JP2006246711A - Method for pretreating lignocellulose - Google Patents

Method for pretreating lignocellulose Download PDF

Info

Publication number
JP2006246711A
JP2006246711A JP2005063686A JP2005063686A JP2006246711A JP 2006246711 A JP2006246711 A JP 2006246711A JP 2005063686 A JP2005063686 A JP 2005063686A JP 2005063686 A JP2005063686 A JP 2005063686A JP 2006246711 A JP2006246711 A JP 2006246711A
Authority
JP
Japan
Prior art keywords
lignocellulose
acid
solid
hydrolysis
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005063686A
Other languages
Japanese (ja)
Other versions
JP4619831B2 (en
Inventor
Naoyuki Okuda
直之 奥田
Yuichi Ono
裕一 小野
Takashi Nomura
隆 能村
Masanori Sato
正則 佐藤
Koji Miwa
浩司 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2005063686A priority Critical patent/JP4619831B2/en
Publication of JP2006246711A publication Critical patent/JP2006246711A/en
Application granted granted Critical
Publication of JP4619831B2 publication Critical patent/JP4619831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pretreating lignocellulose when a lignocellulose raw material is enzymically hydrolyzed and to provide the method for pretreating the lignocellulose in order to suppress overdegradation of a saccharide and inexpensively obtain the saccharide in good yield. <P>SOLUTION: The method for pretreating the lignocellulose by enzymic hydrolysis is characterized as follows. The method comprises an acid treating step of treating the lignocellulose raw material with an acid, a solid-liquid separation step of carrying out the solid-liquid separation of a reaction product of the acid treating step and a pulverization treating step of subjecting the residue of the solid-liquid separation step to a wet pulverization treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリグノセルロースの前処理方法に関する。   The present invention relates to a pretreatment method for lignocellulose.

近年再生可能資源であるバガスや稲わら、木材チップなどの天然系の資源からエタノールを製造し、エネルギーや化学原料として利用する試みが内外で進められている。原料としては種々のバイオマスが使用されるが、将来的に有用な資源として木質バイオマスのようなリグノセルロースが注目されている。リグノセルロースは、植物の茎葉等の主成分であり、主にセルロース、ヘミセルロース及びリグニンから構成されている。セルロースは、木材の50%程度の含有量であり、グルコースが直鎖状に結合した比較的安定な高分子である。ヘミセルロースは、木材の20〜30%程度の含有量であり、結合がセルロースのように規則的でなく、加水分解しやすい。リグニンは、木材の20〜30%程度の含有量であり、主にベンゼン核を有する不定形の高分子である。   In recent years, domestic and overseas efforts have been made to produce ethanol from natural resources such as bagasse, rice straw, and wood chips, which are renewable resources, and use them as energy and chemical raw materials. Various biomass is used as a raw material, but lignocellulose such as woody biomass has attracted attention as a useful resource in the future. Lignocellulose is a main component of plant stems and leaves, and is mainly composed of cellulose, hemicellulose, and lignin. Cellulose has a content of about 50% of wood and is a relatively stable polymer in which glucose is linearly bound. Hemicellulose has a content of about 20 to 30% of wood, and bonds are not regular like cellulose and are easily hydrolyzed. Lignin has a content of about 20 to 30% of wood and is an amorphous polymer mainly having a benzene nucleus.

木質バイオマスのようなリグノセルロースからエタノールを製造するには、まず酸やアルカリでヘミセルロースを加水分解し、ヘミセルロース由来の糖液を得る。ヘミセルロースを構成する糖は、主にキシロース、アラビノースといった五炭糖と、グルコース、ガラクトース、マンノースといった六炭糖であり、これらの量比率は木質系バイオマスの種類によって異なっている。
次いで、上記のヘミセルロース由来の糖を得た後の残渣をさらに酸や酵素で処理しセルロース由来の糖を得るが、この処理に希硫酸を用いるとグルコース収率が40%程度と低いことに加え、ギ酸やレブリン酸、ヒドロキシメチルフルフラール(HMF)などの糖の過分解物質が生じやすく、これらの過分解物質はエタノールへの発酵に悪影響を与える。上記の酸やアルカリ処理に代わる方法として酵素による加水分解が研究されているが、酵素反応を有効に行うための前処理は、原料によって適切な方法を選定する必要がある。
In order to produce ethanol from lignocellulose such as woody biomass, hemicellulose is first hydrolyzed with acid or alkali to obtain a sugar solution derived from hemicellulose. The sugars constituting hemicellulose are mainly pentoses such as xylose and arabinose, and hexoses such as glucose, galactose, and mannose, and the ratio of these amounts varies depending on the type of woody biomass.
Next, the residue after obtaining the hemicellulose-derived sugar is further treated with an acid or enzyme to obtain a cellulose-derived sugar. When dilute sulfuric acid is used for this treatment, the glucose yield is as low as about 40%. Sugar-degrading substances such as formic acid, levulinic acid and hydroxymethylfurfural (HMF) are likely to be produced, and these hyperdegrading substances have an adverse effect on fermentation to ethanol. Hydrolysis with an enzyme has been studied as a method to replace the acid or alkali treatment described above, but it is necessary to select an appropriate method for the pretreatment for effectively carrying out the enzyme reaction depending on the raw material.

リグノセルロース原料に共通する性質の一つに、ヘミセルロースとセルロースの加水分解条件に差があることが挙げられる。ヘミセルロースは比較的酸やアルカリで分解されやすく、90%以上の高い回収率で糖が得られるのに対し、セルロースの分解はより厳しい条件で行われ、糖の過分解がほぼ同じ速度で生じてしまうため糖の回収率が低くなる。そこで、まず酵素加水分解の前処理を兼ねた一次加水分解でヘミセルロース由来の糖をできるだけ回収する方法が望ましい。   One of the properties common to lignocellulose raw materials is that there is a difference in the hydrolysis conditions of hemicellulose and cellulose. Hemicellulose is relatively easily decomposed by acids and alkalis, and sugar can be obtained with a high recovery rate of 90% or more, whereas cellulose is decomposed under more severe conditions, and sugar overdegradation occurs at almost the same rate. As a result, the sugar recovery rate is low. Therefore, it is desirable to first recover the hemicellulose-derived sugar as much as possible by primary hydrolysis that also serves as a pretreatment for enzymatic hydrolysis.

一次加水分解法としてよく研究されているのは酸またはアルカリを用いる方法である。酵素加水分解の前処理としてはいずれも効果があるが、一次加水分解でヘミセルロース由来の糖を得ようとする場合、アルカリ条件下では糖の過分解が進みやすいため、酸を用いた処理が有利である。ヘミセルロース原料に対する一次加水分解処理として、苛性ソーダ蒸煮、酸化条件下での石灰処理も報告されているが、いずれもヘミセルロース由来の糖の収率は低い。   The method of using an acid or alkali is well studied as a primary hydrolysis method. All of the pretreatments for enzymatic hydrolysis are effective. However, when obtaining hemicellulose-derived sugars by primary hydrolysis, sugars tend to undergo excessive decomposition under alkaline conditions, so treatment with acid is advantageous. It is. As the primary hydrolysis treatment for the hemicellulose raw material, caustic soda cooking and lime treatment under oxidizing conditions have been reported, but the yield of sugars derived from hemicellulose is low.

一方、酸を用いる一次加水分解処理では、糖は回収できるが原料によっては酵素加水分解の前処理として不十分な場合がある。例えば、木材の中でも広葉樹を酸や爆砕で一次処理した後の残渣は比較的容易に酵素で糖化されるが、針葉樹はリグニンを含む構造が広葉樹より強固なため、一次処理した後の残渣をそのまま使用すると酵素加水分解率は低い。国内で有効利用が望まれている廃建材はスギ、ツガ、マツなどの針葉樹が主体であるため、針葉樹に対する前処理方法の確立は特に国内において重要である。   On the other hand, in the primary hydrolysis treatment using an acid, sugar can be recovered, but depending on the raw material, it may be insufficient as a pretreatment for enzyme hydrolysis. For example, even in wood, the residue after primary treatment of hardwood with acid or blasting is relatively easily saccharified by enzymes, but conifers have a structure containing lignin that is stronger than hardwood, so the residue after primary treatment remains as it is. When used, the enzyme hydrolysis rate is low. Since waste building materials that are expected to be used effectively in Japan are mainly coniferous trees such as cedar, tsuga and pine, establishment of pretreatment methods for coniferous trees is particularly important in Japan.

このような観点から、一次処理した残渣を酵素加水分解に供する前に二次処理を行い、酵素加水分解率を高める方法も研究されている。例えば、オゾン、過酸化水素、亜塩素酸ナトリウムなどによる処理が報告されている。しかし、これら薬品の使用はコストが大きいだけでなく、後段の発酵において微生物に阻害的に働く場合が懸念されるので、発酵前に除去する工程を設ける必要がある。   From such a viewpoint, a method of increasing the enzyme hydrolysis rate by performing a secondary treatment before subjecting the primary treated residue to enzyme hydrolysis has also been studied. For example, treatment with ozone, hydrogen peroxide, sodium chlorite and the like has been reported. However, the use of these chemicals is not only costly, but there is a concern that it may act to inhibit microorganisms in the subsequent fermentation, so it is necessary to provide a step for removal before fermentation.

また、セルロースやヘミセルロースを含む木材等のリグノース原料を加水分解する前に微粉砕処理する前処理方法も報告されている(例えば、特許文献1、特許文献2、および特許文献3参照。)。同様にリグノース原料を微粉砕してから酵素加水分解を行った後、再度固形物残渣を粉砕する方法も報告されている(例えば、特許文献4参照。)。また、アルカリ加水分解処理と機械的粉砕処理とを組み合わせた前処理方法についても報告されている(特許文献5参照。)。
特開昭55−9758号公報 特開昭59−91893号公報 特開昭63−137690公報 特開昭63−137692公報 特開昭55−45306公報
In addition, a pretreatment method in which a pulverization treatment is performed before hydrolyzing a lignose raw material such as wood containing cellulose or hemicellulose has been reported (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). Similarly, a method has also been reported in which a lignose raw material is finely pulverized and then subjected to enzyme hydrolysis, and then a solid residue is pulverized again (for example, see Patent Document 4). In addition, a pretreatment method combining an alkali hydrolysis treatment and a mechanical pulverization treatment has also been reported (see Patent Document 5).
Japanese Patent Laid-Open No. 55-9758 JP 59-91893 A JP-A 63-137690 JP-A-63-137692 JP-A-55-45306

上述のようにリグノセルロース原料をボールミル等で微粉砕処理する前処理方法は、工程が少なくてすむ反面、投入エネルギーをかなり高くしないと前処理としての効果が得られない。また、アルカリ条件下での加水分解では糖の過分解が進みやすいという問題があった。さらに、ヘミセルロース由来の糖の収率についてはほとんど言及されていない。   As described above, the pretreatment method in which the lignocellulose raw material is finely pulverized with a ball mill or the like requires fewer steps, but the effect as the pretreatment cannot be obtained unless the input energy is considerably increased. In addition, hydrolysis under an alkaline condition has a problem in that sugar excessive decomposition easily proceeds. Furthermore, little is mentioned about the yield of sugar derived from hemicellulose.

本発明は、上述の背景技術の問題点を鑑みてなされたものであり、リグノセルロース原料を酵素加水分解する際の前処理方法であって、糖の過分解を抑え低コストで収率よく糖を得るためのリグノセルロースの前処理方法を提供することを課題とする。   The present invention has been made in view of the above-mentioned problems of the background art, and is a pretreatment method for enzymatic hydrolysis of a lignocellulose raw material, which suppresses excessive decomposition of sugar and reduces sugar at a low cost and in a high yield. It is an object of the present invention to provide a method for pretreatment of lignocellulose to obtain the above.

本発明の発明者らは、上記課題を解決するため鋭意検討した結果、リグノセルロース原料にまず酸加水分解処理を施し、固液分離して酸で比較的容易に回収できるヘミセルロース由来の糖を得た後、固形残渣に湿式粉砕処理を行うことにより、続く酵素加水分解の効率を高めることができる前処理方法を見いだすに至った。   The inventors of the present invention have intensively studied to solve the above problems, and as a result, firstly lignocellulose raw material is subjected to acid hydrolysis treatment, and solid-liquid separation is performed to obtain a hemicellulose-derived sugar that can be recovered with acid relatively easily. After that, the inventors have found a pretreatment method that can increase the efficiency of the subsequent enzymatic hydrolysis by wet-grinding the solid residue.

すなわち本発明は、リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を固液分離する固液分離工程と、前記固液分離工程の残渣を湿式粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法である。   That is, the present invention is a pretreatment method for enzymatic hydrolysis of lignocellulose, an acid treatment step of acid-treating lignocellulose raw material, a solid-liquid separation step of solid-liquid separation of a reaction product of the acid treatment step, A lignocellulose pretreatment method comprising: a pulverization treatment step of subjecting a residue of the solid-liquid separation step to a wet pulverization treatment.

本発明によれば、酸でヘミセルロースを加水分解した残渣について粉砕処理することによって、低コストで酵素加水分解における糖の収率を向上させ、続く発酵でのエタノール収率の向上を達成することが可能となる。
本発明によると、酸加水分解による一次処理に引き続き二次処理に過酸化水素等の薬剤を用いる前処理方法に比べ、着色廃水の量が低減できる。また、一次加水分解で一部未反応のヘミセルロース由来の糖(キシロースなど)の回収量も二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。
さらに本発明の前処理方法における粉砕処理工程は湿式粉砕であるため、粉塵爆発や火災の危険がなく、また、熱による変性で糖成分の一部が分解することも殆どない。
希硫酸等の酸による反応で、ヘミセルロース由来の糖が溶出していること、及びリグニンの一部が溶出していることにより、残渣が柔らかくなっているため、少ない投入エネルギーで、酵素加水分解の効果を大きく高めることができる。
According to the present invention, the residue obtained by hydrolyzing hemicellulose with an acid can be pulverized to improve the yield of sugar in enzymatic hydrolysis at a low cost, and to improve the ethanol yield in subsequent fermentation. It becomes possible.
According to the present invention, the amount of colored waste water can be reduced as compared with a pretreatment method using a chemical such as hydrogen peroxide in the secondary treatment following the primary treatment by acid hydrolysis. In addition, the amount of recovered sugar (such as xylose) derived from hemicellulose partially unreacted in the primary hydrolysis is larger than the method using a drug for the secondary treatment, and the sugar contained in the raw material can be used more effectively.
Furthermore, since the pulverization step in the pretreatment method of the present invention is wet pulverization, there is no danger of dust explosion or fire, and part of the sugar component is hardly decomposed by heat denaturation.
The residue is soft due to the elution of hemicellulose-derived sugar and the elution of part of the lignin in the reaction with an acid such as dilute sulfuric acid. The effect can be greatly enhanced.

本発明のリグノセルロースの酵素加水分解の前処理方法は、リグノセルロース原料を希硫酸処理する酸処理工程と、酸処理工程の反応物を固液分離する固液分離工程と、固液分離工程の残渣を湿式粉砕処理する粉砕処理工程とを含む。図1は、リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。
原料のリグノセルロースは、まず酸処理工程において主に原料中のヘミセルロースを加水分解し、続く固液分離工程で糖液と残渣とに分離される。残渣は、粉砕処理工程において粉砕された(以上、本発明における前処理)後、酵素加水分解工程において糖へと加水分解され発酵によってエタノールが製造される。一方、固液分離工程で回収された糖液からも、中和された後発酵によってエタノールが製造される。
The pretreatment method for enzymatic hydrolysis of lignocellulose of the present invention comprises an acid treatment step for treating a lignocellulose raw material with dilute sulfuric acid, a solid-liquid separation step for solid-liquid separation of a reaction product of the acid treatment step, and a solid-liquid separation step. And a pulverization treatment step of subjecting the residue to a wet pulverization treatment. FIG. 1 is a flowchart showing an example of a method for producing ethanol using lignocellulose as a raw material and including the pretreatment method of the present invention.
The raw lignocellulose is first hydrolyzed mainly in the raw material hemicellulose in the acid treatment step, and then separated into a sugar solution and a residue in the subsequent solid-liquid separation step. The residue is pulverized in the pulverization process (pretreatment in the present invention), then hydrolyzed to sugar in the enzyme hydrolysis process, and ethanol is produced by fermentation. On the other hand, ethanol is also produced from the sugar solution recovered in the solid-liquid separation process by fermentation after neutralization.

本発明に用いられる原料のリグノセルロースは、特に限定されないが、例えば木材、稲わら、籾殻、バガスなどが利用できる。特に国内では発生量が多く、収集ルートが確立している廃建材を用いることが望ましい。廃建材は主に木造家屋の解体によって発生し、用いられている樹種としては、杉、松、栂などの針葉樹の比率が高い。   Although the raw material lignocellulose used for this invention is not specifically limited, For example, wood, rice straw, rice husk, bagasse, etc. can be utilized. Particularly in Japan, it is desirable to use waste building materials that are generated in large quantities and have established collection routes. Waste building materials are mainly generated by the demolition of wooden houses, and the percentage of conifers such as cedar, pine, and oak is high.

本発明に用いられるリグノセルロース原料は、あらかじめ破砕機を用いて1〜20mm、特に5〜10mmのサイズに破砕することが好ましい。破砕後のチップサイズはできるだけ小さい方が糖化の効率が高くなるが、破砕のための所要エネルギーも大きくなる。そこで適正なチップサイズが存在する。この破砕工程は酸加水分解後の粉砕処理工程とは異なり、一次加水分解である酸処理工程において原料と硫酸や蒸気の接触を良くしヘミセルロースから糖を回収しやすくするためである。   The lignocellulose raw material used in the present invention is preferably crushed in advance to a size of 1 to 20 mm, particularly 5 to 10 mm using a crusher. As the chip size after crushing is as small as possible, the efficiency of saccharification increases, but the energy required for crushing also increases. There is an appropriate chip size. This crushing process is different from the crushing process after acid hydrolysis, in order to facilitate the recovery of sugar from hemicellulose by improving the contact between the raw material and sulfuric acid or steam in the acid treatment process which is primary hydrolysis.

次いで、リグノセルロース原料を酸処理する。用いる酸としては、例えば硫酸、塩酸、硝酸又はそれらの混合物が挙げられるが、このうち硫酸、特に希硫酸が好ましい。さらに、本発明における酸処理は、加熱しながら行うことが好ましい。反応に用いられる硫酸濃度は0.1〜5%、特に0.5〜3%が好ましい。反応温度は140〜230℃、特に160〜210℃の範囲が望ましい。反応時間は1〜20分、特に5〜10分であることが好ましい。硫酸濃度、反応温度および反応時間が上記の範囲内であると、酸処理工程においてヘミセルロースを効率的に加水分解し、糖を回収することができる。   Next, the lignocellulose raw material is acid-treated. Examples of the acid to be used include sulfuric acid, hydrochloric acid, nitric acid or a mixture thereof. Among these, sulfuric acid, particularly dilute sulfuric acid is preferable. Furthermore, the acid treatment in the present invention is preferably performed while heating. The sulfuric acid concentration used in the reaction is preferably 0.1 to 5%, particularly preferably 0.5 to 3%. The reaction temperature is preferably 140 to 230 ° C, particularly 160 to 210 ° C. The reaction time is preferably 1 to 20 minutes, particularly preferably 5 to 10 minutes. If the sulfuric acid concentration, reaction temperature, and reaction time are within the above ranges, hemicellulose can be efficiently hydrolyzed and sugar can be recovered in the acid treatment step.

次に上記酸処理工程の反応物は、固液分離工程においてろ液と固形物残渣とに分離される。残渣は続く粉砕処理工程に供される。ろ液はヘミセルロース由来の糖を含んでおり、後述のように発酵によってエタノールが製造される。固液分離の方法はろ過、遠心分離などを用いることができるが、エネルギー消費の小さいろ過を用いることが好ましい。   Next, the reaction product in the acid treatment step is separated into a filtrate and a solid residue in a solid-liquid separation step. The residue is subjected to a subsequent grinding process step. The filtrate contains hemicellulose-derived sugar, and ethanol is produced by fermentation as described below. As the solid-liquid separation method, filtration, centrifugation, or the like can be used, but it is preferable to use filtration with low energy consumption.

上記固液分離工程の固形物残渣は、粉砕処理工程において湿式粉砕される。この残渣は、希硫酸による加水分解反応でヘミセルロース由来の糖が溶出していること、およびリグニンの一部が溶出していることにより柔らかくなっている。従って少ない投入エネルギーで粉砕しても、続く酵素加水分解の効果を大きく高めることができる。
粉砕処理工程に用いられる粉砕機は、湿式で叩解効果が得られる粉砕機であればいずれの形式でもよいが、特にボールミル,スタンプミル,リファイナーが好ましい。
本粉砕処理工程は湿式粉砕であるため、粉塵爆発や火災の危険がなく、また熱による変性で糖成分の一部が分解することもほとんどない。
上記したように、リグノセルロースを前処理することにより、その後の酵素加水分解、発酵によるエタノール生成を低コストで効率よく行うことができる。
The solid residue in the solid-liquid separation process is wet pulverized in the pulverization process. This residue is softened by the elution of hemicellulose-derived sugar by hydrolysis with dilute sulfuric acid and the elution of a part of lignin. Therefore, the effect of subsequent enzymatic hydrolysis can be greatly enhanced even if pulverization is performed with a small amount of input energy.
The pulverizer used in the pulverization process may be of any type as long as it is a wet-type pulverizer, and a ball mill, stamp mill, and refiner are particularly preferable.
Since this pulverization process is wet pulverization, there is no danger of dust explosion or fire, and part of the sugar component is hardly decomposed by heat denaturation.
As described above, by pretreating lignocellulose, subsequent ethanol hydrolysis and ethanol production by fermentation can be efficiently performed at low cost.

上記のように粉砕処理工程において粉砕された残渣は酵素加水分解に供されて糖が製造される。酵素加水分解の酵素としては、セルラーゼが用いられる。すなわち、粉砕された残渣を懸濁した液にセルラーゼを添加し、攪拌しながら、例えばpH4〜6、30〜60℃、10〜120時間反応させる。
この酵素による加水分解液にはセルロース由来の糖であるグルコースが含まれる。この糖液に窒素、リンを含む栄養源とエタノール発酵微生物を添加し、糖をエタノールに変換する。
As described above, the residue pulverized in the pulverization process is subjected to enzymatic hydrolysis to produce sugar. Cellulase is used as the enzyme for enzyme hydrolysis. That is, cellulase is added to a liquid in which the pulverized residue is suspended, and the reaction is performed, for example, at pH 4 to 6, 30 to 60 ° C. for 10 to 120 hours with stirring.
The enzyme hydrolyzed solution contains glucose, which is a sugar derived from cellulose. A nutrient source containing nitrogen and phosphorus and an ethanol-fermenting microorganism are added to the sugar solution to convert the sugar into ethanol.

一方、上記固液分離工程のろ液にはヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース等が含まれる。さらに、本発明の前処理方法では酸処理工程における糖の過分解物の生成が抑えられるが、このろ液には糖の過分解物であるフルフラール、ヒドロキシメチルフルフラール(HMF)、レブリン酸、ギ酸等がある程度の量は含まれている。これらは微生物による発酵を阻害するため、前処理が必要である。例えば、石灰を加えて加温する方法はフルフラール、HMFの一部除去も行われる方法として知られている。石灰で中和したろ液には窒素、リンを含む栄養源とエタノール発酵微生物を添加し、糖をエタノールに変換する。   On the other hand, glucose, xylose, arabinose, galactose, mannose, etc., which are sugars derived from hemicellulose, are included in the filtrate of the solid-liquid separation step. Furthermore, in the pre-treatment method of the present invention, the formation of sugar overdegradation products in the acid treatment step is suppressed, but this filtrate contains furfural, hydroxymethylfurfural (HMF), levulinic acid, formic acid, which are sugar overdegradation products. A certain amount is included. Since these inhibit fermentation by microorganisms, pretreatment is necessary. For example, a method of heating by adding lime is known as a method in which part of furfural and HMF is also removed. Nutrient sources containing nitrogen and phosphorus and ethanol-fermenting microorganisms are added to the filtrate neutralized with lime to convert sugar into ethanol.

上記のように本発明のリグノセルロースの前処理方法を用いると、酸加水分解処理工程においてヘミセルロース由来の糖を効率的に回収でき、さらに固液分離した残渣を湿式粉砕することにより酵素加水分解の収率を向上させることができる。従って、低コストでリグノセルロースを原料とする合計糖収量が増加し、これによって糖を発酵させて製造するエタノールの収率をも向上させることができる。   As described above, when the lignocellulose pretreatment method of the present invention is used, sugar derived from hemicellulose can be efficiently recovered in the acid hydrolysis treatment step. The yield can be improved. Accordingly, the total sugar yield using lignocellulose as a raw material is increased at a low cost, whereby the yield of ethanol produced by fermenting sugar can be improved.

本発明の前処理方法によると、従来のように一次加水分解後の二次処理に過酸化水素等の薬剤を用いる方法に比べ、着色廃水の量が低減できる。また、一次加水分解である酸加水分解で一部未反応であったヘミセルロース由来の糖の回収量も、二次処理に薬剤を用いる方法より多く、原料に含まれる糖をより有効に利用することができる。   According to the pretreatment method of the present invention, the amount of colored waste water can be reduced as compared with the conventional method using a chemical such as hydrogen peroxide in the secondary treatment after the primary hydrolysis. In addition, the amount of hemicellulose-derived sugar that was partially unreacted by acid hydrolysis, which is the primary hydrolysis, is larger than the method using chemicals in the secondary treatment, and the sugar contained in the raw material should be used more effectively. Can do.

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例等に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to these Examples.

(実施例1〜6)
酸処理工程:原料としてスギ材を用い、加水分解機として回分式加水分解機(処理量:400g/バッチ)を用い、硫酸濃度1%、反応温度170℃、反応時間10分で一次加水分解を行い、原料(乾物)100gあたり20gの単糖が得られた。固形分回収率は75%であった。
固液分離工程:一次加水分解後、吸引ろ過で固液分離を行った。得られた残渣を水でよく洗浄し、粉砕工程用の原料とした。
粉砕工程:スタンプミル(日陶株式会社製、型式:ANS143)に上記の残渣80g(湿潤重量)を入れ、粉砕時間を変えて粉砕を行った。各実施例における粉砕時間を表1に示す。
(Examples 1-6)
Acid treatment process: Sugi material is used as a raw material, batch hydrolysis is used as a hydrolyzer (amount of treatment: 400 g / batch), sulfuric acid concentration is 1%, reaction temperature is 170 ° C., and reaction time is 10 minutes. As a result, 20 g of monosaccharide per 100 g of raw material (dry matter) was obtained. The solid content recovery was 75%.
Solid-liquid separation step: After primary hydrolysis, solid-liquid separation was performed by suction filtration. The obtained residue was thoroughly washed with water and used as a raw material for the pulverization process.
Crushing step: 80 g (wet weight) of the above residue was placed in a stamp mill (manufactured by Nippon Ceramics Co., Ltd., model: ANS143) and pulverized by changing the pulverization time. Table 1 shows the grinding time in each example.

Figure 2006246711
Figure 2006246711

酵素加水分解工程:200mLの三角フラスコに、粉砕した残渣を固形物として2.5g投入し、これに緩衝液とイオン交換水とを残渣の付着水分と合わせて50mlになるように添加した。緩衝液としては0.2mol/Lの酢酸ナトリウムを用い、反応液のpHを4.5に調整した。ここにセルラーゼ(SPEZYME GC 220、ジェネンコア・インターナショナルジャパン・リミテッド)を残渣の固形物1gに対して0.4g添加した。これを反応温度45℃、100rpmで振とうし、 分間酵素加水分解を行った。   Enzymatic hydrolysis step: Into a 200 mL Erlenmeyer flask, 2.5 g of the pulverized residue was added as a solid substance, and a buffer solution and ion-exchanged water were added to the residue so as to be 50 ml together with the adhering moisture of the residue. As a buffer solution, 0.2 mol / L sodium acetate was used, and the pH of the reaction solution was adjusted to 4.5. Here, cellulase (SPEZYME GC 220, Genencor International Japan Limited) was added in an amount of 0.4 g to 1 g of the residual solid. This was shaken at a reaction temperature of 45 ° C. and 100 rpm to carry out enzymatic hydrolysis for a minute.

分析:酵素加水分解後の加水分解液中の単糖をHPLCで分離、定量した。HPLCのカラムとしてはBIO−RAD社のHPX−87Pを使用した。加水分解液中の単糖濃度と仕込み基質濃度とから、基質100g(乾物)あたりの単糖収量を計算した。酵素加水分解は仕込み基質濃度を全て5w/v%で実施したので、基質100gあたりの単糖収量S2は下式で求められる。
基質100g(乾物)あたりの単糖収量S2[g]=加水分解液中の単糖濃度[g/L]x(100/5)x(100/1000)
希硫酸による一次加水分解における原料100g(乾物)あたりの単糖収量S1も同様の計算により算出した。
さらに、酵素加水分解で得られた単糖を原料100g(乾物)あたりに換算するため、希硫酸による一次加水分解での固形分回収率R1を考慮し、原料からのトータルの単糖収量ΣSを以下の式で計算した。
原料(乾物)あたりの単糖収量ΣS[g/100g]=S1+R1xS2
Analysis: Monosaccharides in the hydrolyzed solution after enzymatic hydrolysis were separated and quantified by HPLC. As the HPLC column, HPX-87P manufactured by BIO-RAD was used. The monosaccharide yield per 100 g (dry matter) of the substrate was calculated from the monosaccharide concentration in the hydrolyzate and the charged substrate concentration. Enzymatic hydrolysis was carried out at a total substrate concentration of 5 w / v%, so the monosaccharide yield S2 per 100 g of the substrate can be obtained from the following equation.
Monosaccharide yield per 100 g (dry matter) of substrate S2 [g] = Monosaccharide concentration in hydrolyzed solution [g / L] x (100/5) x (100/1000)
The monosaccharide yield S1 per 100 g (dry matter) of the raw material in the primary hydrolysis with dilute sulfuric acid was also calculated by the same calculation.
Furthermore, in order to convert the monosaccharide obtained by enzymatic hydrolysis per 100 g (dry matter) of the raw material, the total monosaccharide yield ΣS from the raw material is calculated in consideration of the solid content recovery rate R1 in the primary hydrolysis with dilute sulfuric acid. The following formula was used for calculation.
Monosaccharide yield per raw material (dry matter) ΣS [g / 100 g] = S1 + R1 × S2

(比較例1)
一次加水分解の残渣を粉砕処理を行わずにそのまま酵素加水分解工程に用いたこと以外は上記の実施例と同様にして単糖を得た。
(比較例2)
スギ原木をスタンプミルで60分処理し、酸加水分解を行わずにそのまま上記と同様の酵素加水分解反応を実施して単糖を得た。
(Comparative Example 1)
A monosaccharide was obtained in the same manner as in the above example except that the residue of primary hydrolysis was directly used in the enzyme hydrolysis step without being pulverized.
(Comparative Example 2)
The cedar log was treated with a stamp mill for 60 minutes, and an enzyme hydrolysis reaction similar to the above was carried out as it was without acid hydrolysis to obtain a monosaccharide.

実施例1〜6および比較例1〜2における酵素加水分解で得られた単糖収量S2すなわち基質(粉砕残渣)重量あたりの単糖収量の経時変化を図2に示す。
実施例1〜6のように一次加水分解残渣に対して粉砕処理を行うことにより、原木に対して粉砕を行った比較例2の場合よりも大幅に単糖収量が向上することがわかった。また、比較例1のように一次加水分解残渣を粉砕処理しなかった場合と比較して、単糖収率が向上した。実施例2〜6のように粉砕時間が30分以上の場合には、比較例1と比べて1.5倍程度単糖収率が増加した。
FIG. 2 shows changes over time in the yield of monosaccharides S2 obtained by enzymatic hydrolysis in Examples 1 to 6 and Comparative Examples 1 and 2, that is, the yield of monosaccharides per substrate (grind residue) weight.
It was found that by performing the pulverization treatment on the primary hydrolysis residue as in Examples 1 to 6, the monosaccharide yield was significantly improved as compared with Comparative Example 2 in which the raw wood was pulverized. Moreover, compared with the case where a primary hydrolysis residue was not grind | pulverized like the comparative example 1, the monosaccharide yield improved. When the pulverization time was 30 minutes or longer as in Examples 2 to 6, the monosaccharide yield was increased by about 1.5 times compared to Comparative Example 1.

さらに、実施例2と比較例1との酸処理工程における糖収量S1および固形分回収率R1、酵素加水分解における糖収量S2、ならびに合計糖収量ΣSを表2に示す。   Further, Table 2 shows the sugar yield S1 and the solid content recovery rate R1, the sugar yield S2 in the enzyme hydrolysis, and the total sugar yield ΣS in the acid treatment step of Example 2 and Comparative Example 1.

Figure 2006246711
Figure 2006246711

実施例2のように30分粉砕処理を行った場合、比較例1のように粉砕処理を行わない場合と比較して、単糖収量S2が大幅に向上したことによって合計糖収量ΣSを約20%向上することができた。   When the pulverization treatment was performed for 30 minutes as in Example 2, the total sugar yield ΣS was reduced by about 20 as the monosaccharide yield S2 was significantly improved as compared with the case of not performing the pulverization treatment as in Comparative Example 1. % Could be improved.

(実施例7〜9)
酸処理工程:原料として再生ボード用廃建材を用い、加水分解機として連続式加水分解機(処理量:50kg/時間)を用い、硫酸濃度1%、反応温度170℃、反応時間10分で一次加水分解を行い、原料(乾物)100gあたり21gの単糖が得られた。固形分回収率は70%であった。
固液分離工程:一次加水分解後、トレイフィルター(処理量:固形物として18kg/バッチ)で固液分離を行った。得られた残渣を水でよく洗浄し、粉砕工程用の原料とした。
粉砕工程:ボールミル(CMT株式会社製、型式:TI−200、容量50mL/ポット、ポット数2)に上記の残渣25g/ポット(湿潤重量)を入れ、粉砕時間を変えて粉砕を行った。各実施例における粉砕時間を表3に示す。
(Examples 7 to 9)
Acid treatment process: Recycled board waste building materials are used as raw materials, a continuous hydrolyzer (treatment amount: 50 kg / hour) is used as a hydrolyzer, and a sulfuric acid concentration is 1%, a reaction temperature is 170 ° C., and a reaction time is 10 minutes. Hydrolysis was performed to obtain 21 g of monosaccharide per 100 g of raw material (dry matter). The solid content recovery was 70%.
Solid-liquid separation step: After primary hydrolysis, solid-liquid separation was performed with a tray filter (throughput: 18 kg / batch as a solid). The obtained residue was thoroughly washed with water and used as a raw material for the pulverization process.
Crushing step: The above residue 25 g / pot (wet weight) was put into a ball mill (CMT Co., Ltd., model: TI-200, capacity 50 mL / pot, number of pots 2), and pulverization was performed by changing the pulverization time. Table 3 shows the grinding time in each example.

Figure 2006246711
Figure 2006246711

酵素加水分解工程:200mLの三角フラスコに、粉砕した残渣を固形物として2.5g投入し、これに緩衝液とイオン交換水とを残渣の付着水分と合わせて50mLになるように添加した。緩衝液としては0.2mol/Lの酢酸ナトリウムを用い、反応液のpHを4.5に調整した。ここにセルラーゼ(SPEZYME GC 220、ジェネンコア・インターナショナルジャパン・リミテッド)を残渣の固形物1gに対して0.08g添加した。これを反応温度45℃、100rpmで振とうし、110時間酵素加水分解を行った。
分析は、実施例1〜6の場合と同様に行った。
Enzymatic hydrolysis step: Into a 200 mL Erlenmeyer flask, 2.5 g of the pulverized residue was added as a solid, and a buffer solution and ion-exchanged water were added to the residue so as to be 50 mL together with the adhering moisture of the residue. As a buffer solution, 0.2 mol / L sodium acetate was used, and the pH of the reaction solution was adjusted to 4.5. Here, 0.08 g of cellulase (SPEZYME GC 220, Genencor International Japan Limited) was added to 1 g of the residual solid. This was shaken at a reaction temperature of 45 ° C. and 100 rpm, and subjected to enzyme hydrolysis for 110 hours.
The analysis was performed in the same manner as in Examples 1-6.

(比較例3)
一次加水分解の残渣を粉砕処理を行わずにそのまま酵素加水分解工程に用いたこと以外は上記の実施例と同様にして単糖を得た。
(Comparative Example 3)
A monosaccharide was obtained in the same manner as in the above example except that the residue of primary hydrolysis was directly used in the enzyme hydrolysis step without being pulverized.

実施例7〜9と比較例3との酸処理工程における糖収量S1および固形分回収率R1、酵素加水分解における糖収量S2、ならびに合計糖収量ΣSを表4に示す。   Table 4 shows the sugar yield S1 and the solids recovery rate R1, the sugar yield S2 in the enzymatic hydrolysis, and the total sugar yield ΣS in the acid treatment steps of Examples 7 to 9 and Comparative Example 3.

Figure 2006246711
Figure 2006246711

実施例7〜9、比較例3のいずれについても、一次加水分解により原料100g(乾物)あたり21gの単糖が得られ、固形分回収率は70%であった。ボールミルで10分間粉砕するだけで(実施例7)、粉砕処理を行わなかった場合(比較例3)に比べて、基質当たりの単糖収量が約1.8倍に増加した。原料あたりの糖収量で比較すると、約37%の増加となった。実施例9では、この増加傾向がさらに著しかった。   In any of Examples 7 to 9 and Comparative Example 3, 21 g of monosaccharide was obtained per 100 g (dry matter) of the raw material by primary hydrolysis, and the solid content recovery rate was 70%. By simply pulverizing with a ball mill for 10 minutes (Example 7), the yield of monosaccharides per substrate increased by about 1.8 times compared to the case without pulverization (Comparative Example 3). When compared with the sugar yield per raw material, the increase was about 37%. In Example 9, this increasing tendency was more remarkable.

本発明のリグノセルロースの前処理方法は、木質バイオマスを原料とする糖化およびエタノールの製造に有用である。   The lignocellulose pretreatment method of the present invention is useful for saccharification and production of ethanol using woody biomass as a raw material.

リグノセルロースを原料とし、本発明の前処理方法を含むエタノールの製造方法の一例をフローチャートで示したものである。An example of the manufacturing method of ethanol which uses lignocellulose as a raw material and includes the pre-processing method of this invention is shown with the flowchart. 実施例1〜6および比較例1〜2における酵素加水分解で得られた、基質重量あたりの単糖収量の経時変化を示す。The time-dependent change of the monosaccharide yield per substrate weight obtained by the enzyme hydrolysis in Examples 1-6 and Comparative Examples 1-2 is shown.

Claims (7)

リグノセルロースの酵素加水分解の前処理方法であって、リグノセルロース原料を酸処理する酸処理工程と、前記酸処理工程の反応物を固液分離する固液分離工程と、前記固液分離工程の残渣を湿式粉砕処理する粉砕処理工程とを含むことを特徴とするリグノセルロースの前処理方法。   A pretreatment method for enzymatic hydrolysis of lignocellulose, comprising an acid treatment step for acid-treating a lignocellulose raw material, a solid-liquid separation step for solid-liquid separation of a reaction product of the acid treatment step, and a solid-liquid separation step A pretreatment method for lignocellulose, comprising a pulverization treatment step of subjecting the residue to a wet pulverization treatment. 前記酸処理を、希硫酸を用いて行うことを特徴とする請求項1に記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to claim 1, wherein the acid treatment is performed using dilute sulfuric acid. 前記酸処理工程において、希硫酸の濃度が0.1〜5%であることを特徴とする請求項2に記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to claim 2, wherein the concentration of dilute sulfuric acid is 0.1 to 5% in the acid treatment step. 前記酸処理工程において、反応温度が140〜230℃であることを特徴とする請求項1〜3のいずれか1項に記載のリグノセルロースの前処理方法。   In the said acid treatment process, reaction temperature is 140-230 degreeC, The pretreatment method of lignocellulose of any one of Claims 1-3 characterized by the above-mentioned. 前記酸処理工程において、反応時間が1〜20分であることを特徴とする請求項1〜4のいずれか1項に記載のリグノセルロースの前処理方法。   In the said acid treatment process, reaction time is 1 to 20 minutes, The pretreatment method of lignocellulose of any one of Claims 1-4 characterized by the above-mentioned. 前記リグノセルロース原料が廃建材であることを特徴とする請求項1〜5のいずれか1項に記載のリグノセルロースの前処理方法。   The said lignocellulose raw material is a waste building material, The pretreatment method of lignocellulose of any one of Claims 1-5 characterized by the above-mentioned. リグノセルロースを、酸処理前に破砕処理を行うことを特徴とする請求項1〜6のいずれか1項に記載のリグノセルロースの前処理方法。

The lignocellulose pretreatment method according to any one of claims 1 to 6, wherein the lignocellulose is crushed before acid treatment.

JP2005063686A 2005-03-08 2005-03-08 Pretreatment method of lignocellulose Expired - Fee Related JP4619831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063686A JP4619831B2 (en) 2005-03-08 2005-03-08 Pretreatment method of lignocellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063686A JP4619831B2 (en) 2005-03-08 2005-03-08 Pretreatment method of lignocellulose

Publications (2)

Publication Number Publication Date
JP2006246711A true JP2006246711A (en) 2006-09-21
JP4619831B2 JP4619831B2 (en) 2011-01-26

Family

ID=37087828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063686A Expired - Fee Related JP4619831B2 (en) 2005-03-08 2005-03-08 Pretreatment method of lignocellulose

Country Status (1)

Country Link
JP (1) JP4619831B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090703A (en) * 2006-10-04 2008-04-17 Sangi Co Ltd Chemical industrial raw material production and sales management system
WO2010013324A1 (en) * 2008-07-30 2010-02-04 株式会社 ケー・イー・エム Method of treating substance containing lignocellulose or cellulose
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
JP2011502526A (en) * 2007-11-14 2011-01-27 アールト・ユニバーシティ・ファウンデイション Lipid production method
JP2014524943A (en) * 2011-06-09 2014-09-25 ザイレコ,インコーポレイテッド Biomass processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991893A (en) * 1982-11-16 1984-05-26 Res Assoc Petroleum Alternat Dev<Rapad> Method for pretreating cellulosic raw material for saccharification
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991893A (en) * 1982-11-16 1984-05-26 Res Assoc Petroleum Alternat Dev<Rapad> Method for pretreating cellulosic raw material for saccharification
JP2004201599A (en) * 2002-12-26 2004-07-22 Tsukishima Kikai Co Ltd System and method for producing sugar from waste building material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090703A (en) * 2006-10-04 2008-04-17 Sangi Co Ltd Chemical industrial raw material production and sales management system
JP2011502526A (en) * 2007-11-14 2011-01-27 アールト・ユニバーシティ・ファウンデイション Lipid production method
WO2010013324A1 (en) * 2008-07-30 2010-02-04 株式会社 ケー・イー・エム Method of treating substance containing lignocellulose or cellulose
JP5300846B2 (en) * 2008-07-30 2013-09-25 株式会社ケー・イー・エム Method for treating lignocellulose or a substance containing cellulose
WO2010050223A1 (en) 2008-10-30 2010-05-06 王子製紙株式会社 Saccharide production process and ethanol production process
JP2014524943A (en) * 2011-06-09 2014-09-25 ザイレコ,インコーポレイテッド Biomass processing

Also Published As

Publication number Publication date
JP4619831B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619917B2 (en) Pretreatment method of lignocellulose
Cao et al. Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast
EP2612920B1 (en) Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
CA2731350C (en) A process for production of ethanol from lignocellulosic material
JP4522797B2 (en) Lignocellulose pretreatment method and ethanol production method
JP2007124933A (en) Pretreatment method of lignocellulose
MX2013014331A (en) Methods for converting lignocellulosic material to useful products.
Singh et al. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol
JP2008043328A (en) Method for saccharifying wood-based biomass
JP2010041923A (en) Enzymatic saccharification method and ethanol production method
CN106574278B (en) Production of lactic acid and/or lactate from lignocellulosic material by separate saccharification and fermentation steps
JP2007151433A (en) Method for pretreatment of lignocellulose and method for producing ethanol
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP4619831B2 (en) Pretreatment method of lignocellulose
JP6213612B2 (en) Method for producing ethanol from lignocellulosic material
JP2009022165A (en) Method for producing ethanol
JP2013188204A (en) Method for pretreatment of lignocellulose-containing biomass
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
US8497097B2 (en) Chlorine dioxide treatment of biomass feedstock
WO2015155788A2 (en) Method for efficient enzymatic hydrolysis of lignocellulosic materials
JP5910367B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6343967B2 (en) Method for producing ferulic acid
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Effective date: 20100726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees