JP2006246585A - Battery protection circuit - Google Patents

Battery protection circuit Download PDF

Info

Publication number
JP2006246585A
JP2006246585A JP2005057154A JP2005057154A JP2006246585A JP 2006246585 A JP2006246585 A JP 2006246585A JP 2005057154 A JP2005057154 A JP 2005057154A JP 2005057154 A JP2005057154 A JP 2005057154A JP 2006246585 A JP2006246585 A JP 2006246585A
Authority
JP
Japan
Prior art keywords
voltage
battery
charging
control
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005057154A
Other languages
Japanese (ja)
Inventor
Nagatoshi Niima
永敏 新間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Saitama Ltd
Original Assignee
NEC Saitama Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Saitama Ltd filed Critical NEC Saitama Ltd
Priority to JP2005057154A priority Critical patent/JP2006246585A/en
Publication of JP2006246585A publication Critical patent/JP2006246585A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery protection circuit, capable of eliminating a required charging voltage detection function required on the charger side and a plurality of charging voltage output function, by controlling the charging voltage in the inside of a battery pack. <P>SOLUTION: A charging control IC11 monitors a battery voltage VBATT of a lithium ion battery 10, by measuring the terminal voltage of the lithium ion battery 10 connected between a VDD terminal and a GND terminal, and controls the gate/source voltage VGS of a transistor Q2 on the basis of the measured results. Furthermore, the charging control IC11 makes the gate/source voltage VGS of the transistor Q2 changes, increases the drain/source resistance RDS of the transistor Q2, and increases the drain/source voltage VDS of the transistor Q2 so as to keep the value of the battery voltage VBATT constant (V1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電池保護回路に係り、特に一定電圧一定電流方式(以下CCCVと記載)の充電が行われるリチウムイオン電池パック内に内蔵される充電電圧制御型の電池保護回路に関する。   The present invention relates to a battery protection circuit, and more particularly to a charge voltage control type battery protection circuit built in a lithium ion battery pack that is charged by a constant voltage and constant current method (hereinafter referred to as CCCV).

図7は従来の電池保護回路の一例の回路図を示す。同図において、充電制御用IC15、電界効果トランジスタ(FET)Q1及びQ2、抵抗R、及びサーミスタ(TH)からなる回路部分がリチウムイオン電池10の電池保護回路であり、充電回路16を含む充電器と接続される。充電制御用IC15は、トランジスタQ2のゲートに印加する制御電圧はハイベル又はローレベルの2値であり、Q2の内部抵抗を制御することで充電電流を制御する。   FIG. 7 shows a circuit diagram of an example of a conventional battery protection circuit. In the figure, a circuit portion comprising a charging control IC 15, field effect transistors (FETs) Q 1 and Q 2, a resistor R, and a thermistor (TH) is a battery protection circuit for the lithium ion battery 10, and a charger including a charging circuit 16. Connected. In the charging control IC 15, the control voltage applied to the gate of the transistor Q <b> 2 is a binary level of high or low level, and the charging current is controlled by controlling the internal resistance of Q <b> 2.

図7に示す電池保護回路の部分とリチウムイオン電池10とは、図8の電池パック21又は23を構成しており、図7の充電回路16は、図8の充電器25を構成している。また、図8において、種別Aの電池パック21は、接続端子22と電池種別検出用の端子Sを持っているのに対し、種別Bの電池パック23は、接続端子24を持っているので電池種別検出用の端子は持っていない。電池パック21、23は、接続端子22、24と充電器25の接続端子26とが接続されることにより、電池パック21、23内の電池が充電器25により充電される。   The battery protection circuit portion shown in FIG. 7 and the lithium ion battery 10 constitute the battery pack 21 or 23 of FIG. 8, and the charging circuit 16 of FIG. 7 constitutes the charger 25 of FIG. . In FIG. 8, the type A battery pack 21 has a connection terminal 22 and a battery type detection terminal S, whereas the type B battery pack 23 has a connection terminal 24. It does not have a terminal for type detection. The battery packs 21 and 23 are connected to the connection terminals 22 and 24 and the connection terminal 26 of the charger 25, whereby the batteries in the battery packs 21 and 23 are charged by the charger 25.

ここで、電池パック21、23内部でGND接続、OPEN等に電池パック種別毎に作り分けることで、充電器側で電池パックの種別を検出し、電池パックの種別に応じた電圧出力をする設計となっている。また、充電器25は検出SW27により、接続された電池パックの電池パック種別検出用突起Sの有無を検出するようにされており、これにより充電器25が電池パックの種別に応じた電圧出力をする設計となっている。図8では電池パック21が電池パック種別検出用突起Sを有しているので、充電器25は接続された電池パック21が種別Aであると認識し、その種別Aに応じた電圧を出力し、電池パック種別検出用突起Sを有していない電池パック23は種別Bであると認識し、その種別Bに応じた電圧を出力する。   Here, the battery packs 21 and 23 are internally connected to GND, OPEN, etc. for each battery pack type, so that the battery pack type is detected on the charger side and a voltage output corresponding to the battery pack type is output. It has become. Further, the charger 25 is configured to detect the presence or absence of the battery pack type detection protrusion S of the connected battery pack by the detection SW 27, whereby the charger 25 outputs a voltage output corresponding to the type of the battery pack. Designed to be In FIG. 8, since the battery pack 21 has the battery pack type detection protrusion S, the charger 25 recognizes that the connected battery pack 21 is type A, and outputs a voltage corresponding to the type A. The battery pack 23 that does not have the battery pack type detection protrusion S is recognized as the type B and outputs a voltage corresponding to the type B.

また、電池パック装置内に検出抵抗、制御回路及び制御用FETを備え、電池セルの充電電流及び充電電圧を検出抵抗を介して検出し、制御回路により充電電流又は充電電圧に応じた電位を持つ制御信号を生成し、充電経路を開閉する制御用FETのゲート電極に制御信号を供給して、制御用FETの開閉制御を行うと共に制御用FETのオン抵抗を可変制御する電池パック装置が従来から知られている(例えば、特許文献1参照)。この従来の電池パック装置によれば、特にリチウムイオン電池の充電に適した構成である。   In addition, the battery pack device includes a detection resistor, a control circuit, and a control FET, detects the charging current and charging voltage of the battery cell via the detection resistor, and has a potential corresponding to the charging current or charging voltage by the control circuit. A battery pack device that generates a control signal and supplies the control signal to the gate electrode of the control FET that opens and closes the charging path to control the opening and closing of the control FET and variably control the on-resistance of the control FET It is known (see, for example, Patent Document 1). According to this conventional battery pack device, the configuration is particularly suitable for charging a lithium ion battery.

また、二次電池に対して充電回路を介して定電流定電圧充電を行うに際し、二次電池と充電回路との間に挿入される制御信号により充電電流を制限する電流制限手段と、二次電池の端子電圧を監視し所定の閾値を基準として制御信号を出力する電圧監視手段とを具備する構成の充電装置も従来から知られている(例えば、特許文献2参照)。この充電装置では、二次電池が過充電の状態であっても、二次電池の端子電圧を監視し電流制限手段を起動させることにより、二次電池や充電回路に過剰な電流が流れることを防止することができる。   In addition, when performing constant current constant voltage charging for the secondary battery via the charging circuit, current limiting means for limiting the charging current by a control signal inserted between the secondary battery and the charging circuit; A charging device having a voltage monitoring unit that monitors a terminal voltage of a battery and outputs a control signal with a predetermined threshold as a reference is also conventionally known (for example, see Patent Document 2). In this charging device, even if the secondary battery is in an overcharged state, monitoring the terminal voltage of the secondary battery and starting the current limiting means prevents excessive current from flowing in the secondary battery or the charging circuit. Can be prevented.

特開2000−069689号公報JP 2000-0669689 A 特開2001−275271号公報JP 2001-275271 A

しかしながら、従来の電池保護回路においては、電池充電電圧を電池パック側が制御できないため、充電器側に電池パックが必要な充電電圧を通知する仕組みが必要になる。また、従来の電池保護回路では、電池充電電圧を電池パック側で制御できないため、充電器側にて電池パックが必要とする全ての充電電圧を出力する仕組みが必要になる。   However, in the conventional battery protection circuit, since the battery pack voltage cannot be controlled on the battery pack side, a mechanism for notifying the charger side of the required charge voltage on the charger side is required. Further, in the conventional battery protection circuit, since the battery charging voltage cannot be controlled on the battery pack side, a mechanism for outputting all the charging voltages required by the battery pack on the charger side is required.

従来の充電器―電池パックの関係では充電電圧の出力設定は充電器がその機能を有していた。そのため、充電器が複数種の電池パックをサポートすることが必要となり、その複数種の電池パックにて複数種の充電電圧が必要となった場合に、電池パック側には充電器側に必要な充電電圧を通知する機能、充電器側では複数種の電池パックを識別する機能、複数種の充電電圧を発生させる機能を有する必要があった。   In the conventional charger-battery pack relationship, the charger has the function of setting the output of the charging voltage. Therefore, it is necessary for the charger to support multiple types of battery packs, and when multiple types of charging voltages are required for the multiple types of battery packs, the battery pack side requires the charger side. It was necessary to have a function of notifying a charging voltage, a function of identifying a plurality of types of battery packs on the charger side, and a function of generating a plurality of types of charging voltages.

また、特許文献1記載の電池パック装置は、スイッチングレギュレータを含んだ構成であるため、スイッチングレギュレータで電池セルの充電電圧/充電電流の制御を行えばよく、また充電電流と充電電圧の両方の制御を行っているため、構成が複雑である。更に、特許文献2には、充電電流の制御を行う構成が開示されているが、充電電圧を制御する構成は開示されていない。   Further, since the battery pack device described in Patent Document 1 includes a switching regulator, the charging voltage / charging current of the battery cell may be controlled by the switching regulator, and both the charging current and the charging voltage are controlled. Because of this, the configuration is complicated. Furthermore, Patent Document 2 discloses a configuration for controlling the charging current, but does not disclose a configuration for controlling the charging voltage.

本発明は以上の点に鑑みなされたもので、電池パック内部にて充電電圧を制御することにより、充電器側で必要であった電池パックの必要充電電圧検出機能、複数の充電電圧出力機能を削除することができる電池保護回路を提供することを目的とする。   The present invention has been made in view of the above points, and by controlling the charging voltage inside the battery pack, the required charging voltage detection function of the battery pack, which is necessary on the charger side, and a plurality of charging voltage output functions are provided. An object is to provide a battery protection circuit that can be eliminated.

また、本発明の他の目的は、電池パックの低コスト化及び省スペース化を実現し得る電池保護回路を提供することにある。   Another object of the present invention is to provide a battery protection circuit that can realize cost reduction and space saving of a battery pack.

上記の目的を達成するため、第1の発明は、電池電圧が予め定めた一定電圧より小さいときは定電流で充電され、一定電圧以上のときには定電圧で充電される電池の保護回路であって、電池の電池電圧を測定する電池電圧測定手段と、電池電圧測定手段で測定された電池電圧が、一定電圧に達して定電圧で充電を行う期間においてのみ、電池への充電電圧の制御を行って、電池電圧を一定電圧に維持する充電電圧制御手段とを有することを特徴とする。   In order to achieve the above object, the first invention is a battery protection circuit that is charged with a constant current when the battery voltage is lower than a predetermined constant voltage, and charged with a constant voltage when the battery voltage is higher than a predetermined voltage. The battery voltage measuring means for measuring the battery voltage of the battery, and the charging voltage to the battery is controlled only during the period when the battery voltage measured by the battery voltage measuring means reaches a constant voltage and is charged at a constant voltage. And charging voltage control means for maintaining the battery voltage at a constant voltage.

この発明では、定電流での充電モードでは何の制御も行わず、定電圧での充電モードになってから充電電圧制御を充電器の外部出力側で実施するようにしているため、充電器側にて充電電圧を検出する機能を削除できると共に、定電流での充電モードで必要な電圧検出用抵抗などを不要にできる。   In the present invention, since no control is performed in the constant current charging mode, and the charging voltage control is performed on the external output side of the charger after the constant voltage charging mode, the charger side Can eliminate the function of detecting the charging voltage and eliminates the need for a voltage detecting resistor required in the constant current charging mode.

また、上記の目的を達成するため、第2の発明は、第1の発明の充電電圧制御手段は、電池電圧測定手段で測定された電池電圧に応じて、抵抗値が可変制御される可変抵抗素子を有することを特徴とする。   In order to achieve the above object, according to a second aspect, the charging voltage control means of the first aspect is a variable resistor whose resistance value is variably controlled according to the battery voltage measured by the battery voltage measuring means. It has the element.

また、上記の目的を達成するため、第3の発明は、第1の発明の充電電圧制御手段を、充電器と電池との間にドレイン・ソースが接続された電界効果トランジスタと、電池電圧測定手段で測定された電池電圧が一定電圧となるように、電界効果トランジスタのゲート電圧を制御することにより、電界効果トランジスタのドレイン・ソース間抵抗を可変する制御回路とからなる構成としたことを特徴とする。   In order to achieve the above object, the third invention is the charge voltage control means of the first invention, a field effect transistor having a drain and a source connected between the charger and the battery, and a battery voltage measurement. And a control circuit that varies the drain-source resistance of the field effect transistor by controlling the gate voltage of the field effect transistor so that the battery voltage measured by the means becomes a constant voltage. And

また、上記の目的を達成するため、第4の発明は、充電器と接続された電池パック内の電池の電池電圧が、充電器により予め定めた一定電圧より小さいときは定電流で充電され、一定電圧以上のときには定電圧で充電される電池の保護回路であって、電池の電池電圧を測定する電池電圧測定手段と、制御電圧により抵抗値が可変される可変抵抗素子と、電池電圧測定手段で測定された電池電圧が、一定電圧に達して定電圧で充電を行う期間においてのみ、電池電圧に応じた制御電圧を発生して可変抵抗素子の抵抗値を可変することにより、電池電圧を一定電圧に維持する制御回路とを有し、電池電圧測定手段、可変抵抗素子及び制御回路を電池パック内に有することを特徴とする。   Further, in order to achieve the above object, the fourth invention is charged with a constant current when the battery voltage of the battery in the battery pack connected to the charger is smaller than a predetermined voltage predetermined by the charger, A protection circuit for a battery that is charged with a constant voltage when the voltage exceeds a certain voltage, a battery voltage measuring means for measuring the battery voltage of the battery, a variable resistance element whose resistance value is variable by a control voltage, and a battery voltage measuring means The battery voltage is kept constant by generating a control voltage according to the battery voltage and varying the resistance value of the variable resistance element only during the period when the battery voltage measured in step 1 reaches a constant voltage and charging is performed at a constant voltage. And a control circuit for maintaining the voltage, and the battery pack includes a battery voltage measuring means, a variable resistance element, and a control circuit.

この発明では、電池パック内で必要な充電電圧を発生しているため、電池パックが必要な充電電圧を充電器側に通知する機能、充電器側で必要な充電電圧を検出する機能、電池パックが必要な複数の充電電圧を発生させる機能が必要ではなくなり、充電器側で1種類のCCCV出力だけ用意すればよく、複数種類のCCCV出力を持つ必要がない。   In this invention, since the necessary charging voltage is generated in the battery pack, the battery pack has a function of notifying the charger side of the necessary charging voltage, a function of detecting the necessary charging voltage on the charger side, and the battery pack. Therefore, it is not necessary to provide a function for generating a plurality of charging voltages, and it is only necessary to prepare one type of CCCV output on the charger side, and it is not necessary to have a plurality of types of CCCV outputs.

また、上記の目的を達成するため、第5の発明は、第4の発明における可変抵抗素子が、制御回路からの制御電圧がゲートに印加され、そのドレインとソースが充電器及び電池の所定端子に接続された電界効果トランジスタであり、制御回路が、電池電圧測定手段で測定された電池電圧が一定電圧になるように、電池に流れる電流と電界効果トランジスタのドレイン・ソース間抵抗とによる電圧降下分と、電池電圧との和の電圧が充電器の出力電圧とほぼ等しくするように、ドレイン・ソース間抵抗を制御するアナログ電圧を制御電圧として生成してゲートに印加する構成であることを特徴とする。ここで、電池電圧測定手段及び制御回路は、充電制御用の集積回路で構成されていることを特徴とする。   In order to achieve the above object, according to a fifth aspect of the present invention, in the variable resistance element according to the fourth aspect of the present invention, a control voltage from a control circuit is applied to a gate, and the drain and source are predetermined terminals of a charger and a battery. The voltage drop due to the current flowing through the battery and the drain-source resistance of the field effect transistor so that the battery voltage measured by the battery voltage measuring means becomes a constant voltage. The analog voltage that controls the drain-source resistance is generated as a control voltage and applied to the gate so that the sum of the voltage and the battery voltage is approximately equal to the output voltage of the charger. And Here, the battery voltage measuring means and the control circuit are constituted by an integrated circuit for charge control.

本発明によれば、充電器の外部の回路で充電電圧を制御することにより、充電器側にて電池が必要な充電電圧を検出する機能を削除するようにしたため、充電器側で1種類のCCCV出力だけ用意すればよく、複数のCCCV出力を持つ必要が無いため、充電器の回路規模を小さくできると共に、電池を内蔵する電池パック側では充電器に通知するための電気信号用の端子や充電器の検出SWにて検出させるための物理的な機構を削除できるため、電池パックの低コスト化、省スペース化ができる。   According to the present invention, the function of detecting the charging voltage required by the battery on the charger side is deleted by controlling the charging voltage with a circuit outside the charger. Since only the CCCV output needs to be prepared and there is no need to have a plurality of CCCV outputs, the circuit scale of the charger can be reduced, and the battery pack side containing the battery has an electrical signal terminal for notifying the charger, Since the physical mechanism for detection by the detection SW of the charger can be deleted, the cost and space saving of the battery pack can be reduced.

図1は本発明になる電池保護回路の一実施の形態の回路図を示す。また、図2は図1中の電界効果トランジスタ(FET)Q2のVDS電圧、電池電圧VBATT、電池電流IBATTの特性図を示す。図1において、充電制御用IC11は、そのVDD端子とGND端子がリチウムイオン電池10の正側端子と負側端子に接続されており、またDOUT端子がFET(電界効果トランジスタ;以下単にトランジスタと略す)Q1のゲートに接続され、COUT端子がトランジスタQ2のゲートに接続され、VSS端子が抵抗Rを介してリチウムイオン電池10の負側端子に接続されている。   FIG. 1 shows a circuit diagram of an embodiment of a battery protection circuit according to the present invention. FIG. 2 is a characteristic diagram of the VDS voltage, battery voltage VBATT, and battery current IBATT of the field effect transistor (FET) Q2 in FIG. In FIG. 1, a charge control IC 11 has a VDD terminal and a GND terminal connected to a positive terminal and a negative terminal of a lithium ion battery 10, and a DOUT terminal is an FET (field effect transistor; hereinafter simply abbreviated as a transistor). ) Connected to the gate of Q1, the COUT terminal is connected to the gate of the transistor Q2, and the VSS terminal is connected to the negative terminal of the lithium ion battery 10 via the resistor R.

トランジスタQ1はソースがリチウムイオン電池10の負側端子に接続され、ドレインがトランジスタQ2のドレインに接続され、ドレイン・ソース間に磁気ダイオードが接続されている。また、トランジスタQ2のソースは抵抗Rを介して充電制御用IC11のVSS端子に接続され、ドレイン・ソース間に磁気ダイオードが接続されている。また、THはサーミスタである。この電池保護回路は図示しない充電器に接続される。   The transistor Q1 has a source connected to the negative terminal of the lithium ion battery 10, a drain connected to the drain of the transistor Q2, and a magnetic diode connected between the drain and source. The source of the transistor Q2 is connected to the VSS terminal of the charging control IC 11 via a resistor R, and a magnetic diode is connected between the drain and source. TH is a thermistor. This battery protection circuit is connected to a charger (not shown).

これにより、充電制御用IC11は、VDD端子とGND端子間に接続されたリチウムイオン電池10の端子電圧を測定することにより、リチウムイオン電池10の電池電圧VBATTを監視し、その測定結果に基づき、トランジスタQ2のゲート・ソース間電圧VGSを制御し、トランジスタQ2のドレイン・ソース間電圧VDSを制御する。ここで、本実施の形態の充電制御用IC11は、そのCOUT端子からトランジスタQ2のゲートへ印加する電圧を後述するようにアナログ電圧として、一定の充電電圧V1を得るようにした点に特徴がある。なお、トランジスタQ1、Q2の回路動作に関しては、当業者にとってよく知られており、また本発明とは直接関係しないので、その詳細な説明は省略する。   Thereby, the charge control IC 11 monitors the battery voltage VBATT of the lithium ion battery 10 by measuring the terminal voltage of the lithium ion battery 10 connected between the VDD terminal and the GND terminal, and based on the measurement result, The gate-source voltage VGS of the transistor Q2 is controlled, and the drain-source voltage VDS of the transistor Q2 is controlled. Here, the charge control IC 11 according to the present embodiment is characterized in that a constant charge voltage V1 is obtained as an analog voltage as will be described later from the voltage applied from the COUT terminal to the gate of the transistor Q2. . Note that the circuit operations of the transistors Q1 and Q2 are well known to those skilled in the art and are not directly related to the present invention, and thus detailed description thereof is omitted.

次に、本実施の形態における充電制御用IC11及びトランジスタQ2の動作について説明する。なお、以下の説明では電池パックが必要としているCCCV充電は、充電初期のCC領域での電流値はCC=I1、充電後期のCV領域での充電電圧値はCV=V1とする。また、CCCV充電は図2に示すように、充電初期のCC領域、充電後期のCV領域の二つの領域にて充電が進行するが、本実施の形態では充電初期のCC領域を領域A、充電後期のCV領域を領域Bとして説明する。   Next, operations of the charging control IC 11 and the transistor Q2 in the present embodiment will be described. In the following description, for CCCV charging required by the battery pack, the current value in the CC region at the initial stage of charging is CC = I1, and the charging voltage value in the CV region in the latter stage of charging is CV = V1. In addition, as shown in FIG. 2, the CCCV charging is performed in two areas, namely, the CC area in the initial stage of charging and the CV area in the latter stage of charging. The latter-stage CV region will be described as region B.

また、本実施の形態で使用される充電制御用IC11の出力特性は図3の通りであり、その出力電圧VoはVo>V1、出力電流Io(垂下特性)=I1となることが必要である。これは後述の説明の中で記述している通り、本実施の形態におけるCCCV充電は領域Aでは電池パックの保護回路側では充電電圧/充電電流の制御を行わずに、充電制御用IC11の出力をそのまま電池パックに印加することで充電し、領域Bでは充電制御用IC11の出力電圧Voを保護回路内で電圧降下させ、一定電圧値V1にて充電しているためである。   Further, the output characteristics of the charge control IC 11 used in this embodiment are as shown in FIG. 3, and the output voltage Vo needs to be Vo> V1 and the output current Io (droop characteristic) = I1. . As will be described later in the description, the CCCV charging in the present embodiment does not control the charging voltage / charging current on the protection circuit side of the battery pack in the region A, but the output of the charging control IC 11. This is because in the region B, the output voltage Vo of the charging control IC 11 is dropped in the protection circuit and charged at a constant voltage value V1.

次に、本実施の形態において電池パック内部での充電電圧制御を実現している充電制御用IC11の新規部分となる動作について説明する。充電制御用IC11以外の部品は機能的な動作をしないため、従来との変更は無い。充電制御用IC11は、そのVDD−GND間の電圧を測定することにより、リチウムイオン電池10の電池電圧VBATTを監視し、領域AであるCC領域(VBATT<V1)では、充電電圧/電流の制御は何も行わず、接続される図示しない充電器の出力特性に依存して充電を行う。   Next, an operation that is a new part of the charging control IC 11 that realizes charging voltage control inside the battery pack in the present embodiment will be described. Since components other than the charging control IC 11 do not perform a functional operation, there is no change from the conventional one. The charging control IC 11 monitors the battery voltage VBATT of the lithium ion battery 10 by measuring the voltage between VDD and GND. In the CC area (VBATT <V1) which is the area A, the charging voltage / current control is performed. Nothing is performed, and charging is performed depending on the output characteristics of a charger (not shown) to be connected.

すなわち、充電開始後、電池電圧VBATTが設定電圧V1に達するまでの領域Aでは、図2にIで及び図3に示すように充電電流の電流値I1の定電流充電モードで動作し、リチウムイオン電池10の電池電圧VBATTが図2にIIで示すように設定電圧V1に向かって徐々に上昇していく。   That is, after the start of charging, in the region A until the battery voltage VBATT reaches the set voltage V1, it operates in the constant current charging mode with the current value I1 of the charging current as shown in FIG. The battery voltage VBATT of the battery 10 gradually increases toward the set voltage V1 as indicated by II in FIG.

次に、充電が進行し充電が領域Bに移行した際の充電制御用IC11の動作について説明する。充電制御用IC11は、リチウムイオン電池10の電池電圧VBATTがV1に到達すると、領域Bに移行し、設定電圧V1の定電圧充電モードで動作し、リチウムイオン電池10の電池電圧VBATTが図2にIで及び図3に示すように、一定電圧V1となり、充電電流は図2にIIで示すように徐々に減少していく。   Next, the operation of the charging control IC 11 when charging proceeds and the charging shifts to the region B will be described. When the battery voltage VBATT of the lithium ion battery 10 reaches V1, the charging control IC 11 shifts to the region B and operates in the constant voltage charging mode of the set voltage V1, and the battery voltage VBATT of the lithium ion battery 10 is shown in FIG. At I and as shown in FIG. 3, a constant voltage V1 is obtained, and the charging current gradually decreases as indicated by II in FIG.

充電電圧の制御は、トランジスタQ2のゲートに接続されている充電制御用IC11のCOUTピンの出力電圧(VGS)を制御することで、トランジスタQ2のドレイン・ソース間抵抗RDSを制御することで行う。ドレイン・ソース間抵抗RDS制御することは、ドレイン・ソース間電圧VDSを制御することとほぼ同義のため、電池電圧VBATTを制御し、VBATTがV1の一定値になるように行われる。   The charge voltage is controlled by controlling the drain-source resistance RDS of the transistor Q2 by controlling the output voltage (VGS) of the COUT pin of the charge control IC 11 connected to the gate of the transistor Q2. Since the drain-source resistance RDS control is almost the same as controlling the drain-source voltage VDS, the battery voltage VBATT is controlled so that VBATT becomes a constant value of V1.

この際、トランジスタQ2のVGS−RDS特性は、一般に図4に示したようにドレイン・ソース間電圧VGSが小さくなると、ドレイン・ソース間抵抗RDSが急激に増大する特性を持っているため、図5に示すように、ゲート・ソース間電圧VGSが小さくなると、ドレイン・ソース間電圧VDSが急激に増大することとなる。但し、図5の特性図では、トランジスタQ2に流れる電流Ioを一定とした場合の一般的なVGS−VDS特性を示している。   At this time, the VGS-RDS characteristic of the transistor Q2 generally has a characteristic that the drain-source resistance RDS rapidly increases as the drain-source voltage VGS decreases as shown in FIG. As shown in FIG. 6, when the gate-source voltage VGS decreases, the drain-source voltage VDS increases rapidly. However, the characteristic diagram of FIG. 5 shows a general VGS-VDS characteristic when the current Io flowing through the transistor Q2 is constant.

次に、上記の領域Bにおける充電制御用IC11のゲート・ソース間電圧VGSの制御について、図6と共に詳細に説明する。図6(A)は充電制御用IC11が領域Bにて充電電圧を制御している、ある一点での図1の電池保護回路の等価回路図を示す。同図(A)では、動作を分かりやすくするために、図1のトランジスタQ2を抵抗R2で表し、トランジスタQ1、充電制御用IC11に関しては記載していない。また、図6(A)における各部の電圧、電流は次の通りとする。   Next, the control of the gate-source voltage VGS of the charging control IC 11 in the region B will be described in detail with reference to FIG. 6A shows an equivalent circuit diagram of the battery protection circuit of FIG. 1 at a certain point where the charging control IC 11 controls the charging voltage in the region B. FIG. In FIG. 6A, for easy understanding of the operation, the transistor Q2 in FIG. 1 is represented by a resistor R2, and the transistor Q1 and the charge control IC 11 are not described. In addition, the voltage and current of each part in FIG.

充電器12の出力特性 :Vo=5.0V、Io=0.6A
電池パック要求充電仕様:V1=4.5V、I1=0.6A
図6で示した領域Bでのある時点での電池10の状態:
VBATT=4.5V、IBATT=0.5A
次に、図6(A)、(B)を例にとり、充電制御用IC11のVBATTの制御方法を説明する。充電が領域Bとなり、電池電圧VBATTがV1になった後に保護回路内での充電電圧/電流制御をしない場合、電池電圧は図1では図示を省略した充電器12の出力特性に従い充電が行われ、電池電圧はV1よりも大きくなっていってしまう。
Output characteristics of the charger 12: Vo = 5.0V, Io = 0.6A
Battery pack required charging specification: V1 = 4.5V, I1 = 0.6A
The state of the battery 10 at a certain point in the region B shown in FIG.
VBATT = 4.5V, IBATT = 0.5A
Next, taking FIG. 6A and FIG. 6B as an example, a method for controlling VBATT of the charging control IC 11 will be described. If the charging voltage / current control is not performed in the protection circuit after the charging is in the region B and the battery voltage VBATT becomes V1, the battery voltage is charged according to the output characteristics of the charger 12 (not shown in FIG. 1). The battery voltage becomes larger than V1.

このため、充電制御用IC11はトランジスタQ2のゲート・ソース間電圧VGSを変化させ、トランジスタQ2のドレイン・ソース間抵抗RDSを大きくし、トランジスタQ2のドレイン・ソース間電圧VDSを大きくすることで、電池電圧VBATTの値をV1一定になるように制御する。なお、このときトランジスタQ1はオン状態とされており、そのドレイン・ソース間抵抗RDSは最小値とされている。   Therefore, the charge control IC 11 changes the gate-source voltage VGS of the transistor Q2, increases the drain-source resistance RDS of the transistor Q2, and increases the drain-source voltage VDS of the transistor Q2. The value of the voltage VBATT is controlled to be constant at V1. At this time, the transistor Q1 is turned on, and its drain-source resistance RDS is set to the minimum value.

例えば、図6での例では制御したいV1の値は4.5Vである。ここで、領域Bでの任意のある一点Io=0.5Aの際の充電器12の出力電圧Voは、図6(B)に示すように5.0Vのため、RDS=1ΩとなるようにVGSを制御すれば、図6(A)のR2での電圧降下の値VDSは0.5Vとなり、VBATTの値はVo=5.0VからVDS=0.5Vを引いた値の4.5Vに制御できることとなる。   For example, in the example shown in FIG. 6, the value of V1 to be controlled is 4.5V. Here, the output voltage Vo of the charger 12 at an arbitrary point Io = 0.5A in the region B is 5.0V as shown in FIG. 6B, so that RDS = 1Ω. If VGS is controlled, the voltage drop value VDS at R2 in FIG. 6A is 0.5V, and the value of VBATT is 4.5V, which is a value obtained by subtracting VDS = 0.5V from Vo = 5.0V. It will be possible to control.

ここで、上記のVBATT=V1一定に保つ動作をVBATT、Vo、Ioの変化に対応して継続することにより、充電制御用IC11が設定した一意の電圧値でのCCCV充電が可能となる。つまり、本実施の形態の回路では、充電電圧V1が充電器12の出力電圧Voより低い値であれば、充電制御用IC11により設定される一意の充電電圧V1でのCCCV充電が可能となる。つまり、本実施の形態の回路では、充電電圧V1がVoより低い値であれば充電制御用IC11により設定される一意の充電電圧V1でのCCCV充電が可能となる。   Here, CCCV charging at a unique voltage value set by the charging control IC 11 becomes possible by continuing the above-described operation of keeping VBATT = V1 corresponding to changes in VBATT, Vo, and Io. That is, in the circuit according to the present embodiment, if the charging voltage V1 is lower than the output voltage Vo of the charger 12, CCCV charging with the unique charging voltage V1 set by the charging control IC 11 is possible. That is, in the circuit of the present embodiment, if the charging voltage V1 is lower than Vo, CCCV charging with the unique charging voltage V1 set by the charging control IC 11 is possible.

このように、本実施の形態によれば、従来の電池保護回路と比較して部品追加/変更無しで、従来は電池の保護機能としての動作しかしていなかった充電制御用ICの構成を変更し、トランジスタQ2に充電電圧制御の動作をさせることにより、電池パック内の回路のみにてリチウムイオン電池10に対して、充電制御用IC11によって設定された電圧でのCCCV充電が可能となる。   As described above, according to the present embodiment, the configuration of the charging control IC, which has conventionally only operated as a battery protection function, is changed without adding / changing parts as compared with the conventional battery protection circuit. By causing the transistor Q2 to perform the charging voltage control operation, the CCCV charging with the voltage set by the charging control IC 11 can be performed on the lithium ion battery 10 only by the circuit in the battery pack.

このため、複数種の電池パックをサポートする充電器で、電池パックが複数の充電電圧を要求した場合でも、充電器側では電池パックが必要な電圧より高い電圧にて出力するCCCV出力があれば個々の電池パックの内部保護回路でそれぞれに必要な一意の充電電圧を発生させ充電が行われることとなる。   For this reason, even if a battery pack supports multiple types of battery packs and the battery pack requires a plurality of charging voltages, the charger side has a CCCV output that outputs at a higher voltage than the required voltage. Charging is performed by generating a unique charging voltage necessary for each of the internal protection circuits of the individual battery packs.

このため、充電器側で電池が必要な充電電圧に応じて充電器側で充電電圧を切替える必要が無くなる、このことにより充電器側にて電池が必要な充電電圧を検出する機能、複数の充電電圧を発生させる機能が必要なくなるという効果が得られる。従って、充電器側で1種類のCCCV出力だけ用意すればよく、複数のCCCV出力を持つ必要が無いため、充電器の回路規模が小さくなる、また充電器側で電池パックが必要な充電電圧を検出する必要がなくなるため、必要な電圧の検出信号用端子、検出用のSW等の物理的な機構を削除できるため、低コスト化、省スペース化ができることである。   For this reason, there is no need to switch the charging voltage on the charger side according to the charging voltage required on the charger side. The effect that the function of generating a voltage is not necessary is obtained. Therefore, only one type of CCCV output needs to be prepared on the charger side, and since there is no need to have a plurality of CCCV outputs, the circuit scale of the charger is reduced, and the charging voltage required for the battery pack on the charger side is reduced. Since it is not necessary to detect, a physical mechanism such as a detection signal terminal having a required voltage and a detection SW can be eliminated, so that cost and space can be reduced.

また、本実施の形態では、充電器側での設計変更無しに電池パック側の設計変更のみで従来の充電器で充電が行える電池パックの新規設計が可能となる。また、電池パック側では充電器に通知するための電気信号用の端子や充電器の検出SWにて検出させるための物理的な機構を削除できるため電池パックの低コスト化、省スペース化ができる。   Further, in the present embodiment, it is possible to design a new battery pack that can be charged with a conventional charger only by a design change on the battery pack side without a design change on the charger side. In addition, the battery pack side can eliminate the electrical signal terminal for notifying the charger and the physical mechanism for detection by the detection SW of the charger, so that the cost and space saving of the battery pack can be reduced. .

本発明の一実施の形態の回路図である。It is a circuit diagram of one embodiment of the present invention. 図1の充電電流と充電電圧を示す図である。It is a figure which shows the charging current and charging voltage of FIG. 図1中の充電制御用ICの出力特性図である。FIG. 2 is an output characteristic diagram of the charging control IC in FIG. 1. 電界効果トランジスタのゲート・ソース間電圧対ドレイン・ソース間抵抗の一例の特性図である。It is a characteristic view of an example of the gate-source voltage versus the drain-source resistance of the field effect transistor. 電界効果トランジスタのゲート・ソース間電圧対ドレイン・ソース間電圧の一例の特性図である。It is a characteristic view of an example of the voltage between the gate source of the field effect transistor versus the drain source voltage. 図1中の充電制御用ICによるVBATTの制御方法を説明する等価回路図及び特性図である。FIG. 2 is an equivalent circuit diagram and a characteristic diagram for explaining a method of controlling VBATT by the charging control IC in FIG. 1. 従来の電池保護回路の一例の回路図である。It is a circuit diagram of an example of the conventional battery protection circuit. 従来の電池保護回路の電池パックと充電器との一例の接続説明図である。It is connection explanatory drawing of an example of the battery pack and charger of the conventional battery protection circuit.

符号の説明Explanation of symbols

10 リチウムイオン電池
11 充電制御用IC
12 充電器
Q1、Q2 電界効果トランジスタ(FET)
R、R2 抵抗


10 Lithium ion battery 11 Charge control IC
12 Charger Q1, Q2 Field Effect Transistor (FET)
R, R2 resistance


Claims (6)

電池電圧が予め定めた一定電圧より小さいときは定電流で充電され、前記一定電圧以上のときには定電圧で充電される電池の保護回路であって、
前記電池の電池電圧を測定する電池電圧測定手段と、
前記電池電圧測定手段で測定された前記電池電圧が、前記一定電圧に達して前記定電圧で充電を行う期間においてのみ、前記電池への充電電圧の制御を行って、前記電池電圧を前記一定電圧に維持する充電電圧制御手段と
を有することを特徴とする電池保護回路。
A battery protection circuit that is charged with a constant current when the battery voltage is smaller than a predetermined voltage, and charged with a constant voltage when the battery voltage is greater than or equal to the predetermined voltage,
Battery voltage measuring means for measuring the battery voltage of the battery;
Only when the battery voltage measured by the battery voltage measuring means reaches the constant voltage and charging is performed at the constant voltage, the battery voltage is controlled by controlling the charging voltage to the battery. And a charging voltage control means for maintaining the battery protection circuit.
前記充電電圧制御手段は、前記電池電圧測定手段で測定された前記電池電圧に応じて、抵抗値が可変制御される可変抵抗素子を有することを特徴とする請求項1記載の電池保護回路。   2. The battery protection circuit according to claim 1, wherein the charging voltage control means includes a variable resistance element whose resistance value is variably controlled according to the battery voltage measured by the battery voltage measuring means. 前記充電電圧制御手段は、充電器と前記電池との間にドレイン・ソースが接続された電界効果トランジスタと、前記電池電圧測定手段で測定された前記電池電圧が前記一定電圧となるように、前記電界効果トランジスタのゲート電圧を制御することにより、該電界効果トランジスタのドレイン・ソース間抵抗を可変する制御回路とからなることを特徴とする請求項1記載の電池保護回路。   The charging voltage control means includes a field effect transistor having a drain and a source connected between a charger and the battery, and the battery voltage measured by the battery voltage measuring means is the constant voltage. 2. The battery protection circuit according to claim 1, further comprising a control circuit that varies a drain-source resistance of the field effect transistor by controlling a gate voltage of the field effect transistor. 充電器と接続された電池パック内の電池の電池電圧が、該充電器により予め定めた一定電圧より小さいときは定電流で充電され、前記一定電圧以上のときには定電圧で充電される電池の保護回路であって、
前記電池の電池電圧を測定する電池電圧測定手段と、
制御電圧により抵抗値が可変される可変抵抗素子と、
前記電池電圧測定手段で測定された前記電池電圧が、前記一定電圧に達して前記定電圧で充電を行う期間においてのみ、前記電池電圧に応じた前記制御電圧を発生して前記可変抵抗素子の抵抗値を可変することにより、前記電池電圧を前記一定電圧に維持する制御回路と
を有し、前記電池電圧測定手段、前記可変抵抗素子及び前記制御回路を前記電池パック内に有することを特徴とする電池保護回路。
Protection of a battery that is charged with a constant current when the battery voltage of the battery in the battery pack connected to the charger is smaller than a predetermined voltage determined by the charger, and charged with a constant voltage when the battery voltage is higher than the predetermined voltage A circuit,
Battery voltage measuring means for measuring the battery voltage of the battery;
A variable resistance element whose resistance value is variable by a control voltage;
The resistance of the variable resistance element is generated by generating the control voltage according to the battery voltage only in a period in which the battery voltage measured by the battery voltage measuring means reaches the constant voltage and charging is performed at the constant voltage. And a control circuit for maintaining the battery voltage at the constant voltage by varying a value, and the battery voltage measuring means, the variable resistance element, and the control circuit are included in the battery pack. Battery protection circuit.
前記可変抵抗素子は、前記制御回路からの前記制御電圧がゲートに印加され、そのドレインとソースが前記充電器及び前記電池の所定端子に接続された電界効果トランジスタであり、前記制御回路は、前記電池電圧測定手段で測定された前記電池電圧が前記一定電圧になるように、前記電池に流れる電流と前記電界効果トランジスタのドレイン・ソース間抵抗とによる電圧降下分と、前記電池電圧との和の電圧が前記充電器の出力電圧とほぼ等しくするように、前記ドレイン・ソース間抵抗を制御するアナログ電圧を前記制御電圧として生成して前記ゲートに印加することを特徴とする請求項4記載の電池保護回路。   The variable resistance element is a field effect transistor in which the control voltage from the control circuit is applied to a gate, and a drain and a source of the variable resistance element are connected to a predetermined terminal of the charger and the battery. The sum of the battery voltage and the voltage drop due to the current flowing through the battery and the drain-source resistance of the field effect transistor so that the battery voltage measured by the battery voltage measuring means becomes the constant voltage. 5. The battery according to claim 4, wherein an analog voltage for controlling the drain-source resistance is generated as the control voltage and applied to the gate so that the voltage is substantially equal to the output voltage of the charger. Protection circuit. 前記電池電圧測定手段及び前記制御回路は、充電制御用の集積回路で構成されていることを特徴とする請求項4又は5記載の電池保護回路。
6. The battery protection circuit according to claim 4, wherein the battery voltage measuring means and the control circuit are configured by an integrated circuit for charge control.
JP2005057154A 2005-03-02 2005-03-02 Battery protection circuit Pending JP2006246585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057154A JP2006246585A (en) 2005-03-02 2005-03-02 Battery protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057154A JP2006246585A (en) 2005-03-02 2005-03-02 Battery protection circuit

Publications (1)

Publication Number Publication Date
JP2006246585A true JP2006246585A (en) 2006-09-14

Family

ID=37052401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057154A Pending JP2006246585A (en) 2005-03-02 2005-03-02 Battery protection circuit

Country Status (1)

Country Link
JP (1) JP2006246585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789718A (en) * 2016-04-21 2016-07-20 深圳先进储能材料国家工程研究中心有限公司 Constant-voltage output structural part and rechargeable battery employing same
CN105870519A (en) * 2016-04-21 2016-08-17 深圳先进储能材料国家工程研究中心有限公司 Constant voltage output structural member and rechargeable battery employing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069689A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Battery pack device
JP2004289995A (en) * 2003-03-06 2004-10-14 Mitsubishi Electric Corp Charger and electronic apparatus
JP2004296165A (en) * 2003-03-26 2004-10-21 Mitsumi Electric Co Ltd Battery pack with charge control function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069689A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Battery pack device
JP2004289995A (en) * 2003-03-06 2004-10-14 Mitsubishi Electric Corp Charger and electronic apparatus
JP2004296165A (en) * 2003-03-26 2004-10-21 Mitsumi Electric Co Ltd Battery pack with charge control function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789718A (en) * 2016-04-21 2016-07-20 深圳先进储能材料国家工程研究中心有限公司 Constant-voltage output structural part and rechargeable battery employing same
CN105870519A (en) * 2016-04-21 2016-08-17 深圳先进储能材料国家工程研究中心有限公司 Constant voltage output structural member and rechargeable battery employing same

Similar Documents

Publication Publication Date Title
US8278876B2 (en) Battery pack current monitoring
KR102546431B1 (en) Secondary battery protection circuit, secondary battery protection integrated circuit and battery pack
US8633677B2 (en) Battery pack and method of charging battery pack
US10790679B2 (en) Battery protection circuit and device, battery pack, and battery protection method
TWI485910B (en) Secondary battery monitoring device and battery kit
US8242747B2 (en) Charging control circuit capable of constant current charging
JP4522384B2 (en) Battery pack with protection circuit
KR101512535B1 (en) Battery state monitoring circuit and battery device
KR102254471B1 (en) A secondary protection ic, method for controlling the secondary protection ic, and protection module and battery pack for the same
US8471530B2 (en) Battery state monitoring circuit and battery device
US20110169457A1 (en) Battery pack
US20120032645A1 (en) Battery pack for practical low-power mode current detection and method of detecting excessive current
JP2021501325A (en) Failure determination method for battery management system, battery pack including it, and current measurement circuit
US7268520B2 (en) Sense amplifier for use with wake-up charging current
US20100092844A1 (en) Battery Pack
JP5588370B2 (en) Output circuit, temperature switch IC, and battery pack
KR101632447B1 (en) Battery state monitoring circuit and battery device
JP2006246585A (en) Battery protection circuit
JP2009077610A (en) Charge/discharge protection circuit and battery pack
US11245279B2 (en) Charge-discharge control circuit, charge-discharge control device, and battery device
JPH11127543A (en) Protective circuit device for secondary battery
JP2021158752A (en) Charge and discharge control device and battery device
JP5014933B2 (en) CHARGE CONTROL CIRCUIT AND ELECTRONIC DEVICE USING THE SAME
JP4137891B2 (en) Lithium ion secondary battery monitoring semiconductor device and test method thereof
US8823328B2 (en) Charging apparatus that can recharge different types of batteries without overcharging them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518