound, and the like. . Of these compounds, ammonia is preferred.
  • the amount of the basic compound used in the reaction is also not particularly limited.
  • amount of the basic compound used in the reaction is also not particularly limited.
  • ammonia about 1 to 3000 moles with respect to 1 mole of the ribonucleoside derivative represented by the general formula (I), etc. It is preferred to use.
  • the above reaction is performed in an organic solvent which may contain an aqueous solvent.
  • the volume ratio of the organic solvent and the aqueous solvent is not particularly limited, but is preferably 0: 100 to 100: 0.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction, and a mixed organic solvent obtained by mixing a plurality of organic solvents that do not inhibit the reaction at an arbitrary volume ratio may be used.
  • As the aqueous solvent not only water but also any buffer solution can be used, and a mixed buffer solution in which a plurality of buffer solutions are mixed at an arbitrary concentration may be used.
  • the reaction temperature is not particularly limited, but is preferably in the range of -78 ° C to 100 ° C.
  • a method for synthesizing 2'-O-cyanoethyl nucleoside by introducing a cyanoethyl group into the 2 'hydroxyl group of ribonucleoside is, for example, Nucleic Acid Research Symposium Series No. 48, pages 13-14. 2004 It is described in!
  • the lyophilized 2,1 O-cyanethylated uridylic acid dimer (0.5 micromolar) was placed in a tetrahydrofuran solution of TBAF (1M, 2001) and dissolved by vortexing. After standing at room temperature for 24 hours, it was diluted with 0.1 M ammonium acetate buffer (3 ml) and the organic solvent was distilled off under reduced pressure. The residue of the reagent was removed from the obtained residue using OASIS MCX Cartridge. The deprotected uridylate dimer is analyzed by reverse phase HPLC and the Thereafter, phosphodiesterase 1 (0.1 U) and alkaline phosphatase (1 U) were added and subjected to enzymatic degradation at 37 ° C. for 24 hours to obtain uridine.
  • FIG. 1B shows a reverse-phase HPLC profile of the uridylate dimer.
  • Figures 1A and 1C also show the reversed-phase HPLC profiles of 2, -O-cyanoethylated uridylate dimer and uridine, respectively.
  • CE 2'-cyanoethyl
  • TOM 2'-triylopyl bilyl silyl
  • TDMS 2, -t-butyldimethylsilyl
  • the DNA / RNA synthesizer 392 from Applied Bio System Inc. was used as an automatic nucleic acid synthesizer.
  • 1 (2-Cyanethyl N, N-diisopropyl phosphoramidite) solution of anhydrous acetonitrile with 0.1M Installed on the above automatic synthesizer and purchased from Glen Reserch In.
  • the target RNA strand was extended to a CPG solid phase carrier to which a lysine residue was bound.
  • an activation reagent for phosphoramidite As an activation reagent for phosphoramidite, a 0.25 M 5 benzylthio 1H-tetrazole in water-free nitronitrile solution was used, except that the condensation time was changed to 10 minutes. Synthesis was performed according to (tritylon). After completion of the synthesis, the solid support was immersed in a large excess of concentrated ammonium acetate (10: 1, wZw) and left for 1 hour. By passing the solution through a C18-cartridge column to remove by-products, the 2% trifluoroacetic acid aqueous solution was used to remove the cage dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile.
  • DNA / RNA synthesizer 392 is used as an automated nucleic acid synthesizer. I used it. 2, 1 O cyanoethinole 5, -0- (4,4, -dimethoxytritinore) uridine 3, 1 (2 cyanoethyl N, N-diisopropyl phosphoramidite), 4-N-acetyl-2, 1 O cyano etinore 5, 1 O— (4,4, -dimethoxytritinole) cytidine 3, 1 (2 cyanoethyl N, N diisopropyl phosphoramidite) 2, 2, 1 O cyanoethyl 1,5, -0- (4,4′-dimethoxytrityl) 6— N— (N, N dimethylaminomethylene) adenosine 3, 1 (2 cyanoethinole N, N diisopropinorephosphoramidite), 2, 1 O— cyanoethyl-5, -
  • Benzylthio-1H-tetrazole anhydrous acetononitrile solution was used as the phosphoramidite activating reagent, and the condensation time was changed to 10 minutes. Synthesis was performed according to the RNA synthesis protocol (tritylone). After the synthesis, the solid support was immersed in a large excess of concentrated ammonium acetate (10: 1, wZw) and left for 2 hours. The solution was passed through a C18-cartridge column to remove by-products, and then the 2% trifluoroacetic acid aqueous solution was used to remove the dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile.
  • the resulting solution was lyophilized to dryness, and 1M tetraptylammonium-fluoride Ztetrahydrofuran-propylamine (20: 1, vZv) was added to the mixture at 630 i u L and left at room temperature for 12 hours. The cyanoethyl group was removed. To the solution was added 0.1 M aqueous ammonium acetate solution and concentrated under reduced pressure. Dissolve the residue in distilled water and pass it through an OASIA MCX cartridge column and then through an H LB cartridge column.
  • DNA / RNA synthesizer 392 is used as an automated nucleic acid synthesizer. I used it. 2, 1 O Shianoethinole 5, -0- (4,4, -dimethoxytritinore) uridine 3, 1 (2-cyanethinole N, N-diisopropyl phosphoramidite) uridine residue purchased from Glen Reserch Inc. The target RNA strand was extended to the CPG solid phase carrier to which was bound.
  • RNA synthesis protocol tritylon set in advance in the above automatic synthesizer, except that it was extended to 30 seconds. After the synthesis, the solid support was immersed in a large excess of concentrated ammonia / ammonium acetate (10: 1, w / w) and left for 1 hour.
  • the 2% trifluoroacetic acid aqueous solution was used to remove the cage dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile.
  • the resulting solution was lyophilized to dryness, and 3 mL of 1M tetraptylammonium-fluoride Ztetrahydrofuran propylamine (20: 1, ⁇ ⁇ ) was added to it and allowed to stand at room temperature for 12 hours. The group was removed.
  • To the solution was added 0.1 M aqueous ammonium acetate solution, and the mixture was concentrated under reduced pressure. Dissolve the residue in distilled water and pass it through an OASIA MCX cartridge column and then through an HLB cartridge column. The concentration gradient was loaded at a rate of 1% for 1 minute). The isolation yield was 15%.

Abstract

A process for deblocking the 2'-hydroxyl groups of ribonucleosides, characterized by reacting a ribonucleoside derivative represented by the general formula (I) wherein the 2'-hydroxyl group is blocked: [Chemical formula 1] (I) [wherein X is hydrogen or the like; Y is hydrogen or the like; and B is a nucleic acid base residue] with a fluorine-containing compound or a basic compound to convert the derivative into a ribonucleoside represented by the general formula (II) or the like: [Chemical formula 2] (II) [wherein X, Y and B are each as defined above].

Description

明 細 書  Specification
リボヌクレオシドの 2,水酸基の脱保護方法  Method for deprotection of ribonucleoside 2, hydroxyl group
技術分野  Technical field
[0001] 本発明は、シァノエチル基で保護されたリボヌクレオシドの 2'水酸基を脱保護する 方法に関する。  The present invention relates to a method for deprotecting the 2 ′ hydroxyl group of a ribonucleoside protected with a cyanoethyl group.
背景技術  Background art
[0002] 化学的に合成した RNAはリボザィム、ァプタマ一、 siRNA、アンチセンス核酸など の機能性核酸および核酸医薬素材として有用である (ネーチヤ一 レビュー ドラッグ ディスカバリー 3号 318 2004)。 RNAを化学合成するにはその合成工程にお いて、 2'水酸基の適切な保護と合成終了後の脱保護が重要である。  [0002] Chemically synthesized RNA is useful as a functional nucleic acid such as ribozyme, aptamer, siRNA, antisense nucleic acid, and nucleic acid pharmaceutical material (Nechiya Review Drug Discovery No. 3 318 2004). To chemically synthesize RNA, appropriate protection of the 2 'hydroxyl group and deprotection after completion of synthesis are important in the synthesis process.
[0003] 現在汎用されて!ヽる RNA合成法では 2'水酸基の保護基として四級ブチルジメチ ルシリル基 (TBDMS基)が用いられている(ジャーナル ォブ アメリカン ケミカル ソサエティ一 引用文献 99号 7741 1977)。しかし、この保護基はその化学的安 定性が十分ではなぐ 2'水酸基に TBDMS基を導入後、 3'水酸基を遊離の状態に すると、 TBDMS基が 2,位から 3,位へと転位し、 2'— TBDMSヌクレオシドと 3,一 T BDMSヌクレオシドの混合物となることが知られている (ヌクレイックァシッズリサーチ 18号 5433 1990)。また TBDMS基は嵩高い保護基であるため、隣接する 3'水 酸基と、他のヌクレオシド残基の 5 '水酸基との間にリン原子を介してインターヌクレオ チド結合を形成する反応を立体的に阻害し、インターヌクレオチド結合反応の収率低 下や必要反応時間の増大などの問題を有する(ジャーナル ォブ アメリカン ケミカ ル ソサエティ一 引用文献 109号 7845 1987)。  [0003] The RNA synthesis method currently in widespread use uses a quaternary butyldimethylsilyl group (TBDMS group) as a protecting group for the 2 'hydroxyl group (Journal of American Chemical Society, Reference No. 99, 7741 1977). . However, this protecting group does not have sufficient chemical stability. After introducing the TBDMS group into the 2 'hydroxyl group, if the 3' hydroxyl group is released, the TBDMS group is transferred from the 2-position to the 3-position, It is known to be a mixture of 2'- TBDMS nucleosides and 3,1 T BDMS nucleosides (Nucleic Acids Research No. 18 5433 1990). In addition, since the TBDMS group is a bulky protecting group, the reaction that forms an internucleotide bond between the adjacent 3 'hydroxyl group and the 5' hydroxyl group of other nucleoside residues via a phosphorus atom is steric. And has problems such as a decrease in the yield of the internucleotide binding reaction and an increase in the required reaction time (Journal of American Chemical Society, Cited Reference No. 109, 7845 1987).
[0004] 一方、これらの問題点を克服しうる保護基としてトリイソプロビルシリルォキシメチル 基 (ヘルべチカ 84号 3773 2001)が報告されている。この保護基は上述する TB DMS基の転位の問題や、立体障害の問題を克服しているとされているが、保護基を 2 '水酸基に選択的に導入する手法が開発されて!、な 、ため、 2 '保護ヌクレオシドを 合成する段階で、副生する 3'保護ヌクレオシドを煩雑なカラムクロマトグラフィーによ り分離する必要がある。また、アルキルスズィ匕合物を用いて保護基を導入するため毒 性のほか残留金属への懸念が予想される。 [0004] On the other hand, a triisopropyl silyloxymethyl group (Helvetica 84 No. 3773 2001) has been reported as a protecting group that can overcome these problems. Although this protecting group is said to overcome the above-mentioned TB DMS group rearrangement problem and steric hindrance problem, a method for selectively introducing the protecting group into the 2 ′ hydroxyl group has been developed! Therefore, at the stage of synthesizing the 2′-protected nucleoside, the 3′-protected nucleoside produced as a by-product must be separated by complicated column chromatography. In addition, the introduction of protecting groups using alkyl tin compounds is toxic. Concerns about residual metals in addition to the properties are expected.
[0005] また、 TBDMS基の開発以降に開発された保護基として、ビス(2 ァセトキシエト キシ)メチル基(ジャーナル ォブ アメリカン ケミカル ソサエティ一 120号 1182 0 1998)、 1— (2 シァノエトキシ)ェチル基(テトラへドロンレタース 45号 9529 2004)が報告されているが、いずれも 2'水酸基に直結する炭素原子上にふたつの 置換基を有する構造であるため立体障害が高いと予想される、また保護基導入試薬 を別途合成する必要があり、合成工程が多い点が最大の問題である。  [0005] In addition, as a protecting group developed after the development of the TBDMS group, bis (2cetoxyethoxy) methyl group (Journal of American Chemical Society No. 120 1182 0 1998), 1- (2 cyanoethoxy) ethyl group ( Tetrahedron Letters 45 No. 9529 2004) have been reported, but both have a structure with two substituents on the carbon atom directly connected to the 2 ′ hydroxyl group, and are expected to have high steric hindrance. It is necessary to synthesize reagents separately, and the biggest problem is that there are many synthesis steps.
[0006] ところで、本発明者らは、以前、リボヌクレオシドの 2'水酸基にシァノエチル基を導 入した 2'— O シァノエチルヌクレオシドについて報告を行っている(非特許文献 1)  [0006] Meanwhile, the present inventors have previously reported a 2'-O cyanoethyl nucleoside in which a cyanoethyl group is introduced into the 2 'hydroxyl group of a ribonucleoside (Non-patent Document 1).
[0007] 非特許文献 1 :ヌクレイック アシッド リサーチ シンポジウム シリーズ 48号、 13— 14ページ 2004年 [0007] Non-Patent Document 1: Nucleic Acid Research Symposium Series 48, 13-14 pages 2004
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] RNA合成の際のリボヌクレオシドの 2'水酸基の保護基としては、 1)安価な原料を 用いて導入可能であること、 2)適当に保護したヌクレオシドを用いて 2'水酸基に選 択的に導入可能であること、 3)立体障害が少なくなるよう 2'水酸基に直結する炭素 上に置換基をひとつしか有しないこと、 4)ホスホロアミダイト法を用いた RNAィ匕学合 成の各工程で用いられる化学反応に対して安定であること、 5)RNAィヒ学合成の最 終段階で、合成した RNAの塩基部、糖部、リン酸ジエステル部などを大きく損傷する ことなく脱保護可能であることなどの条件が求められる。以前報告した 2'— O シァ ノエチルヌクレオシドのシァノエチル基は、上記 1)〜4)の条件を満たしている力 5) の条件を満たす脱保護方法が確立されていなカゝつた。本発明の目的は、 RNAの塩 基部、糖部、リン酸ジエステル部などを大きく損傷することなぐ 2' O シァノエチ ルヌクレオシドからシァノエチル基を除去する手段を提供することにある。 [0008] As a protecting group for the 2 'hydroxyl group of ribonucleoside during RNA synthesis, 1) it can be introduced using an inexpensive raw material, and 2) it is selected as a 2' hydroxyl group using an appropriately protected nucleoside. 3) Having only one substituent on the carbon directly linked to the 2 'hydroxyl group to reduce steric hindrance, 4) RNA synthesis using phosphoramidite method 5) Stable to the chemical reaction used in each process. 5) At the final stage of RNA synthesis, the base part, sugar part, phosphodiester part, etc. of the synthesized RNA are removed without significant damage. Conditions such as being able to be protected are required. The previously reported 2′-O cyanoethyl nucleoside cyanoethyl group had no established deprotection method satisfying the conditions of force 5) satisfying the above conditions 1) to 4). An object of the present invention is to provide a means for removing a cyanoethyl group from a 2 ′ O cyanonucleoside without greatly damaging the base part, sugar part, phosphodiester part and the like of RNA.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、 2'— O シァノエ チルヌクレオシドを含む RNAの脱保護に際し、テトラ (n—ブチル)アンモ-ゥム フル オリドなどを用いることにより、 RNAの塩基部、糖部等を損傷させることなぐ脱保護 可能であることを見出し、本発明を完成するに至った。 [0009] As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that tetra (n-butyl) ammonium full-fluid is required for deprotection of RNA containing 2'-O cyanoyl nucleoside. It has been found that deprotection without damaging the base portion, sugar portion, etc. of RNA can be achieved by using an olido and the present invention has been completed.
[0010] 即ち、本発明は、以下の(1)〜 (4)を提供するものである。 That is, the present invention provides the following (1) to (4).
[0011] (1)一般式 (I) : [0011] (1) General formula (I):
[0012] [化 1] N 、
Figure imgf000005_0001
[0012] [Chemical 1] N,
Figure imgf000005_0001
〔式中、 Xは水素原子又は水酸基の保護基を表し、 Yは水素原子、水酸基の保護基 、又は一般式 (III) : [Wherein, X represents a hydrogen atom or a hydroxyl-protecting group, Y represents a hydrogen atom, a hydroxyl-protecting group, or a general formula (III):
[化 2]  [Chemical 2]
R1 R 1
R
Figure imgf000005_0002
R
Figure imgf000005_0002
(式中、
Figure imgf000005_0003
Rは同一または異なるアルキル基、もしくは R1と Rが互いに結合してへ テロ原子を含んでもよい環を形成した基を表わし、 R3はリン酸基の保護基を表す。 ) で表される基を表し、 Bは核酸塩基の残基を表す。〕
(Where
Figure imgf000005_0003
R represents the same or different alkyl group, or a group in which R 1 and R are bonded to each other to form a ring which may contain a hetero atom, and R 3 represents a protecting group for a phosphate group. ) And B represents a nucleobase residue. ]
で表される 2'水酸基を保護したリボヌクレオシド誘導体又はこのリボヌクレオシド誘導 体を構成単位として含む RNA誘導体を、フッ素を含む化合物又は塩基性化合物と 反応させ、一般式 (II) :  A ribonucleoside derivative protected with a 2 ′ hydroxyl group or an RNA derivative containing this ribonucleoside derivative as a constituent unit is reacted with a fluorine-containing compound or a basic compound to give a general formula (II):
[0014] [化 3]
Figure imgf000006_0001
[0014] [Chemical 3]
Figure imgf000006_0001
〔式中、 X、 Y及び Bは前記と同意義を示す。〕 [Wherein, X, Y and B are as defined above. ]
で表されるリボヌクレオシド又はこのリボヌクレオシドを構成単位として含む RNAに変 換することを特徴とする 2'水酸基の脱保護方法。  Or a RNA containing the ribonucleoside as a structural unit. 2) A method for deprotecting a hydroxyl group.
[0015] (2)フッ素を含む化合物力 テトラアルキルアンモ-ゥム フルオリドであることを特徴 とする(1)記載の 2'水酸基の脱保護方法。 [0015] (2) The method for deprotecting a 2 ′ hydroxyl group according to (1), wherein the compound power is a tetraalkylammonium fluoride containing fluorine.
[0016] (3)テトラアルキルアンモ-ゥム フルオリドカ テトラ(n—ブチル)アンモ-ゥム フル オリドであることを特徴とする(2)記載の 2'水酸基の脱保護方法。 [0016] (3) The method for deprotecting a 2 ′ hydroxyl group according to (2), which is tetraalkylammonium fluoride tetra (n-butyl) ammonium fluoride.
[0017] (4)塩基性化合物が、アンモニア、一級ァミン、二級ァミン、三級ァミン、又はアミジン 化合物であることを特徴とする(1)記載の 2'水酸基の脱保護方法。 [0017] (4) The method for deprotecting a 2 ′ hydroxyl group according to (1), wherein the basic compound is ammonia, a primary amine, a secondary amine, a tertiary amine, or an amidine compound.
発明の効果  The invention's effect
[0018] 本発明により、 RNAの塩基部、糖部、リン酸ジエステル部などを損傷することなぐ シァノエチル基で 2,水酸基が保護された RNAを脱保護できるようになる。これにより 、効率的な RNAの合成が可能になる。  [0018] According to the present invention, RNA having a hydroxyl group protected with a cyanoethyl group that does not damage the base part, sugar part, phosphodiester part, etc. of RNA can be deprotected. This enables efficient RNA synthesis.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]2'— O—シァノエチル化ゥリジル酸ニ量体 (A)、ゥリジル酸ニ量体(B)、ゥリジ ン(C)の逆相 HPLCのプロファイルを示す図。  FIG. 1 is a diagram showing reverse phase HPLC profiles of 2′-O-cyanethylated uridylate dimer (A), uridylate dimer (B), and uridin (C).
[図 2]ホスホロアミダイトの 2'水酸基の保護基とリン酸エステル形成反応速度との関係 を示す図。  FIG. 2 is a graph showing the relationship between the protecting group of the 2′-hydroxyl group of phosphoramidite and the phosphate ester formation reaction rate.
[図 3]保護基を含むゥリジン 12量体(Purified Ucel2mer)の逆相 HPLCのプロフ アイル (A)、及び保護基を含まな 、ゥリジン 12量体(U12mer)の逆相 HPLCのプロ ファイル(B)を示す図。  [Figure 3] Reversed phase HPLC profile of uridine 12mer (Purified Ucel2mer) with protecting group (A) and reverse phase HPLC profile of uridine 12mer (U12mer) without protecting group (B) ).
[図 4]精製された RN Aオリゴマー(GACUGACUGACU)のイオン交換 HPLCのプ ロフアイノレを示す図。 [図 5]精製された RN Aオリゴマー(ゥリジン 30量体)のイオン交換 HPLCのプロフアイ ルを示す図。 FIG. 4 is a diagram showing the ion exchange HPLC profile of purified RNA oligomer (GACUGACUGACU). FIG. 5 is a diagram showing an ion exchange HPLC profile of a purified RNA oligomer (uridine 30-mer).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明を詳細に説明する。  [0020] Hereinafter, the present invention will be described in detail.
[0021] 本発明の 2'水酸基の脱保護方法は、一般式 (I): [0021] The method for deprotecting the 2 'hydroxyl group of the present invention is represented by the general formula (I):
[0022] [化 4] [0022] [Chemical 4]
Figure imgf000007_0001
で表される 2'水酸基を保護したリボヌクレオシド誘導体又はこのリボヌクレオシド誘導 体を構成単位として含む RNA誘導体を、フッ素を含む化合物又は塩基性化合物と 反応させ、一般式 (II) :
Figure imgf000007_0001
A ribonucleoside derivative protected with a 2 ′ hydroxyl group or an RNA derivative containing this ribonucleoside derivative as a constituent unit is reacted with a fluorine-containing compound or a basic compound to give a general formula (II):
[0023] [化 5]  [0023] [Chemical 5]
Figure imgf000007_0002
で表されるリボヌクレオシド又はこのリボヌクレオシドを構成単位として含む RNAに変 換することを特徴とするものである。
Figure imgf000007_0002
Or a RNA containing this ribonucleoside as a structural unit.
[0024] 一般式 (I)及び (II)における Xは、水素原子又は水酸基の保護基を表す。水酸基 の保護基としては、ヌクレオシドの 5'水酸基や 3'水酸基の保護に使われる一般的な 保護基が使用でき、例えば、置換基を有していてもよいシリル基 (例えば、 tert-プチ ルジフヱ-ルシリル基)、 4ーメトキシトリチル基、 4, 4'ージメトキシトリチル基などを用 いることができる。また、 Xは、 Yは一体となって保護基を形成してもよい。このような一 体となった保護基としては、例えば、 1, 1, 3, 3—テトライソプロピルジシロキサ -リデ ン、ジ (t—プチル)シランジィルなどの環状シリル基を挙げることができる。 [0024] X in the general formulas (I) and (II) represents a hydrogen atom or a protecting group for a hydroxyl group. As the protecting group for the hydroxyl group, a general protecting group used for protecting the 5′-hydroxyl group or the 3′-hydroxyl group of the nucleoside can be used. For example, a silyl group which may have a substituent (for example, tert-butyl diphenyl). -Rusilyl group), 4-methoxytrityl group, 4,4'-dimethoxytrityl group and the like can be used. X may be combined with Y to form a protecting group. Examples of such protecting groups include 1, 1, 3, 3-tetraisopropyldisiloxa-lide. And cyclic silyl groups such as di (t-butyl) silane diyl.
[0025] 一般式 (I)及び (II)における Yは、水素原子、水酸基の保護基、又は一般式 (III): [0026] [化 6] D2 [0025] Y in the general formulas (I) and (II) represents a hydrogen atom, a hydroxyl-protecting group, or the general formula (III): [0026] [Chemical Formula 6] D 2
" ( I I I ) "(I I I)
Figure imgf000008_0001
Figure imgf000008_0001
(式中、
Figure imgf000008_0002
R2は同一または異なるアルキル基、もしくは R1と R2が互いに結合してへ テロ原子を含んでもよい環を形成した基を表わし、 R3はリン酸基の保護基を表す。 ) で表される基を表す。水酸基の保護基は、前記と同じ保護基を用いることができる。 一般式 (III)における 、 R2としてはイソプロピル基などが挙げられ、 R3としては 2—シ ァノエチル基などを挙げられる力 これらに限定されるわけではない。
(Where
Figure imgf000008_0002
R 2 represents the same or different alkyl group, or a group in which R 1 and R 2 are bonded to each other to form a ring which may contain a hetero atom, and R 3 represents a protecting group for a phosphate group. ) Represents a group represented by As the hydroxyl protecting group, the same protecting groups as described above can be used. In general formula (III), R 2 includes an isopropyl group, and R 3 includes, but is not limited to, a 2-cyanoethyl group.
[0027] 一般式 (I)及び (Π)における Bは、核酸塩基の残基を表す。ここで、「核酸塩基」とは 、生物の染色体 DNA,プラスミド DNA、メッセンジャー RNA、リボソ一マル RNA、ト ランスファー RNA、核内小分子 RNAなど、天然に存在する核酸に見出される全ての 核酸塩基および、核酸の合成に使用可能な、置換基を有してもよいへテロ芳香環全 般を含む。代表的な核酸塩基としてはアデニン、グァニン、シトシン、ゥラシル、チミン などを挙げることができる力 これらに限定されるわけではない。また、核酸塩基には 保護基を有するものも含まれる。  [0027] B in the general formulas (I) and (Π) represents a nucleobase residue. Here, “nucleobase” refers to all nucleobases found in naturally occurring nucleic acids such as chromosomal DNA, plasmid DNA, messenger RNA, ribosomal RNA, transfer RNA, and small nuclear RNA of organisms. And all heteroaromatic rings optionally having substituents that can be used for nucleic acid synthesis. Representative nucleobases include, but are not limited to, adenine, guanine, cytosine, uracil, thymine and the like. Nucleobases also include those having a protecting group.
[0028] なお、「一般式 (I)で表される 2'水酸基を保護したリボヌクレオシド誘導体を構成単 位として含む RNA誘導体」とは、一般式 (I)における Xと Yを除いた式で表されるヌク レオシド誘導体の残基が、 RNA誘導体中に含まれるという意味である。「一般式 (II) で表されるリボヌクレオシドを構成単位として含む RNA」もこれと同様の意味である。  [0028] The "RNA derivative containing a ribonucleoside derivative with a protected 2 'hydroxyl group represented by general formula (I) as a constituent unit" is a formula obtained by removing X and Y in general formula (I). It means that the residue of the represented nucleoside derivative is contained in the RNA derivative. “RNA containing a ribonucleoside represented by the general formula (II) as a structural unit” has the same meaning.
[0029] フッ素を含む化合物はシァノエチル基を脱離させることのできるものであれば特に 限定されず、テトラメチルアンモ -ゥム フルオリド、テトラエチルアンモ -ゥム フルォ リド、テトラ(n—ブチル)アンモ-ゥム フルオリドのようなテトラアルキルアンモ-ゥム フルオリドを例示できる。テトラアルキルアンモ-ゥム フルオリドの中では、テトラ(n —ブチル)アンモ-ゥム フルオリド (TBAF)が特に好適である。 [0029] The fluorine-containing compound is not particularly limited as long as it can remove the cyanoethyl group. Tetramethylammonium fluoride, tetraethylammonium fluoride, tetra (n-butyl) ammonium- Examples include tetraalkyl ammonium fluoride such as um fluoride. Tetraalkyl ammonium fluoride contains tetra (n —Butyl) ammonium fluoride (TBAF) is particularly preferred.
[0030] 反応に用いるフッ素を含む化合物の量は特に限定されないが、例えば、テトラアル キルアンモ-ゥム フルオリドの場合、一般式 (I)で表されるリボヌクレオシド誘導体等[0030] The amount of the fluorine-containing compound used in the reaction is not particularly limited. For example, in the case of tetraalkylammonium fluoride, a ribonucleoside derivative represented by the general formula (I), etc.
1モルに対し、 1〜 3000モル程度使用するのが好まし!/、。 It is preferable to use about 1 to 3000 moles per mole!
[0031] 塩基性ィ匕合物もシァノエチル基を脱離させることのできるものであれば特に限定さ れず、アンモニア、一級ァミン、二級ァミン、三級ァミン、アミジンィ匕合物などを例示で きる。これらの化合物の中では、アンモニアが好適である。 [0031] The basic compound is not particularly limited as long as the cyanoethyl group can be eliminated, and examples thereof include ammonia, primary amine, secondary amine, tertiary amine, amidine compound, and the like. . Of these compounds, ammonia is preferred.
[0032] 反応に用いる塩基性ィ匕合物の量も特に限定されないが、例えば、アンモニアの場 合、一般式 (I)で表されるリボヌクレオシド誘導体等 1モルに対し、 1〜3000モル程度 使用するのが好ましい。 [0032] The amount of the basic compound used in the reaction is also not particularly limited. For example, in the case of ammonia, about 1 to 3000 moles with respect to 1 mole of the ribonucleoside derivative represented by the general formula (I), etc. It is preferred to use.
[0033] 上記反応は、水系溶媒を含んでもよい有機溶媒中で行う。有機溶媒と水系溶媒と の体積比は特に限定されないが、 0 : 100〜100 : 0とするのが好ましぃ。有機溶媒は 反応を阻害しないものであれば特に限定されず、また、反応を阻害しない複数の有 機溶媒同士を任意の体積比で混合した混合有機溶媒を用いてもょ ヽ。また水系溶 媒としては水だけでなく任意の緩衝溶液を用いることができ、複数の緩衝溶液同士を 任意の濃度で混合した混合緩衝溶液を用いてもょ 、。 [0033] The above reaction is performed in an organic solvent which may contain an aqueous solvent. The volume ratio of the organic solvent and the aqueous solvent is not particularly limited, but is preferably 0: 100 to 100: 0. The organic solvent is not particularly limited as long as it does not inhibit the reaction, and a mixed organic solvent obtained by mixing a plurality of organic solvents that do not inhibit the reaction at an arbitrary volume ratio may be used. As the aqueous solvent, not only water but also any buffer solution can be used, and a mixed buffer solution in which a plurality of buffer solutions are mixed at an arbitrary concentration may be used.
[0034] 反応温度は特に限定されないが、— 78°C〜100°Cの範囲内であることが好ましい [0034] The reaction temperature is not particularly limited, but is preferably in the range of -78 ° C to 100 ° C.
[0035] なお、リボヌクレオシドの 2'水酸基にシァノエチル基を導入し、 2'—O—シァノエチ ルヌクレオシドを合成する方法は、例えば、ヌクレイック アシッド リサーチ シンポジ ゥム シリーズ 48号、 13— 14ページ 2004年に記載されて!ヽる。 [0035] A method for synthesizing 2'-O-cyanoethyl nucleoside by introducing a cyanoethyl group into the 2 'hydroxyl group of ribonucleoside is, for example, Nucleic Acid Research Symposium Series No. 48, pages 13-14. 2004 It is described in!
実施例  Example
[0036] 〔実施例 1〕 2—シァノエチル基の脱保護  [Example 1] Deprotection of 2-cyanoethyl group
凍結乾燥させた 2, 一 O—シァノエチル化ゥリジル酸ニ量体(0. 5マイクロモル)を、 TBAFのテトラヒドロフラン溶液(1M、 200 1)にカロえ、ボルテックスを用いて溶解さ せた。室温で 24時間放置した後、 0. 1M酢酸アンモ-ゥム緩衝液(3ml)で希釈して 有機溶媒を減圧留去した。得られた残渣を OASIS MCX Cartridgeを用いて試薬 の残渣を取り除いた。脱保護されたゥリジル酸ニ量体は、逆相 HPLCで分析し、その 後、ホスホジエステラーゼ 1 (0. 1 U)及びアルカリホスファターゼ(1 U)を加え、 37 度で 24時間酵素分解処理し、ゥリジンを得た。 The lyophilized 2,1 O-cyanethylated uridylic acid dimer (0.5 micromolar) was placed in a tetrahydrofuran solution of TBAF (1M, 2001) and dissolved by vortexing. After standing at room temperature for 24 hours, it was diluted with 0.1 M ammonium acetate buffer (3 ml) and the organic solvent was distilled off under reduced pressure. The residue of the reagent was removed from the obtained residue using OASIS MCX Cartridge. The deprotected uridylate dimer is analyzed by reverse phase HPLC and the Thereafter, phosphodiesterase 1 (0.1 U) and alkaline phosphatase (1 U) were added and subjected to enzymatic degradation at 37 ° C. for 24 hours to obtain uridine.
[0037] ゥリジル酸ニ量体の逆相 HPLCのプロファイルを図 1Bに示す。また、 2,—O—シァ ノエチル化ゥリジル酸ニ量体及びゥリジンの逆相 HPLCのプロファイルもそれぞれ図 1A及び図 1Cに示す。 [0037] FIG. 1B shows a reverse-phase HPLC profile of the uridylate dimer. Figures 1A and 1C also show the reversed-phase HPLC profiles of 2, -O-cyanoethylated uridylate dimer and uridine, respectively.
[0038] 図 1A及び図 1Bに示す HPLCプロファイルの変化より、上記条件にて 2—シァノエ チル基の脱保護が完了して ヽることが確認された。  [0038] From the change in the HPLC profile shown in Fig. 1A and Fig. 1B, it was confirmed that the deprotection of the 2-cyanoethyl group was completed under the above conditions.
[0039] また、図 1Cに示すように、酵素分解処理物中にゥリジンのみが観測されることより、 塩基部、糖部に副反応を起すことなぐこの脱保護が進行していることが確認された。  [0039] Further, as shown in FIG. 1C, only the uridine is observed in the enzymatically decomposed product, confirming that this deprotection is progressing without causing a side reaction in the base part and sugar part. It was done.
[0040] 〔実施例 2〕 2'水酸基の保護基がリン酸エステル形成反応速度に与える影響  Example 2 Effect of 2′-hydroxyl protecting group on phosphate ester formation reaction rate
2,—O—シァノエチル— 5, -0- (4,4,—ジメトキシトリチル)ゥリジン 3, - (2- シァノエチル N, N—ジイソプロピルホスホロアミダイト)〔2,ーシァノエチル体〕、 2, -0- (tーブチルジメチルシリル)—5 '— O— (4,4'ージメトキシトリチル)ゥリジン 3 ,一(2—シァノエチル N, N—ジイソプロピルホスホロアミダイト)〔2,—tーブチルジ メチルシリル体〕、 2,— O— (トリイソプロビルシリルメチル)— 5,— O— (4,4,—ジメト キシトリチル)ゥリジン 3,—(2—シァノエチル N, N—ジイソプロピルホスホロアミダ イト)〔2,—トリイロプロビルシリル体〕各々 0. 03 mmolを重ァセトニトリル(1 mL)に 溶解し、ここに 2,, 3,— O— 2— N—トリァセチルグアノシン(25 mg, 0. 06 mmol )をカ卩えた。ここに、 1H—テトラゾール(6 mg, 0. 086 mmol)をカ卩え、その反応の 進行を 31P— NMRにて追跡した。  2, -O-cyanethyl-5, -0- (4,4, -dimethoxytrityl) uridine 3,-(2-cyanethyl N, N-diisopropyl phosphoramidite) [2, -cyanethyl], 2, -0- (t-butyldimethylsilyl) -5′—O— (4,4′-dimethoxytrityl) uridine 3, mono (2-cyanoethyl N, N-diisopropyl phosphoramidite) [2, -tert-butyldimethylsilyl], 2 , —O— (Triisopropylpropylsilylmethyl) -5, —O— (4,4, -dimethoxytrityl) uridine 3, — (2-Cyanethyl N, N-diisopropyl phosphoramidite) [2, —Triilopro [Bilsilyl] Each 0.03 mmol was dissolved in deuterated nitrile (1 mL), and 2, 3, — O— 2— N-triacetyl guanosine (25 mg, 0.06 mmol) was prepared here. . Here, 1H-tetrazole (6 mg, 0.086 mmol) was added and the progress of the reaction was followed by 31P-NMR.
[0041] その結果、反応の進行速度に関して、 2'ーシァノエチル体 (CE)は 2'—トリイロプ 口ビルシリル体 (TOM)とほぼ同等で、 2,—tーブチルジメチルシリル体 (TBDMS) よりは速く進行することが分った (図 2)。  [0041] As a result, with regard to the rate of progress of the reaction, 2'-cyanoethyl (CE) is almost the same as 2'-triylopyl bilyl silyl (TOM) and faster than 2, -t-butyldimethylsilyl (TBDMS). It was found to progress (Figure 2).
[0042] 〔実施例 3〕 ゥリジン 12量体の合成  [Example 3] Synthesis of uridine 12-mer
核酸自動合成機として、 Applied Bio System Inc.の DNA/RNA synthesizer 392を使 用した。 2,一O—シァノエチノレー 5, -0- (4,4,ージメトキシトリチノレ)ゥリジン 3,一 (2—シァノエチル N, N—ジイソプロピルホスホロアミダイト)の無水ァセトニトリル溶 液を 0. 1Mにて調整し、上記自動合成機に装着し、 Glen Reserch In より購入したゥ リジン残基が結合した CPG固相担体に対し、 目的の RNA鎖を伸長した。ホスホロァ ミダイトの活性化試薬として、 0. 25 M 5 べンジルチオ 1H—テトラゾールの無 水ァセトニトリル溶液を用い、縮合時間を 10分に変更した以外は、上記自動合成機 にあらかじめ設定された RNA合成プロトコール(トリチルオン)に従 ヽ合成を行った。 合成終了後、固相担体を大過剰の濃アンモニア 酢酸アンモニゥム(10 : l,wZw) に浸し、 1時間放置した。溶液を C18-カートリッジカラムに通し副生物を除去した後、 2%トリフルォロ酢酸水溶液をカ卩ぇジメトキシトリチル基を除去し、ァセトニトリルを含む 蒸留水で目的物を溶出した。得られた溶液を凍結乾燥で乾固した。残渣を蒸留水に 溶解しイオン交換 HPLC (GenPak Faxカラム, 25mM リン酸ナトリウム pH 6. 0 に対し、 1M NaClの濃度勾配を 1分 1%の割合で負荷した。)にて精製した (Purifi ed Ucel2mer)。ここに 1M テトラプチルアンモ -ゥムフルオリド/テトラヒドロフラ ンープロピルアミン (20 : l,vZv)を630 iu L加ぇ、室温で 12時間放置し、 2 '水酸基 のシァノエチル基を除去した。溶液に 0. 1M酢酸アンモ-ゥム水溶液をカ卩え、減圧 下濃縮した。残渣を蒸留水に溶解し O ASIA社製 MCXカートリッジカラム、ついで H LBカートリッジカラムに通し、凍結乾燥後、残渣をイオン交換 HPLC (GenPak Fax カラム, 25mM リン酸ナトリウム pH 6. 0に対し、 1M NaClの濃度勾配を 1分 1% の割合で負荷した。)にて精製した。 (U12mer) 0 The DNA / RNA synthesizer 392 from Applied Bio System Inc. was used as an automatic nucleic acid synthesizer. 2, 1-O-Cyanethinoleol 5, -0- (4,4, -dimethoxytritinole) uridine 3, 1 (2-Cyanethyl N, N-diisopropyl phosphoramidite) solution of anhydrous acetonitrile with 0.1M Installed on the above automatic synthesizer and purchased from Glen Reserch In. The target RNA strand was extended to a CPG solid phase carrier to which a lysine residue was bound. As an activation reagent for phosphoramidite, a 0.25 M 5 benzylthio 1H-tetrazole in water-free nitronitrile solution was used, except that the condensation time was changed to 10 minutes. Synthesis was performed according to (tritylon). After completion of the synthesis, the solid support was immersed in a large excess of concentrated ammonium acetate (10: 1, wZw) and left for 1 hour. By passing the solution through a C18-cartridge column to remove by-products, the 2% trifluoroacetic acid aqueous solution was used to remove the cage dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile. The resulting solution was lyophilized to dryness. The residue was dissolved in distilled water and purified by ion exchange HPLC (GenPak Fax column, 25 mM sodium phosphate pH 6.0, loaded with 1M NaCl concentration gradient at a rate of 1% for 1 minute) (Purified Ucel2mer). Here 1M tetra heptyl ammonium - Umufuruorido / tetrahydrofuranyl Hmm propylamine (20: l, vZv) a 630 i u L pressurized tut, allowed to stand for 12 hours at room temperature to remove the 2 'hydroxyl of Shianoechiru group. To the solution was added 0.1 M aqueous ammonium acetate solution and concentrated under reduced pressure. Dissolve the residue in distilled water and pass it through an OASIA MCX cartridge column and then through an H LB cartridge column. After lyophilization, the residue is ion-exchanged HPLC (GenPak Fax column, 25 mM sodium phosphate pH 6.0, 1M NaCl The concentration gradient was loaded at a rate of 1% for 1 minute). (U12mer) 0
[0043] Purified Ucel2merおよび U12merを上記と同じイオン交換 HPLCにて分析し 、 2'水酸基のシァノエチル基が脱保護されて ヽることを確認した(図 3A及び B)。  [0043] Purified Ucel2mer and U12mer were analyzed by the same ion exchange HPLC as described above, and it was confirmed that the cyano group of the 2 'hydroxyl group was deprotected (Figs. 3A and B).
[0044] また、 Purified Ucel2merおよび U12merについて MALDI— TOF質量分析を 行ったところ、以下に示すように、理論値と実測値が一致した。  [0044] Further, when MALDI-TOF mass spectrometry was performed on Purified Ucel2mer and U12mer, as shown below, the theoretical value and the actual measurement value coincided.
[0045] Purified Ucel2mer  [0045] Purified Ucel2mer
理論値: 4236. 51,実測値: 4238. 41  Theoretical value: 4236. 51, actual value: 4238. 41
U12mer  U12mer
理論値: 3609. 34,実測値:3609. 72  Theoretical value: 3609. 34, measured value: 3609. 72
この結果からも 2'水酸基のシァノエチル基が脱保護されていることが確認できた。  From this result, it was confirmed that the cyanoethyl group of the 2 ′ hydroxyl group was deprotected.
[0046] 〔実施例 4〕 RNAオリゴマー GACUGACUGACUの合成 [Example 4] Synthesis of RNA oligomer GACUGACUGACU
核酸自動合成機として、 Applied Bio System Inc.の DNA/RNA synthesizer 392を使 用した。 2,一O シァノエチノレー 5, -0- (4,4,ージメトキシトリチノレ)ゥリジン 3,一 (2 シァノエチル N, N—ジイソプロピルホスホロアミダイト)、 4— N—ァセチル— 2 ,一 O シァノエチノレー 5,一 O—(4,4,ージメトキシトリチノレ)シチジン 3,一(2 シ ァノエチル N, N ジイソプロピルホスホロアミダイト)、 2,一 O シァノエチル一 5, -0- (4,4'—ジメトキシトリチル) 6— N— (N, N ジメチルアミノメチレン)アデノ シン 3,一(2 シァノエチノレ N, N ジイソプロピノレホスホロアミダイト)、 2,一 O— シァノエチル— 5, -0- (4,4,—ジメトキシトリチル) 2— N— (N, N ジメチルアミ ノメチレン)グアノシン 3,一(2 シァノエチル N, N—ジイソプロピルホスホロアミダ イト)の各々の無水ァセトニトリル溶液を 0. 1Mにて調整し、上記自動合成機に装着 し、 Glen Reserch In より購入したゥリジン残基が結合した CPG固相担体に対し、 目 的の RNA鎖を伸長した。ホスホロアミダイトの活性化試薬として、 0. 25 M 5 べ ンジルチオ— 1H—テトラゾールの無水ァセトニトリル溶液を用い、縮合時間を 10分 に変更した以外は、上記自動合成機にあら力じめ設定された RNA合成プロトコール (トリチルオン)に従い合成を行った。合成終了後、固相担体を大過剰の濃アンモ- ァ—酢酸アンモ-ゥム(10 : 1, wZw)に浸し、 2時間放置した。溶液を C18-カートリツ ジカラムに通し副生物を除去した後、 2%トリフルォロ酢酸水溶液をカ卩ぇジメトキシトリ チル基を除去し、ァセトニトリルを含む蒸留水で目的物を溶出した。得られた溶液を 凍結乾燥で乾固し、ここに 1M テトラプチルアンモ -ゥムフルオリド Zテトラヒドロフラ ンープロピルアミン (20 : l,vZv)を630 iu L加ぇ、室温で 12時間放置し、 2 '水酸基 のシァノエチル基を除去した。溶液に 0. 1M酢酸アンモ-ゥム水溶液をカ卩え、減圧 下濃縮した。残渣を蒸留水に溶解し O ASIA社製 MCXカートリッジカラム、ついで H LBカートリッジカラムに通し、凍結乾燥後、残渣をイオン交換 HPLC (GenPak Fax カラム, 25mM リン酸ナトリウム pH 6. 0に対し、 1M NaClの濃度勾配を 1分 1% の割合で負荷した。)にて精製した(図 4)。単離収率は 25%であった。 Applied Bio System Inc. DNA / RNA synthesizer 392 is used as an automated nucleic acid synthesizer. I used it. 2, 1 O cyanoethinole 5, -0- (4,4, -dimethoxytritinore) uridine 3, 1 (2 cyanoethyl N, N-diisopropyl phosphoramidite), 4-N-acetyl-2, 1 O cyano etinore 5, 1 O— (4,4, -dimethoxytritinole) cytidine 3, 1 (2 cyanoethyl N, N diisopropyl phosphoramidite) 2, 2, 1 O cyanoethyl 1,5, -0- (4,4′-dimethoxytrityl) 6— N— (N, N dimethylaminomethylene) adenosine 3, 1 (2 cyanoethinole N, N diisopropinorephosphoramidite), 2, 1 O— cyanoethyl-5, -0- (4, 4, dimethoxy (Trityl) 2-N- (N, N dimethylaminomethylene) guanosine 3, 1 (2 cyanoethyl N, N-diisopropyl phosphoramidite) solution of anhydrous acetononitrile at 0.1M, the above automatic synthesizer The target RNA strand was extended to a CPG solid phase carrier attached with a uridine residue purchased from Glen Reserch In. 0.25 M 5 Benzylthio-1H-tetrazole anhydrous acetononitrile solution was used as the phosphoramidite activating reagent, and the condensation time was changed to 10 minutes. Synthesis was performed according to the RNA synthesis protocol (tritylone). After the synthesis, the solid support was immersed in a large excess of concentrated ammonium acetate (10: 1, wZw) and left for 2 hours. The solution was passed through a C18-cartridge column to remove by-products, and then the 2% trifluoroacetic acid aqueous solution was used to remove the dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile. The resulting solution was lyophilized to dryness, and 1M tetraptylammonium-fluoride Ztetrahydrofuran-propylamine (20: 1, vZv) was added to the mixture at 630 i u L and left at room temperature for 12 hours. The cyanoethyl group was removed. To the solution was added 0.1 M aqueous ammonium acetate solution and concentrated under reduced pressure. Dissolve the residue in distilled water and pass it through an OASIA MCX cartridge column and then through an H LB cartridge column. After lyophilization, the residue is ion-exchanged HPLC (GenPak Fax column, 25 mM sodium phosphate pH 6.0, 1M NaCl The concentration gradient was loaded at a rate of 1% for 1 minute.) (Figure 4). The isolation yield was 25%.
[0047] また、合成した RNAオリゴマーについて MALDI—TOF質量分析を行ったところ、 理論値(3783. 47)と実測値(3783. 73) がー致した。  [0047] Further, when MALDI-TOF mass spectrometry was performed on the synthesized RNA oligomer, the theoretical value (3783. 47) and the measured value (3783. 73) were in agreement.
[0048] 〔実施例 5〕 RNAオリゴマー ゥリジン 30量体の合成  [Example 5] Synthesis of RNA oligomer uridine 30-mer
核酸自動合成機として、 Applied Bio System Inc.の DNA/RNA synthesizer 392を使 用した。 2,一O シァノエチノレー 5, -0- (4,4,ージメトキシトリチノレ)ゥリジン 3,一 (2—シァノエチノレ N, N—ジイソプロピルホスホロアミダイト)を用い Glen Reserch In c.より購入したゥリジン残基が結合した CPG固相担体に対し、 目的の RNA鎖を伸長 した。ホスホロアミダイトの活性化試薬として、 0. 25 M 5 ベンジルチオ— 1H— テトラゾールの無水ァセトニトリル溶液を用い、縮合時間を 10分に変更し、脱トリチル 化のための 3%ジクロロ酢酸溶液の処理時間を 30秒に延長する以外は、上記自動 合成機にあらカゝじめ設定された RNA合成プロトコール(トリチルオン)に従い合成を 行った。合成終了後、固相担体を大過剰の濃アンモニア 酢酸アンモ-ゥム(10 : 1, w/w)に浸し、 1時間放置した。溶液を C18-カートリッジカラムに通し副生物を除去 した後、 2%トリフルォロ酢酸水溶液をカ卩ぇジメトキシトリチル基を除去し、ァセトニトリ ルを含む蒸留水で目的物を溶出した。得られた溶液を凍結乾燥で乾固し、ここに 1M テトラプチルアンモ -ゥムフルオリド Zテトラヒドロフラン プロピルアミン (20 : 1,ν Ζν)を 3mLカ卩え、室温で 12時間放置し、 2'水酸基のシァノエチル基を除去した。溶 液に 0. 1M酢酸アンモ-ゥム水溶液を加え、減圧下濃縮した。残渣を蒸留水に溶解 し O ASIA社製 MCXカートリッジカラム、ついで HLBカートリッジカラムに通し、凍結 乾燥後、残渣をイオン交換 HPLC (GenPak Faxカラム, 25mM リン酸ナトリウム p H 6. 0に対し、 1M NaClの濃度勾配を 1分 1%の割合で負荷した。)にて精製した 。単離収率は 15%であった。 Applied Bio System Inc. DNA / RNA synthesizer 392 is used as an automated nucleic acid synthesizer. I used it. 2, 1 O Shianoethinole 5, -0- (4,4, -dimethoxytritinore) uridine 3, 1 (2-cyanethinole N, N-diisopropyl phosphoramidite) uridine residue purchased from Glen Reserch Inc. The target RNA strand was extended to the CPG solid phase carrier to which was bound. As the phosphoramidite activation reagent, 0.25 M 5 benzylthio-1H-tetrazole in anhydrous acetonitrile was used, the condensation time was changed to 10 minutes, and the treatment time of 3% dichloroacetic acid solution for detritylation was increased. The synthesis was carried out according to the RNA synthesis protocol (tritylon) set in advance in the above automatic synthesizer, except that it was extended to 30 seconds. After the synthesis, the solid support was immersed in a large excess of concentrated ammonia / ammonium acetate (10: 1, w / w) and left for 1 hour. By passing the solution through a C18-cartridge column to remove by-products, the 2% trifluoroacetic acid aqueous solution was used to remove the cage dimethoxytrityl group, and the target product was eluted with distilled water containing acetonitrile. The resulting solution was lyophilized to dryness, and 3 mL of 1M tetraptylammonium-fluoride Ztetrahydrofuran propylamine (20: 1, ν Ζν) was added to it and allowed to stand at room temperature for 12 hours. The group was removed. To the solution was added 0.1 M aqueous ammonium acetate solution, and the mixture was concentrated under reduced pressure. Dissolve the residue in distilled water and pass it through an OASIA MCX cartridge column and then through an HLB cartridge column. The concentration gradient was loaded at a rate of 1% for 1 minute). The isolation yield was 15%.
[0049] また、合成した RNAオリゴマーについて MALDI—TOF質量分析を行ったところ、 理論値(9177. 79)と実測値(9119. 32) がー致した。  [0049] Further, when MALDI-TOF mass spectrometry was performed on the synthesized RNA oligomer, the theoretical value (9177. 79) and the measured value (9119. 32) were in agreement.
[0050] 本明細書は、本願の優先権の基礎である日本国特許出願 (特願 2005-64883号)の 明細書および Zまたは図面に記載されている内容を包含する。また、本発明で引用 した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れる ものとする。  [0050] This specification includes the contents described in the specification and Z or drawings of the Japanese patent application (Japanese Patent Application No. 2005-64883) which is the basis of the priority of the present application. In addition, all publications, patents and patent applications cited in the present invention are incorporated herein by reference as they are.

Claims

請求の範囲  The scope of the claims
一般式 (I)
Figure imgf000014_0001
Formula (I)
Figure imgf000014_0001
〔式中、 Xは水素原子又は水酸基の保護基を表し、 Yは水素原子、水酸基の保護基 、又は一般式 (III) : [Wherein, X represents a hydrogen atom or a hydroxyl-protecting group, Y represents a hydrogen atom, a hydroxyl-protecting group, or a general formula (III):
[化 2] [Chemical 2]
RR
Figure imgf000014_0002
Figure imgf000014_0002
(式中、
Figure imgf000014_0003
Rは同一または異なるアルキル基、もしくは R1と Rが互いに結合してへ テロ原子を含んでもよい環を形成した基を表わし、 R3はリン酸基の保護基を表す。 ) で表される基を表し、 Bは核酸塩基の残基を表す。〕
(Where
Figure imgf000014_0003
R represents the same or different alkyl group, or a group in which R 1 and R are bonded to each other to form a ring which may contain a hetero atom, and R 3 represents a protecting group for a phosphate group. ) And B represents a nucleobase residue. ]
で表される 2'水酸基を保護したリボヌクレオシド誘導体又はこのリボヌクレオシド誘導 体を構成単位として含む RNA誘導体を、フッ素を含む化合物又は塩基性化合物と 反応させ、一般式 (II) : A ribonucleoside derivative protected with a 2 ′ hydroxyl group or an RNA derivative containing this ribonucleoside derivative as a constituent unit is reacted with a fluorine-containing compound or a basic compound to give a general formula (II):
[化 3] [Chemical 3]
Figure imgf000014_0004
〔式中、 X、 Y及び Bは前記と同意義を示す。〕
Figure imgf000014_0004
[Wherein, X, Y and B are as defined above. ]
で表されるリボヌクレオシド又はこのリボヌクレオシドを構成単位として含む RNAに変 換することを特徴とする 2'水酸基の脱保護方法。  Or a RNA containing the ribonucleoside as a structural unit. 2) A method for deprotecting a hydroxyl group.
[2] フッ素を含む化合物が、テトラアルキルアンモ-ゥム フルオリドであることを特徴と する請求項 1記載の 2'水酸基の脱保護方法。 [2] The method for deprotecting a 2 ′ hydroxyl group according to claim 1, wherein the fluorine-containing compound is tetraalkylammonium fluoride.
[3] テトラアルキルアンモ-ゥム フルオリドカ テトラ(n—ブチル)アンモ-ゥム フルォ リドであることを特徴とする請求項 2記載の 2'水酸基の脱保護方法。 [3] The method for deprotecting a 2 ′ hydroxyl group according to claim 2, which is tetraalkylammonium fluoride tetra (n-butyl) ammonium fluoride.
[4] 塩基性化合物が、アンモニア、一級ァミン、二級ァミン、三級ァミン、又はアミジンィ匕 合物であることを特徴とする請求項 1記載の 2'水酸基の脱保護方法。 4. The method for deprotecting a 2 ′ hydroxyl group according to claim 1, wherein the basic compound is ammonia, a primary amine, a secondary amine, a tertiary amine, or an amidine compound.
PCT/JP2006/304399 2005-03-09 2006-03-07 Process for deblocking the 2'-hydroxyl groups of ribonucleosides WO2006095739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-064883 2005-03-09
JP2005064883A JP4797156B2 (en) 2005-03-09 2005-03-09 Method for deprotecting 2 'hydroxyl group of ribonucleoside

Publications (1)

Publication Number Publication Date
WO2006095739A1 true WO2006095739A1 (en) 2006-09-14

Family

ID=36953333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304399 WO2006095739A1 (en) 2005-03-09 2006-03-07 Process for deblocking the 2'-hydroxyl groups of ribonucleosides

Country Status (2)

Country Link
JP (1) JP4797156B2 (en)
WO (1) WO2006095739A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099896A1 (en) * 2006-02-27 2007-09-07 Nippon Shinyaku Co., Ltd. Method for detaching protecting group on nucleic acid
JP2013533274A (en) * 2010-07-27 2013-08-22 蘇州瑞博生物技術有限公司 Nucleotides and / or oligonucleotides and methods for their synthesis
CN103906758A (en) * 2011-08-25 2014-07-02 株式会社博纳克 Glucoside compound, method for producing thioether, ether, method for producing ether, method for producing glucoside compound, method for producing nucleic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126251A (en) * 1993-09-10 1995-05-16 Taisho Pharmaceut Co Ltd Production of 1,4-dihydropyridinemonocarboxylic acid
JP2004503561A (en) * 2000-06-12 2004-02-05 アベシア・バイオテクノロジー・インコーポレーテッド How to Prevent Modification of Synthetic Nucleotides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126251A (en) * 1993-09-10 1995-05-16 Taisho Pharmaceut Co Ltd Production of 1,4-dihydropyridinemonocarboxylic acid
JP2004503561A (en) * 2000-06-12 2004-02-05 アベシア・バイオテクノロジー・インコーポレーテッド How to Prevent Modification of Synthetic Nucleotides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KITA Y. ET AL.: "Protecting group for carboxyl function: mild and facile cleavage of 2-cyanoethyl ester under non-hydrolytic conditions", CHEMICAL PHARMACEUTICAL BULLETIN, vol. 42, no. 1, 1994, pages 147 - 150, XP003005811 *
OGILVIE K.K. ET AL.: "A facile method for the removal of phosphate protecting groups in nucleotide synthesis", TETRAHEDRON LETTERS, no. 16, 1976, pages 1255 - 1256, XP003005810 *
SANEYOSHI H.: "Synthesis and properties of 2'-O-cyanoethylated RNA derivatives", NUCLEIC ACIDS SYMPOSIUM SERIES, vol. 48, 2004, pages 13 - 14, XP003005809 *
UMEMOTO T.: "Oligoribonucleotide synthesis by the use of 1-(2-cyanoethoxy)ethyl (CEE) as a 2'-hydroxy protecting group", TETRAHEDRON LETTERS, vol. 45, no. 52, 2004, pages 9529 - 9531, XP004658941 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099896A1 (en) * 2006-02-27 2007-09-07 Nippon Shinyaku Co., Ltd. Method for detaching protecting group on nucleic acid
US8158775B2 (en) 2006-02-27 2012-04-17 Nippon Shinyaku Co., Ltd. Method for detaching protecting group on nucleic acid
JP5187189B2 (en) * 2006-02-27 2013-04-24 日本新薬株式会社 Nucleic acid protecting group removal method
JP2013533274A (en) * 2010-07-27 2013-08-22 蘇州瑞博生物技術有限公司 Nucleotides and / or oligonucleotides and methods for their synthesis
US9567364B2 (en) 2010-07-27 2017-02-14 Suzhou Ribo Life Sciene Co., Ltd. Nucleotide and/or oligonucleotide and preparation process thereof
CN103906758A (en) * 2011-08-25 2014-07-02 株式会社博纳克 Glucoside compound, method for producing thioether, ether, method for producing ether, method for producing glucoside compound, method for producing nucleic acid
US9481702B2 (en) 2011-08-25 2016-11-01 Bonac Corporation Glycoside compound, method for producing thioether, ether, method for producing ether, method for producing glycoside compound, method for producing nucleic acid
CN103906758B (en) * 2011-08-25 2017-05-10 株式会社博纳克 Glucoside compound, method for producing thioether, ether, method for producing ether, method for producing glucoside compound, method for producing nucleic acid
US9988415B2 (en) 2011-08-25 2018-06-05 Bonac Corporation Glycoside compound, method for producing thioether, ether, method for producing ether, method for producing glycoside compound, method for producing nucleic acid

Also Published As

Publication number Publication date
JP2006248929A (en) 2006-09-21
JP4797156B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4402454B2 (en) Method for producing LNA phosphoramidite
EP2694524B1 (en) 2'-o-aminooxymethyl nucleoside derivatives for use in the synthesis and modification of nucleosides, nucleotides and oligonucleotides
EP2277886B1 (en) The use of n-alkyl imidazole for sulfurization of oligonucleotides with an acetyl disulfide
US7982030B2 (en) Synthesis of selenium-derivatized nucleosides, nucleotides, phosphoramidites, triphosphates and nucleic acids
JP2013520438A (en) Phosphoramidites for reverse synthetic RNA
IE74706B1 (en) A method of linking nucleosides with a siloxane bridge
JPH06220083A (en) Method and compound for solid-phase synthesis of oligonucleotide and oligonucleotide analog
WO1998039349A1 (en) Protecting group for synthesizing oligonucleotide analogs
JP2005089441A (en) Manufacturing method of highly stereoregular phosphorus atom-modified nucleotide analogue
JP2011088935A (en) Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog
EP2006293B1 (en) 2'-hydroxyl-modified ribonucleoside derivative
WO2006095739A1 (en) Process for deblocking the 2'-hydroxyl groups of ribonucleosides
AU2018332214B2 (en) Modified nucleoside phosphoramidites
EP3154996B1 (en) Protecting groups for "z nucleotide" and methods thereof
Saneyoshi et al. Chemical synthesis of RNA via 2′-O-cyanoethylated intermediates
US20160199491A1 (en) Compounds compositions and methods including thermally labile moieties
JP2003012690A (en) Method of producing nucleotide using substituted imidazole derivative or substituted benzimidazole derivative
US10927140B2 (en) Compositions and methods for reverse automated nucleic acid synthesis
WO2023054350A1 (en) Production method for purified dichloroacetic acid
WO1995031470A2 (en) Antisense inhibitors of gene expression
EP1737877B1 (en) Process for the removal of exocyclic base protecting groups
CN115315430A (en) Nucleic acid synthesis method using segmented phosphoramidite compound
WO1996018638A2 (en) 2'-o-derivatized pyrimidine ribonucleosides and methods of production
WO2021080021A1 (en) Method for producing oligonucleotide
CA2078256A1 (en) Synthesis of sulfide-linked di-or oligonucleotide analogs and incorporation into antisense dna or rna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715369

Country of ref document: EP

Kind code of ref document: A1