JP2006248935A - Method for producing phosphorus-substituted porphyrin compound - Google Patents

Method for producing phosphorus-substituted porphyrin compound Download PDF

Info

Publication number
JP2006248935A
JP2006248935A JP2005065121A JP2005065121A JP2006248935A JP 2006248935 A JP2006248935 A JP 2006248935A JP 2005065121 A JP2005065121 A JP 2005065121A JP 2005065121 A JP2005065121 A JP 2005065121A JP 2006248935 A JP2006248935 A JP 2006248935A
Authority
JP
Japan
Prior art keywords
group
substituent
porphyrin compound
substituted porphyrin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065121A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matano
善博 俣野
Hiroshi Imahori
博 今堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2005065121A priority Critical patent/JP2006248935A/en
Publication of JP2006248935A publication Critical patent/JP2006248935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for producing a phosphorus-substituted porphyrin compound, by which various kinds of phosphorous functional groups can freely be introduced into the porphyrin ring. <P>SOLUTION: This method for producing the phosphine-substituted porphyrin compound is characterized by coupling-reacting a halogen-substituted porphyrin compound with a secondary phosphine in the presence of a transition metal as a catalyst. The phosphine-substituted porphyrin compound can be subjected to a reaction such as an oxidation reaction to convert into the phosphine oxide-substituted porphyrin compound. The halogen-substituted porphyrin compound can be coupled with a phosphite in the presence of a transition metal as a catalyst to produce the phosphonate-substituted porphyrin compound. The phosphonate-substituted porphyrin compound can be subjected to a reaction such as an ester-eliminating reaction to convert into the phosphonate-substituted porphyrin compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、遷移金属を触媒として用いたカップリング反応によるリン置換ポルフィリン化合物の製造方法に関する。   The present invention relates to a method for producing a phosphorus-substituted porphyrin compound by a coupling reaction using a transition metal as a catalyst.

ポルフィリン化合物は、美しい色彩を持つ大環状芳香族化合物であり、有機太陽電池の増感剤、酵素センサー、癌の光化学療法(PDT:Photodynamic Therapy)などに用いられる光機能性色素として利用されている他、有機半導体や光記録媒体を製造するための機能性材料として利用されたり、炭化水素の酸化触媒などに金属配位子として利用されたりしている。このような様々な利用価値を持つポルフィリン化合物に、より優れた機能性を付与するためには、ポルフィリン化合物の物性を制御し、その機能を最大限に発揮させるための、ポルフィリン環への官能基の導入が重要な合成的課題となる。ポルフィリン環に官能基を自在に導入できれば、導入された官能基を介してポルフィリンの機能を直接アウトプットできるため、迅速かつ効率的な機能発現が可能になると期待される。   Porphyrin compounds are macrocyclic aromatic compounds with beautiful colors, and are used as photofunctional dyes used in organic solar cell sensitizers, enzyme sensors, cancer photodynamic therapy (PDT), etc. In addition, it is used as a functional material for producing an organic semiconductor or an optical recording medium, or used as a metal ligand for a hydrocarbon oxidation catalyst or the like. In order to give these porphyrin compounds having various utility values superior functionality, functional groups on the porphyrin ring to control the physical properties of the porphyrin compounds and maximize their functions Is an important synthetic issue. If a functional group can be freely introduced into the porphyrin ring, the function of the porphyrin can be directly output via the introduced functional group, so that it is expected that the function can be rapidly and efficiently expressed.

ポルフィリン環に官能基を導入するための方法論は、既に種々の官能基について報告されているが、リン官能基の導入方法についてはそれほど多くの報告があるわけではない。これまでに報告されているポルフィリン環へのリン官能基の導入方法としては、例えば、次のような方法がある。   Although the methodology for introducing a functional group into a porphyrin ring has already been reported for various functional groups, there are not so many reports on the method for introducing a phosphorus functional group. Examples of methods for introducing a phosphorus functional group into a porphyrin ring that have been reported so far include the following methods.

Figure 2006248935
Figure 2006248935

しかしながら、上記のポルフィリン環へのリン官能基の導入方法は、いずれも、ポルフィリンの(電解)酸化を利用した方法であるため、生成物がホスホニウム塩に限定されること、ホスホニウム塩は反応性に乏しいことから、汎用性に欠けるという問題がある。従って、上記の方法は、残念ながら、反応性に富むリン官能基をポルフィリン環に自在に導入することができる方法であるとは言えない。
そこで本発明は、各種のリン官能基をポルフィリン環に自在に導入することを可能にする、リン置換ポルフィリン化合物の新規な製造方法を提供することを目的とする。
However, since all of the above methods for introducing a phosphorus functional group into a porphyrin ring are methods utilizing (electrolytic) oxidation of porphyrin, the product is limited to phosphonium salts, and phosphonium salts are reactive. Since it is scarce, there is a problem of lack of versatility. Therefore, unfortunately, the above method cannot be said to be a method capable of freely introducing a phosphorus functional group rich in reactivity into a porphyrin ring.
Accordingly, an object of the present invention is to provide a novel method for producing a phosphorus-substituted porphyrin compound that enables various phosphorus functional groups to be freely introduced into the porphyrin ring.

本発明者らは、上記の技術背景に基づいて鋭意研究を重ねた結果、遷移金属を触媒として用いたカップリング反応を利用することで、リン官能基をポルフィリン環に自在に導入することができることを見出した。   As a result of intensive studies based on the above technical background, the present inventors are able to freely introduce a phosphorus functional group into a porphyrin ring by utilizing a coupling reaction using a transition metal as a catalyst. I found.

上記の知見に基づいてなされた本発明のホスフィン置換ポルフィリン化合物の製造方法は、請求項1記載の通り、ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることを特徴とする。
また、本発明のホスフィンオキシド置換ポルフィリン化合物の製造方法は、請求項2記載の通り、ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることで、ホスフィン置換ポルフィリン化合物を得た後、これを酸化反応に付することを特徴とする。
また、本発明のホスフィンスルフィド置換ポルフィリン化合物の製造方法は、請求項3記載の通り、ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることで、ホスフィン置換ポルフィリン化合物を得た後、これを硫化反応に付することを特徴とする。
また、本発明のホスホン酸エステル置換ポルフィリン化合物の製造方法は、請求項4記載の通り、ハロゲン置換ポルフィリン化合物と亜リン酸エステルを、遷移金属を触媒としてカップリング反応させることを特徴とする。
また、本発明のホスホン酸置換ポルフィリン化合物の製造方法は、請求項5記載の通り、ハロゲン置換ポルフィリン化合物と亜リン酸エステルを、遷移金属を触媒としてカップリング反応させることで、ホスホン酸エステル置換ポルフィリン化合物を得た後、これを脱エステル化反応に付することを特徴とする。
また、請求項6記載の製造方法は、請求項1乃至5のいずれかに記載の製造方法において、ハロゲン置換ポルフィリン化合物がZn錯体またはNi錯体の形態であることを特徴とする。
また、請求項7記載の製造方法は、請求項1乃至6のいずれかに記載の製造方法において、遷移金属が第8属〜第11属の第4周期〜第6周期に属する遷移金属であることを特徴とする。
また、請求項8記載の製造方法は、請求項1乃至7のいずれかに記載の製造方法において、置換位置がポルフィリン環のメソ位であることを特徴とする。
また、本発明のリン置換ポルフィリン化合物は、請求項9記載の通り、下記の一般式(1)で表されることを特徴とする。
The method for producing a phosphine-substituted porphyrin compound of the present invention made based on the above knowledge is characterized in that, as described in claim 1, a halogen-substituted porphyrin compound and a second phosphine are subjected to a coupling reaction using a transition metal as a catalyst. To do.
Further, according to the method for producing a phosphine oxide-substituted porphyrin compound of the present invention, as described in claim 2, a phosphine-substituted porphyrin compound is obtained by coupling a halogen-substituted porphyrin compound and a second phosphine using a transition metal as a catalyst. Then, this is subjected to an oxidation reaction.
Further, according to the method for producing a phosphine sulfide-substituted porphyrin compound of the present invention, as described in claim 3, a phosphine-substituted porphyrin compound is obtained by coupling a halogen-substituted porphyrin compound and a second phosphine using a transition metal as a catalyst. Thereafter, this is subjected to a sulfurization reaction.
The method for producing a phosphonate ester-substituted porphyrin compound of the present invention is characterized in that, as described in claim 4, a halogen-substituted porphyrin compound and a phosphite are subjected to a coupling reaction using a transition metal as a catalyst.
The method for producing a phosphonic acid-substituted porphyrin compound according to the present invention includes, as described in claim 5, a phosphonic acid ester-substituted porphyrin by coupling a halogen-substituted porphyrin compound and a phosphite ester using a transition metal as a catalyst. After obtaining the compound, it is characterized by subjecting it to a deesterification reaction.
The production method according to claim 6 is characterized in that in the production method according to any one of claims 1 to 5, the halogen-substituted porphyrin compound is in the form of a Zn complex or a Ni complex.
The manufacturing method according to claim 7 is the manufacturing method according to any one of claims 1 to 6, wherein the transition metal is a transition metal belonging to the fourth to sixth periods of the eighth group to the eleventh group. It is characterized by that.
The production method according to claim 8 is characterized in that, in the production method according to any one of claims 1 to 7, the substitution position is a meso position of a porphyrin ring.
Further, the phosphorus-substituted porphyrin compound of the present invention is represented by the following general formula (1) as described in claim 9.

Figure 2006248935
Figure 2006248935

[式中、Mは2個の水素原子、配位子を有していてもよい金属原子を示す。R5は、-PR21R22、-P(0)R23R24、-P(S)R25R26、-P(O)(OR27)(OR28)、-P(O)(OH)2から選ばれるリン官能基を示す。R2、R3、R7、R8、R10、R12、R13、R15、R17、R18、R20は、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、-COR29を示す。R2、R3、R7、R8、R10、R12、R13、R15、R17、R18、R20は、同一または異なって、隣接する置換基と一緒になって、酸素原子、硫黄原子、窒素原子から選ばれる少なくとも1つのヘテロ原子を含んでいてもよい連結基を形成して互いに連結することで5員環〜7員環を形成してもよい。R21、R22、R23、R24、R25、R26、R27、R28は、同一または異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基を示す。R29は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、置換基を有していてもよいアルコキシ基を示す。] [Wherein M represents a metal atom optionally having two hydrogen atoms and a ligand. R 5 is -PR 21 R 22 , -P (0) R 23 R 24 , -P (S) R 25 R 26 , -P (O) (OR 27 ) (OR 28 ), -P (O) ( OH) represents a phosphorus functional group selected from 2 R 2 , R 3 , R 7 , R 8 , R 10 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 may be the same or different and may have a hydrogen atom or a substituent. A good alkyl group, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, a hetero which may have a substituent An aryl group, an arylalkyl group which may have a substituent, a heteroarylalkyl group which may have a substituent, and —COR 29 are shown. R 2 , R 3 , R 7 , R 8 , R 10 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 are the same or different and together with adjacent substituents, oxygen A 5-membered to 7-membered ring may be formed by forming a linking group that may contain at least one heteroatom selected from an atom, a sulfur atom, and a nitrogen atom and linking each other. R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 may be the same or different and may have an alkyl group or a substituent which may have a substituent. A preferable aryl group, a heteroaryl group which may have a substituent, an arylalkyl group which may have a substituent, and a heteroarylalkyl group which may have a substituent are shown. R 29 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or an aryl which may have a substituent. An alkyl group, a heteroarylalkyl group which may have a substituent, and an alkoxy group which may have a substituent are shown. ]

本発明によれば、ポルフィリン環のβ位とメソ位のいずれの位置に対しても、対応するハロゲン置換ポルフィリン化合物を原料として、ホスフィン、ホスフィンオキシド、ホスフィンスルフィド、ホスホン酸エステル、ホスホン酸、ホスホニウム塩といった各種のリン官能基を、1またはそれ以上の工程によって自在に導入することができるので、リン置換ポルフィリン化合物の効率的な製造が可能となる。本発明の方法で製造されるリン置換ポルフィリン化合物は、ポルフィリン環に導入されたリン官能基の反応性を利用することで、クラスター化などが容易であり、ポルフィリン環を有する様々な有用化合物に変換することができることから、その重要な原料となる。また、ポルフィリン環に結合したリンは、ポルフィリン環のπ電子系と電子的な相互作用を有するので、本発明の方法で製造されるリン置換ポルフィリン化合物は、この作用に基づく種々の機能を発揮させることができることが期待される。   According to the present invention, phosphine, phosphine oxide, phosphine sulfide, phosphonic acid ester, phosphonic acid, phosphonium salt are used as raw materials for the corresponding positions of both the β-position and meso-position of the porphyrin ring. Such various phosphorus functional groups can be freely introduced by one or more steps, so that a phosphorus-substituted porphyrin compound can be efficiently produced. The phosphorus-substituted porphyrin compound produced by the method of the present invention can be easily clustered by utilizing the reactivity of the phosphorus functional group introduced into the porphyrin ring, and can be converted into various useful compounds having a porphyrin ring. Can be an important raw material. Further, since phosphorus bonded to the porphyrin ring has an electronic interaction with the π-electron system of the porphyrin ring, the phosphorus-substituted porphyrin compound produced by the method of the present invention exhibits various functions based on this action. It is expected to be possible.

まず、本発明によって製造することができるリン置換ポルフィリン化合物について説明する。本発明によれば、例えば、下記の一般式(2)で表されるリン置換ポルフィリン化合物を、対応するハロゲン置換ポルフィリン化合物から製造することができる。   First, the phosphorus-substituted porphyrin compound that can be produced according to the present invention will be described. According to the present invention, for example, a phosphorus-substituted porphyrin compound represented by the following general formula (2) can be produced from a corresponding halogen-substituted porphyrin compound.

Figure 2006248935
Figure 2006248935

[式中、Mは2個の水素原子、配位子を有していてもよい金属原子を示す。R32、R33、R35、R37、R38、R40、R42、R43、R45、R47、R48、R50の少なくとも1つは、同一または異なって、-PR51R52、-P(0)R53R54、-P(S)R55R56、-P(O)(OR57)(OR58)、-P(O)(OH)2、-(PR59R60R61)+X-から選ばれるリン官能基を示し、それ以外は、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、-COR62を示す。リン官能基ではないR32、R33、R35、R37、R38、R40、R42、R43、R45、R47、R48、R50は、同一または異なって、隣接するリン官能基ではない置換基と一緒になって、酸素原子、硫黄原子、窒素原子から選ばれる少なくとも1つのヘテロ原子を含んでいてもよい連結基を形成して互いに連結することで5員環〜7員環を形成してもよい。R51、R52、R53、R54、R55、R56、R57、R58、R59、R60、R61は、同一または異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基を示す。R62は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、置換基を有していてもよいアルコキシ基を示す。Xはハロゲン原子を示す。] [Wherein M represents a metal atom optionally having two hydrogen atoms and a ligand. At least one of R 32 , R 33 , R 35 , R 37 , R 38 , R 40 , R 42 , R 43 , R 45 , R 47 , R 48 , R 50 is the same or different and is -PR 51 R 52 , -P (0) R 53 R 54 , -P (S) R 55 R 56 , -P (O) (OR 57 ) (OR 58 ), -P (O) (OH) 2 ,-(PR 59 R 60 R 61 ) represents a phosphorus functional group selected from + X , and otherwise, the same or different, a hydrogen atom, an optionally substituted alkyl group, and optionally substituted Alkenyl group, alkynyl group which may have a substituent, aryl group which may have a substituent, heteroaryl group which may have a substituent, aryl which may have a substituent An alkyl group, an optionally substituted heteroarylalkyl group, and —COR 62 are shown. R 32 , R 33 , R 35 , R 37 , R 38 , R 40 , R 42 , R 43 , R 45 , R 47 , R 48 , R 50 which are not phosphorus functional groups are the same or different and are adjacent phosphorus Together with a substituent that is not a functional group, a linking group that may contain at least one heteroatom selected from an oxygen atom, a sulfur atom, and a nitrogen atom is formed and linked together to form a 5-membered ring to 7 A member ring may be formed. R 51 , R 52 , R 53 , R 54 , R 55 , R 56 , R 57 , R 58 , R 59 , R 60 , R 61 are the same or different and may have a substituent. , An aryl group which may have a substituent, a heteroaryl group which may have a substituent, an arylalkyl group which may have a substituent, a heteroaryl which may have a substituent An alkyl group is shown. R 62 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, and an aryl which may have a substituent. An alkyl group, a heteroarylalkyl group which may have a substituent, and an alkoxy group which may have a substituent are shown. X represents a halogen atom. ]

上記の一般式(2)で表されるリン置換ポルフィリン化合物のうち、例えば、下記の一般式(3)で表されるホスフィン置換ポルフィリン化合物、下記の一般式(4)で表されるホスフィンオキシド置換ポルフィリン化合物、下記の一般式(5)で表されるホスフィンスルフィド置換ポルフィリン化合物、下記の一般式(6)で表されるホスホン酸エステル置換ポルフィリン化合物、下記の一般式(7)で表されるホスホン酸置換ポルフィリン化合物は、これまでに報告がない新規化合物である。   Among the phosphorus-substituted porphyrin compounds represented by the above general formula (2), for example, phosphine substituted porphyrin compounds represented by the following general formula (3), phosphine oxide substitution represented by the following general formula (4) Porphyrin compounds, phosphine sulfide-substituted porphyrin compounds represented by the following general formula (5), phosphonate substituted porphyrin compounds represented by the following general formula (6), phosphones represented by the following general formula (7) The acid-substituted porphyrin compound is a novel compound that has not been reported so far.

Figure 2006248935
Figure 2006248935

[式中、M、R2、R3、R7、R8、R10、R12、R13、R15、R17、R18、R20、R21、R22、R23、R24、R25、R26、R27、R28は、前述の通り。] [In the formula, M, R 2 , R 3 , R 7 , R 8 , R 10 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 are as described above. ]

本発明において、配位子を有していてもよい金属原子としては、配位子としてハロゲン原子、酸素原子、水酸基、アミノ基などを有していてもよいMg、Zn、Ni、Cu、V、Ti、Ga、Sn、In、Al、Mn、Fe、Co、Pb、Ge、Mo、Rhなどを例示することができる。
アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基などの炭素数1〜10の直鎖状または分枝鎖状または環状のものを例示することができる。
アルケニル基としては、ビニル基、アリル基、ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-メチル-1-プロペニル基などの炭素数2〜10の直鎖状または分枝鎖状のものを例示することができる。
アルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基などの炭素数2〜10の直鎖状または分枝鎖状のものを例示することができる。
アリール基としては、フェニル基、ナフチル基、環原子数が8〜10のオルト融合した二環式の基で、少なくとも一つの環が芳香環であるもの(例えばインデニル基)などを例示することができる。
ヘテロアリール基としては、ピロリル基、フリル基、チエニル基、オキサゾリル基、イソキサゾリル基、イミダゾリル基、チアゾリル基、イソチアゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、1,2,4-オキサジアゾリル基、1,2,4-チアジアゾリル基、ピリジル基、ピラニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、1,2,4-トリアジニル基、1,2,3-トリアジニル基、1,3,5-トリアジニル基、1,2,5-オキサチアジニル基、1,2,6-オキサチアジニル基、ベンゾキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、チアナフテニル基、イソチアナフテニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基、イソインドリル基、インドリル基、インダゾリル基、イソキノリル基、キノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、ベンゾキサジニル基などを例示することができる。
アリールアルキル基としては、そのアリール部は上記と同様であり、そのアルキル部は好ましくは炭素数1〜3の直鎖状または分枝鎖状である、ベンジル基、フェニルエチル基、3-フェニルプロピル基、1-ナフチルメチル基、2-ナフチルメチル基、2-(1-ナフチル)エチル基、2-(2-ナフチル)エチル基、3-(1-ナフチル)プロピル基、3-(2-ナフチル)プロピル基などを例示することができる。
ヘテロアリールアルキル基としては、そのヘテロアリール部は上記と同様であり、そのアルキル部は好ましくは炭素数1〜3の直鎖状または分枝鎖状である、2-ピロリルメチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、2-チエニルメチル基、2-(2-ピリジル)エチル基、2-(3-ピリジル)エチル基、2-(4-ピリジル)エチル基、3-(2-ピロリル)プロピル基などを例示することができる。
アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などの炭素数1〜10の直鎖状または分枝鎖状のものを例示することができる。
アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アリールアルキル基、ヘテロアリールアルキル基、アルコキシ基が有していてもよい置換基としては、塩素原子や臭素原子やヨウ素原子などのハロゲン原子、水酸基、ニトロ基、アミノ基、モノ低級アルキルアミノ基、ジ低級アルキルアミノ基、低級アルキルカルボニル基、低級アルコキシカルボニル基、低級アルコキシ基、ホルミル基、シアノ基、カルボキシ基、カルボニル基、カルバモイル基、低級アルキルカルバモイル基、低級アルキルスルホニル基、アリールスルホニル基、低級アルコキシスルホニル基、スルファモイル基、低級アルキルスルファモイル基、スルファニル基、スルフィノ基、スルホ基、ジ低級アルキルホスホリル基、ジアリールホスホリル基、ジ低級アルコキシホスホリル基、ジアミノホスホリル基、これらの置換基を有していもよい低級アルキル基(少なくとも1つの水素がハロゲンで置換されていてもよい)、これらの置換基を有していもよいアリール基やヘテロアリール基などを例示することができる。置換基は、場合によっては自体公知の保護基で保護された形態であってもよい。ここで、低級とは、炭素数1〜6を意味する。なお、置換基の数は、通常1〜3である。置換基の数が2以上の場合、2以上の置換基は、同じ置換基であってもよいし、異なる置換基であってもよい。
In the present invention, the metal atom that may have a ligand includes Mg, Zn, Ni, Cu, V, which may have a halogen atom, an oxygen atom, a hydroxyl group, an amino group, etc. as a ligand. Ti, Ga, Sn, In, Al, Mn, Fe, Co, Pb, Ge, Mo, Rh, and the like can be exemplified.
As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group, octyl group, decyl group Examples thereof include linear, branched, or cyclic ones having 1 to 10 carbon atoms.
As the alkenyl group, straight chain having 2 to 10 carbon atoms such as vinyl group, allyl group, butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-methyl-1-propenyl group, etc. Examples thereof can be illustrated in the form of a chain or a branched chain.
The alkynyl group is a straight chain or branched chain having 2 to 10 carbon atoms such as ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, etc. Can be illustrated.
Examples of the aryl group include a phenyl group, a naphthyl group, and an ortho-fused bicyclic group having 8 to 10 ring atoms in which at least one ring is an aromatic ring (for example, an indenyl group). it can.
Heteroaryl groups include pyrrolyl, furyl, thienyl, oxazolyl, isoxazolyl, imidazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl, tetrazolyl, 1,2,4-oxadiazolyl, 1, 2,4-thiadiazolyl group, pyridyl group, pyranyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 1,2,4-triazinyl group, 1,2,3-triazinyl group, 1,3,5-triazinyl group, 1 , 2,5-oxathiazinyl group, 1,2,6-oxathiazinyl group, benzoxazolyl group, benzothiazolyl group, benzoimidazolyl group, thianaphthenyl group, isothianaphthenyl group, benzofuranyl group, isobenzofuranyl group, chromenyl group, isoindolyl group , Indolyl group, indazolyl group, isoquinolyl group, quinolyl group, phthalazinyl group, quinoki Riniru group, quinazolinyl group, cinnolinyl group, and the like can be exemplified benzoxazinyl group.
As the arylalkyl group, the aryl part is the same as described above, and the alkyl part is preferably a linear or branched chain having 1 to 3 carbon atoms, such as benzyl group, phenylethyl group, 3-phenylpropyl group. Group, 1-naphthylmethyl group, 2-naphthylmethyl group, 2- (1-naphthyl) ethyl group, 2- (2-naphthyl) ethyl group, 3- (1-naphthyl) propyl group, 3- (2-naphthyl) ) A propyl group etc. can be illustrated.
As the heteroarylalkyl group, the heteroaryl part is the same as described above, and the alkyl part is preferably a linear or branched chain having 1 to 3 carbon atoms, a 2-pyrrolylmethyl group, 2-pyridylmethyl. Group, 3-pyridylmethyl group, 4-pyridylmethyl group, 2-thienylmethyl group, 2- (2-pyridyl) ethyl group, 2- (3-pyridyl) ethyl group, 2- (4-pyridyl) ethyl group, A 3- (2-pyrrolyl) propyl group and the like can be exemplified.
Examples of the alkoxy group include linear or branched ones having 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group be able to.
Examples of the substituent that the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, arylalkyl group, heteroarylalkyl group, and alkoxy group may have include a halogen atom such as a chlorine atom, a bromine atom, and an iodine atom. Atom, hydroxyl group, nitro group, amino group, mono-lower alkylamino group, di-lower alkylamino group, lower alkylcarbonyl group, lower alkoxycarbonyl group, lower alkoxy group, formyl group, cyano group, carboxy group, carbonyl group, carbamoyl group , Lower alkylcarbamoyl group, lower alkylsulfonyl group, arylsulfonyl group, lower alkoxysulfonyl group, sulfamoyl group, lower alkylsulfamoyl group, sulfanyl group, sulfino group, sulfo group, di-lower alkylphosphoryl group, diarylphosphoryl A group, a di-lower alkoxyphosphoryl group, a diaminophosphoryl group, a lower alkyl group optionally having these substituents (at least one hydrogen may be substituted with a halogen), or having these substituents Good aryl groups, heteroaryl groups and the like can be exemplified. In some cases, the substituent may be in a form protected with a protecting group known per se. Here, “lower” means 1 to 6 carbon atoms. The number of substituents is usually 1 to 3. When the number of substituents is 2 or more, the two or more substituents may be the same substituent or different substituents.

次に、本発明においてリン置換ポルフィリン化合物を製造する方法について説明する。本発明において、製造対象となるリン置換ポルフィリン化合物の原料となる、リン官能基が導入される位置にハロゲンが導入されたハロゲン置換ポリフィリン化合物は、例えば、Odobel, F.; Suzenet, F.; Blart, E.; Quintard, J.-P. Org. Lett. 2000, 2, 131-133や、Yeung, M.; Ng, A. C. H.; Drew, M. G. B.; Vorpagel, E.; Breitung, E. M.; McMahon, R. J.; Ng, D. K. P. J. Org. Chem. 1998, 63, 7143-7150などに記載の方法で製造することができる。ポルフィリン環に導入されるハロゲンとしては、塩素や臭素やヨウ素などを例示することができるが、中でも反応性に富む点でヨウ素が望ましい。   Next, a method for producing a phosphorus-substituted porphyrin compound in the present invention will be described. In the present invention, the halogen-substituted porphyrin compound in which halogen is introduced at the position where the phosphorus functional group is introduced, which is a raw material of the phosphorus-substituted porphyrin compound to be produced, is, for example, Odobel, F .; Suzenet, F .; Blart , E .; Quintard, J.-P. Org. Lett. 2000, 2, 131-133, Yeung, M .; Ng, ACH; Drew, MGB; Vorpagel, E .; Breitung, EM; McMahon, RJ; Ng, DKPJ Org. Chem. 1998, 63, 7143-7150 and the like. Examples of the halogen introduced into the porphyrin ring include chlorine, bromine, and iodine. Among them, iodine is desirable because of its high reactivity.

ホスフィン置換ポルフィリン化合物を製造するために用いる第二ホスフィンとしては、一般式:R63R64PHで表される化合物を例示することができる(式中、R63とR64は、同一または異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基を示す。)。第二ホスフィンは、ボランと錯体を形成している形態であってもよい。 Examples of the second phosphine used for producing the phosphine-substituted porphyrin compound include compounds represented by the general formula: R 63 R 64 PH (wherein R 63 and R 64 are the same or different. , An alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, an arylalkyl group which may have a substituent And represents a heteroarylalkyl group which may have a substituent. The second phosphine may be in a form forming a complex with borane.

ホスホン酸エステル置換ポルフィリン化合物を製造するために用いる亜リン酸エステルとしては、一般式:HP(O)(OR65)(OR66)で表される化合物を例示することができる(式中、R65とR66は、同一または異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基を示す。)。 As a phosphite used for producing a phosphonate substituted porphyrin compound, a compound represented by the general formula: HP (O) (OR 65 ) (OR 66 ) can be exemplified (wherein, R 65 and R 66 are the same or different and may have an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, a substituent. An arylalkyl group optionally having a substituent and a heteroarylalkyl group optionally having a substituent.

カップリング反応に用いる遷移金属としては、例えば、第8属〜第11属の第4周期〜第6周期に属する遷移金属、具体的には、Co、Ni、Cu、Rh、Pd、Os、Ir、Ptなどを挙げることができる。これらは、有機合成において汎用される各種の有機酸金属塩や金属錯体や金属ハロゲン化物などの形態のものを用いればよい(例えばPd(OAc)2、Pd(PPh3)4、PdCl2(dppf)、PdCl2(PPh3)2、CuIなど)。金属触媒は、ハロゲン置換ポルフィリン化合物に対し、1mol%〜30mol%の割合で用いればよい(ハロゲン置換ポルフィリン化合物を金属錯体の形態で用いる場合)。ハロゲン置換ポルフィリン化合物を遊離塩基の形態で用いる場合、金属触媒がハロゲン置換ポルフィリン化合物に取り込まれて錯体を形成することがあるので、金属触媒の使用量は、ハロゲン置換ポルフィリン化合物を金属錯体の形態で用いる場合に比較して、増加させるべきである。 Examples of the transition metal used in the coupling reaction include transition metals belonging to the fourth to sixth periods of the eighth group to the eleventh group, specifically, Co, Ni, Cu, Rh, Pd, Os, Ir , Pt and the like. These may be used in the form of various organic acid metal salts, metal complexes, metal halides and the like that are widely used in organic synthesis (for example, Pd (OAc) 2 , Pd (PPh 3 ) 4 , PdCl 2 (dppf ), PdCl 2 (PPh 3 ) 2 , CuI, etc.). The metal catalyst may be used at a ratio of 1 mol% to 30 mol% with respect to the halogen-substituted porphyrin compound (when the halogen-substituted porphyrin compound is used in the form of a metal complex). When the halogen-substituted porphyrin compound is used in the form of a free base, the metal catalyst may be incorporated into the halogen-substituted porphyrin compound to form a complex, so the amount of the metal catalyst used is the amount of the halogen-substituted porphyrin compound in the form of a metal complex. It should be increased compared to the use case.

なお、第二ホスフィンや亜リン酸エステルは、ハロゲン置換ポルフィリン化合物1molに対し、1mol〜5molの割合で反応させればよい。   The secondary phosphine or phosphite may be reacted at a ratio of 1 mol to 5 mol with respect to 1 mol of the halogen-substituted porphyrin compound.

反応条件の一例としては、トルエンやキシレンのような芳香族炭化水素などの非極性有機溶媒や、テトラヒドロフランやアセトニトリルやベンゾニトリルのような極性有機溶媒を用い、室温〜200℃で1時間〜10日間行うといった条件を挙げることができる。反応系内には、副生するヨウ化水素を捕捉するための炭酸セシウム、炭酸カリウム、ジイソプロピルエチルアミンなどを添加してもよい。また、金属錯体の可溶化を容易にするために、N,N’-ジメチルエチレンジアミンやトリエチルアミンなどを反応系内に添加してもよい。   Examples of reaction conditions include nonpolar organic solvents such as aromatic hydrocarbons such as toluene and xylene, and polar organic solvents such as tetrahydrofuran, acetonitrile, and benzonitrile at room temperature to 200 ° C. for 1 hour to 10 days. The condition of performing can be mentioned. In the reaction system, cesium carbonate, potassium carbonate, diisopropylethylamine and the like for capturing by-produced hydrogen iodide may be added. In order to facilitate solubilization of the metal complex, N, N′-dimethylethylenediamine, triethylamine, or the like may be added to the reaction system.

ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることで製造されるホスフィン置換ポルフィリン化合物は、例えば、空気中の酸素と反応させて酸化することでホスフィンオキシド置換ポルフィリン化合物に変換することができる。ホスフィン置換ポルフィリン化合物が空気に対して極めて敏感である場合、これを単離することなく、ハロゲン置換ポルフィリン化合物をホスフィンオキシド置換ポルフィリン化合物にまで変換することが望ましい。その方法としては、例えば、前述のようにしてハロゲン置換ポルフィリン化合物と第二ホスフィンをカップリング反応させた後、空気中で分離精製する方法を挙げることができる。また、ホスフィン置換ポルフィリン化合物は、例えば、単体硫黄と反応させて硫化することでホスフィンスルフィド置換ポルフィリン化合物に変換することができる。ホスフィン置換ポルフィリン化合物が空気に対して極めて敏感である場合、これを単離することなく、ハロゲン置換ポルフィリン化合物をホスフィンスルフィド置換ポルフィリン化合物にまで変換することが望ましい。その方法としては、例えば、前述のようにしてハロゲン置換ポルフィリン化合物と第二ホスフィンをカップリング反応させた後、室温で1時間〜1日、単体硫黄と反応させる方法を挙げることができる。また、ホスフィン置換ポルフィリン化合物は、例えば、ハロゲン化アルキルやハロゲン化アリールなどと反応させることでホスホニウム塩置換ポルフィリン化合物に変換することができる。なお、これらの変換は、金属錯体の形態にあるホスフィン置換ポルフィリン化合物を用いて行ってもよいし、遊離塩基の形態にあるホスフィン置換ポルフィリン化合物を用いて行ってもよい。   A phosphine-substituted porphyrin compound produced by coupling a halogen-substituted porphyrin compound and a second phosphine using a transition metal as a catalyst is, for example, reacted with oxygen in the air to oxidize to a phosphine oxide-substituted porphyrin compound. Can be converted. If the phosphine substituted porphyrin compound is very sensitive to air, it is desirable to convert the halogen substituted porphyrin compound to a phosphine oxide substituted porphyrin compound without isolating it. Examples of the method include a method in which a halogen-substituted porphyrin compound and a second phosphine are coupled as described above and then separated and purified in air. The phosphine-substituted porphyrin compound can be converted to a phosphine sulfide-substituted porphyrin compound by, for example, reacting with elemental sulfur and sulfurating. If the phosphine substituted porphyrin compound is very sensitive to air, it is desirable to convert the halogen substituted porphyrin compound to a phosphine sulfide substituted porphyrin compound without isolating it. Examples of the method include a method in which a halogen-substituted porphyrin compound and a second phosphine are subjected to a coupling reaction as described above and then reacted with elemental sulfur at room temperature for 1 hour to 1 day. The phosphine-substituted porphyrin compound can be converted into a phosphonium salt-substituted porphyrin compound by reacting with, for example, an alkyl halide or an aryl halide. These conversions may be performed using a phosphine-substituted porphyrin compound in the form of a metal complex, or may be performed using a phosphine-substituted porphyrin compound in the form of a free base.

ハロゲン置換ポルフィリン化合物と亜リン酸エステルを、遷移金属を触媒としてカップリング反応させることで製造されるホスホン酸エステル置換ポルフィリン化合物は、脱エステル化反応に付することでホスホン酸置換ポルフィリン化合物に変換することができる。その反応条件としては、例えば、トルエンや塩化メチレンのような有機溶媒を用い、室温〜200℃で1時間〜1日、ブロモトリメチルシランと反応させるといった条件を挙げることができる。なお、この反応は、金属錯体の形態にあるホスホン酸エステル置換ポルフィリン化合物を用いて行ってもよいし、遊離塩基の形態にあるホスホン酸エステル置換ポルフィリン化合物を用いて行ってもよい。   A phosphonate ester-substituted porphyrin compound produced by coupling a halogen-substituted porphyrin compound and phosphite using a transition metal as a catalyst is converted to a phosphonate-substituted porphyrin compound by subjecting it to a deesterification reaction. be able to. As the reaction conditions, for example, an organic solvent such as toluene or methylene chloride can be used and reacted with bromotrimethylsilane at room temperature to 200 ° C. for 1 hour to 1 day. This reaction may be performed using a phosphonate ester-substituted porphyrin compound in the form of a metal complex, or may be performed using a phosphonate ester-substituted porphyrin compound in the form of a free base.

金属錯体の形態にあるリン置換ポルフィリン化合物からの金属の脱離は、例えば、塩化メチレンやクロロホルムのような有機溶媒を用い、室温〜50℃で30分〜10時間、トリフルオロ酢酸と反応させるといった条件で行うことができる。また、遊離塩基の形態にあるリン置換ポルフィリン化合物に対する金属の付加(錯体化)は、例えば、塩化メチレンやクロロホルムやメタノールのような有機溶媒を用い、室温で1時間〜1日、有機酸金属塩や金属錯体や金属ハロゲン化物などと反応させるといった条件で行うことができる。リン置換ポルフィリン化合物を第二ホスフィンや亜リン酸エステルとカップリング反応させる際、ハロゲン置換ポルフィリン化合物を金属錯体の形態で用いると、遊離塩基の形態で用いる場合に比較して金属触媒の使用量を少なくすることができることは前述の通りであるが、ZnやNiは、遊離塩基の形態にあるハロゲン置換ポルフィリン化合物への付加が容易であり、金属錯体の形態にあるハロゲン置換ポルフィリン化合物からの脱離も容易であるので、汎用性に富む金属であると言える。   The elimination of the metal from the phosphorus-substituted porphyrin compound in the form of a metal complex is, for example, a reaction with trifluoroacetic acid at room temperature to 50 ° C. for 30 minutes to 10 hours using an organic solvent such as methylene chloride or chloroform. Can be done under conditions. In addition, metal addition (complexation) to a phosphorus-substituted porphyrin compound in the form of a free base is performed using, for example, an organic solvent such as methylene chloride, chloroform or methanol at room temperature for 1 hour to 1 day. Or a reaction with a metal complex or a metal halide. When coupling a phosphorus-substituted porphyrin compound with a secondary phosphine or phosphite, using a halogen-substituted porphyrin compound in the form of a metal complex reduces the amount of metal catalyst used compared to using it in the form of a free base. As described above, Zn and Ni can be easily added to a halogen-substituted porphyrin compound in the form of a free base, and eliminated from the halogen-substituted porphyrin compound in the form of a metal complex. Can be said to be a versatile metal.

以下、本発明を実施例によって更に詳細に説明するが、本発明は以下の記載に何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is limited to the following description and is not interpreted at all.

実施例1:
下記の反応経路により、各種のリン置換ポルフィリン化合物を合成した。
Example 1:
Various phosphorus-substituted porphyrin compounds were synthesized by the following reaction pathway.

Figure 2006248935
Figure 2006248935

A:経路(1)による方法
(化合物Cの合成)
文献既知の[5-ヨード-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]亜鉛(化合物A)を、Odobel, F.; Suzenet, F.; Blart, E.; Quintard, J.-P. Org. Lett. 2000, 2, 131-133記載の方法によって合成した。化合物A(50 mg, 0.047 mmol)と酢酸パラジウム(1.1 mg, 10mol%)をフラスコに入れて容器内をアルゴンでチャージした。ここへ、THF(3 mL)、アセトニトリル(3 mL)、トリエチルアミン (14 μL, 0.10 mmol)、およびジフェニルホスフィン(17 μL, 0.10 mmol)を加えて、混合物を攪拌しながら加熱還流した。11時間後、化合物Aは完全に消失した(TLCによる確認)。その後、混合物を空気中、セライトで濾別し、濾液を減圧下で濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/塩化メチレン/メタノール)で分離・精製することにより、[5-ジフェニルホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]亜鉛(化合物C)を38 mg得た(収率71%)。なお、[5-ジフェニルホスフィノ-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]亜鉛(化合物B)は、TLCで生成していることが強く示唆されたが、空気に対して極めて敏感であるため単離せずに、そのまま化合物Cへと変換した。
A: Method by route (1) (Synthesis of Compound C)
[5-iodo-10,15,20-tris (3,5-di-t-butylphenyl) porphyrinato] zinc (compound A) known in the literature was synthesized from Odobel, F .; Suzenet, F .; Blart, E. Synthesized by the method described in Quintard, J.-P. Org. Lett. 2000, 2, 131-133. Compound A (50 mg, 0.047 mmol) and palladium acetate (1.1 mg, 10 mol%) were placed in a flask, and the container was charged with argon. To this, THF (3 mL), acetonitrile (3 mL), triethylamine (14 μL, 0.10 mmol), and diphenylphosphine (17 μL, 0.10 mmol) were added, and the mixture was heated to reflux with stirring. After 11 hours, compound A disappeared completely (confirmation by TLC). Thereafter, the mixture was filtered through Celite in the air, the filtrate was concentrated under reduced pressure, and the residue was separated and purified by silica gel column chromatography (developing solvent: hexane / methylene chloride / methanol). There was obtained 38 mg of -diphenylphosphoryl-10,15,20-tris (3,5-di-t-butylphenyl) porphyrinato] zinc (compound C) (yield 71%). It was strongly suggested that [5-diphenylphosphino-10,15,20-tris (3,5-di-t-butylphenyl) porphyrinato] zinc (compound B) was produced by TLC. Since it was extremely sensitive to air, it was directly converted to Compound C without isolation.

化合物Aの物理化学的データは以下の通りである。
1H NMR (CDCl3) δ 1.51 (s, 18H), 1.53 (s, 36H), 7.78 (s, 1H), 7.81 (s, 2H), 8.04 (s, 2H), 8.06 (s, 4H), 8.95 (d, 2H, J = 5.6 Hz), 8.96 (d, 2H, J = 5.6 Hz), 9.01 (d, 2H, J = 4.8 Hz), 9.81 (d, 2H, J = 4.8 Hz)
The physicochemical data of Compound A are as follows.
1 H NMR (CDCl 3 ) δ 1.51 (s, 18H), 1.53 (s, 36H), 7.78 (s, 1H), 7.81 (s, 2H), 8.04 (s, 2H), 8.06 (s, 4H), 8.95 (d, 2H, J = 5.6 Hz), 8.96 (d, 2H, J = 5.6 Hz), 9.01 (d, 2H, J = 4.8 Hz), 9.81 (d, 2H, J = 4.8 Hz)

化合物Cの物理化学的データは以下の通りである。
1H NMR (CD3OD/CDCl3 = 4/1) δ 9.22 (d, 2H, J = 4.9 Hz), 8.82 (d, 2H, J = 4.4 Hz), 8.73 (d, 2H, J = 4.4 Hz), 8.58 (d, 2H, J = 4.9 Hz), 8.06 (d, 2H, J = 2.0 Hz), 7.97 (d, 2H, J = 2.0 Hz), 7.89 (dd, 4H, J = 12.2, 7.3 Hz), 7.78 (t, 1H, J = 2.0 Hz), 7.82 (t, 2H, J = 2.0 Hz), 7.60 (t, 2H, J = 7.3 Hz), 7.49 (dt, J = 3.0, 7.3 Hz), 1.54 (s, 18H), 1.51 (s, 36H); 31P NMR (CDCl3) δ 24.97; 31P NMR (CD3OD/ CDCl3 = 4/1) δ 36.06; UV-vis (toluene, 2.5 x 10-6 M) λmax 434, 565, 614 nm; FABMS m/z 1137.6 ([M+H]+, 100%)
The physicochemical data of Compound C are as follows.
1 H NMR (CD 3 OD / CDCl 3 = 4/1) δ 9.22 (d, 2H, J = 4.9 Hz), 8.82 (d, 2H, J = 4.4 Hz), 8.73 (d, 2H, J = 4.4 Hz ), 8.58 (d, 2H, J = 4.9 Hz), 8.06 (d, 2H, J = 2.0 Hz), 7.97 (d, 2H, J = 2.0 Hz), 7.89 (dd, 4H, J = 12.2, 7.3 Hz) ), 7.78 (t, 1H, J = 2.0 Hz), 7.82 (t, 2H, J = 2.0 Hz), 7.60 (t, 2H, J = 7.3 Hz), 7.49 (dt, J = 3.0, 7.3 Hz), 1.54 (s, 18H), 1.51 (s, 36H); 31 P NMR (CDCl 3 ) δ 24.97; 31 P NMR (CD 3 OD / CDCl 3 = 4/1) δ 36.06; UV-vis (toluene, 2.5 x 10 -6 M) λ max 434, 565, 614 nm; FABMS m / z 1137.6 ([M + H] + , 100%)

(化合物Dの合成)
トリフルオロ酢酸(0.10 mL)を化合物C(55 mg, 0.048 mmol)の塩化メチレン溶液(30 mL)に加えて、混合物を室温で1時間攪拌した。TLCで原料が消失したことを確認した後、混合物を炭酸水素ナトリウム水溶液、水で洗浄した。有機層を分離して無水硫酸ナトリウムを加えて乾燥した後、減圧下で濃縮し、残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:塩化メチレン/アセトン)で分離・精製することにより、5-ジフェニルホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリン(化合物D)を30 mg得た(収率58%)。
(Synthesis of Compound D)
Trifluoroacetic acid (0.10 mL) was added to a solution of compound C (55 mg, 0.048 mmol) in methylene chloride (30 mL), and the mixture was stirred at room temperature for 1 hour. After confirming the disappearance of the raw material by TLC, the mixture was washed with an aqueous sodium hydrogen carbonate solution and water. The organic layer is separated, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue is separated and purified by silica gel column chromatography (developing solvent: methylene chloride / acetone) to give 5-diphenylphosphine. 30 mg of folyl-10,15,20-tris (3,5-di-t-butylphenyl) porphyrin (Compound D) was obtained (yield 58%).

化合物Dの物理化学的データは以下の通りである。
1H NMR (CDCl3) δ -1.98 (s, 2H), 1.49 (s, 36H), 1.51 (s, 18H), 7.43 (m, 4H), 7.53 (t, 2H, J = 7.6 Hz), 7.75 (s, 2H), 7.78 (s, 1H), 7.94 (m, 4H), 7.97 (s, 4H), 8.02 (s, 2H), 8.62 (d, 2H, J = 4.8 Hz), 8.73 (d, 2H, J = 4.8 Hz), 8.82 (d, 2H, J = 4.8 Hz), 9.42 (d, br-s); 31P NMR (CDCl3) δ 31.57; 31P NMR (CD3OD/CDCl3 = 4/1) δ 33.83; UV-vis (toluene, 2.5 x 10-6 M) λmax 424, 521, 556, 593, 646 nm; FABMS m/z 1075.7 ([M+H]+, 100%); ESIMS m/z 1075.64 ([M+H]+, 100%)
The physicochemical data of Compound D are as follows.
1 H NMR (CDCl 3 ) δ -1.98 (s, 2H), 1.49 (s, 36H), 1.51 (s, 18H), 7.43 (m, 4H), 7.53 (t, 2H, J = 7.6 Hz), 7.75 (s, 2H), 7.78 (s, 1H), 7.94 (m, 4H), 7.97 (s, 4H), 8.02 (s, 2H), 8.62 (d, 2H, J = 4.8 Hz), 8.73 (d, 2H, J = 4.8 Hz), 8.82 (d, 2H, J = 4.8 Hz), 9.42 (d, br-s); 31 P NMR (CDCl 3 ) δ 31.57; 31 P NMR (CD 3 OD / CDCl 3 = 4/1) δ 33.83; UV-vis (toluene, 2.5 x 10 -6 M) λ max 424, 521, 556, 593, 646 nm; FABMS m / z 1075.7 ([M + H] + , 100%); ESIMS m / z 1075.64 ([M + H] + , 100%)

(化合物Eの合成)
化合物D(35.5 mg, 0.0330 mmol)を塩化メチレン-メタノール混合溶媒(v/v = 1:1, 30 mL)に溶かし、酢酸パラジウム(16.0 mg, 0.0712 mmol)を加えて室温で終夜攪拌した。TLCで原料が消失したことを確認した後、混合物を濃縮して水へ注いだ。有機層を分離した後、3%炭酸水素ナトリウムで洗浄し、無水硫酸ナトリウムを加えて乾燥した後、減圧下で濃縮し、塩化メチレン/メタノールから再結晶することにより、[5-ジフェニルホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]パラジウム(化合物E)を33.8 mg得た(収率86.7%)。
(Synthesis of Compound E)
Compound D (35.5 mg, 0.0330 mmol) was dissolved in a methylene chloride-methanol mixed solvent (v / v = 1: 1, 30 mL), palladium acetate (16.0 mg, 0.0712 mmol) was added, and the mixture was stirred at room temperature overnight. After confirming the disappearance of the raw material by TLC, the mixture was concentrated and poured into water. The organic layer was separated, washed with 3% sodium hydrogen carbonate, dried by adding anhydrous sodium sulfate, concentrated under reduced pressure, and recrystallized from methylene chloride / methanol to give [5-diphenylphosphoryl. Thus, 33.8 mg of -10,15,20-tris (3,5-di-t-butylphenyl) porphyrinato] palladium (Compound E) was obtained (yield 86.7%).

化合物Eの物理化学的データは以下の通りである。
1H NMR (400MHz, CDCl3) δ 1.48 (s, 36H), 1.50 (s, 18H), 7.43 (m, 4H), 7.54 (m, 2H), 7.74 (t, 2H, J = 2.0 Hz), 7.77 (t, 1H, J = 1.5 Hz), 7.90 (m, 4H), 7.93 (d, 4H, J = 2.0 Hz), 7.97 (d, 2H, J = 1.5 Hz), 8.65 (d, 2H, J = 4.8 Hz), 8.75 (d, 2H, J = 4.8 Hz), 8.81 (d, 2H, J = 4.8 Hz), 9.46 (d, 2H, J = 4.8 Hz); 31P NMR (CDCl3) δ 31.53; MALDI-TOF MS m/z 1179.0 ([M+H]+, 100%,); UV-vis (toluene) λmax 421, 531, 565 nm
The physicochemical data of Compound E are as follows.
1 H NMR (400MHz, CDCl 3 ) δ 1.48 (s, 36H), 1.50 (s, 18H), 7.43 (m, 4H), 7.54 (m, 2H), 7.74 (t, 2H, J = 2.0 Hz), 7.77 (t, 1H, J = 1.5 Hz), 7.90 (m, 4H), 7.93 (d, 4H, J = 2.0 Hz), 7.97 (d, 2H, J = 1.5 Hz), 8.65 (d, 2H, J = 4.8 Hz), 8.75 (d, 2H, J = 4.8 Hz), 8.81 (d, 2H, J = 4.8 Hz), 9.46 (d, 2H, J = 4.8 Hz); 31 P NMR (CDCl 3 ) δ 31.53 ; MALDI-TOF MS m / z 1179.0 ([M + H] + , 100%,); UV-vis (toluene) λ max 421, 531, 565 nm

(化合物Fの合成)
化合物A(100 mg, 0.0942 mmol)と酢酸パラジウム(4.4 mg, 20mol%)をフラスコに入れて容器内をアルゴンでチャージした。ここへ、THF(5 mL)、アセトニトリル(5 mL)、トリエチルアミン(56 μL, 0.40 mmol)、およびジフェニルホスフィン(34 μL, 0.20 mmol)を加えて、混合物を攪拌しながら加熱還流した。23時間後、化合物Aは完全に消失した(TLCによる確認)。その後、アルゴン雰囲気下で単体硫黄(12.8 mg, 0.05 mmol)を加えて室温で3.5時間攪拌した。混合物を水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した後、減圧下で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/塩化メチレン/アセトン)で分離・精製することにより、[5-ジフェニルチオホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]亜鉛(化合物F)を30 mg得た(収率28%)。
(Synthesis of Compound F)
Compound A (100 mg, 0.0942 mmol) and palladium acetate (4.4 mg, 20 mol%) were placed in a flask, and the container was charged with argon. To this, THF (5 mL), acetonitrile (5 mL), triethylamine (56 μL, 0.40 mmol), and diphenylphosphine (34 μL, 0.20 mmol) were added, and the mixture was heated to reflux with stirring. After 23 hours, compound A disappeared completely (confirmation by TLC). Thereafter, elemental sulfur (12.8 mg, 0.05 mmol) was added under an argon atmosphere, and the mixture was stirred at room temperature for 3.5 hours. The mixture was washed with water, and the organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography (developing solvent: hexane / methylene chloride / acetone) to give [5-diphenylthiophosphoryl-10,15,20-tris (3,5-di-t 30 mg of (butylphenyl) porphyrinato] zinc (compound F) was obtained (yield 28%).

化合物Fの物理化学的データは以下の通りである。
1H NMR (CD2Cl2) δ 1.49 (s, 36H), 1.52 (s, 18H), 7.31 (m, 4H), 7.40 (m, 2H), 7.78 (t, 2H, J = 2.0 Hz), 7.82 (t, 1H, J = 1.5 Hz), 7.83 (m, 4H), 7.95 (d, 4H, J = 2.0 Hz), 8.04 (d, 2H, J = 1.5 Hz), 8.49 (d, 2H, J = 4.4 Hz), 8.83 (d, 2H, J = 4.4 Hz), 8.89 (d, 2H, J = 4.8 Hz), 9.06 (d, 2H, J = 4.8 Hz); 31P NMR (CDCl3) δ 40.1; MALDI-TOF MS m/z 1154.5 ([M+H]+, 100%); UV-vis (toluene) λmax 434, 560, 600 nm
The physicochemical data of Compound F are as follows.
1 H NMR (CD 2 Cl 2 ) δ 1.49 (s, 36H), 1.52 (s, 18H), 7.31 (m, 4H), 7.40 (m, 2H), 7.78 (t, 2H, J = 2.0 Hz), 7.82 (t, 1H, J = 1.5 Hz), 7.83 (m, 4H), 7.95 (d, 4H, J = 2.0 Hz), 8.04 (d, 2H, J = 1.5 Hz), 8.49 (d, 2H, J = 4.4 Hz), 8.83 (d, 2H, J = 4.4 Hz), 8.89 (d, 2H, J = 4.8 Hz), 9.06 (d, 2H, J = 4.8 Hz); 31 P NMR (CDCl 3 ) δ 40.1 ; MALDI-TOF MS m / z 1154.5 ([M + H] + , 100%); UV-vis (toluene) λ max 434, 560, 600 nm

B:経路(2)による方法
(化合物Gの合成)
化合物A(200 mg, 0.188 mmol)、ヨウ化銅(I)(15 mg, 20 mol%)、および炭酸セシウム(660 mg, 2.03 mmol)をフラスコに入れて、容器内をアルゴンでチャージした。ここへ、脱水トルエン(10 mL)、N,N’-ジメチルエチレンジアミン(30 μL, 0.28 mmol)、およびホスホン酸ジブチルエステル(60 μL, 0.31 mmol)を加えて、混合物を攪拌しながら加熱還流した。7時間後、化合物Aは完全に消失した(TLCによる確認)。その後、混合物をセライトで濾別し、濾液を減圧下で濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/塩化メチレン)で分離・精製することにより、[5-ジ-n-ブトキシホスフォリル-10,15,20-トリス(3,5-ジ-t-ブトキシフェニル)ポルフィリナト]亜鉛(化合物G)を171 mg得た(収率81%)。
B: Method according to route (2) (synthesis of compound G)
Compound A (200 mg, 0.188 mmol), copper (I) iodide (15 mg, 20 mol%), and cesium carbonate (660 mg, 2.03 mmol) were placed in a flask, and the inside of the container was charged with argon. To this, dehydrated toluene (10 mL), N, N′-dimethylethylenediamine (30 μL, 0.28 mmol), and phosphonic acid dibutyl ester (60 μL, 0.31 mmol) were added, and the mixture was heated to reflux with stirring. After 7 hours, compound A disappeared completely (confirmation by TLC). Thereafter, the mixture was filtered through Celite, the filtrate was concentrated under reduced pressure, and the residue was separated and purified by silica gel column chromatography (developing solvent: hexane / methylene chloride) to give [5-di-n- 171 mg of butoxyphosphoryl-10,15,20-tris (3,5-di-t-butoxyphenyl) porphyrinato] zinc (compound G) was obtained (yield 81%).

化合物Gの物理化学的データは以下の通りである。
1H NMR (CD3OD-CDCl3, v/v = 7/1; 0.0026 M, at 24 ℃) δ 0.84 (t, 6H, J = 7.3 Hz), 1.42-1.56 (m, 4H), 1.55 (s, 18H), 1.57 (s, 36H), 1.68-1.76 (m, 4H), 4.11-4.22 (m, 2H), 4.38-4.49 (m, 2H), 7.86 (s, 1H), 7.88 (s, 2H), 8.07 (s, 6H), 8.74 (d, 2H, J = 4.8 Hz), 8.81 (d, 2H, J = 4.8 Hz), 8.88 (d, 2H, J = 4.8 Hz), 10.19 (d, 2H, J = 4.8 Hz); 31P NMR (CD3OD-CDCl3, v/v = 7/1; 0.0026 M, at 24 ℃) δ 24.4; ESIMS m/z 1129.6 ([M+H]+); UV-vis (toluene, 5.0 x 10-5 M) 423, 550, 584 nm
The physicochemical data of Compound G are as follows.
1 H NMR (CD 3 OD-CDCl 3 , v / v = 7/1; 0.0026 M, at 24 ° C) δ 0.84 (t, 6H, J = 7.3 Hz), 1.42-1.56 (m, 4H), 1.55 ( s, 18H), 1.57 (s, 36H), 1.68-1.76 (m, 4H), 4.11-4.22 (m, 2H), 4.38-4.49 (m, 2H), 7.86 (s, 1H), 7.88 (s, 2H), 8.07 (s, 6H), 8.74 (d, 2H, J = 4.8 Hz), 8.81 (d, 2H, J = 4.8 Hz), 8.88 (d, 2H, J = 4.8 Hz), 10.19 (d, 2H, J = 4.8 Hz); 31 P NMR (CD 3 OD-CDCl 3 , v / v = 7/1; 0.0026 M, at 24 ° C) δ 24.4; ESIMS m / z 1129.6 ([M + H] + ) ; UV-vis (toluene, 5.0 x 10 -5 M) 423, 550, 584 nm

(化合物Hの合成)
トリフルオロ酢酸(0.12 mL)を化合物G(75 mg, 0.066 mmol)の塩化メチレン溶液(15 mL)に加えて、混合物を40℃で7時間攪拌した。TLCで原料が消失したことを確認した後、混合物を冷却して水へ注いだ。有機層を分離した後、水層を塩化メチレンで抽出し、有機層をあわせて炭酸水素ナトリウム水溶液、水で洗浄した。有機層に無水硫酸ナトリウムを加えて乾燥した後、減圧下で濃縮し、塩化メチレン/メタノールから再結晶することにより、5-ジ-n-ブトキシホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリン(目的物H)を60 mg得た(収率85%)。
(Synthesis of Compound H)
Trifluoroacetic acid (0.12 mL) was added to a solution of compound G (75 mg, 0.066 mmol) in methylene chloride (15 mL), and the mixture was stirred at 40 ° C. for 7 hours. After confirming the disappearance of the raw material by TLC, the mixture was cooled and poured into water. After separating the organic layer, the aqueous layer was extracted with methylene chloride, and the organic layers were combined and washed with an aqueous sodium bicarbonate solution and water. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and recrystallized from methylene chloride / methanol to give 5-di-n-butoxyphosphoryl-10,15,20-tris (3 , 5-di-t-butylphenyl) porphyrin (target product H) was obtained (yield 85%).

化合物Hの物理化学的データは以下の通りである。
1H NMR (CDCl3) δ -2.20 (s, 2H), 0.80 (t, 6H, J = 7.3 Hz), 1.37-1.54 (m, 4H), 1.51 (s, 18H), 1.53 (s, 36H), 1.64-1.76 (m, 4H), 4.13 (ddt, 2H, J = 9.9, 6.6, 6.6 Hz), 4.46 (ddt, 2H, J = 9.9, 6.6, 6.6 Hz), 7.78 (t, 1H, J = 1.8 Hz), 7.81 (t, 2H, J = 1.8 Hz), 8.02 (d, 2H, J = 1.8 Hz), 8.04 (d, 4H, J = 1.8 Hz), 8.75 (d, 2H, J = 4.8 Hz), 8.83 (d, 2H, J = 4.8 Hz), 8.90 (d, 2H, J = 4.8 Hz), 10.24 (d, 2H, J = 4.8 Hz); 31P NMR (CDCl3) δ 20.8; ESIMS m/z 1067.7 ([M+H]+); UV-vis (toluene, 5.0 x 10-6 M) 420, 515, 551, 588, 642 nm
The physicochemical data of Compound H are as follows.
1 H NMR (CDCl 3 ) δ -2.20 (s, 2H), 0.80 (t, 6H, J = 7.3 Hz), 1.37-1.54 (m, 4H), 1.51 (s, 18H), 1.53 (s, 36H) , 1.64-1.76 (m, 4H), 4.13 (ddt, 2H, J = 9.9, 6.6, 6.6 Hz), 4.46 (ddt, 2H, J = 9.9, 6.6, 6.6 Hz), 7.78 (t, 1H, J = 1.8 Hz), 7.81 (t, 2H, J = 1.8 Hz), 8.02 (d, 2H, J = 1.8 Hz), 8.04 (d, 4H, J = 1.8 Hz), 8.75 (d, 2H, J = 4.8 Hz) ), 8.83 (d, 2H, J = 4.8 Hz), 8.90 (d, 2H, J = 4.8 Hz), 10.24 (d, 2H, J = 4.8 Hz); 31 P NMR (CDCl 3 ) δ 20.8; ESIMS m / z 1067.7 ([M + H] + ); UV-vis (toluene, 5.0 x 10 -6 M) 420, 515, 551, 588, 642 nm

(化合物Iの合成)
化合物H(54 mg, 0.051 mmol)を塩化メチレン(7.5 mL)に溶かし、ブロモトリメチルシラン(0.106 mL, 0.802 mmol)を室温で加えた。得られた緑色の反応混合物を約1日加熱還流し、濃縮した。有機層を水で洗浄し、塩化メチレンで抽出した後、3%炭酸水素ナトリウム水溶液で洗浄した。集めた有機層を無水硫酸ナトリウムで乾燥し、濃縮後に得られる固体をヘキサンで洗浄した後、残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール)で分離・精製することにより、5-ホスフォノ-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリン(化合物I)を34.0 mg得た(収率70%)。
(Synthesis of Compound I)
Compound H (54 mg, 0.051 mmol) was dissolved in methylene chloride (7.5 mL), and bromotrimethylsilane (0.106 mL, 0.802 mmol) was added at room temperature. The resulting green reaction mixture was heated to reflux for about 1 day and concentrated. The organic layer was washed with water, extracted with methylene chloride, and then washed with 3% aqueous sodium hydrogen carbonate solution. The collected organic layer is dried over anhydrous sodium sulfate, the solid obtained after concentration is washed with hexane, and the residue is separated and purified by silica gel column chromatography (developing solvent: chloroform / methanol) to give 5-phosphono 34.0 mg of -10,15,20-tris (3,5-di-t-butylphenyl) porphyrin (Compound I) was obtained (yield 70%).

化合物Iの物理化学的データは以下の通りである。
1H NMR (CD3OD-CDCl3, v/v = 3/1) δ 1.46 (s, 18H), 1.54 (s, 36H), 7.81 (s, 1H), 7.85 (s, 2H), 8.00 (s, 2H), 8.07 (s, 4H), 8.81 (br-m, 6H), 10.61 (br-s, 2H); 31P NMR (CD3OD-CDCl3, v/v = 7/1) δ 9.96; MALDI-TOF MS m/z 954.69 ([M+H]+); UV-vis (toluene, 1.0 x 10-5 M) 421, 517, 550, 593, 647 nm
The physicochemical data of Compound I are as follows.
1 H NMR (CD 3 OD-CDCl 3 , v / v = 3/1) δ 1.46 (s, 18H), 1.54 (s, 36H), 7.81 (s, 1H), 7.85 (s, 2H), 8.00 ( s, 2H), 8.07 (s, 4H), 8.81 (br-m, 6H), 10.61 (br-s, 2H); 31 P NMR (CD 3 OD-CDCl 3 , v / v = 7/1) δ 9.96; MALDI-TOF MS m / z 954.69 ([M + H] + ); UV-vis (toluene, 1.0 x 10 -5 M) 421, 517, 550, 593, 647 nm

このようにして製造されるホスホン酸置換ポルフィリン化合物は、例えば、下記のようにして、ZrOCl2などの反応性金属化合物と反応させてクラスター化化合物に変換したり、第一アミンと反応させてホスホン酸塩化合物に変換したりすることで、有機太陽電池の増感剤や光重合開始剤などの機能性材料としての利用可能性が期待される。 The phosphonic acid-substituted porphyrin compound produced in this way can be converted into a clustered compound by reacting with a reactive metal compound such as ZrOCl 2 or reacted with a primary amine as described below. By converting it into an acid salt compound, it can be expected to be used as a functional material such as a sensitizer or a photopolymerization initiator for an organic solar cell.

Figure 2006248935
Figure 2006248935

実施例2:
化合物Aからの[5-ジフェニルホスフォリル-10,15,20-トリス(3,5-ジ-t-ブチルフェニル)ポルフィリナト]亜鉛-ボラン錯体(化合物J)の合成
化合物A(100 mg, 0.0942 mmol)、ジフェニルホスフィンボラン(37.5 mg, 0.188 mol)、PdCl2(dppf)(塩化パラジウムジフェニルホスフィンフェロセン錯体)(11.5 mg, 10mol%)、炭酸カリウム(52.1 mg, 0.376 mmol)をフラスコに入れて、容器内をアルゴンでチャージした。ここへ、ベンゾニトリル(5 mL)を加えて、混合物を室温で24時間、さらに50℃で2時間攪拌した。TLCにより化合物Aの消失を確認した後、混合物を減圧下で濃縮した後、残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/塩化メチレン/アセトン)で分離・精製することにより、化合物Jを5.2 mg得た(収率4.9%)。
Example 2:
Synthesis of [5-diphenylphosphoryl-10,15,20-tris (3,5-di-t-butylphenyl) porphyrinato] zinc-borane complex (Compound J) from Compound A Compound A (100 mg, 0.0942 mmol), diphenylphosphine borane (37.5 mg, 0.188 mol), PdCl 2 (dppf) (palladium chloride diphenylphosphine ferrocene complex) (11.5 mg, 10 mol%), potassium carbonate (52.1 mg, 0.376 mmol), The inside of the container was charged with argon. Benzonitrile (5 mL) was added thereto, and the mixture was stirred at room temperature for 24 hours and further at 50 ° C. for 2 hours. After confirming the disappearance of Compound A by TLC, the mixture was concentrated under reduced pressure, and the residue was separated and purified by silica gel column chromatography (developing solvent: hexane / methylene chloride / acetone) to obtain Compound J. mg was obtained (yield 4.9%).

化合物Jの物理化学的データは以下の通りである。
1H NMR (CDCl3): δ 1.52 (s, 36H), 1.57 (s, 18H), 7.35 (m, 4H), 7.43 (m, 2H), 7.74 (t, 2H, J = 2.0 Hz), 7.78 (t, 1H, J = 1.5 Hz), 7.80 (m, 4H), 7.96 (d, 4H, J = 2.0 Hz), 8.02 (d, 2H, J = 1.5 Hz), 8.66 (d, 2H, J = 4.8 Hz), 8.87 (d, 2H, J = 4.8 Hz), 8.93 (d, 2H, J = 4.8 Hz), 9.34 (d, 2H, J = 4.8Hz); MALDI-TOF MS m/z 1123.7 ([M-BH3]+, 100%); UV-vis (toluene, 5.5 x 10-6 M) 429, 556, 595, 639 nm
The physicochemical data of Compound J are as follows.
1 H NMR (CDCl 3 ): δ 1.52 (s, 36H), 1.57 (s, 18H), 7.35 (m, 4H), 7.43 (m, 2H), 7.74 (t, 2H, J = 2.0 Hz), 7.78 (t, 1H, J = 1.5 Hz), 7.80 (m, 4H), 7.96 (d, 4H, J = 2.0 Hz), 8.02 (d, 2H, J = 1.5 Hz), 8.66 (d, 2H, J = 4.8 Hz), 8.87 (d, 2H, J = 4.8 Hz), 8.93 (d, 2H, J = 4.8 Hz), 9.34 (d, 2H, J = 4.8 Hz); MALDI-TOF MS m / z 1123.7 ([ M-BH 3 ] + , 100%); UV-vis (toluene, 5.5 x 10 -6 M) 429, 556, 595, 639 nm

化合物Jは、例えば、下記のようにしてトリアルキルアミンと反応させることで、脱ボラン化すれば、ホスフィン置換ポルフィリン化合物Bに変換することができる。ホスフィン置換ポルフィリン化合物Bは、例えば、ハロゲン化アルキルと反応させることで、ホスホニウム塩置換ポルフィリン化合物Kに変換することができるし、ジハロゲン化アルキルと反応させることで、二量化ホスホニウム塩置換ポルフィリン化合物Lに変換することができるし、金属錯体と反応させることで、二量化金属錯体Mに変換することができる。   Compound J can be converted to phosphine-substituted porphyrin compound B if it is deboraneated by reacting with a trialkylamine as follows, for example. The phosphine-substituted porphyrin compound B can be converted into a phosphonium salt-substituted porphyrin compound K, for example, by reacting with an alkyl halide, or can be converted to a dimerized phosphonium salt-substituted porphyrin compound L by reacting with a dihalogenated alkyl. It can be converted to a dimerized metal complex M by reacting with a metal complex.

Figure 2006248935
Figure 2006248935

本発明は、各種のリン官能基をポルフィリン環に自在に導入することを可能にする、リン置換ポルフィリン化合物の新規な製造方法を提供することができる点において産業上の利用可能性を有する。   The present invention has industrial applicability in that it can provide a novel method for producing a phosphorus-substituted porphyrin compound that enables various phosphorus functional groups to be freely introduced into the porphyrin ring.

Claims (9)

ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることを特徴とするホスフィン置換ポルフィリン化合物の製造方法。   A method for producing a phosphine-substituted porphyrin compound, comprising: coupling a halogen-substituted porphyrin compound and a second phosphine using a transition metal as a catalyst. ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることで、ホスフィン置換ポルフィリン化合物を得た後、これを酸化反応に付することを特徴とするホスフィンオキシド置換ポルフィリン化合物の製造方法。   Production of a phosphine oxide-substituted porphyrin compound characterized in that a halogen-substituted porphyrin compound and a second phosphine are subjected to a coupling reaction using a transition metal as a catalyst to obtain a phosphine-substituted porphyrin compound, which is then subjected to an oxidation reaction. Method. ハロゲン置換ポルフィリン化合物と第二ホスフィンを、遷移金属を触媒としてカップリング反応させることで、ホスフィン置換ポルフィリン化合物を得た後、これを硫化反応に付することを特徴とするホスフィンスルフィド置換ポルフィリン化合物の製造方法。   Production of a phosphine sulfide-substituted porphyrin compound, wherein a halogen-substituted porphyrin compound and a second phosphine are subjected to a coupling reaction using a transition metal as a catalyst to obtain a phosphine-substituted porphyrin compound, which is then subjected to a sulfurization reaction. Method. ハロゲン置換ポルフィリン化合物と亜リン酸エステルを、遷移金属を触媒としてカップリング反応させることを特徴とするホスホン酸エステル置換ポルフィリン化合物の製造方法。   A method for producing a phosphonate ester-substituted porphyrin compound, comprising: coupling a halogen-substituted porphyrin compound and a phosphite ester using a transition metal as a catalyst. ハロゲン置換ポルフィリン化合物と亜リン酸エステルを、遷移金属を触媒としてカップリング反応させることで、ホスホン酸エステル置換ポルフィリン化合物を得た後、これを脱エステル化反応に付することを特徴とするホスホン酸置換ポルフィリン化合物の製造方法。   A phosphonic acid characterized in that a halogenated porphyrin compound and a phosphite are subjected to a coupling reaction using a transition metal as a catalyst to obtain a phosphonic acid ester-substituted porphyrin compound, which is then subjected to a deesterification reaction. A method for producing a substituted porphyrin compound. ハロゲン置換ポルフィリン化合物がZn錯体またはNi錯体の形態であることを特徴とする請求項1乃至5のいずれかに記載の製造方法。   6. The production method according to claim 1, wherein the halogen-substituted porphyrin compound is in the form of a Zn complex or a Ni complex. 遷移金属が第8属〜第11属の第4周期〜第6周期に属する遷移金属であることを特徴とする請求項1乃至6のいずれかに記載の製造方法。   7. The production method according to claim 1, wherein the transition metal is a transition metal belonging to Group 4 to Group 6 of Group 8 to Group 11. 置換位置がポルフィリン環のメソ位であることを特徴とする請求項1乃至7のいずれかに記載の製造方法。   8. The production method according to claim 1, wherein the substitution position is a meso position of the porphyrin ring. 下記の一般式(1)で表されることを特徴とするリン置換ポルフィリン化合物。
Figure 2006248935
[式中、Mは2個の水素原子、配位子を有していてもよい金属原子を示す。R5は、-PR21R22、-P(0)R23R24、-P(S)R25R26、-P(O)(OR27)(OR28)、-P(O)(OH)2から選ばれるリン官能基を示す。R2、R3、R7、R8、R10、R12、R13、R15、R17、R18、R20は、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、-COR29を示す。R2、R3、R7、R8、R10、R12、R13、R15、R17、R18、R20は、同一または異なって、隣接する置換基と一緒になって、酸素原子、硫黄原子、窒素原子から選ばれる少なくとも1つのヘテロ原子を含んでいてもよい連結基を形成して互いに連結することで5員環〜7員環を形成してもよい。R21、R22、R23、R24、R25、R26、R27、R28は、同一または異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基を示す。R29は置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいヘテロアリールアルキル基、置換基を有していてもよいアルコキシ基を示す。]
A phosphorus-substituted porphyrin compound represented by the following general formula (1):
Figure 2006248935
[Wherein M represents a metal atom optionally having two hydrogen atoms and a ligand. R 5 is -PR 21 R 22 , -P (0) R 23 R 24 , -P (S) R 25 R 26 , -P (O) (OR 27 ) (OR 28 ), -P (O) ( OH) represents a phosphorus functional group selected from 2 R 2 , R 3 , R 7 , R 8 , R 10 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 may be the same or different and may have a hydrogen atom or a substituent. A good alkyl group, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, a hetero which may have a substituent An aryl group, an arylalkyl group which may have a substituent, a heteroarylalkyl group which may have a substituent, and —COR 29 are shown. R 2 , R 3 , R 7 , R 8 , R 10 , R 12 , R 13 , R 15 , R 17 , R 18 , R 20 are the same or different and together with adjacent substituents, oxygen A 5-membered to 7-membered ring may be formed by forming a linking group that may contain at least one heteroatom selected from an atom, a sulfur atom, and a nitrogen atom and linking each other. R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 may be the same or different and may have an alkyl group or a substituent which may have a substituent. A preferable aryl group, a heteroaryl group which may have a substituent, an arylalkyl group which may have a substituent, and a heteroarylalkyl group which may have a substituent are shown. R 29 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or an aryl which may have a substituent. An alkyl group, a heteroarylalkyl group which may have a substituent, and an alkoxy group which may have a substituent are shown. ]
JP2005065121A 2005-03-09 2005-03-09 Method for producing phosphorus-substituted porphyrin compound Pending JP2006248935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065121A JP2006248935A (en) 2005-03-09 2005-03-09 Method for producing phosphorus-substituted porphyrin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065121A JP2006248935A (en) 2005-03-09 2005-03-09 Method for producing phosphorus-substituted porphyrin compound

Publications (1)

Publication Number Publication Date
JP2006248935A true JP2006248935A (en) 2006-09-21

Family

ID=37089802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065121A Pending JP2006248935A (en) 2005-03-09 2005-03-09 Method for producing phosphorus-substituted porphyrin compound

Country Status (1)

Country Link
JP (1) JP2006248935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046697A (en) * 2009-07-30 2011-03-10 Mitsubishi Chemicals Corp New phosphine compound, electrode buffer material, and photoelectric conversion element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046697A (en) * 2009-07-30 2011-03-10 Mitsubishi Chemicals Corp New phosphine compound, electrode buffer material, and photoelectric conversion element using the same

Similar Documents

Publication Publication Date Title
Yam et al. A Novel High‐Nuclearity Luminescent Gold (i)–Sulfido Complex
RU2719592C2 (en) Acylphosphate production method
Recsei et al. Synthesis of modified binol-phosphoramidites
JP2010195703A (en) New molybdenum complex
WO2013121664A1 (en) Intermediate for acenedichalcogenophene derivative and method for synthesizing same
Kumar et al. Structures, preparation and catalytic activity of ruthenium cyclopentadienyl complexes based on pyridyl-phosphine ligand
JP2006248935A (en) Method for producing phosphorus-substituted porphyrin compound
Eryazici et al. Construction of hexanuclear macrocycles by a coupling strategy from polyfunctionalized bis (terpyridines)
JP2020007232A (en) Novel triborylalkene, production method thereof, and production method of multisubstituted alkene
Durka et al. Formation of dilithiated bis-(1H-pyrazol-1-yl) alkanes and their application in the synthesis of diboronic acids
CN111039767B (en) Method for preparing deuterated aldehyde by using triazole carbene as catalyst
Suzuki et al. Ru (II) complexes with new redox-active 1, 10-phenanthroline derivatives: structural, spectral, and electrochemical investigations
CN110272372B (en) Preparation method of 3-indole thioether compound
Li et al. Heterobimetallic Pt (II)–M (I)(M= Cu, Ag) eight-membered macrocyclic complexes with large-bite P, N-ligand bridges
FR2961813A1 (en) SUPPORTED LIGANDS WITH HIGH LOCAL DENSITY OF COORDINATING ATOMS
Chang et al. Dinuclear palladium–azido complexes containing thiophene derivatives: reactivity toward organic isocyanides and isothiocyanates
JP5407332B2 (en) Method for producing quarterpyridine derivative and its intermediate
JP2007238570A (en) Phosphole compound, method for preparing the same, and cyclic phosphole compound
JP6202431B2 (en) Cage-type silsesquioxane derivatives
CN111377963B (en) Method for preparing thiophosphine compound through visible light-promoted dehydrogenation coupling reaction
US11254650B1 (en) Use of pnictogenium compounds in carbon-carbon bond formation
JP2023176740A (en) Method for producing organic phosphorus compound
CN115960142A (en) Metal heterocyclic compound containing intra-ring osmium ethylene bond and synthesis method and application thereof
Postigo et al. Synthesis and reactivity of imido niobium complexes containing the functionalized (dichloromethylsilyl) cyclopentadienyl ligand
Kerns Synthesis and metallation of a novel anthracene ligand architecture for development of structural models of mono [Fe]-hydrogenase

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A977 Report on retrieval

Effective date: 20091014

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302