JP2010195703A - New molybdenum complex - Google Patents

New molybdenum complex Download PDF

Info

Publication number
JP2010195703A
JP2010195703A JP2009041282A JP2009041282A JP2010195703A JP 2010195703 A JP2010195703 A JP 2010195703A JP 2009041282 A JP2009041282 A JP 2009041282A JP 2009041282 A JP2009041282 A JP 2009041282A JP 2010195703 A JP2010195703 A JP 2010195703A
Authority
JP
Japan
Prior art keywords
group
molybdenum complex
ligand
cyclic
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041282A
Other languages
Japanese (ja)
Other versions
JP5358217B2 (en
Inventor
Harumichi Nakanishi
治通 中西
Norihiko Nakamura
徳彦 中村
Hidekazu Arikawa
英一 有川
Hitoaki Nishibayashi
仁昭 西林
Kazuya Arashiba
和也 荒芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2009041282A priority Critical patent/JP5358217B2/en
Publication of JP2010195703A publication Critical patent/JP2010195703A/en
Application granted granted Critical
Publication of JP5358217B2 publication Critical patent/JP5358217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new compound employable as a catalyst for synthesizing ammonia from nitrogen without requiring formation of hydrogen and to provide a production method and a use method of such an ammonia synthesis catalyst and an intermediate compound used for the production of such an ammonia synthesis catalyst. <P>SOLUTION: For example, a molybdenum complex of a structure represented by formula (II) is exemplified. In the formula,<SP>i</SP>Pr denotes i-propyl; Me denotes methyl; and Ph denotes phenyl. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規なモリブデン錯体に関する。特に本発明は、水素を経由せずにアンモニアを合成するためのアンモニア合成触媒として用いることができる新規なモリブデン錯体に関する。また、本発明は、このような錯体の製造方法、使用方法、及び中間体に関する。   The present invention relates to a novel molybdenum complex. In particular, the present invention relates to a novel molybdenum complex that can be used as an ammonia synthesis catalyst for synthesizing ammonia without going through hydrogen. The present invention also relates to methods for producing and using such complexes, and intermediates.

アンモニアの化学合成は、約100年前にドイツの研究者ハーバーとボッシュが初めて大量生産に成功した。ハーバー−ボッシュ合成法は、下記の式に示す反応であり、簡便で且つ比較的効率も高いので、現在も基本的には変更されずに用いられている:
+3H→3NH (約400℃)
The chemical synthesis of ammonia was first successful in mass production about 100 years ago by German researchers Haber and Bosch. The Harbor-Bosch synthesis method is a reaction represented by the following formula, and is simple and relatively high in efficiency. Therefore, it is still used basically without change:
N 2 + 3H 2 → 3NH 3 (about 400 ° C.)

このようなアンモニアの合成のための水素は、従来、メタン(CH)を主成分とする天然ガスを用いて得られている。また、このようなアンモニアの合成のための水素を水の電気分解によって得ることも提案されている。しかしながらいずれの場合にも、水素の生成には大きなエネルギーが必要とされている。 Conventionally, hydrogen for the synthesis of ammonia has been obtained using natural gas mainly composed of methane (CH 4 ). It has also been proposed to obtain hydrogen for the synthesis of ammonia by electrolysis of water. However, in either case, a large amount of energy is required to generate hydrogen.

したがって、水素の生成を経由せずにアンモニアを合成することが検討されている。例えば、非特許文献1では、補助的な官能基として1,1’−ビス(ジエチルホスフィノ)フェロセンを有するタングステン又はモリブデンの二窒素錯体を、室温においてメタノール中で過剰量の硫酸と反応させることによって、アンモニアを生成することを提案している。   Therefore, it has been studied to synthesize ammonia without going through production of hydrogen. For example, in Non-Patent Document 1, a tungsten or molybdenum dinitrogen complex having 1,1′-bis (diethylphosphino) ferrocene as an auxiliary functional group is reacted with an excess amount of sulfuric acid in methanol at room temperature. Proposed to produce ammonia.

Masahiro Yuki, Yoshihiro Miyake and Yoshiaki Nishibayashi, Organometallics, 2008, 27 (15), pp3947−3953 ”Synthesis and Reactivity of Tungsten−and Molybdenum−Dinitrogen Complexes Bearing Ferrocenyldiphosphines toward Protonolysis”Masahiro Yuki, Yoshihiro Miyake and Yoshiaki Nishibayashi, Organometallics, 2008, 27 (15), pp3947-3953 "Synthesis and Reactivity of Tungsten-and Molybdenum-Dinitrogen Complexes Bearing Ferrocenyldiphosphines toward Protonolysis"

上記記載のように、水素の生成を経由せずにアンモニアを合成することが検討されている。したがって、本発明では、水素の生成を経由せずに、窒素からアンモニアを合成するための触媒として使用できる新規な錯体を提供する。また、本発明は、このような錯体の製造方法、使用方法、及び中間体を提供する。   As described above, it has been studied to synthesize ammonia without going through the production of hydrogen. Therefore, the present invention provides a novel complex that can be used as a catalyst for synthesizing ammonia from nitrogen without going through hydrogen generation. The present invention also provides methods for producing, using, and intermediates for such complexes.

本発明は、特定のモリブデン錯体によって、水素の生成を経由せずに、窒素からアンモニアを合成できることを見出してなされたものであり、本発明は、このようなモリブデン錯体及びその製造方法、このようなモリブデン錯体の前駆体及びその製造方法、並びにこのようなモリブデン錯体を用いる水素の製造方法である。   The present invention has been made by discovering that specific molybdenum complexes can synthesize ammonia from nitrogen without going through the production of hydrogen, and the present invention provides such a molybdenum complex, a method for producing the same, and the like. And a method for producing the same, and a method for producing hydrogen using such a molybdenum complex.

本発明によれば、本発明のモリブデン錯体を触媒として使用することによって、水素の生成を経由せずに、効果的に窒素からアンモニアを合成することができる。   According to the present invention, ammonia can be effectively synthesized from nitrogen without using hydrogen generation by using the molybdenum complex of the present invention as a catalyst.

《本発明の第1のモリブデン錯体(触媒)》
本発明の第1のモリブデン錯体は、水素の生成を経由せずに、窒素からアンモニアを合成するための触媒として用いることができるものであり、下記の式(I)を有する:
<< First Molybdenum Complex (Catalyst) of the Present Invention >>
The first molybdenum complex of the present invention can be used as a catalyst for synthesizing ammonia from nitrogen without going through hydrogen generation, and has the following formula (I):

Figure 2010195703
Figure 2010195703

上記式(I)において、及びR〜Rはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。ここで、RとR、及び/又はRとRは、互いに結合して環を形成していてもよい。また、PRとPRとは、同じであっても異なっていてもよい。また更に、R〜Rは全て同じでも、少なくとも一部が異なっていてもよい。 In the above formula (I), R 1 to R 4 are each independently selected from the group consisting of hydrogen and a C 1 to C 14 chain, cyclic or branched hydrocarbon group. Here, R 1 and R 2 and / or R 3 and R 4 may be bonded to each other to form a ring. Moreover, PR 1 R 2 and PR 3 R 4 may be the same or different. Furthermore, R 1 to R 4 may all be the same or at least partially different.

上記式(I)において、Rは随意に、芳香環の1〜3個の水素を置換している基であり、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。ここで、Rは存在せず、芳香環が無置換であってもよい。また、Rが2又は3個存在する場合には、これらのRが互いに結合して環を形成していてもよい。また更に、Rが2又は3個存在する場合には、これらは、全て同じでも、少なくとも一部が異なっていてもよい。 In the above formula (I), R a is a group that optionally substitutes 1 to 3 hydrogens of the aromatic ring, and consists of a C 1 -C 14 chain, cyclic or branched hydrocarbon group. Selected from the group. Here, R a is absent, the aromatic ring may be unsubstituted. Further, when two or three R a are present, these R a may be bonded to each other to form a ring. Furthermore, when two or three R a are present, these may be all the same or at least partially different.

上記式(I)において、Lは、リンを配位部分として有する配位子、窒素を配位部分として有する配位子、及び二窒素を配位部分として有する配位子からなる群より選択される。 In the above formula (I), L 1 is selected from the group consisting of a ligand having phosphorus as a coordination moiety, a ligand having nitrogen as a coordination moiety, and a ligand having dinitrogen as a coordination moiety. Is done.

具体的には、本発明の第1のモリブデン錯体は、下記の式(II)〜(IV)のいずれかを有することができる:   Specifically, the first molybdenum complex of the present invention can have any of the following formulas (II) to (IV):

Figure 2010195703
Figure 2010195703

Figure 2010195703
Figure 2010195703

Figure 2010195703
Figure 2010195703

(式(II)〜(IV)において、Prはi−プロピル、Meはメチル、Phはフェニルを表す)。 (In formulas (II) to (IV), i Pr represents i-propyl, Me represents methyl, and Ph represents phenyl).

《本発明の第1のモリブデン錯体(触媒)の製造方法》
上記式(I)〜(IV)を有する本発明の第1のモリブデン錯体は、下記の式(V)を有するモリブデン錯体の配位子L〜Lのうちの3つを、下記の式(VI)を有するピンサー型配位子によって置換することを含む方法によって製造することができる:
<< Method for Producing the First Molybdenum Complex (Catalyst) of the Present Invention >>
The first molybdenum complex of the present invention having the above formulas (I) to (IV) is obtained by converting three of the ligands L 1 to L 4 of the molybdenum complex having the following formula (V) into the following formula: It can be prepared by a process comprising substitution with a pincer ligand having (VI):

Figure 2010195703
Figure 2010195703

(L〜Lはそれぞれ独立に、リンを配位部分として有する配位子、窒素を配位部分として有する配位子、及び二窒素を配位部分として有する配位子からなる群より選択される); (L 1 to L 4 are each independently selected from the group consisting of a ligand having phosphorus as a coordination moiety, a ligand having nitrogen as a coordination moiety, and a ligand having dinitrogen as a coordination moiety. );

Figure 2010195703
Figure 2010195703

(R〜R及びRは、式(I)に関して上記記載のとおりである)。 (R 1 -R 4 and R a are as described above with respect to formula (I)).

《本発明の第2のモリブデン錯体(前駆体)》
本発明の第2のモリブデン錯体は、本発明の第1のモリブデン錯体の前駆体として使用できるものであり、下記の式(VII)を有する:
<< Second Molybdenum Complex (Precursor) of the Present Invention >>
The second molybdenum complex of the present invention can be used as a precursor of the first molybdenum complex of the present invention and has the following formula (VII):

Figure 2010195703
Figure 2010195703

(R〜R及びRは、式(I)に関して上記記載のとおりであり、且つ
〜Xはそれぞれ独立に、フッ素、塩素、臭素及びヨウ素からなる群より選択される)。
(R 1 -R 4 and R a are as described above with respect to formula (I), and X 1 -X 3 are each independently selected from the group consisting of fluorine, chlorine, bromine and iodine).

《本発明の第2のモリブデン錯体(前駆体)の製造方法》
本発明の第2のモリブデン錯体は、下記の式(VIII)を有するモリブデン錯体の配位子Y〜Yを、下記の式(VI)を有するピンサー型配位子によって置換することを含む方法によって製造することができる:
<< Method for Producing Second Molybdenum Complex (Precursor) of the Present Invention >>
The second molybdenum complex of the present invention includes replacing the ligands Y 1 to Y 3 of the molybdenum complex having the following formula (VIII) with a pincer-type ligand having the following formula (VI). Can be produced by the method:

Figure 2010195703
Figure 2010195703

(X〜Xはそれぞれ独立に、フッ素、塩素、臭素及びヨウ素からなる群より選択され、且つ
〜Yはそれぞれ独立に、ピンサー型配位子によって置換できる配位子、例えばテトラヒドロフランである);
(X 1 to X 3 are each independently selected from the group consisting of fluorine, chlorine, bromine and iodine, and Y 1 to Y 3 are each independently a ligand that can be substituted by a pincer ligand, such as tetrahydrofuran. );

Figure 2010195703
Figure 2010195703

(R〜R及びRは、式(I)に関して上記記載のとおりである)。 (R 1 -R 4 and R a are as described above with respect to formula (I)).

《本発明の第2のモリブデン錯体(前駆体)からの本発明の第1のモリブデン錯体(触媒)の製造方法》
本発明の第1のモリブデン錯体は、本発明の第2のモリブデン錯体の配位子X〜Xのうちの2つを、二窒素配位子で置換することを含む方法によって製造することができる。
<< Method for Producing the First Molybdenum Complex (Catalyst) of the Present Invention from the Second Molybdenum Complex (Precursor) of the Present Invention >>
The first molybdenum complex of the present invention is produced by a method comprising substituting two of the ligands X 1 to X 3 of the second molybdenum complex of the present invention with a dinitrogen ligand. Can do.

《シリルアミン及び/又はアンモニアの合成》
シリルアミンを製造する本発明の方法は、上記式(I)〜(IV)のいずれかの本発明の第1のモリブデン錯体を触媒として用いて、下記の式で表す反応によってシリルクロリドからシリルアミンを生成することを含む:
SiRCl + 1/2N + Na
→ N(SiR + NaCl
<< Synthesis of silylamine and / or ammonia >>
In the method of the present invention for producing silylamine, silylamine is produced from silyl chloride by the reaction represented by the following formula using the first molybdenum complex of any one of the above formulas (I) to (IV) as a catalyst. Including:
SiR p R q R r Cl + 1 / 2N 2 + Na
→ N (SiR p R q R r ) 3 + NaCl

この反応においてR、R及びRはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。ここで、R、R及びRのうちの2又は3個が互いに結合して環を形成していてもよい。また、R、R及びRは全て同じでも、少なくとも一部が異なっていてもよい。 In this reaction, R p , R q and R r are each independently selected from the group consisting of hydrogen and a C 1 -C 14 chain, cyclic or branched hydrocarbon group. Here, two or three of R p , R q and R r may be bonded to each other to form a ring. R p , R q and R r may all be the same or at least partially different.

シリルアミンを製造するこの方法は、テトラヒドロフラン等の非水溶媒中で、窒素雰囲気雰囲気において、穏やかな条件で行うことができ、例えば室温において行うことができる。   This method for producing silylamine can be carried out in a non-aqueous solvent such as tetrahydrofuran in a nitrogen atmosphere under mild conditions, for example at room temperature.

また、アンモニアを製造する本発明の方法は、シリルアミンを製造する本発明の方法でのようにしてシリルアミンを得、そしてこのようにして得られたシリルアミンを下記の式で表す反応によって加水分解することを含む:
N(SiR + 3H
→ 3SiR(OH) + NH
(R、R及びRは上記記載のとおりである)。
Also, the method of the present invention for producing ammonia comprises obtaining silylamine as in the method of the present invention for producing silylamine, and hydrolyzing the silylamine thus obtained by a reaction represented by the following formula: including:
N (SiR p R q R r ) 3 + 3H 2 O
→ 3SiR p R q R r (OH) + NH 3
(R p , R q and R r are as described above).

アンモニアを製造するこの方法は例えば、過剰量の硫酸及び水をシリルアミンに加えることによって行うことができる。   This method of producing ammonia can be performed, for example, by adding an excess of sulfuric acid and water to the silylamine.

《定義》
本発明において「リンを配位部分として有する配位子」は例えば、式PRで表される配位子であり、R、R、及びRはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。ここで、R、R、及びRはのうちの2又は3個が互いに結合して環を形成していてもよい。また、R〜Rは全て同じでも、少なくとも一部が異なっていてもよい。
Definition
In the present invention, the “ligand having phosphorus as a coordination moiety” is, for example, a ligand represented by the formula PR 5 R 6 R 7 , and R 5 , R 6 , and R 7 are each independently hydrogen , And C 1 -C 14 chain, cyclic or branched hydrocarbon groups. Here, two or three of R 5 , R 6 and R 7 may be bonded to each other to form a ring. R 5 to R 7 may all be the same or at least partially different.

したがって例えば、「PR」で表される配位子としては、第三級ホスフィン、例えばトリメチルホスフィンのようなトリアルキルホスフィン、トリフェニルホスフィンのようなトリアリールホスフィン、及びメチルジフェニルホスフィン及びジメチルフェニルホスフィンのようなアルキルアリールホスフィンを選択することができる。 Thus, for example, ligands represented by “PR 5 R 6 R 7 ” include tertiary phosphines such as trialkylphosphine such as trimethylphosphine, triarylphosphine such as triphenylphosphine, and methyldiphenylphosphine. And alkylaryl phosphines such as dimethylphenylphosphine can be selected.

本発明において「窒素を配位部分として有する配位子」は例えば、式NRで表される配位子であり、ここで、R及びRはそれぞれ独立に、水素、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。ここで、R及びRは互いに結合して環を形成していてもよい。また、R及びRは同じでも、異なっていてもよい。 In the present invention, the “ligand having nitrogen as a coordination moiety” is, for example, a ligand represented by the formula NR 8 R 9 , wherein R 8 and R 9 are each independently hydrogen, C 1 -C 14 chain is selected from the group consisting of cyclic or branched hydrocarbon group. Here, R 8 and R 9 may be bonded to each other to form a ring. R 8 and R 9 may be the same or different.

したがって例えば、「NR」で表される配位子としては、アニリンのような含窒素芳香族を選択することができる。 Therefore, for example, as the ligand represented by “NR 8 R 9 ”, a nitrogen-containing aromatic such as aniline can be selected.

本発明において「二窒素を配位部分として有する配位子」は例えば、式NNR10で表される配位子であり、ここで、R10は、結合、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される。 In the present invention, the “ligand having dinitrogen as a coordination moiety” is, for example, a ligand represented by the formula NNR 10 , wherein R 10 is a bond, hydrogen, and C 1 to C 14 . It is selected from the group consisting of chain, cyclic or branched hydrocarbon groups.

したがって例えば、「NNR10」で表される配位子としては、二窒素(NN、すなわちR10は結合)を選択することができ、この二窒素を介して錯体が二量体を形成するようにしてもよい。 Thus, for example, dinitrogen (NN, ie, R 10 is a bond) can be selected as the ligand represented by “NNR 10 ”, and the complex forms a dimer via this dinitrogen. It may be.

本発明において、「C〜C14の鎖状、環状又は分岐状の炭化水素基」は、限定されるものではないが、C〜Cのアルキル基、C〜Cのアルケニル基、C〜Cのアルキニル基、C〜Cのアルキニル基、C〜Cのシクロアルキル基、C〜Cのシクロアルケニル基、C〜Cのシクロアルキニル基、及びC〜C14のアリール基からなる群より選択することができる。 In the present invention, the “C 1 -C 14 chain, cyclic or branched hydrocarbon group” is not limited, but is a C 1 -C 6 alkyl group, a C 2 -C 6 alkenyl group. , C 2 -C 6 alkynyl group, C 2 -C 6 alkynyl group, C 3 -C cycloalkyl group 6, C 3 -C cycloalkenyl group 6, cycloalkynyl group C 3 -C 6 and, It can be selected from the group consisting of C 6 -C 14 aryl groups.

本発明において「C〜Cのアルキル基」としては、限定されるものではないが、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、i−ブチル、ペンチル、イソペンチル、ヘキシル、イソヘキシル等を挙げることができる。 In the present invention, the “C 1 -C 6 alkyl group” is not limited, but methyl, ethyl, propyl, i-propyl, butyl, t-butyl, i-butyl, pentyl, isopentyl, hexyl, An isohexyl etc. can be mentioned.

本発明において「C〜Cのアルケニル基」としては、限定されるものではないが、ビニル、1−プロペニル、2−プロペニル、アリル、i−プロペニル、1,3−ブタジエニル、1−ブテニル、ペンテニル、ヘキセニル等を挙げることができる。 In the present invention, the “C 2 -C 6 alkenyl group” is not limited, but vinyl, 1-propenyl, 2-propenyl, allyl, i-propenyl, 1,3-butadienyl, 1-butenyl, Examples include pentenyl and hexenyl.

本発明において「C〜Cのアルキニル基」としては、限定されるものではないが、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、1−ペンチニル、2−ペンチニル等を挙げることができる。 In the present invention, examples of the “C 2 -C 6 alkynyl group” include, but are not limited to, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl and the like. be able to.

本発明において「C〜Cのシクロアルキル基」としては、限定されるものではないが、置換又は非置換のシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を挙げることができる。 In the present invention, examples of the “C 3 -C 6 cycloalkyl group” include, but are not limited to, substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

本発明において「C〜Cのシクロアルケニル基」としては、限定されるものではないが、置換又は非置換のシクロプロピエニル、シクロブタジエニル、シクロペンタジエニル、シクロヘキセニル等を挙げることができる。 In the present invention, examples of the “C 3 -C 6 cycloalkenyl group” include, but are not limited to, substituted or unsubstituted cyclopropienyl, cyclobutadienyl, cyclopentadienyl, cyclohexenyl and the like. Can do.

本発明において「C〜Cのシクロアルキニル基」としては、限定されるものではないが、置換又は非置換のシクロプロピニル、シクロブチニル、シクロペンチニル、シクロヘキシニル等を挙げることができる。 In the present invention, examples of the “C 3 -C 6 cycloalkynyl group” include, but are not limited to, substituted or unsubstituted cyclopropynyl, cyclobutynyl, cyclopentynyl, cyclohexynyl and the like.

本発明において「C〜C14のアリール基」としては、限定されるものではないが、置換又は非置換のフェニル、ナフチル、アントラセニル、フェナントレニル等を挙げることができる。 In the present invention, examples of the “C 6 -C 14 aryl group” include, but are not limited to, substituted or unsubstituted phenyl, naphthyl, anthracenyl, phenanthrenyl and the like.

実施例1:本発明の第1のモリブデン錯体(触媒)(trans−[Mo(N(PMePh)(PrPNP)](PrPNP=2,6−ビス(ジ−iso−プロピルホスフィノメチル)ピリジン))の合成
窒素雰囲気下、50mLシュレンクに、モリブデン窒素錯体trans−[Mo(N(PMePh](260.1mg,0.273mmol,IR(KBr,cm−1):1932cm−1(VNN))を加え、テトラヒドロフラン(THF)(20mL)に溶解させた後、ピンサー型配位子であるPrPNP(126.9mg,0.374mmol)を加えて50℃で1日間攪拌する。得られた暗い紫色の溶液を、真空下で溶媒を留去した後、ジエチルエーテルで洗浄することで、標題のモリブデン錯体が、紫色の固体(65.6mg,0.095mmol,収率35%)として得られる。この合成の全反応は、下記に示すようなものである:
Example 1 First Molybdenum Complex (Catalyst) of the Present Invention (trans- [Mo (N 2 ) 2 (PMePh 2 ) ( i PrPNP)] ( i PrPNP = 2,6-bis (di-iso-propylphosphine) Synthesis of Finomethyl) pyridine)) In a nitrogen atmosphere, 50 mL Schlenk was subjected to molybdenum nitrogen complex trans- [Mo (N 2 ) 2 (PMePh 2 ) 4 ] (260.1 mg, 0.273 mmol, IR (KBr, cm −1). ): 1932cm -1 to (V NN)) was added, was dissolved in tetrahydrofuran (THF) (20mL), i PrPNP (126.9mg a pincer ligand, 0.374 mmol) at 50 ° C. by adding Stir for 1 day. The resulting dark purple solution was distilled off under vacuum and then washed with diethyl ether to give the title molybdenum complex a purple solid (65.6 mg, 0.095 mmol, 35% yield). As obtained. The overall reaction of this synthesis is as shown below:

Figure 2010195703
Figure 2010195703

生成物についての分析結果を下記に示す:   The analytical results for the product are shown below:

31P{H}NMR(C):δ 72.4(d,PP=5.5Hz,PrPNP,2P),41.6(t,PP=5.5Hz,PMePh,1P)。
H NMR(C):δ 7.89−7.83(m,4H),7.25−7.18(m,4H),7.09−7.03(m,2H),6.82−6.69(m,3H),3.13−3.11(m,C Pr,4H),2.33(d,PH=4.9Hz,PMePh,3H),2.00−1.85(m,CMe,4H),1.13−1.05(m,CHMe ,12H),0.92−0.85(m,CHMe ,12H)。
IR(KBr):1912cm−1(vN≡N)。
31 P { 1 H} NMR (C 6 D 6 ): δ 72.4 (d, 2 J PP = 5.5 Hz, i PrPNP, 2P), 41.6 (t, 2 J PP = 5.5 Hz, PMePh 2 , 1P).
1 H NMR (C 6 D 6 ): δ 7.89-7.83 (m, 4H), 7.25-7.18 (m, 4H), 7.09-7.03 (m, 2H), 6.82-6.69 (m, 3H), 3.13-3.11 (m, C H 2 P i Pr 2, 4H), 2.33 (d, 2 J PH = 4.9Hz, P Me Ph 2, 3H), 2.00-1.85 ( m, C H Me 2, 4H), 1.13-1.05 (m, CH Me 2, 12H), 0.92-0.85 (m , CH Me 2 , 12H).
IR (KBr): 1912 cm −1 (v N≡N ).

実施例2:本発明の第2のモリブデン錯体(前駆体)([MoClBuPNP)](BuPNP=2,6−ビス(ジ−tert−ブチルホスフィノメチル)ピリジン)の合成
窒素雰囲気下、20mLシュレンクに、モリブデン錯体[MoCl(thf)](56.3mg,0.134mmol)及びBuPNP(60.2mg,0.152mmol)を加え、THF(5mL)を加えて50℃で20時間攪拌する。反応後、真空下で溶媒を留去することで、黄褐色の固体が得られる。これを塩化メチレン(4mL)で抽出し、その抽出液にゆっくりとヘキサンを加えて二層再結晶を行うことで得られる橙色結晶を真空乾燥することで、標題のモリブデン錯体が褐色の固体(66.0mg,0.110mmol,収率82%)として得られる。この合成の全反応は、下記に示すようなものである:
Example 2 Synthesis of Second Molybdenum Complex (Precursor) of the Present Invention ([MoCl 3 ( t BuPNP)] ( t BuPNP = 2,6-bis (di-tert-butylphosphinomethyl) pyridine) Nitrogen Atmosphere Then, molybdenum complex [MoCl 3 (thf) 3 ] (56.3 mg, 0.134 mmol) and i BuPNP (60.2 mg, 0.152 mmol) were added to 20 mL Schlenk, and THF (5 mL) was added at 50 ° C. After the reaction, the solvent is distilled off under vacuum to obtain a tan solid, which is extracted with methylene chloride (4 mL), and hexane is slowly added to the extract to form two layers. The orange crystals obtained by recrystallization are vacuum dried to give the title molybdenum complex a brown solid (66.0 mg, 0.110 mmol, yield 8). %) Is obtained as the total reaction of the synthesis is as shown below.:

Figure 2010195703
Figure 2010195703

上記反応式において、Buはt−ブチル基であり、thfはテトラヒドロフランである。 In the above reaction formula, t Bu is a t-butyl group and thf is tetrahydrofuran.

標題のモリブデン錯体の立体構造及び結晶学的データを下記に示す。   The steric structure and crystallographic data of the title molybdenum complex are shown below.

Figure 2010195703
Figure 2010195703

Figure 2010195703
Figure 2010195703

実施例3:本発明の第2のモリブデン錯体(前駆体)を用いた本発明の第1のモリブデン錯体(触媒)の合成
実施例2で得られた本発明の第2のモリブデン錯体を前駆体として用いて、本発明の第1のモリブデン錯体を合成する。この合成においては、実施例2で得られたモリブデン錯体を、テトラヒドロフラン溶媒中で、6当量のNa−Hgアマルガム及び過剰量のピリジンと混合し、室温で一晩にわたって撹拌して、本発明の錯体を合成した。この合成の全反応は下記に示すようなものである。
Example 3: Synthesis of the first molybdenum complex (catalyst) of the present invention using the second molybdenum complex (precursor) of the present invention The precursor of the second molybdenum complex of the present invention obtained in Example 2 To synthesize the first molybdenum complex of the present invention. In this synthesis, the molybdenum complex obtained in Example 2 is mixed with 6 equivalents of Na-Hg amalgam and excess pyridine in tetrahydrofuran solvent and stirred overnight at room temperature to give the complex of the invention. Was synthesized. The overall reaction of this synthesis is as shown below.

Figure 2010195703
Figure 2010195703

実施例4:本発明の第1のモリブデン錯体によるアンモニアの合成
常圧の窒素雰囲気において、テトラヒドロフラン40mL中で、実施例1で得られた触媒量(0.015mmol)のモリブデン錯体を、過剰量のナトリウム(60mmol)及びトリメチルシリルクロリド(60mmol)と室温で混合した。下記に示す反応によって、トリメチルシリルクロリドからトリメチルシリルアミンが生成されることを確認した:
Si(CHCl + 1/2N + Na
→ N(Si(CH + NaCl
Example 4 Synthesis of Ammonia with the First Molybdenum Complex of the Present Invention In an atmospheric pressure nitrogen atmosphere, the catalyst amount (0.015 mmol) of the molybdenum complex obtained in Example 1 was added in an excess amount in 40 mL of tetrahydrofuran. Mixed with sodium (60 mmol) and trimethylsilyl chloride (60 mmol) at room temperature. It was confirmed that trimethylsilylamine was produced from trimethylsilyl chloride by the reaction shown below:
Si (CH 3) 3 Cl + 1 / 2N 2 + Na
→ N (Si (CH 3 ) 3 ) 3 + NaCl

また、上記のようにして得たトリメチルシリルアミンに水を加え、トリメチルシリルアミンが下記に示す反応で加水分解してアンモニアを生成することを確認した:
N(Si(CH + 3H
→ 3Si(CH(OH) + NH
Further, water was added to the trimethylsilylamine obtained as described above, and it was confirmed that trimethylsilylamine was hydrolyzed by the following reaction to produce ammonia:
N (Si (CH 3 ) 3 ) 3 + 3H 2 O
→ 3Si (CH 3 ) 3 (OH) + NH 3

Claims (8)

下記の式(I)を有する、モリブデン錯体:
Figure 2010195703
(R〜Rはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、
は随意に、芳香環の1〜3個の水素を置換している基であり、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、且つ
は、リンを配位部分として有する配位子、窒素を配位部分として有する配位子、及び二窒素を配位部分として有する配位子からなる群より選択される)。
Molybdenum complex having the following formula (I):
Figure 2010195703
(R 1 to R 4 are each independently selected from the group consisting of hydrogen and a C 1 to C 14 chain, cyclic or branched hydrocarbon group;
R a is a group optionally replacing 1 to 3 hydrogens of an aromatic ring, selected from the group consisting of C 1 to C 14 chain, cyclic or branched hydrocarbon groups, and L 1 is selected from the group consisting of a ligand having phosphorus as a coordination moiety, a ligand having nitrogen as a coordination moiety, and a ligand having dinitrogen as a coordination moiety.
下記の式(II)〜(IV)のいずれかを有する、請求項1に記載のモリブデン錯体:
Figure 2010195703
Figure 2010195703
Figure 2010195703
Prはi−プロピル、Meはメチル、Phはフェニルを表す)。
The molybdenum complex according to claim 1, having any of the following formulas (II) to (IV):
Figure 2010195703
Figure 2010195703
Figure 2010195703
( I Pr represents i-propyl, Me represents methyl, and Ph represents phenyl).
下記の式(V)を有するモリブデン錯体の配位子L〜Lのうちの3つを、下記の式(VI)を有するピンサー型配位子によって置換することを含む、請求項1又は2に記載のモリブデン錯体の製造方法:
Figure 2010195703
(L〜Lはそれぞれ独立に、リンを配位部分として有する配位子、窒素を配位部分として有する配位子、及び二窒素を配位部分として有する配位子からなる群より選択される);
Figure 2010195703
(R〜Rはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、且つ
は随意に、芳香環の1〜3個の水素を置換している基であり、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される)。
Substitution of three of the ligands L 1 to L 4 of the molybdenum complex having the following formula (V) with a pincer ligand having the following formula (VI): Method for producing molybdenum complex according to 2:
Figure 2010195703
(L 1 to L 4 are each independently selected from the group consisting of a ligand having phosphorus as a coordination moiety, a ligand having nitrogen as a coordination moiety, and a ligand having dinitrogen as a coordination moiety. );
Figure 2010195703
(R 1 to R 4 are each independently selected from the group consisting of hydrogen and a C 1 to C 14 chain, cyclic or branched hydrocarbon group, and R a is optionally selected from 1 to A group substituting for three hydrogens and selected from the group consisting of C 1 -C 14 chain, cyclic or branched hydrocarbon groups).
下記の式(VII)を有する、モリブデン錯体:
Figure 2010195703
(R〜Rはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、
は随意に、芳香環の1〜3個の水素を置換している基であり、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、且つ
〜Xはそれぞれ独立に、フッ素、塩素、臭素及びヨウ素からなる群より選択される)。
Molybdenum complex having the following formula (VII):
Figure 2010195703
(R 1 to R 4 are each independently selected from the group consisting of hydrogen and a C 1 to C 14 chain, cyclic or branched hydrocarbon group;
R a is a group optionally replacing 1 to 3 hydrogens of an aromatic ring, selected from the group consisting of C 1 to C 14 chain, cyclic or branched hydrocarbon groups, and X 1 to X 3 are each independently selected from the group consisting of fluorine, chlorine, bromine and iodine).
下記の式(VIII)を有するモリブデン錯体の配位子Y〜Yを、下記の式(VI)を有するピンサー型配位子によって置換することを含む、請求項4に記載のモリブデン錯体の製造方法:
Figure 2010195703
(X〜Xはそれぞれ独立に、フッ素、塩素、臭素及びヨウ素からなる群より選択され、且つ
〜Yはそれぞれ独立に、前記ピンサー型配位子によって置換できる配位子である);
Figure 2010195703
(R〜Rはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択され、且つ
は随意に、芳香環の1〜3個の水素を置換している基であり、C〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される)。
5. The molybdenum complex of claim 4, comprising replacing the ligands Y 1 to Y 3 of the molybdenum complex having the following formula (VIII) with a pincer-type ligand having the following formula (VI): Production method:
Figure 2010195703
(X 1 to X 3 are each independently selected from the group consisting of fluorine, chlorine, bromine and iodine, and Y 1 to Y 3 are each independently a ligand that can be substituted by the pincer-type ligand. );
Figure 2010195703
(R 1 to R 4 are each independently selected from the group consisting of hydrogen and a C 1 to C 14 chain, cyclic or branched hydrocarbon group, and R a is optionally selected from 1 to A group substituting for three hydrogens and selected from the group consisting of C 1 -C 14 chain, cyclic or branched hydrocarbon groups).
請求項4に記載のモリブデン錯体の配位子X〜Xのうちの2つを、二窒素配位子で置換することを含む、請求項1又は2に記載のモリブデン錯体を製造する方法。 The method for producing a molybdenum complex according to claim 1 or 2, comprising substituting two of the ligands X 1 to X 3 of the molybdenum complex according to claim 4 with a dinitrogen ligand. . 請求項1又は2に記載の前記モリブデン錯体を触媒として用いて、下記に表す反応で、シリルクロリドからシリルアミンを生成することを含む、シリルアミンの製造方法:
SiRCl + 1/2N + Na
→ N(SiR + NaCl
(R、R及びRはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される)。
A method for producing silylamine, comprising producing silylamine from silyl chloride by the reaction shown below using the molybdenum complex according to claim 1 or 2 as a catalyst:
SiR p R q R r Cl + 1 / 2N 2 + Na
→ N (SiR p R q R r ) 3 + NaCl
(R p , R q and R r are each independently selected from the group consisting of hydrogen and a C 1 -C 14 chain, cyclic or branched hydrocarbon group).
請求項7に記載の方法でシリルアミンを得、そしてこのようにして得られたシリルアミンを下記の式で表す反応で加水分解することを含む、アンモニアの合成方法:
N(SiR + 3H
→ 3SiR(OH) + NH
(R、R及びRはそれぞれ独立に、水素、及びC〜C14の鎖状、環状又は分岐状の炭化水素基からなる群より選択される)。
A method for synthesizing ammonia comprising obtaining a silylamine by the method of claim 7 and hydrolyzing the silylamine thus obtained by a reaction represented by the following formula:
N (SiR p R q R r ) 3 + 3H 2 O
→ 3SiR p R q R r (OH) + NH 3
(R p , R q and R r are each independently selected from the group consisting of hydrogen and a C 1 -C 14 chain, cyclic or branched hydrocarbon group).
JP2009041282A 2009-02-24 2009-02-24 New molybdenum complex Expired - Fee Related JP5358217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041282A JP5358217B2 (en) 2009-02-24 2009-02-24 New molybdenum complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041282A JP5358217B2 (en) 2009-02-24 2009-02-24 New molybdenum complex

Publications (2)

Publication Number Publication Date
JP2010195703A true JP2010195703A (en) 2010-09-09
JP5358217B2 JP5358217B2 (en) 2013-12-04

Family

ID=42820824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041282A Expired - Fee Related JP5358217B2 (en) 2009-02-24 2009-02-24 New molybdenum complex

Country Status (1)

Country Link
JP (1) JP5358217B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058477A (en) * 2012-09-18 2014-04-03 Toyota Motor Corp Methods for producing silylamine and ammonia
US9592495B2 (en) 2013-12-24 2017-03-14 Denso Corporation Ammonia synthesis catalyst
WO2019168093A1 (en) * 2018-03-01 2019-09-06 国立大学法人東京大学 Ammonia manufacturing method, molybdenum complex, and benzimidazole compound
WO2021045206A1 (en) * 2019-09-05 2021-03-11 国立大学法人東京大学 Ammonia production method and ammonia production apparatus
WO2022025050A1 (en) * 2020-07-27 2022-02-03 国立大学法人東京大学 Method for producing ammonia
WO2022025046A1 (en) * 2020-07-27 2022-02-03 国立大学法人東京大学 Method for manufacturing ammonia
WO2022210925A1 (en) * 2021-03-30 2022-10-06 国立大学法人東京大学 Method for regenerating catalyst in device for producing ammonia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141439A1 (en) * 2007-05-18 2008-11-27 Kanata Chemical Technologies Inc. Method for the production of hydrogen from ammonia borane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141439A1 (en) * 2007-05-18 2008-11-27 Kanata Chemical Technologies Inc. Method for the production of hydrogen from ammonia borane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013023040; LANG,H. et al: 'Reactions of quadruply bonded dimolybdenum(II) and dirhenium(III) complexes with 2,6-bis(dicyclohexy' Inorganica Chimica Acta Vol.329, 2002, p.1-8 *
JPN6013023042; GUSEV,D.G. et al: 'Hydride, Borohydride, and Dinitrogen Pincer Complexes of Ruthenium' Organometallics Vol.19, No.17, 2000, p.3429-3434 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058477A (en) * 2012-09-18 2014-04-03 Toyota Motor Corp Methods for producing silylamine and ammonia
US9592495B2 (en) 2013-12-24 2017-03-14 Denso Corporation Ammonia synthesis catalyst
WO2019168093A1 (en) * 2018-03-01 2019-09-06 国立大学法人東京大学 Ammonia manufacturing method, molybdenum complex, and benzimidazole compound
JPWO2019168093A1 (en) * 2018-03-01 2021-04-30 国立大学法人 東京大学 Ammonia production method, molybdenum complex and benzimidazole compound
JP7318871B2 (en) 2018-03-01 2023-08-01 国立大学法人 東京大学 Method for producing ammonia, molybdenum complex and benzimidazole compound
WO2021045206A1 (en) * 2019-09-05 2021-03-11 国立大学法人東京大学 Ammonia production method and ammonia production apparatus
CN114341402A (en) * 2019-09-05 2022-04-12 国立大学法人东京大学 Method and apparatus for producing ammonia
WO2022025050A1 (en) * 2020-07-27 2022-02-03 国立大学法人東京大学 Method for producing ammonia
WO2022025046A1 (en) * 2020-07-27 2022-02-03 国立大学法人東京大学 Method for manufacturing ammonia
WO2022210925A1 (en) * 2021-03-30 2022-10-06 国立大学法人東京大学 Method for regenerating catalyst in device for producing ammonia

Also Published As

Publication number Publication date
JP5358217B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5358217B2 (en) New molybdenum complex
JP6389220B2 (en) Hydrosilylation catalyst
Frey et al. Activation of SiÀH, BÀH, and PÀH Bonds at a Single Nonmetal Center
JP5572798B2 (en) Catalyst for hydrosilylation reaction, and method for producing organosilicon compound using the catalyst
Imamoto et al. Reactions of Phosphine-Monoiodoboranes with 4, 4'-Di-tert-butylbiphenylide and Electrophiles. Trial of Generation of Tricoordinate Boron Anions and Synthesis of B-Functionalized Phosphine-Boranes
JP2018500290A (en) Hydrosilylation method using germylene organic catalyst
Singh et al. Progressions in hyper–coordinate silicon complexes
EP2006276B1 (en) Process for the preparation of fullerene derivatives
JP5429745B2 (en) Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound
Lerner et al. Alkali Metal Di‐tert‐butylphenylsilanides—tBu2PhSiM (M= Li, Na, K)—Syntheses, Structures, and Reactivity
González-Sebastián et al. Reduction of CO 2 and SO 2 with low valent nickel compounds under mild conditions
Żak et al. Synthesis of (E)-1, 4-disilsesquioxylsubstituted but-1-en-3-ynes via platinum-catalyzed dimerization of ethynylsiloxysilsesquioxanes
Frąckowiak et al. New vinylgermanium derivatives of silsesquioxanes and their ruthenium complexes—Synthesis, structure, and reactivity
JP2013159568A (en) Dinuclear molybdenum complex, method of synthesizing the same, and ammonia synthesis method
JP2003212881A (en) Fullerene derivative and metal complex
Kumar et al. Structures, preparation and catalytic activity of ruthenium cyclopentadienyl complexes based on pyridyl-phosphine ligand
Holthausen et al. Zwitterionic and cationic P 5-clusters from four-membered phosphorus–nitrogen–metal heterocycles
Harinath et al. NHC–Zn alkyl catalyzed cross-dehydrocoupling of amines and silanes
CN110283040B (en) Synthetic method of 3-methyl-D3-benzyl bromide
RU2349575C1 (en) Method of producing 1-hydroxy-1,2-dihydro[60]fullerene
Yu et al. Metal-free photocatalyzed allylic silylation of allyl acetates and chlorides
CN111039767A (en) Method for preparing deuterated aldehyde by using triazole carbene as catalyst
Lewandowski et al. Selective Hydrosilylation and Hydroboration of Allenes Catalyzed by Cobalt‐Pincer Complexes
CA2481550A1 (en) Process for producing carbonyl compound
Cai et al. Heterometallic Mg‐Ni‐Mg Complex Promoted Hydrosilylation of Alkenes: Catalytic Performance and Intermediates Characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5358217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees