JP2006246692A - Method and program for preparing system recovery procedure - Google Patents

Method and program for preparing system recovery procedure Download PDF

Info

Publication number
JP2006246692A
JP2006246692A JP2005233848A JP2005233848A JP2006246692A JP 2006246692 A JP2006246692 A JP 2006246692A JP 2005233848 A JP2005233848 A JP 2005233848A JP 2005233848 A JP2005233848 A JP 2005233848A JP 2006246692 A JP2006246692 A JP 2006246692A
Authority
JP
Japan
Prior art keywords
executable
section
objective
recovery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233848A
Other languages
Japanese (ja)
Inventor
Hideyuki Kobayashi
秀行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005233848A priority Critical patent/JP2006246692A/en
Publication of JP2006246692A publication Critical patent/JP2006246692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and program for preparing system recovery procedure that solves the problem, wherein it takes time until recovery, because the differences of switch states from the current state are reflected in the procedure, when preparing a system recovery procedure after power failure, based on information on equipment and components that constitute an electric power system. <P>SOLUTION: A system recovery procedure is prepared by handling operation objectives (objective operations) applied to electric power equipment and components comprising an electric power system. Also, the procedure includes extracting operation sets that satisfy local conditions, by inputting the system immediately after the occurrence of power failure, searching a feasible objective operations set, and creating operation candidates for the next system configuration, when a feasible objective operations set exists in any system section. Evaluation uses a perspective evaluation function, when the recovery operation is finished, when the feasible objective operations set is completed to obtain higher evaluations. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電力系統の事故から系統を復旧させるための系統復旧操作手順の作成方法とそのプログラムに関するものである。   The present invention relates to a method for creating a system restoration operation procedure for restoring a system from a power system accident and a program therefor.

電力系統に事故が発生し、リレー動作により遮断器がトリップした後に事故原因が除去されて停電地域に電力を再度供給する際に、その復旧手順を自動的に作成し、この手順に基づいて自動復旧することが行われている。このような自動復旧方法として、例えば特許文献1のようなものが公知となっている。特許文献1は、手順作成時に、電力系統を復旧させるための操作に不必要な開閉器までを抽出することに伴う操作手順の煩雑さを改善することを目的として、抽出された開閉器の両端の設備が決定系統上で復旧可能であるかを判断し、復旧可能時のみ次の手順に進むようにした手段を設けたものである。
特公平7−20348号公報
When an accident occurs in the power system and the circuit breaker trips due to relay operation, when the cause of the accident is removed and power is supplied again to the outage area, a recovery procedure is automatically created, and this procedure is automatically performed. Recovery has been done. As such an automatic recovery method, for example, the one disclosed in Patent Document 1 is known. Patent Document 1 discloses that both ends of an extracted switch are extracted for the purpose of improving the complexity of an operation procedure associated with extracting a switch unnecessary for an operation for restoring a power system at the time of creating the procedure. It is determined whether the equipment can be restored on the determined system, and means for proceeding to the next procedure only when restoration is possible is provided.
Japanese Patent Publication No. 7-20348

特許文献1を含む従来における系統復旧手順の生成方法は、停電負荷復旧後の断面における最適化計算を行い、現状との開閉器状態の差違を手順に反映させる方法となっている。このため、最終系統が決定した後、手順を作成するという2ステップで手順が作成されることにより、操作過程の最適性に問題を有すると共に、時間がかかる問題を有している。   A conventional method for generating a system restoration procedure including Patent Document 1 is a method of performing optimization calculation in a cross section after restoration of a power outage load and reflecting a difference in a switch state from the current state in the procedure. For this reason, since the procedure is created in two steps of creating a procedure after the final system is determined, there is a problem in the optimization of the operation process and a problem that takes time.

本発明が目的とするところは、総合的な最適性を維持した復旧手順の作成方法とそのプログラムを提供することにある。   An object of the present invention is to provide a method for creating a recovery procedure that maintains the overall optimum and a program therefor.

本発明の第1は、電力系統を構成する機器情報をもとにして停電後の系統復旧手順を作成するものにおいて、
前記電力系統を構成する電力機器に対して行われる目的操作を取り扱って系統復旧手順を作成することを特徴としたものである。
本発明の第2は、前記目的操作で取り扱う電力系統の系統構成状態は、操作前状態、操作中状態、操作後状態であることを特徴としたものである。
The first of the present invention is to create a system restoration procedure after a power failure based on the equipment information constituting the power system,
The system restoration procedure is created by handling the target operation performed on the power equipment constituting the power system.
A second aspect of the present invention is characterized in that the system configuration state of the power system handled in the target operation is a pre-operation state, an in-operation state, and an after-operation state.

本発明の第3は、停電発生直後の系統を入力して実行可能目的操作集合を抽出し、実行可能目的操作集合の要素それぞれを実行して得られる個々の系統断面に対して、さらなる実行可能目的操作集合の存在時には、その系統断面の実行可能目的操作集合を生成し、実行可能目的操作により系統断面から次の系統断面を形成し、何れかの系統断面について実行可能目的操作集合が無くなるまでこれを繰り返し、系統断面で実行可能目的操作集合が無くなったことを復旧操作終了と判断し、復旧終了を判定した系統断面について大局評価関数を用いて評価を行い、最も評価の良い系統断面に至る目的操作の順序を、求める復旧手順とすることを特徴としたものである。   According to the third aspect of the present invention, an executable target operation set is extracted by inputting a system immediately after the occurrence of a power failure, and can be further executed for each system section obtained by executing each element of the executable target operation set. When the target operation set exists, an executable objective operation set for the system cross section is generated, and the next system cross section is formed from the system cross section by the executable objective operation, until there is no executable target operation set for any system cross section. By repeating this, it is determined that the restoration operation has ended when there is no set of executable target operations on the system section, and the system section that has determined the end of recovery is evaluated using the global evaluation function to reach the system section with the best evaluation. This is characterized in that the order of target operations is a recovery procedure to be obtained.

本発明の第4は、前記実行可能目的操作集合は、系統制約条件と局所条件の両方を満たすことを特徴としたものである。   A fourth aspect of the present invention is characterized in that the executable objective operation set satisfies both a system constraint condition and a local condition.

本発明の第5は、前記実行可能目的操作集合を抽出したあと系統運用に基づく第2大局評価関数により実行可能目的操作集合の要素を絞り込み、次の系統断面に移行することを特徴としたものである。   According to a fifth aspect of the present invention, after the executable objective operation set is extracted, the elements of the executable objective operation set are narrowed down by the second global evaluation function based on the system operation, and the next system section is shifted. It is.

本発明の第6は、前記検索過程において出現した全ての系統断面に、前記大局評価関数による評価点を付与したことを特徴としたものである。   A sixth aspect of the present invention is characterized in that evaluation points based on the global evaluation function are assigned to all system cross sections that appear in the search process.

本発明の第7は、停電発生直後の系統を入力して実行可能目的操作集合を抽出し、これより系統運用に基づく第2大局評価関数により選ばれる実行可能目的操作により形成される系統断面を優先的に選択して検索を進め、生成される系統断面において復旧操作終了を判定した場合に、これにいたる経緯を最初の最適実行可能復旧操作とし、非選択の各実行可能目的操作において最適実行可能復旧操作との大局評価関数との比較を実行してより良い評価点を得たもののみにさらに検索を実行し、実行可能復旧操作発見時には次なる最適実行可能復旧操作とし、最終的に残った最適実行可能復旧操作を求めて復旧手順とすることを特徴としたものである。   In the seventh aspect of the present invention, a system section formed by an executable objective operation selected by a second global evaluation function based on a system operation is extracted by inputting a system immediately after the occurrence of a power failure and extracting an executable objective operation set. When a search is performed with priority selection and the end of the recovery operation is determined in the generated system cross section, the process leading to this is regarded as the first optimal executable recovery operation, and optimal execution is performed for each non-selected executable target operation. Perform a search for only those that have obtained a better evaluation score by comparing the feasible restoration operation with the global evaluation function, and when the feasible restoration operation is found, the next optimum feasible restoration operation is performed and finally remains In other words, the recovery procedure is determined by seeking the optimum feasible recovery operation.

本発明の第8は、前記実行可能復旧操作の検索時に、与えられた系統の初期断面から予め指定された有限の検索を行って各実行可能復旧操作系統を大局関数で評価し、評価値の優れたものから指定順位までの複数の実行可能復旧操作の系統候補を抽出し、抽出系統に連なる操作過程で非選択の実行可能復旧操作を操作候補から除外して枝切りすることを特徴としたものである。   According to an eighth aspect of the present invention, when searching for the feasible recovery operation, a finite search specified in advance is performed from an initial cross section of a given system, and each feasible recovery operation system is evaluated with a global function. It is characterized by extracting multiple possible recovery operation system candidates from superior to specified order, and branching by excluding unselected executable recovery operations from the operation candidates in the operation process connected to the extracted system Is.

本発明の第9は、前記枝切りのための評価値に、各個別需要の大きさに個々の重要度係数を乗じ、復旧操作の経過時間で積分した値を累計して求めた停電評価値を含めた評価値としたことを特徴としたものである。   According to a ninth aspect of the present invention, the outage evaluation value obtained by accumulating the value obtained by multiplying the evaluation value for the pruning by the individual importance factor by the individual importance factor and integrating the elapsed time of the recovery operation. It is characterized by having an evaluation value including.

本発明の第10は、前記評価値による枝切りは、判定開始時間を越えた時間断面における評価値が、同一時間断面における実行可能解の評価値を超えたときに枝切とすることを特徴としたものである。   According to a tenth aspect of the present invention, the branching by the evaluation value is performed when the evaluation value in the time section exceeding the determination start time exceeds the evaluation value of the feasible solution in the same time section. It is what.

本発明の第11は、前記評価値による枝切りは、過去に探索した同位な系統状態の評価値を越えたときに枝切とすることを特徴としたものである。   The eleventh aspect of the present invention is characterized in that the branching based on the evaluation value is a branching when the evaluation value of the peer system state searched in the past is exceeded.

本発明の第12は、前記同位による枝切りは、電力系統における系統構成・発電・負荷状態及び当直員の操作実行状況が等しいときに完全同位な系統状態と認識し、過去の評価値より悪いときとに枝切とすることを特徴としたものである。   According to a twelfth aspect of the present invention, the branching by the peer is recognized as a completely peer system state when the system configuration / power generation / load state in the power system and the operation execution situation of the shift staff are equal, which is worse than the past evaluation value. It is characterized by the fact that it is sometimes cut into branches.

本発明の第13は、前記同位による枝切りは、電力系統における系統構成・発電・負荷状態が等しく当直員の操作状態のみが異なる場合に不完全な同位状態と認識し、この不完全な同位状態が指定回数連続したときに枝切とすることを特徴としたものである。   According to the thirteenth aspect of the present invention, the branching by the peer is recognized as an incomplete peer state when the system configuration, power generation, and load state in the power system are the same and only the operating state of the shift operator is different. It is characterized in that a branch is cut when the state continues for a specified number of times.

本発明の第14は、ある系統断面で実施する1操作の選択時に、実行可能目的操作による指定された有限段の検索を行い、各系統断面について大局評価関数により評価を行い、評価値の最も良い系統断面に連なる最初の目的操作を、選択される目的操作として決定し、次に実施する操作の選択時にはこれを繰り返すことにより復旧手順を決定することを特徴としたものである。   According to the fourteenth aspect of the present invention, when one operation performed on a system section is selected, a designated finite stage is searched by an executable target operation, and each system section is evaluated by a global evaluation function. The first target operation connected to a good system section is determined as the selected target operation, and the recovery procedure is determined by repeating this when selecting the next operation to be performed.

本発明の第15は、前記目的操作のための系統認識は、電力系統を構成する変圧器と開放中の開閉器で分割した部分系統の認識、電源端子の認識、過負荷系統の認識、或いは操作失敗系統の認識の何れかによることを特徴としたものである。   According to the fifteenth aspect of the present invention, the system recognition for the purpose operation includes recognition of a partial system divided by a transformer constituting an electric power system and an open switch, recognition of a power supply terminal, recognition of an overload system, or It is characterized by any one of recognition of an operation failure system.

本発明の第16は、電力系統を構成する機器情報をもとに、停電後の系統復旧手順を作成するものにおいて、
停電発生直後の系統を入力して局所条件と系統制約条件を満たす目的操作の集合である実行可能目的操作集合を抽出する手段と、実行可能目的操作によって次なる系統断面を抽出し、次なる実行可能目的操作集合を抽出する手段と、これを繰り返す手段と、大局評価関数を用いて評価値を演算する手段と、演算結果を判断して評価値の高いものを選択する手段をコンピュータに実行させるものである。
According to the sixteenth aspect of the present invention, in order to create a system restoration procedure after a power failure based on the equipment information constituting the power system,
A system that inputs a system immediately after the occurrence of a power failure and extracts an executable objective operation set that is a set of objective operations that satisfy local conditions and system constraint conditions, and extracts the next system section by the executable objective operation and performs the next execution Causing a computer to execute means for extracting a set of possible objective operations, means for repeating the same, means for calculating an evaluation value using a global evaluation function, and means for selecting a high evaluation value by judging the calculation result Is.

本発明の第17は、前記実行可能目的操作集合を抽出する手段による抽出後に系統運用に基づく第2大局評価関数によって実行可能目的操作集合の要素を絞り込む手段と、この手段による絞込み後に前記次なる系統断面を抽出若しくは評価値演算手段をコンピュータに実行させるものである。   The seventeenth aspect of the present invention is a means for narrowing down the elements of the executable objective operation set by the second global evaluation function based on the system operation after the extraction by the means for extracting the executable objective operation set, and the next after the narrowing by this means The system section is extracted or the evaluation value calculation means is executed by a computer.

本発明の第18は、前記実行可能目的操作集合の抽出後、系統運用に基づく第2大局評価関数により選択される実行可能目的操作を優先的に選択する手段と、前記次なる系統断面を抽出若しくは評価値演算手段と、評価値の良い枝を選択する手段と、選択された枝のみ次なる系統断面を生成する手段をコンピュータに実行させるものである。   According to an eighteenth aspect of the present invention, after the executable objective operation set is extracted, means for preferentially selecting an executable objective operation selected by a second global evaluation function based on system operation, and extracting the next system section Alternatively, the computer is caused to execute evaluation value calculation means, means for selecting a branch having a good evaluation value, and means for generating a system cross section subsequent to only the selected branch.

本発明の第19は、前記各手段により指定された有限段の復旧木を生成する手段と、前記評価値演算手段による評価値の良い枝を選択する手段と、次なる操作選択時にこれを繰り返す手段をコンピュータに実行させるものである。   According to a nineteenth aspect of the present invention, means for generating a finite-stage restoration tree designated by each means, means for selecting a branch having a good evaluation value by the evaluation value calculating means, and this is repeated at the time of the next operation selection. The means is executed by a computer.

以上のとおり、本発明によれば、目的操作を利用することにより、操作過程において復旧までの分岐が少ない木を容易に生成できるという最適性を有した手順を得ることができる。さらにこれは、検索時間の短縮や、基本系統の変化にも柔軟に対応し、ユーザーが認識しやすい論理構造により操作が選択され、操作内容の理解を容易としたものである。   As described above, according to the present invention, it is possible to obtain an optimal procedure that can easily generate a tree with few branches until recovery in the operation process by using the target operation. Furthermore, this shortens the search time and responds flexibly to changes in the basic system, and the operation is selected by a logical structure that is easy for the user to recognize, thereby facilitating understanding of the operation content.

本発明の具体的説明に先立って、その理論について説明する。
本発明は、系統復旧操作を「目的操作単位」で取り扱い、且つ「目的操作の組み合わせ過程において、復旧木を構築し、評価関数によって最適復旧手順」を求めるものである。
(1)目的操作について
従来の復旧手順の生成方法において、操作とは特定の開閉器の開閉状態の変更であった。これに対して、本発明における「目的操作」とは、電力系統を構成する電力機器に対して行われる操作の目的のみを取り扱うものである。例えば、図11(a)のような停電中の母線があったとする。同図において、Gは発電機、甲、乙は母線、CB1,CB2は遮断器でCB1が開放状態となって母線甲、乙が停電となっている。この母線の受電操作は、図11(b)のように遮断器CB1を投入して母線甲、乙に給電する方法と、(c)のように遮断器CB2を開放して遮断器CB1にて切り替えて投入する方法と、少なくとも2つの方法が考えられる。それぞれの方法は、具体的に行われる操作の内容が異なるが、これを目的操作で考えると、共に「母線を使用する」という1つの目的操作に集約される。つまり、目的操作とは操作を行うための「目的」のみが明確な操作であり、目的を実現する具体的な操作内容は特定しない。実際に目的操作が実行されるとき、どのような操作が実行されるかは個々の設備に由来する。
(2)目的操作の種類について
停電復旧過程において行われる系統操作を、その目的ごとに最小の単位まで分割していくと、設備については次の8つに分けられる。
使用操作…停止中の設備が、これの実行によって充電される操作。
併用操作…開放中の遮断器において両端が同一系統であって、これを投入する操作。
連係操作…開放中の遮断器において両端が異系統であって、これを投入する操作。停止操作…設備を停止状態にする操作。充電中の設備を停電状態にして停止する操作は当然これに含まれるが、設備が停止されているかどうかは、事前の充停電状態には関係がない。例えば電源側の事故などで広い範囲が停電してしまう時などでは、設備の開閉器状態が使用状態のまま停電してしまうこともある。使用状態のまま設備を充電すると、運用上問題が出る場合もあるので、必要により停電している設備でも停止操作を行うことがある。
解放操作…遮断器などが投入状態のまま停電してしまった設備において、この遮断器を解放する操作。
併用を解く操作…同一系統内の投入中の遮断器で、これを解放する操作。解放後も設備の停電がない。
ループ切替操作…複母線で、接続する母線を例えば甲→乙に切り替えるとき、または常時予備受電の2回線変電所において受電する受電点を切り替えるときなど、遮断器に流れる電流を止めずに切り替える操作。
停電切替操作…複母線で、接続する母線を例えば甲→乙に切り替えるとき、または常時予備受電の2回線変電所において受電する受電点を切り替えるとき、遮断器に流れる電流を止めて切り替える操作。
つまり、復旧操作を生成する上で必要となる目的操作は、設備については上記の8種類であり、これら8つの操作を組み合わせれば、系統復旧が可能なのである。なお、操作効率向上のために変電所など或る程度の複数の設備に対する目的操作を実行する場合もある。
(3)目的操作の局所条件と自順序性について
全ての目的操作には、その操作が実行できるための実行条件がある(以後、これを局所条件と呼称する)。それは、系統上の制約条件(過負荷、電圧異常など)とは別のものである。例えば、停止している送電線に、使用繰作を施そうとする場合、電源となる母線に電圧が無くては使用操作が出来ない。電源が有るか無いかは、送電後系統に過負荷が発生するか等を考える以前の問題である。このように、局所条件は系統制約の問題とは根本的に異なる。また、操作が局所条件を持つことにより、上記の例では母線の使用→送電線の使用という操作の流れが必然的に決まる。これは、系統構成の変化を目的操作で扱えば、考えなければいけない系統構成数を大幅に削減できることを意味する。この系統操作がもつ、勝手に順番が決まるという性質を以後、自順序性と呼称する。なお、実行可能な目的操作は、局所条件と系統制約条件の両方を満たす目的操作である。系統制約条件が加わるので。復旧過程で考えなければいけない系統構成数はさらに減る。
(4)目的操作の取り得る状態について
開閉器のみならば2状態であるが、目的操作では操作前・操作中・操作後の3状態がある。
操作前状態…操作の実行前状態である。系統状態は、実行しようとしている目的操作の局所条件を満たしている。
操作中状態…通常、電力系統の開閉器状態を変更するのには時間がかかる。つまり操作中状態とは操作に含まれる開閉器の状態変更を行なっている最中である。操作中状態では系統構成は操作に含まれる開閉器状態変更の数だけ異なる系統構成断面を持つ。
操作後状態…目的操作が終了した状態であり、次の目的操作がある場合には、その系統構成は次の操作の操作前状態となる。
操作を連続的に処理しようとすると、前の操作が操作後状態である必要(自順序性)がある。また、操作を並列して処理しようとする場合は平行している操作の状態が操作中であるか否かも重要な局所条件の一つとなり得る。
(5)目的操作の大局条件について
目的操作の大局条件とは、運用者がなにを評価軸とするかという思考を具現化した条件であって、停電の復旧戦略を決定しているものである。例えば、ある断面において局所条件・系統制約条件の2つの条件を満たして自順序的にも操作可能な複数の目的操作があるとき、どれを選択するか、あるいは検索が終了した段階で、生成された複数の復旧操作のなかでどれを選ぶか、という問題に対して、「停電電力量最小」あるいは「停電負荷の現系復旧優先」など、判断のよりどころとなる条件を示すものである。この条件を数値的に評価関数として表したものを大局評価関数という。つまり、目的操作そのものには、意味はあっても意志がないので、意志を決定する部位が必要となる。
Prior to specific description of the present invention, the theory will be described.
In the present invention, the system restoration operation is handled in “target operation units”, and “a recovery tree is constructed in the process of combining the target operations, and an optimum restoration procedure is obtained by an evaluation function”.
(1) About the target operation In the conventional method for generating the recovery procedure, the operation is a change in the open / close state of a specific switch. On the other hand, the “target operation” in the present invention deals only with the purpose of the operation performed on the power equipment constituting the power system. For example, it is assumed that there is a bus during power outage as shown in FIG. In the figure, G is a generator, A and B are busbars, CB1 and CB2 are circuit breakers, CB1 is open, and bus A and B are out of power. As shown in FIG. 11B, the power receiving operation of the bus is performed by inserting the circuit breaker CB1 to supply power to the bus A and B, and by opening the circuit breaker CB2 as shown in FIG. 11C. At least two methods are conceivable: a method of switching and inputting. Each method differs in the content of the operation specifically performed. However, when this is considered as the target operation, both are combined into one target operation of “use busbar”. In other words, the target operation is a clear operation only for the “purpose” for performing the operation, and the specific operation content for realizing the purpose is not specified. When the target operation is actually executed, what operation is executed depends on the individual equipment.
(2) Types of target operation If the system operation performed in the power failure recovery process is divided into the minimum units for each purpose, the equipment is divided into the following eight types.
Use operation: Operation in which a facility that is stopped is charged by executing this operation.
Combined operation: An operation in which both ends of the open circuit breaker are of the same system and are turned on.
Linking operation: An operation in which both ends of the open circuit breaker are of different systems and are turned on. Stop operation: Operation to stop the equipment. Of course, this includes the operation of stopping the facility being charged in a power failure state, but whether or not the facility is stopped is irrelevant to the prior power failure state. For example, when a wide range of power fails due to an accident on the power source side, the power switch may be out of power while the facility switch is in use. If the equipment is charged while it is in use, there may be a problem in operation. Therefore, even if there is a power outage, the operation may be stopped.
Release operation: An operation to release the circuit breaker in a facility where a power failure occurs while the circuit breaker is turned on.
Operation to unlock the combined use: Operation to release the circuit breaker in the same system. There will be no power outage after the release.
Loop switching operation: An operation to switch without stopping the current that flows through the circuit breaker, such as when switching the connected bus from A to B, or when switching the power receiving point at the two-line substation with constant standby power reception. .
Power failure switching operation: An operation to stop and switch the current flowing through the circuit breaker when switching the connected bus from, for example, A to B, or when switching the power receiving point at the two-line substation where standby power is always received.
That is, there are eight types of target operations necessary for generating a recovery operation, and the system recovery is possible by combining these eight operations. In addition, in order to improve operation efficiency, a target operation may be performed on a certain number of facilities such as a substation.
(3) Regarding local conditions and self-ordering of target operations All target operations have execution conditions for executing the operations (hereinafter referred to as local conditions). It is different from the constraints on the system (overload, voltage abnormality, etc.). For example, when it is going to perform a use cycle to the power transmission line which has stopped, use operation cannot be performed if there is no voltage in the bus line used as a power source. Whether or not there is a power source is a problem before considering whether an overload occurs in the system after power transmission. Thus, the local condition is fundamentally different from the problem of system constraints. In addition, since the operation has local conditions, in the above example, the operation flow of using the busbar → using the power transmission line is inevitably determined. This means that if the change in the system configuration is handled by the target operation, the number of system configurations that must be considered can be greatly reduced. Hereinafter, the property of the system operation that the order is arbitrarily determined is referred to as self-ordering. The target operation that can be executed is a target operation that satisfies both the local condition and the system constraint condition. Because system constraints are added. The number of system configurations that must be considered in the recovery process is further reduced.
(4) The states that the target operation can take are two states if only the switch is used, but the target operation has three states before operation, during operation, and after operation.
Pre-operation state: This is a pre-operation state. The system state satisfies the local condition of the target operation to be executed.
In-operation state: Usually, it takes time to change the switch state of the power system. That is, the in-operation state is in the middle of changing the state of the switch included in the operation. In the operating state, the system configuration has system configuration cross sections that differ by the number of switch status changes included in the operation.
Post-operation state: A state in which the target operation has been completed, and when there is a next target operation, the system configuration is a pre-operation state of the next operation.
When trying to process operations continuously, the previous operation needs to be in a post-operation state (self-ordering). Also, when processing operations in parallel, whether or not the state of the parallel operation is in operation can be one of important local conditions.
(5) About the general condition of the target operation The general condition of the target operation is a condition that embodies the idea of what the operator uses as the evaluation axis, and determines the recovery strategy for power failure. is there. For example, when there are multiple target operations that can be operated in a self-order while satisfying the two conditions of local conditions and system constraints in a section, they are generated at the stage of selection or selection. In addition, for the question of which one to select from among a plurality of recovery operations, conditions such as “minimum power outage” or “priority for current recovery of power outage load” are shown. A numerical expression of this condition as an evaluation function is called a global evaluation function. That is, the target operation itself has a meaning but has no will, so a part for determining the will is required.

図2は、本発明を説明するための電力系統の概念図である。
ある電力系統において、その系統に設置された開閉器状態により取り得る系統構成を状態とする状態空間をΨと定義すると、Ψは2x個の要素からなる系統構成sの集合である。ここで、xは含まれる開閉器の数である。また、この電力系統において、予め用意される組み合わせの基となる系統操作の全体集合をP0とする。
あるi番目の操作を検索するためのi回目の検討断面において、Si⊆Ψは取り得る系統構成の集合で、その要素をsijとする。
Si={si1,si2,…sij‥}
また、系統断面sijにおいて局所条件を満たした系統操作の集合をPij⊆P0とし、
Pij={pij1,pij2,…pijk‥}
とする。系統操作pijkは系統構成sij→si+1,jに遷移させる関数であるので、以下は次のように記載する。
pijk:sij→si+1,jをsi+1,j=pijk・sij
pij・sij={pij1・sij,pij2・sij,pij3・sij…}
また、系統制約条件式CをC(s)>0であったとき制約条件を満たすとする。
FIG. 2 is a conceptual diagram of a power system for explaining the present invention.
In a certain power system, Ψ is a set of system configurations s composed of 2 x elements, where ψ is defined as a state space in which a system configuration that can be taken according to the state of a switch installed in the system is defined. Here, x is the number of included switches. Further, in this power system, P 0 is an entire set of system operations that are the basis of combinations prepared in advance.
In the i-th examination section for searching for an i-th operation, Si⊆Ψ is a set of possible system configurations, and its element is sij.
Si = {si1, si2, ... sij ...}
Further, a set of system operations that satisfy the local condition in the system section sij is Pij⊆P 0 ,
Pij = {pij1, pij2,... Pijk.
And Since the system operation pijk is a function for making a transition from the system configuration sij to si + 1, j, the following is described as follows.
pijk: sij → si + 1, j is si + 1, j = pijk · sij
pij · sij = {pij1 · sij, pij2 · sij, pij3 · sij ...}
Further, it is assumed that the constraint condition is satisfied when the system constraint conditional expression C is C (s)> 0.

図1は本発明の第1の実施例を示すアルゴリズムで、手順の組み合わせによる系統復旧の方法を示したものである。1は系統断面の入力手段で、与えられた系統の系統構成集合をsiとしてコンピュータにおいて入力処理する。ここで停電した負荷を含んだ初期系統状態をsftとすれば、S1={sft}である。2は系統解析手段で、sij∈Siにおける局所条件を満たした操作集合Pijの抽出処理を実行する。3は実行可能目的操作の抽出手段で、この手段によって実行可能目的操作集合Qijを得る。ここで、
Qij={pijk|pijk∈Pij,C(pijk・Sij)>0}
4は操作候補判断手段で、何れかの系統断面Sijにおける実行可能目的操作集合QijがQij≠φであったとき、すなわち、操作候補があったとき次の系統構成生成手段5において次の断面の系統構成集合Si+1を得る。したがって、次の系統構成生成手段5で、Si+1=Qi1si1∪Qi2si2∪…が実行され、これら1〜5の手段による処理を繰り返すことによって復旧木が形成される。6は評価値計算手段で、系統断面sijの実行可能目的操作集合QijがQij=φであったときは、復旧木の枝での復旧操作が終了したことを示す。復旧木の生成は、最初に復旧操作が終了した枝が発見された検索ステップから、指定回数だけ検索を進め、復旧木を確定する。生成された枝のうち、復旧操作が終了した系列について大局評価関数Hにより評価値が計算される。大局評価関数Hの引数は、初期断面からSijに至る遷移の経歴・最終断面の系統状況などである。
H=H(sij)=H(pijk・pi1jk・pi2jk…P1jk…s1j)
7は最適操作列の選択手段で、最終的に、各枝において最も大局評価関数Hの評価が高いものの遷移の経歴が、求める復旧手順である。なお、大局評価関数は、系統変更は少ない方がよく、速く送電できる方がよく、復旧までの操作ステップは少ない方がよいなどの評価要素によって任意に決められる。
FIG. 1 is an algorithm showing a first embodiment of the present invention, and shows a system restoration method by a combination of procedures. Reference numeral 1 denotes a system cross-section input means, which performs input processing in a computer as a system configuration set of a given system as si. Here, S1 = {sft}, where sft is the initial system state including the power failure load. Reference numeral 2 denotes system analysis means, which executes processing for extracting an operation set Pij that satisfies a local condition in sijεSi. Reference numeral 3 denotes an executable objective operation extracting means, which obtains an executable objective operation set Qij. here,
Qij = {pijk | pijkεPij, C (pijk · Sij)> 0}
Reference numeral 4 denotes operation candidate determination means. When the executable target operation set Qij in any system cross section Sij is Qij ≠ φ, that is, when there is an operation candidate, the next system configuration generation means 5 A system configuration set Si + 1 is obtained. Therefore, Si + 1 = Qi1si1∪Qi2si2∪... Is executed by the next system configuration generation means 5, and a recovery tree is formed by repeating the processing by these means 1-5. Reference numeral 6 denotes evaluation value calculation means. When the executable target operation set Qij of the system section sij is Qij = φ, it indicates that the recovery operation at the branch of the recovery tree has been completed. In the generation of the recovery tree, the search is performed a specified number of times from the search step where the branch for which the recovery operation has been completed first is found, and the recovery tree is determined. Of the generated branches, the evaluation value is calculated by the global evaluation function H for the series for which the restoration operation has been completed. The arguments of the global evaluation function H are the transition history from the initial cross section to Sij, the system status of the final cross section, and the like.
H = H (sij) = H (pijk · pi1jk · pi2jk ... P1jk ... s1j)
Reference numeral 7 denotes an optimum operation sequence selection means, which is a recovery procedure that finally obtains the transition history of each branch having the highest overall evaluation function H evaluation. It should be noted that the global evaluation function is arbitrarily determined by evaluation factors such as fewer system changes, better power transmission, and fewer operation steps until recovery.

図3は、状態列挙法による最適解の検索例である。ある系統断面sijにおいて複数の操作候補が生成された中で、系統制約条件Cより絞り込んだ結果、pijkが操作選択される。次の系統断面si+1jにおいても複数の操作候補が生成されるが、大局評価関数Hにより評価の高い方が選択される。   FIG. 3 shows an example of searching for an optimal solution by the state enumeration method. As a result of narrowing down from the system constraint condition C while a plurality of operation candidates are generated in a system cross section sij, the operation pijk is selected. A plurality of operation candidates are also generated in the next system cross section si + 1j, but the higher evaluation is selected by the global evaluation function H.

図4は、本発明の第2の実施例を示したアルゴリズムで、2つの大局評価関数を導入したことで検索の高速化を図ったものである。なお、図1と同一の部分、若しくは相当する部分には同一符号を付してある。すなわち、この実施例は実行可能目的操作の抽出手段3と操作候補判断手段4との間に、操作内容絞込み手段8を設けたものである。操作内容絞込み手段8では、実行可能目的操作集合Qijにおいて、第2大局評価関数H2=H2(Qij)を導入し、Pijk∈Qijの実行に優先度を設定する。図3でいえば、ある系統断面sijにおいて生成された操作候補を、この段階でさらにH2によって絞り込むものである。これは、操作の持つ意味を直接評価して序列を決定し、評価値の高い操作を選択するためのものである。例えば、過負荷が発生しているある系統断面において、過負荷を解消する実行可能な操作として、一部負荷を系統変更する。未使用設備を使用(併用)する。という2つの操作があった場合、「出来るだけ周りの系統に影響を及ぼさない」という方針のもとで、無条件に未使用設備の使用操作を選択する、といった場合に相当する。このように第2大局評価関数とは、系統運用上の条件を含めた形での評価関数とすることが、代表例として考えられる。
第2大局評価関数H2により、検索する枝数が大幅に制限されるため、高速化に大いに貢献する。また、制限された範囲で最適な解を得られる反面、H2の評価項目は大局評価関数Hのものとは本質的に異なるので、Hを最適化させる解がH2により除外されてしまう可能性もある。ゆえに実施例2では必ずしもHの最適解を得ることはできない。
FIG. 4 is an algorithm showing the second embodiment of the present invention, in which two global evaluation functions are introduced to speed up the search. In addition, the same code | symbol is attached | subjected to the part same as FIG. 1, or a corresponding part. That is, in this embodiment, the operation content narrowing means 8 is provided between the executable target operation extracting means 3 and the operation candidate determining means 4. The operation content narrowing means 8 introduces the second global evaluation function H2 = H2 (Qij) in the executable objective operation set Qij, and sets the priority for the execution of PijkεQij. In FIG. 3, the operation candidates generated in a certain system cross section sij are further narrowed down by H 2 at this stage. This is for directly evaluating the meaning of the operation to determine the order and selecting an operation with a high evaluation value. For example, in a system section where an overload has occurred, the system changes a part of the load as an executable operation to eliminate the overload. Use (use together) unused equipment. If there are two operations, this corresponds to the case of selecting the use operation of the unused equipment unconditionally under the policy of “not affecting the surrounding system as much as possible”. As described above, a representative example of the second global evaluation function is an evaluation function including conditions for system operation.
Since the number of branches to be searched is greatly limited by the second global evaluation function H2, it greatly contributes to speeding up. In addition, while an optimal solution can be obtained within a limited range, the evaluation item of H2 is essentially different from that of the global evaluation function H. Therefore, a solution that optimizes H may be excluded by H2. is there. Therefore, the optimum solution of H cannot always be obtained in the second embodiment.

図5は第3の実施例を示すアルゴリズムで、第1と第2の実施例の組み合わせで分枝限定による最適手順の検索方法を示したものである。
図4で得られた結果を復旧木の下界とし、分枝限定を行う。これは停電復旧という問題が、復旧に時間がかかればかかるほど、操作のステップが多くなればなるほど、評価が悪くなることから図4の結果以上の評価を得られる枝のみの検索を行うことで、高速かつ最適な手順を得るようにしたものである。
FIG. 5 is an algorithm showing the third embodiment, and shows a search method for an optimum procedure by branching and limiting in combination of the first and second embodiments.
The result obtained in FIG. 4 is used as the lower bound of the restoration tree, and branching is limited. This is because the problem of power failure recovery is that the longer it takes to recover, the more steps it takes, and the worse the evaluation, the more the results of FIG. It is intended to obtain a fast and optimal procedure.

系統断面入力手段1で初期系統断面を入力し、第2大局評価関数による目的操作の優先選択手段による復旧手順生成によって図4の下界zを得る(下界決定手段9)。下界を得た後、評価進行手段10で他の枝についての検索を行い、検討系統断面の生成手段11で検討系統断面を生成する。評価値計算手段6では生成された系統断面sijから実行可能目的操作集合Qijを得る。実行可能目的操作集合QijがQij=φであったときは、その枝での復旧操作は終了となる。12は評価下界判断手段で、Pijk∈QijでH(pijk・sij)<zならばこの枝の検索を終了し、H(pijk・sij)≧zならば次の検討断面Siにpijk・sijを加える。
系統解析手段2では、sij∈Siにおける局所条件を満たした操作集合Pijの抽出処理を実行、実行可能目的操作の抽出手段3では、実行可能目的操作集合Qijを得る。また、操作候補判断手段4では、何れかの系統断面Sijにおける実行可能目的操作集合QijがQij≠φであったとき、次の系統構成生成手段5において次の断面の系統構成集合Si+1を得る。そして、これら11、6,12,2,3,4及び5を繰り返した後、下界更新手段14で下界を更新し、手段15、7を経て最終的には復旧まで行き着いた枝の中から、最も評価の高いものの履歴が最適解となる。
An initial system cross section is input by the system cross section input means 1, and a lower bound z in FIG. 4 is obtained by generating a recovery procedure by the priority selection means for the target operation using the second global evaluation function (lower bound determination means 9). After obtaining the lower bound, the evaluation progression means 10 searches for other branches, and the examination system section generation means 11 generates the examination system section. The evaluation value calculation means 6 obtains an executable target operation set Qij from the generated system section sij. When the executable target operation set Qij is Qij = φ, the restoration operation at that branch ends. 12 is an evaluation lower bound judgment means. If PijkεQij and H (pijk · sij) <z, the search of this branch is terminated. If H (pijk · sij) ≧ z, pijk · sij is set to the next examination section Si. Add.
The system analysis means 2 executes the extraction processing of the operation set Pij that satisfies the local condition in sijεSi, and the executable objective operation extraction means 3 obtains the executable objective operation set Qij. Further, in the operation candidate determination unit 4, when the executable target operation set Qij in any system section Sij is Qij ≠ φ, the next system configuration generation unit 5 obtains the system configuration set Si + 1 of the next section. Then, after repeating these 11, 6, 12, 2, 3, 4 and 5, the lower bound is updated by the lower bound updating means 14, and finally through the means 15, 7 from the branches that have reached the restoration, The history of the highest evaluation is the optimal solution.

図6は図5による処理イメージを示したもので、ある系統断面sijで複数の操作候補が生成された中で、系統制約条件Cで絞り込んだ段階で下界zより評価値が悪くなった操作候補の生成体sij+ij=pijk・sijは検索されずに放棄される。残ったもので系統構成集合がなされ、下界zより評価のよいものを評価する。   FIG. 6 shows a processing image according to FIG. 5. Among a plurality of operation candidates generated in a system cross section sij, an operation candidate whose evaluation value is worse than the lower bound z at the stage of narrowing down with the system constraint condition C. The generator sij + ij = pijk · sij is discarded without being searched. A system configuration set is made with the remaining ones, and the ones with better evaluation than the lower bound z are evaluated.


この実施例は、復旧木の生成に停電評価値という評価値を導入し、また、復旧木の探索には枝切りという概念を導入したものである。
停電評価値LPH(Lost Price Hour)を次のように定義する。
LPH=Σ∫(a・Pi)dt
ここで、aは重要度係数で、この係数aは停電時における需要家が蒙る被害は、全ての需要家に一定でないないことに基づき各個別需要ごとに設定される。Piは各個別需要の負荷の大きさである。つまり、評価値LPHは各個別需要の大きさに個々の重要度係数を乗じ、停電時間で積分した値を累計したものであり、この評価値は必ずしも被害を模したものである必要はない。

In this embodiment, an evaluation value called a power outage evaluation value is introduced in the generation of the recovery tree, and the concept of branching is introduced in the search of the recovery tree.
The power failure evaluation value LPH (Lost Price Hour) is defined as follows.
LPH = Σ∫ (a · Pi) dt
Here, “a” is an importance coefficient, and this coefficient “a” is set for each individual demand based on the fact that the damage caused by the consumers at the time of a power failure is not constant for all the consumers. Pi is the magnitude of the load of each individual demand. In other words, the evaluation value LPH is obtained by multiplying the magnitude of each individual demand by the individual importance coefficient and integrating the values integrated by the power failure time. This evaluation value does not necessarily have to simulate damage.

このLPHの最小化を目的とするために、重要度係数aの使い方によって様々な最適化条件を再現することができる。例えば、
ア).全てのaをa=1とする。
この場合の評価値LPHは総停電電力量となり、復旧手順は総停電電力量最小化を目指した手順となる。
In order to minimize the LPH, various optimization conditions can be reproduced by using the importance coefficient a. For example,
A). Let all a be a = 1.
The evaluation value LPH in this case is the total power outage, and the recovery procedure is a procedure aimed at minimizing the total power outage.

イ).a=1/Piとする。
この場合の評価値LPHは総停電時間となり、復旧手順は総停電時間最小化を目指した手順となる。
I). It is assumed that a = 1 / Pi.
The evaluation value LPH in this case is the total power outage time, and the restoration procedure is a procedure aimed at minimizing the total power outage time.

ウ).aを個別に設定する。
aを個別に設定すると、評価値LPHはその政治的配慮を加味したものとなる。例えば、長時間の停電時に社会的影響が大きいと思われる警察、消防、大形病院、マスコミ等各種ライフラインなどの重要度係数を大きく設定しておくことで、これらの復旧を優先的に行いたいという意思を反映した手順となる。
C). Set a individually.
When a is set individually, the evaluation value LPH takes the political consideration into consideration. For example, by setting large importance factors such as various lifelines such as police, fire fighting, large hospitals, and media that are considered to have a large social impact during a long blackout, these restorations are given priority. It is a procedure that reflects the desire to do so.

エ).その他のaの応用
aをa=a(t)のように停電時間の関数として定義することにより、上記のような事象が複数に絡み合ったケース、例えば、停電時の初期応動として重要施設への電力供給を優先し、その後に停電電力量最小化を図るなどの系統の最適復旧手順を求めることができる。
なお、復旧手順探索のための評価値LPHは、停電量過分と過負荷評価分を加味したLPHを使用する。
D). By defining the application a of other a as a function of power failure time as a = a (t), a case where the above events are intertwined, for example, as an initial response at the time of power failure, It is possible to obtain an optimal restoration procedure for the system such as giving priority to power supply and then minimizing the amount of power outage.
The evaluation value LPH for the recovery procedure search uses LPH that takes into account the amount of power outage and the overload evaluation.

図12は復旧木の生成概念図で、停電事故発生事故後から事故復旧に至るまでの系統の偏移を復旧木にして表し、これを探索することによって最適解を求める。復旧木とは系統構成を変化させる目的操作を枝とし、復旧された系統が末端となることで、まず、与えられた系統で実行可能な目的(系統)操作Pijkを生成し、生成した目的操作それぞれについて次なる系統断面を生成する。復旧が完了していると目的操作は生成されなくなって木の末端となり、初期断面から末端までの変化の経緯が操作手順となる。   FIG. 12 is a conceptual diagram of the generation of a recovery tree. The system shift from the occurrence of a power failure accident to the recovery of the accident is represented as a recovery tree, and an optimal solution is obtained by searching for this. The recovery tree is a branch of the target operation that changes the system configuration, and the recovered system is the end. First, the target (system) operation Pijk that can be executed in the given system is generated, and the generated target operation is generated. The following system cross section is generated for each. When the restoration is completed, the target operation is not generated and becomes the end of the tree, and the process of change from the initial cross section to the end becomes the operation procedure.

復旧木で全ての末端のうち、初期断面から最も評価の高い系統断面に至る経緯が最適操作となるが、前述のように、復旧木の生成過程において実行可能操作集合Qijの各要素に第2大局評価関数H2=H2(Qij)を導入し、Pijk∈Qijの実行に優先度を設定している。これは、操作の持つ意味を直接評価して序列を決定し、評価値の高い操作を選択するものである。第2大局評価関数で得られた序列をもとに、最良優先選択を行い、選択された実行可能操作の探索を優先的行う。   Of all the ends in the recovery tree, the process from the initial cross section to the highest system cross section is the optimum operation. As described above, each element of the executable operation set Qij in the recovery tree generation process includes the second operation. A global evaluation function H2 = H2 (Qij) is introduced, and a priority is set for execution of PijkεQij. In this method, the meaning of the operation is directly evaluated to determine the order, and the operation having a high evaluation value is selected. Based on the rank obtained by the second global evaluation function, the best priority selection is performed, and the selected executable operation is preferentially searched.

図13がこの探索の状態を示したもので、個々の系統断面に評価点を持たせると共に、目的操作も個々に系統断面とは異なる評価点を持たせている。評価の高い目的操作を実行し続けると初期解が得られるが、初期解に含まれる評価値を下界にして最適操作を探索する。   FIG. 13 shows the state of this search. Each system section has an evaluation point, and the target operation also has an evaluation point different from the system section. If an objective operation with a high evaluation is continued to be executed, an initial solution can be obtained.

図14はこの最良優先選択により得られた解を下界とし、復旧木に制限を加えた状態図を示したものである。なお、下界とは順序集合Aにおいて、部分集合Xのすべての元xに対してx≧aであるとき、aをXの下界という(岩波数学辞典第3版より)。組み合わせ最適化問題の求解では、最適解の評価値は常に下界以上であるので、下界が判明していれば最適解の探索範囲を狭めることができる(分岐限定法)。探索過程においては、下界よりも良い解が発見されたときに、順次下界を更新し、最終的に残った下界が最適解となる。   FIG. 14 shows a state diagram in which the solution obtained by this best priority selection is used as a lower bound and the recovery tree is limited. The lower bound is the lower bound of X in the ordered set A when x ≧ a with respect to all elements x of the subset X (from Iwanami Mathematical Dictionary 3rd edition). In finding a combinatorial optimization problem, the evaluation value of the optimal solution is always greater than or equal to the lower bound. Therefore, if the lower bound is known, the search range of the optimal solution can be narrowed (branch and bound method). In the search process, when a solution better than the lower bound is found, the lower bound is sequentially updated, and finally the remaining lower bound becomes the optimal solution.

単純な復旧木の探索では、無限ループも存在するため総当りで探索しても解ではない。そこで、目的操作の評価により生成した初期実行可能解を下界とし、復旧木の大きさを制限する。以下これを枝切りという。図14では、線で囲んだ部分が下界の評価値を超えない範囲で、それ以外の部分は枝切りされ、この枝切りの種類としては次の4種類がある。   In the search of a simple recovery tree, there is an infinite loop, so searching through the brute force is not a solution. Therefore, the initial executable solution generated by evaluating the target operation is set as a lower bound, and the size of the restoration tree is limited. Hereinafter, this is called branch cutting. In FIG. 14, the portion surrounded by the line does not exceed the evaluation value of the lower bound, and the other portions are branched, and there are the following four types of branching.

目的操作種別による枝切り…評価関数Hによるもので、例えば、系統連系中に「併用を解く」操作と、その他の操作が操作候補となっている場合のように、生成された操作候補個々の目的から、候補の有用・無用をシーケンシャルに判断して枝切りをする。   Branching by target operation type: This is based on the evaluation function H. For example, each of the generated operation candidates is an operation candidate such as an operation of “uncombining use” and other operations during system interconnection. For this purpose, the candidates are sequentially judged based on whether the candidate is useful or unnecessary.

評価値による枝切り…停電評価値LPH(Lost Price Hour)=Σ∫(a・Pi)dtによるもので、目的関数がLPH最小化であるので初期値として用い、他の枝切りと併用した下界越え判定となる。   Branching by evaluation value: Power failure evaluation value LPH (Lost Price Hour) = Σ∫ (a · Pi) dt, the objective function is LPH minimization, so it is used as an initial value, and the lower bound used in combination with other branching It will be judged to exceed.

同位断面判定による枝切り…ある系統状態が、過去の検索仮定ですでに出現しているものと同位(同じ系統構成が2回以上出現した)であったとき、これを同位断面と呼称する。この同位断面判定には完全同位断面と不完全同位断面があり、完全同位断面は、系統構成のほか、操作中運転員の操作状況も同じである場合で、この断面による評価が過去のLPHよりも悪ければ枝切りとする。
同位による枝切りは、過去に探索した同位な系統状態の評価値を越えたときと、電力系統における系統構成・発電・負荷状態及び当直員の操作実行状況が等しいときに完全同位な系統状態と認識し、過去の評価値より悪いときに行われる。
電力系統における系統構成・発電・負荷状態が等しく当直員の操作状態のみが異なる場合に不完全な同位状態と認識し、この不完全な同位状態が指定回数連続したときに枝切とすることを特徴としたものである。
また、不完全同位断面は、系統構成は同じでも、操作中運転員の操作状況が異なる場合で、この場合の枝切りは電力系統における系統構成・発電・負荷状態が等しく当直員の操作状態のみが異なる場合に不完全な同位状態と認識し、この不完全な同位状態が指定回数連続したときに行われ、枝切り基準はユーザー設定による。つまり、不完全同位断面が指定回数連続して出現した場合には設定された回数で枝切りを行う。
Branch cutting by isotopic section determination: When a certain system state is an isotope (the same system configuration has appeared twice or more) that has already appeared in the past search assumption, this is called an isotopic section. There are two types of isotope sections: complete isotope section and incomplete isotope section. The complete isotope section is the same as the system configuration, and the operation status of the operating operator is the same. If it is bad, it will be debranched.
Pruning by a peer is considered to be a completely peered system state when the evaluation value of the peer system state searched in the past is exceeded and when the system configuration / power generation / load state in the power system and the operation execution status of the shift personnel are equal. It is done when it is recognized and worse than the past evaluation value.
When the system configuration, power generation, and load conditions in the power system are the same and only the operating state of the duty personnel is different, it is recognized as an incomplete peer state, and it is determined that this incomplete peer state is determined to be continued for the specified number of times. It is a feature.
Incomplete isotope cross sections are the same system configuration, but the operating conditions of the operating operators are different. In this case, the branching is the same in the system configuration, power generation and load status in the power system, and only the operating status of the shift personnel. If they are different, it is recognized as an incomplete isotopic state, and this incomplete isotopic state is performed for a specified number of times. That is, when the incomplete isotope cross section appears continuously for the designated number of times, branching is performed for the set number of times.

越境判定による枝切り…系統構成や操作状況の如何にかかわらず、その時間断面におけるLPHが同一時間断面における実行可能解のLPHを越えた場合に枝切りする。図15(a)が停電解消までの越境判定開始時間0のときのLPHを示したもので、実線が実行可能解のLPH、点線が最適解であるが、これは実線で示す実行可能解LPHを越えた部分が存在するために枝切りされる。図15(b)は越境判定開始時間t以降では、点線で示す最適解LPHは実行可能解LPHを越えていないので生き残り最適解となる。越境判定開始時間tはユーザーによって設定される。   Branch cutting by cross-border determination: Branching is performed when the LPH in the time section exceeds the LPH of the feasible solution in the same time section regardless of the system configuration and the operation status. FIG. 15A shows the LPH when the cross-border judgment start time until the power failure is eliminated. The solid line is the LPH of the feasible solution and the dotted line is the optimal solution. This is the feasible solution LPH indicated by the solid line. Because there is a part beyond In FIG. 15B, after the cross-border determination start time t, the optimal solution LPH indicated by the dotted line does not exceed the feasible solution LPH, and thus becomes the survival optimal solution. The cross border determination start time t is set by the user.

図16は最適解の探索についてのまとめ図で、ある系統断面Sijで得られた目的操作集合の中から局所条件を満たした目的操作を抽出し、図3で示した系統制約条件で絞り込む。その後第2大局評価関数による序列付与と枝切りにより最も評価の高い目的操作を選び、それを優先して次の系統断面Si+1jの探索を進め、復旧完了した枝を発見するまでこれを繰り返す。復旧完了した枝を発見したら、これを実行可能解の下界とし、他の枝の探索に移る。   FIG. 16 is a summary diagram for searching for an optimal solution. Target operations satisfying local conditions are extracted from a target operation set obtained in a system cross section Sij, and are narrowed down by the system constraint conditions shown in FIG. Then, the target operation having the highest evaluation is selected by ordering and branching by the second global evaluation function, and the search for the next system cross section Si + 1j is advanced with priority given to the operation, and this is repeated until a restored branch is found. . When a restored branch is found, this is set as the lower bound of the executable solution, and another branch is searched.

図16では系統断面Si+3jが初期実行可能解に相当し、初期実行可能解が見つかったら、点線で示すように遡りながら大局関数による他の枝の評価を実行する。下界より大局関数による評価の良い実行可能解を発見したら、順次下界を更新し、最終的に残った下界が求める最適解となる。   In FIG. 16, the system cross section Si + 3j corresponds to the initial executable solution, and when the initial executable solution is found, evaluation of other branches by the global function is executed while going back as indicated by the dotted line. If a feasible solution with good evaluation by the global function is found from the lower bound, the lower bound is updated sequentially, and the remaining lower bound finally becomes the optimum solution to be obtained.

系統の供給信頼度評価時には、過負荷評価、停電評価、復旧(停電)時間、操作数、難易度、及び最適化率の6つを評価ポイントする。
過負荷評価は、過負荷で発生したLPHであり、停電評価は停電で発生したLPHで、前述の手法で求められた評価値が使用される。停電時間は、停電が発生していた場合に、これが解消されるまでに経過した時間である。他の3要件は操作ツールが正しく動作しているか否かをユーザーが判断するためのパラメータである。操作数は実行された復旧操作数であり、多いほど復旧に手間がかかる。難易度は検索した復旧木の枝数で、多いほど検索が面倒となる。最適化率は、初期実行可能解LPHに対する最終解LPHの比で、大きいほど検討の努力が報われるパラメータである。
When evaluating the supply reliability of the system, the following six points are evaluated: overload evaluation, power outage evaluation, recovery (power outage) time, number of operations, difficulty, and optimization rate.
The overload evaluation is an LPH generated by an overload, and the power failure evaluation is an LPH generated by a power failure. The evaluation value obtained by the above-described method is used. The power outage time is the time elapsed until the power outage occurs when the power outage occurs. The other three requirements are parameters for the user to determine whether or not the operation tool is operating correctly. The number of operations is the number of recovery operations executed, and the greater the number of operations, the more time is required for recovery. The difficulty is the number of branches of the retrieved recovery tree, and the more difficult the search is. The optimization rate is a parameter of the ratio of the final solution LPH to the initial feasible solution LPH, and the larger the optimization rate, the more rewarding the examination efforts.


図7は実施例5の説明図で、実施例1〜3までは最適手順を求める実施例であるが、この実施例は推論エンジンとして使用するものである。停電を復旧する過程においては、設備条件など系統の諸条件が常に一定であるとは限らない。例えば事故直後では使用不可能であった母線が、巡視の結果使用するのに問題がないことが確認された、というような場合である。つまり、これらの諸条件が更新されると、それまで最適であった復旧手順が最適ではなくなってしまう可能性がある。その対応策としては、条件が更新されるたびに最適計算を繰り返して復旧手順を確立する、という方法を容易に思いつくが、最適手順探索を何度も繰り返すのは時間がかかる。そこで、ある深さまで検索し、仮に復旧が途中であってもそこまでの過程における評価を行い、操作を選択しようとするものである。

FIG. 7 is an explanatory diagram of the fifth embodiment. In the first to third embodiments, the optimum procedure is obtained. This embodiment is used as an inference engine. In the process of recovering from a power failure, system conditions such as equipment conditions are not always constant. For example, it is confirmed that a bus that was not usable immediately after the accident was confirmed to have no problem in use as a result of patrol. In other words, when these various conditions are updated, there is a possibility that the recovery procedure that was optimal until then will not be optimal. As a countermeasure, it is easy to come up with a method of establishing a recovery procedure by repeating the optimal calculation every time the condition is updated, but it takes time to repeat the optimal procedure search many times. Therefore, a search is made to a certain depth, and even if recovery is in progress, an evaluation in the process up to that point is performed and an operation is selected.

図7において、時刻t0である系統断面における系統解析を実行し、操作候補AとBとが抽出され、最適計算でAの操作が選択されると時刻t1までAの操作を実行する。その結果、CとDの操作候補が抽出されて最適計算でDの操作候補が選択されると、時刻t1からはDの操作が実行される。同様に、時刻t2からはDの操作によって抽出した操作候補からEとFとが抽出され、最適計算によってある操作が選択される。
すなわち、系統変更は少ない方がよく、速く送電できる方がよく、復旧までの操作ステップは少ない方がよいなどの評価関数に基づいて評価して操作前にその断面における有限の最適手順探索を行い、最適と思われる1手が選択される。図7の例では、斜線を付した3手先読みが実行され、その結果から一番良い手順を選んでいる。これによれば、毎回最適計算を行うので設備条件等の変化にも柔軟に対応し、有限段であるので比較的計算時間も早い。
In FIG. 7, the system analysis in the system cross section at time t0 is executed, operation candidates A and B are extracted, and when operation A is selected in the optimal calculation, operation A is executed until time t1. As a result, when the operation candidates for C and D are extracted and the operation candidate for D is selected by the optimal calculation, the operation for D is executed from time t1. Similarly, E and F are extracted from the operation candidates extracted by the operation of D from time t2, and an operation is selected by optimal calculation.
In other words, evaluation based on an evaluation function such as fewer system changes, better power transmission, better operation steps until restoration, etc. One hand that seems to be optimal is selected. In the example of FIG. 7, three prefetching with diagonal lines is executed, and the best procedure is selected from the result. According to this, since the optimum calculation is performed every time, it can flexibly cope with changes in equipment conditions and the like, and since it is a finite stage, the calculation time is relatively fast.

本発明の目的操作を達成するためには、操作のための条件整備が必要となる。操作に意味を持たせているので、操作が必要とする系統情報は開閉器の開閉状態や電圧・電流情報等に留まらない。したがって、系統の認識方法としては、次の4つが考えられる。
その第1は部分系統の認識法である。これは、電力系統を変圧器と解放中の遮断器で分割し、分けられたそれぞれの部分系統を1つのグループとする認識方法である。両端に電圧のある開閉器において、その開閉器を操作するとき、両端が同一グルーブであったときは併用操作とし、違うグルーブであったときは連系操作とする、というようグループ分けすることで操作を特定する。
第2は電源端子による認識法である。この方法は、図8で示すように、任意の母線において、その母線に接続する端子のなかで、その端子をさかのぼって行くと基準電源にまで到達できる端子を電源端子と認識する。
第3は過負荷系統による認識法である。図9はその説明図で、過負荷は、過負荷ブランチにおいて潮流方向で下流の系統であり、下流に接続された母線から、さらに下流と判断される系統(具体的には電源端子となっていない端子の送電系統)を過負荷系統と認識する。過負荷処理のための系統操作は、過負荷系統とそれに隣接する系統間で行われる。
第4は操作失敗系統の認識方法である。図10はその説明図である。例えば停止している系統を送電しようとした際、系統制約条件などにより実行不可能であったとき、送電の対象となった停止中の系統を操作失敗系統と認識する。
In order to achieve the target operation of the present invention, it is necessary to prepare conditions for the operation. Since the operation is meaningful, the system information required for the operation is not limited to the switching state of the switch, voltage / current information, and the like. Therefore, the following four methods are conceivable as system recognition methods.
The first is a recognition method for partial systems. This is a recognition method in which a power system is divided by a transformer and an open circuit breaker, and each divided partial system is made into one group. In a switch with voltage at both ends, when the switch is operated, it is divided into groups such that when both ends are the same groove, it is a combined operation, and when they are different, it is a linked operation. Identify the operation.
The second is a recognition method using a power supply terminal. In this method, as shown in FIG. 8, in any bus, among the terminals connected to the bus, a terminal that can reach the reference power source when the terminal is traced back is recognized as a power source terminal.
The third is a recognition method using an overload system. FIG. 9 is an explanatory diagram of the overload, which is a system downstream in the tidal direction in the overload branch. The system is determined to be further downstream from the bus connected downstream (specifically, it is a power supply terminal). Power transmission system with no terminal) is recognized as an overload system. System operation for overload processing is performed between an overload system and a system adjacent thereto.
The fourth is an operation failure system recognition method. FIG. 10 is an explanatory diagram thereof. For example, when trying to transmit power to a system that is stopped, if the system cannot be executed due to system constraints or the like, the stopped system that is the target of power transmission is recognized as an operation failure system.

本発明の実施例を示すアルゴリズム(実施例1)。An algorithm showing an embodiment of the present invention (embodiment 1). 本発明を説明するための概念図。The conceptual diagram for demonstrating this invention. 最適解の探索概念図。The optimal solution search conceptual diagram. 本発明の実施例を示すアルゴリズム(実施例2)。The algorithm (Example 2) which shows the Example of this invention. 本発明の実施例を示すアルゴリズム(実施例3)。An algorithm (Example 3) showing an example of the present invention. 実施例3の処理概念図。Process conceptual diagram of Example 3. FIG. 最適計算での処理説明図。Process explanatory drawing by optimal calculation. 目的操作における系統認識説明図。System recognition explanatory drawing in target operation. 過負荷時の系統認識説明図。System recognition explanatory drawing at the time of overload. 操作失敗時の系統認識説明図。System recognition explanatory drawing at the time of operation failure. 目的操作の説明図。Explanatory drawing of target operation. 復旧木の生成図。Recovery tree generation diagram. 最適解の探索図。Search diagram of optimal solution. 下界による復旧木の枝切り状態図。The restoration tree pruning state diagram by the lower bound. 越境判定による枝切り状態図。The branch cutting state diagram by cross-border judgment. 最適解の探索図。Search diagram of optimal solution.

符号の説明Explanation of symbols

1…系統断面入力手段
2…系統解析手段
3…実行可能目的操作の抽出手段
4…操作候補判断手段
5…系統構成生成手段
6…評価値計算手段
7…最適操作列の選択手段
8…絞込み手段
9…下界決定手段
10…評価進行手段
11…検討系統断面の生成手段
12…評価限界判断手段
14…下界更新手段
1 ... System cross section input means
2 ... System analysis means
3 ... Extraction means of executable target operation
4 ... Operation candidate determination means
5 ... System configuration generation means
6 ... Evaluation value calculation means
7: Optimal operation sequence selection means
8: Narrowing means 9 ... Lower bound determining means 10 ... Evaluation progress means
11 ... Means for generating cross section of examination system
12 ... Evaluation limit judging means 14 ... Lower bound updating means

Claims (19)

電力系統を構成する機器情報をもとにした停電後の系統復旧手順の作成方法において、
前記電力系統を構成する電力機器に対して行われる目的操作をもとにして系統復旧手順を作成することを特徴とした系統復旧手順の作成方法。
In the method of creating the system restoration procedure after a power failure based on the information on the devices that make up the power system,
A system restoration procedure creation method, characterized in that a system restoration procedure is created based on a target operation performed on a power device constituting the power system.
前記目的操作で取り扱う電力系統の系統構成状態は、操作前状態、操作中状態、操作後状態であることを特徴とした請求項1記載の系統復旧手順の作成方法。 The method for creating a system restoration procedure according to claim 1, wherein the system configuration state of the power system handled by the target operation is a pre-operation state, an in-operation state, and a post-operation state. 停電発生直後の系統を入力して実行可能目的操作集合を抽出し、実行可能目的操作集合の要素それぞれを実行して得られる個々の系統断面に対して、さらなる実行可能目的操作集合の存在時には、その系統断面の実行可能目的操作集合を生成し、実行可能目的操作により系統断面から次の系統断面を形成し、何れかの系統断面について実行可能目的操作集合が無くなるまでこれを繰り返し、系統断面で実行可能目的操作集合が無くなったことを復旧操作終了と判断し、復旧終了を判定した系統断面について大局評価関数を用いて評価を行い、最も評価の良い系統断面に至る目的操作の順序を、求める復旧手順とすることを特徴とした請求項1又は2記載の系統復旧手順の作成方法。 When the system immediately after the power failure occurs is input to extract the executable objective operation set, and each individual cross section obtained by executing each element of the executable objective operation set, when there is a further executable objective operation set, Generate a feasible objective operation set for the system cross section, form the next system cross section from the system cross section by the executable objective operation, and repeat this until there is no feasible objective operation set for any system cross section. It is judged that the restoration operation has ended when there is no set of executable objective operations, and the system cross section for which the restoration end has been judged is evaluated using the global evaluation function, and the order of the target operation that reaches the system section with the best evaluation is obtained. The method for creating a system restoration procedure according to claim 1 or 2, wherein the restoration procedure is used. 前記実行可能目的操作集合は、系統制約条件と局所条件の両方を満たすことを特徴とした請求項3記載の系統復旧手順の作成方法。 4. The method for creating a system restoration procedure according to claim 3, wherein the executable objective operation set satisfies both a system constraint condition and a local condition. 前記実行可能目的操作集合を抽出したあと系統運用に基づく第2大局評価関数により実行可能目的操作集合の要素を絞り込み、次の系統断面に移行することを特徴とした請求項3又は4記載の系統復旧手順の作成方法。 5. The system according to claim 3 or 4, wherein after the executable objective operation set is extracted, elements of the executable objective operation set are narrowed down by a second global evaluation function based on system operation, and the next system section is shifted to. How to create a recovery procedure. 前記検索過程において出現した全ての系統断面に、前記大局評価関数による評価点を付与したことを特徴とした請求項3乃至5記載の系統復旧手順の作成方法。 6. The method for creating a system restoration procedure according to claim 3, wherein evaluation points based on the global evaluation function are assigned to all system cross sections that appear in the search process. 停電発生直後の系統を入力して実行可能目的操作集合を抽出し、これより系統運用に基づく第2大局評価関数により選ばれる実行可能目的操作により形成される系統断面を優先的に選択して検索を進め、生成される系統断面において復旧操作終了を判定した場合に、これにいたる経緯を最初の最適実行可能復旧操作とし、非選択の各実行可能目的操作において最適実行可能復旧操作との大局評価関数との比較を実行してより良い評価点を得たもののみにさらに検索を実行し、実行可能復旧操作発見時には次なる最適実行可能復旧操作とし、最終的に残った最適実行可能復旧操作を求めて復旧手順とすることを特徴とした請求項3乃至6記載の系統復旧手順の作成方法。 A system immediately after the occurrence of a power failure is input to extract a set of executable objective operations. From this, the system section formed by the executable objective operations selected by the second global evaluation function based on system operation is selected and searched. If the end of the recovery operation is determined in the generated system cross section, the process leading up to this will be the first optimal executable recovery operation, and a global evaluation of the optimal executable recovery operation for each non-selected executable target operation Perform a search for only those that have obtained a better evaluation score by performing comparison with the function, and when the executable recovery operation is found, the next optimal executable recovery operation will be used. The method for creating a system restoration procedure according to claim 3, wherein the restoration procedure is obtained. 前記実行可能復旧操作の検索時に、与えられた系統の初期断面から予め指定された有限の検索を行って各実行可能復旧操作系統を大局関数で評価し、評価値の優れたものから指定順位までの複数の実行可能復旧操作の系統候補を抽出し、抽出系統に連なる操作過程で非選択の実行可能復旧操作を操作候補から除外して枝切りすることを特徴とした請求項7記載の系統復旧手順の作成方法。 At the time of searching for the feasible recovery operation, a finite search specified in advance is performed from the initial cross section of a given system, and each feasible recovery operation system is evaluated with a global function. The system recovery according to claim 7, wherein a plurality of executable recovery operation candidates are extracted, and unselected executable recovery operations are excluded from operation candidates in an operation process connected to the extracted system. How to create a procedure. 前記枝切りのための評価値に、各個別需要の大きさに個々の重要度係数を乗じ、復旧操作の経過時間で積分した値を累計して求めた停電評価値を含めた評価値としたことを特徴とした請求項8記載の系統復旧手順の作成方法。 The evaluation value for the pruning is an evaluation value including the power outage evaluation value obtained by multiplying the value of each individual demand by the individual importance coefficient and integrating the elapsed time of the restoration operation. The method for creating a system restoration procedure according to claim 8. 前記評価値による枝切りは、判定開始時間を越えた時間断面における評価値が、同一時間断面における実行可能解の評価値を超えたときに枝切とすることを特徴とした請求項8又は9記載の系統復旧手順の作成方法。 The branching by the evaluation value is performed when the evaluation value in the time section exceeding the determination start time exceeds the evaluation value of the feasible solution in the same time section. How to create the described system restoration procedure. 前記評価値による枝切りは、過去に探索した同位な系統状態の評価値を越えたときに枝切とすることを特徴とした請求項8乃至10記載の系統復旧手順の作成方法。 11. The method for creating a system restoration procedure according to claim 8, wherein the branching by the evaluation value is performed when the evaluation value of the peer system state searched in the past is exceeded. 前記同位による枝切りは、電力系統における系統構成・発電・負荷状態及び当直員の操作実行状況が等しいときに完全同位な系統状態と認識し、過去の評価値より悪いときとに枝切とすることを特徴とした請求項11記載の系統復旧手順の作成方法。 The branching by the peer is recognized as a completely peered system state when the system configuration / power generation / load state in the power system and the operation execution situation of the shift staff are equal, and is determined to be branching when it is worse than the past evaluation value. The method for creating a system restoration procedure according to claim 11. 前記同位による枝切りは、電力系統における系統構成・発電・負荷状態が等しく当直員の操作状態のみが異なる場合に不完全な同位状態と認識し、この不完全な同位状態が指定回数連続したときに枝切とすることを特徴とした請求項11又は12記載の系統復旧手順の作成方法。 The branching by the peer is recognized as an incomplete peer state when the system configuration, power generation, and load state in the power system are the same and only the operating state of the shift personnel is different, and this incomplete peer state continues for the specified number of times. 13. The method for creating a system restoration procedure according to claim 11 or 12, wherein the system is cut into branches. ある系統断面で実施する1操作の選択時に、実行可能目的操作による指定された有限段の検索を行い、各系統断面について大局評価関数により評価を行い、評価値の最も良い系統断面に連なる最初の目的操作を、選択される目的操作として決定し、次に実施する操作の選択時にはこれを繰り返すことにより復旧手順を決定することを特徴とした請求項1乃至13記載の何れかの系統復旧手順の作成方法。 When selecting one operation to be performed on a system cross section, the specified finite stage is searched by the executable target operation, each system cross section is evaluated by the global evaluation function, and the first connected to the system cross section with the best evaluation value is obtained. 14. The system recovery procedure according to claim 1, wherein the target operation is determined as a target operation to be selected, and the recovery procedure is determined by repeating this operation when an operation to be performed next is selected. How to make. 前記目的操作のための系統認識は、電力系統を構成する変圧器と開放中の開閉器で分割した部分系統の認識、電源端子の認識、過負荷系統の認識、或いは操作失敗系統の認識の何れかによることを特徴とした請求項1乃至14の何れかの系統復旧手順の作成方法。 System recognition for the purpose operation may be any of recognition of a partial system divided by a transformer constituting an electric power system and an open switch, recognition of a power supply terminal, recognition of an overload system, or recognition of an operation failure system. 15. The method for creating a system restoration procedure according to claim 1, wherein: 電力系統を構成する機器情報をもとに、停電後の系統復旧手順を作成するものにおいて、
停電発生直後の系統を入力して局所条件と系統制約条件を満たす目的操作の集合である実行可能目的操作集合を抽出する手段と、実行可能目的操作によって次なる系統断面を抽出し、次なる実行可能目的操作集合を抽出する手段と、これを繰り返す手段と、大局評価関数を用いて評価値を演算する手段と、演算結果を判断して評価値の高いものを選択する手段をコンピュータに実行させるためのプログラム。
Based on the equipment information that composes the power system, the system restoration procedure after a power failure is created.
A system that inputs a system immediately after the occurrence of a power failure and extracts an executable objective operation set that is a set of objective operations that satisfy local conditions and system constraint conditions, and extracts the next system section by the executable objective operation and performs the next execution Causing a computer to execute means for extracting a set of possible objective operations, means for repeating the same, means for calculating an evaluation value using a global evaluation function, and means for selecting a high evaluation value by judging the calculation result Program for.
前記実行可能目的操作集合を抽出する手段による抽出後に系統運用に基づく第2大局評価関数によって実行可能目的操作集合の要素を絞り込む手段と、この手段による絞込み後に前記次なる系統断面を抽出若しくは評価値演算手段をコンピュータに実行させる請求項16記載のプログラム。 Means for narrowing down the elements of the executable objective operation set by a second global evaluation function based on system operation after extraction by the means for extracting the executable objective operation set, and extracting or evaluating the next system cross section after narrowing down by this means The program according to claim 16, which causes a computer to execute the calculation means. 前記実行可能目的操作集合の抽出後、系統運用に基づく第2大局評価関数により選択される実行可能目的操作を優先的に選択する手段と、前記次なる系統断面を抽出若しくは評価値演算手段と、評価値の良い枝を選択する手段と、選択された枝のみ次なる系統断面を生成する手段をコンピュータに実行させる請求項16記載のプログラム。 Means for preferentially selecting an executable objective operation selected by a second global evaluation function based on system operation after extraction of the executable objective operation set; and extracting or evaluating value calculation means for the next system section; 17. The program according to claim 16, which causes a computer to execute means for selecting a branch having a good evaluation value and means for generating a system cross section that follows only the selected branch. 前記各手段により指定された有限段の復旧木を生成する手段と、前記評価値演算手段による評価値の良い枝を選択する手段と、次なる操作選択時にこれを繰り返す手段をコンピュータに実行させる請求項16乃至18記載のプログラム。
A means for causing a computer to execute means for generating a restoration tree of a finite stage designated by each means, means for selecting a branch having a good evaluation value by the evaluation value calculating means, and means for repeating this when selecting the next operation. Item 16. The program according to items 16 to 18.
JP2005233848A 2005-02-07 2005-08-12 Method and program for preparing system recovery procedure Pending JP2006246692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233848A JP2006246692A (en) 2005-02-07 2005-08-12 Method and program for preparing system recovery procedure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005030372 2005-02-07
JP2005233848A JP2006246692A (en) 2005-02-07 2005-08-12 Method and program for preparing system recovery procedure

Publications (1)

Publication Number Publication Date
JP2006246692A true JP2006246692A (en) 2006-09-14

Family

ID=37052492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233848A Pending JP2006246692A (en) 2005-02-07 2005-08-12 Method and program for preparing system recovery procedure

Country Status (1)

Country Link
JP (1) JP2006246692A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136518A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 Facilities management method and facilities management system
JP2014166132A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Method for optimizing power flows in electric power networks
CN109995028A (en) * 2019-04-09 2019-07-09 国网山东省电力公司济南供电公司 A kind of Distribution Network Failure restoration methods and system based on optimal recovery sequence
CN113555871A (en) * 2021-07-26 2021-10-26 国网天津市电力公司 Intelligent main-distribution integrated load transfer method based on pruning algorithm

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136518A1 (en) * 2012-03-16 2013-09-19 株式会社日立製作所 Facilities management method and facilities management system
CN104040831A (en) * 2012-03-16 2014-09-10 株式会社日立制作所 Facilities management method and facilities management system
JPWO2013136518A1 (en) * 2012-03-16 2015-08-03 株式会社日立製作所 Facility management method and facility management system
CN104040831B (en) * 2012-03-16 2016-08-24 株式会社日立制作所 Facilities control method and facilities management system
JP2014166132A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Method for optimizing power flows in electric power networks
CN109995028A (en) * 2019-04-09 2019-07-09 国网山东省电力公司济南供电公司 A kind of Distribution Network Failure restoration methods and system based on optimal recovery sequence
CN109995028B (en) * 2019-04-09 2023-05-12 国网山东省电力公司济南供电公司 Distribution network fault recovery method and system based on optimal recovery sequence
CN113555871A (en) * 2021-07-26 2021-10-26 国网天津市电力公司 Intelligent main-distribution integrated load transfer method based on pruning algorithm
CN113555871B (en) * 2021-07-26 2023-10-31 国网天津市电力公司 Intelligent main-distribution integrated load transfer method based on pruning algorithm

Similar Documents

Publication Publication Date Title
Wei et al. A novel cascading faults graph based transmission network vulnerability assessment method
Bompard et al. Extended topological metrics for the analysis of power grid vulnerability
Ding et al. A bilevel optimization model for risk assessment and contingency ranking in transmission system reliability evaluation
Wang et al. OBDD-based sectionalizing strategies for parallel power system restoration
Coffrin et al. Last-mile restoration for multiple interdependent infrastructures
Ostrowski et al. Transmission switching with connectivity-ensuring constraints
CN109557414B (en) Fault diagnosis alarm processing system and method for integrated power system
CN109449931B (en) Cascading failure set construction method combining weighted power flow entropy and whole-process simulation
JP2006246692A (en) Method and program for preparing system recovery procedure
Rhodes et al. PowerModelsRestoration. jl: An open-source framework for exploring power network restoration algorithms
de Andrade Melani et al. Obtaining fault trees through SysML diagrams: A MBSE approach for reliability analysis
WO2015077196A1 (en) Holistic optimization of distribution automation using survivability modeling to support storm hardening
Dolan et al. Distribution power flow management utilizing an online constraint programming method
JP4020201B2 (en) Power system supply reliability evaluation method and apparatus
Matsuoka An exact method for solving logical loops in reliability analysis
Hasan et al. Heuristics-based approach for identifying critical N—k contingencies in power systems
CN116683431A (en) Rapid power distribution system restoring force assessment index and assessment method and system
JP2007049856A (en) System for evaluating reliability in supplying power and method for creating system recovery operation procedure
Avritzer et al. A scalable approach to the assessment of storm impact in distributed automation power grids
CN102024084A (en) Establishment and using method of reliability model having fuzzy polymorphism characteristic
Kumar A model-based safety-security risk analysis framework for interconnected critical infrastructures
Roy et al. Identification of the K-most Vulnerable Entities in a Smart Grid System
da Silva et al. Transmission expansion planning based on relaxed n-1 criteria and reliability indices
Almoghathawi et al. Resilience-based measures for importance ranking of interdependent infrastructure networks components across uncertain disruption scenarios
Guan et al. Contingency-based nodal market operation using intelligent economic alarm processor