JP2006246314A - Wave polarizer - Google Patents

Wave polarizer Download PDF

Info

Publication number
JP2006246314A
JP2006246314A JP2005062093A JP2005062093A JP2006246314A JP 2006246314 A JP2006246314 A JP 2006246314A JP 2005062093 A JP2005062093 A JP 2005062093A JP 2005062093 A JP2005062093 A JP 2005062093A JP 2006246314 A JP2006246314 A JP 2006246314A
Authority
JP
Japan
Prior art keywords
waveguide
rectangular
septum
rectangular waveguide
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062093A
Other languages
Japanese (ja)
Other versions
JP4222329B2 (en
Inventor
Michio Takigawa
道生 瀧川
Hiroyuki Omine
裕幸 大嶺
Takeshi Yabushita
剛 薮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005062093A priority Critical patent/JP4222329B2/en
Publication of JP2006246314A publication Critical patent/JP2006246314A/en
Application granted granted Critical
Publication of JP4222329B2 publication Critical patent/JP4222329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a ceptum type wave polarizer that uses the properties of polarization that a ceptum which is a flat plate arranged in a waveguide is incapable of transmitting radio waves, when arranged in parallel to polarized waves and capable of passing the radio waves, when arranged orthogonally to the polarized wave can be made small-sized, but is disadvantageous in electric power resistance, since electric field is concentrated on the tip of the ceptum similar to a turn-style type. <P>SOLUTION: The wave polarizer as an embodiment of the present invention is equipped with a rectangular waveguide, a rectangular branch waveguide which branches off at right angles to an facing flank of the rectangular waveguide, and two ceptums which are provided in a space where the rectangular waveguide and rectangular branch waveguide cross each other and provided at right angles to the flank of the rectangular waveguide; and the interval between the ceptums is set to 0.18λ to 0.27λ, where λ is the wavelength of an electromagnetic wave passing through the rectangular waveguide, and the ceptums are arranged at positions of d/2 from the center axis of the rectangular waveguide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、マイクロ波及びミリ波で使用する偏分波器に関するものである。   The present invention relates to a demultiplexer used in microwaves and millimeter waves.

近年、通信容量の拡大に伴い広周波数帯域化、偏波を共用されることが多い。この為、衛星搭載用アンテナの給電としては偏分波器が必要となる。この偏分波器として、直交する2つ偏波のうち1つの偏波を対向する2つの方形分岐導波管に分配し、それぞれの偏波の分岐導波管を90度の角度で四方に広げるように配置するターンスタイル形構成が用いられる(例えば非特許文献1)。また、衛星に搭載される機器は限られた空間に配置する為に小形化を図る必要もあり、1つの偏波は1つのポートに、もう1つの偏波は2つの方形分岐導波管に分配させるセプタム形構成が用いられることもある(例えば非特許文献2)。   In recent years, with an increase in communication capacity, a wider frequency band and polarization are often shared. For this reason, a demultiplexer is required to feed the satellite antenna. As this polarization splitter, one of two orthogonal polarizations is distributed to two opposing rectangular branching waveguides, and each polarization branching waveguide is squared at an angle of 90 degrees. A turn-style configuration that is arranged so as to expand is used (for example, Non-Patent Document 1). In addition, it is necessary to reduce the size of the equipment mounted on the satellite so that it can be placed in a limited space. One polarization is connected to one port, and the other polarization is connected to two rectangular branching waveguides. A septum-type configuration for distribution may be used (for example, Non-Patent Document 2).

荒巻他:“TURNSTILE形分岐回路を用いた薄形偏分波器の広帯域設計”、信学総大、C−2−44(2003-3)Aramaki et al .: “Broadband design of thin-type demultiplexer using TURNSTILE branch circuit”, IEICE, C-2-44 (2003-3) Takashi Kitsuregawa、”SATELLITE COMMUNICATION ANTENNAS”、Artech House、p87,Fig1.61(c)Takashi Kitsuregawa, “SATELLITE COMMUNICATION ANTENNAS”, Artech House, p87, Fig1.61 (c)

通信容量の拡大のため、チャンネル数の増加による周波数の広帯域化、偏波共用化のみならず、高出力化に伴い、kW級の送信電力を扱う場合が多くなっている。衛星搭載の場合、真空中での使用となるため、高出力を扱う場合、真空中でのマルチパクタ放電が発生しないように考慮する必要がある。このため、広帯域特性を有しながら、耐電力の優れた偏分波器が必要である。   In order to increase the communication capacity, not only widening of the frequency band and polarization sharing due to the increase in the number of channels but also the handling of kW-class transmission power is increasing as the output increases. When mounted on a satellite, it is used in a vacuum. Therefore, when handling high power, it is necessary to consider that multi-pactor discharge does not occur in a vacuum. For this reason, there is a need for a polarization demultiplexer with excellent power durability while having broadband characteristics.

偏波を分離する方式としてターンスタイル形がある。ターンスタイル形では、分岐回路から方形分岐導波管に電力を分配する為、電力が分散される特徴がある。しかしながら、四方に方形分岐導波管が広がり、再度それらを合分配器により合成/分波した後、各偏波を取り出す必要があり、構成が複雑になり、且つ偏分波器が大きくなるという課題があった。又、インピーダンス整合のための四方への分岐部に設置されている金属ピラミッドの先端に電界が集中し、耐電力特性が低下する課題があった。   There is a turn style type as a method of separating polarized waves. The turn style type has a feature that power is distributed because power is distributed from the branch circuit to the rectangular branch waveguide. However, the rectangular branching waveguide spreads in all directions, and it is necessary to take out each polarized wave after synthesizing / demultiplexing them again by the combiner / distributor, which makes the configuration complicated and increases the size of the demultiplexer / demultiplexer. There was a problem. In addition, the electric field is concentrated on the tip of the metal pyramid installed at the four-way branch portion for impedance matching, and there is a problem in that the power durability is deteriorated.

また、導波管内部にセプタムを挿入し、偏波を分離するセプタム形がある。セプタムは導波管内部に配置した平板のことで、偏波と並行に平板を配置すると電波は通過できず、逆に偏波に直交に平板が配置されていると電波は通過することができる性質があり、この偏波の性質を利用したものがセプタム形偏分波器である。このセプタム形は小形化を図れる特長があるが、ターンスタイル形と同様にセプタムの先端に電界が集中し、耐電力的に不利であるという課題があった。   In addition, there is a septum type in which a septum is inserted inside the waveguide to separate polarized waves. A septum is a flat plate placed inside a waveguide. When a flat plate is placed parallel to the polarization, radio waves cannot pass. Conversely, when a flat plate is placed perpendicular to the polarization, radio waves can pass. A septum-type demultiplexer is one that uses this polarization property. This septum type has the feature that it can be downsized. However, like the turn style type, there is a problem that the electric field is concentrated at the tip of the septum, which is disadvantageous in terms of power resistance.

本発明に係わる偏分波器は、方形導波管と、前記方形導波管の相対する側面に直角に分岐する方形分岐導波管と、前記方形導波管と前記方形分岐導波管の交差する空間に設けられ、前記方形導波管の前記側面と直角に設けられる2枚のセプタムと、を備え、前記セプタムの間隔dは、前記方形導波管を通過する電磁波の波長をλとし、0.18λから0.27λであり、前記セプタムは、前記方形導波管の中心軸からd/2の位置に配置されるものである。   A demultiplexer according to the present invention includes a rectangular waveguide, a rectangular branched waveguide that branches at right angles to opposite side surfaces of the rectangular waveguide, the rectangular waveguide, and the rectangular branched waveguide. Two septums provided in intersecting spaces and provided at right angles to the side surface of the rectangular waveguide, and the distance d between the septums is λ the wavelength of electromagnetic waves passing through the rectangular waveguide 0.18λ to 0.27λ, and the septum is arranged at a position d / 2 from the central axis of the rectangular waveguide.

この発明は、耐電力の優れた偏分波器を得ることができる。   According to the present invention, it is possible to obtain a polarization demultiplexer having excellent power resistance.

実施の形態1
図1から図5は、本発明の実施の形態1を示す図である。図1は本発明に係わる偏分波器1である。偏分波器1は方形導波管2と第1の方形分岐導波管3と第2の方形分岐導波管4とを備えている。
Embodiment 1
1 to 5 are diagrams showing Embodiment 1 of the present invention. FIG. 1 shows a demultiplexer 1 according to the present invention. The demultiplexer 1 includes a rectangular waveguide 2, a first rectangular branch waveguide 3, and a second rectangular branch waveguide 4.

方形導波管2の相対する左右の側面には、方形導波管2と直交する様に第1の方形分岐導波管3と第2の方形分岐導波管4とが接続されている。つまり、第1の方形分岐導波管3と第2の方形分岐導波管4は、方形導波管2の相対する側面と直角に備えられている。第1の方形分岐導波管3と第2の方形分岐導波管4の中心軸5は一致させる。   The first rectangular branch waveguide 3 and the second rectangular branch waveguide 4 are connected to the left and right side surfaces of the rectangular waveguide 2 so as to be orthogonal to the rectangular waveguide 2. That is, the first rectangular branch waveguide 3 and the second rectangular branch waveguide 4 are provided at right angles to the opposite side surfaces of the rectangular waveguide 2. The central axes 5 of the first rectangular branch waveguide 3 and the second rectangular branch waveguide 4 are made to coincide.

方形導波管2内部には、方形導波管2を通過する第1の偏波7と第2の偏波8とを分離するセプタム6が設けられている。セプタム6は、方形導波管2と第1の方形分岐導波管3と、第2の方形導波管4との交差する空間に設けられている。第1の偏波7は一例として水平偏波、第2の偏波8は垂直偏波である。   A septum 6 that separates the first polarization 7 and the second polarization 8 that pass through the rectangular waveguide 2 is provided inside the rectangular waveguide 2. The septum 6 is provided in a space where the rectangular waveguide 2, the first rectangular branch waveguide 3, and the second rectangular waveguide 4 intersect. As an example, the first polarization 7 is horizontal polarization, and the second polarization 8 is vertical polarization.

セプタム6は、第1の方形分岐導波管3、第2の方形導波管4の中心軸5に平行である。また、セプタム6は、方形導波管2の第1の方形分岐導波管3及び第2の方形導波管4が備えられている側面と直角に設けられる。   The septum 6 is parallel to the central axis 5 of the first rectangular branch waveguide 3 and the second rectangular waveguide 4. The septum 6 is provided at right angles to the side surface of the rectangular waveguide 2 where the first rectangular waveguide 3 and the second rectangular waveguide 4 are provided.

方形導波管2より入力された第1の偏波7と第2の偏波8の受信信号のうち、セプタム6に平行な電界の第2の偏波8は第1の方形分岐導波管3、第2の方形分岐導波管4に配分される。第1の方形分岐導波管3と第2の方形分岐導波管4は、それぞれ位相が180度異なる分波された第2の偏波9となる。第1の偏波7はそのまま方形導波管2を通過する。   Of the received signals of the first polarization 7 and the second polarization 8 input from the rectangular waveguide 2, the second polarization 8 of the electric field parallel to the septum 6 is the first rectangular branch waveguide. 3, distributed to the second rectangular branching waveguide 4. The first rectangular branching waveguide 3 and the second rectangular branching waveguide 4 become the second polarized wave 9 that is demultiplexed and has a phase difference of 180 degrees. The first polarization 7 passes through the rectangular waveguide 2 as it is.

つまり、方形導波管2に入力された第1の偏波7はそのまま方形導波管2を通過し、第2の偏波8はセプタム6により分配されて第1の方形分岐導波管3と第2の方形分岐導波管4とに分配される。   That is, the first polarized wave 7 input to the rectangular waveguide 2 passes through the rectangular waveguide 2 as it is, and the second polarized wave 8 is distributed by the septum 6 to be the first rectangular branched waveguide 3. And the second rectangular branch waveguide 4.

図2(a)はセプタム形状、(b)はセプタム形分岐回路のXZ断面図、(c)はXY断面図である。座標軸X,Y,Zの定義は図1中に示してあるものと同様である。図2(a)に示すようにセプタム6は、方形の凸部10と、方形の凸部10と連続的につながる傾斜部11とを備える。また、セプタム6の底部は平面12である。もちろん、セプタム6は、極めて薄くてもよく、平面12は製造誤差の範囲で凹凸が有っても良い。言い換えれば、平面12の幅は、ミリメートルを切る極めて狭くても良い。   2A is a septum shape, FIG. 2B is an XZ sectional view of a septum branch circuit, and FIG. 2C is an XY sectional view. The definition of the coordinate axes X, Y, and Z is the same as that shown in FIG. As shown in FIG. 2A, the septum 6 includes a square convex portion 10 and an inclined portion 11 continuously connected to the square convex portion 10. The bottom of the septum 6 is a flat surface 12. Of course, the septum 6 may be very thin, and the flat surface 12 may be uneven within the range of manufacturing errors. In other words, the width of the plane 12 may be very narrow, less than millimeters.

また、図2(b)に示すように、第1の方形分岐導波管3を通過する分波された第2の偏波9と第2の方形分岐導波管4を通過する分波された第2の偏波9とは位相が180度異なっているため、矢印の向きが異なる。   Further, as shown in FIG. 2B, the demultiplexed second polarized wave 9 passing through the first rectangular branch waveguide 3 and the demultiplexed light passing through the second rectangular branch waveguide 4 are separated. Further, since the phase is 180 degrees different from that of the second polarization 9, the direction of the arrow is different.

偏分波器1は、一方の偏波が方形導波管2の管軸方向に取り出されるため、ターンスタイル形に比べて導波管端子が1つ少なく、合/分配器を1つしか使用しないことによりベンド導波管も必要なくなるため、小形化を実現させることができる。   In the polarization splitter 1, since one polarized wave is extracted in the tube axis direction of the rectangular waveguide 2, the number of waveguide terminals is less than that of the turn style type, and only one combiner / distributor is used. This eliminates the need for a bend waveguide, so that downsizing can be realized.

第1の偏波7が通過することにより、セプタム6の先端に電界が集中するが、方形の凸部10の先端を平らとすることで電界が集中しない構成である。また、セプタム6を2枚とすることで電界強度が分散される。   By passing the first polarized light 7, the electric field concentrates on the tip of the septum 6, but the electric field does not concentrate by flattening the tip of the square projection 10. Moreover, the electric field strength is dispersed by using two septums 6.

図2(c)に示すように、セプタム6の間隔をdとする。第2の偏波8は、セプタムを2枚とすることで、最大電界が集中することを無くし耐電力特性を向上することができる。詳細を以下で説明する。   As shown in FIG. 2C, the interval between the septums 6 is d. Since the second polarization 8 has two septa, the maximum electric field is not concentrated and the power durability can be improved. Details are described below.

図3に図2(a)に記す2枚のセプタム間隔dを変化させたときの耐電力、反射特性を示す。図3において、横軸はセプタム間隔d/λを示している。ここでλは、方形導波管2を通過する電磁波の波長である。また左目盛りは耐電力kWを示し、右目盛りは反射特性dBを示す。   FIG. 3 shows power resistance and reflection characteristics when the distance between the two septums d shown in FIG. In FIG. 3, the horizontal axis indicates the septum distance d / λ. Here, λ is the wavelength of the electromagnetic wave passing through the rectangular waveguide 2. Further, the left scale indicates the withstand power kW, and the right scale indicates the reflection characteristic dB.

図3によれば反射特性は、0.18λ〜0.27λで極値を示すが、実運用上反射特性は−20dB以下で有ればよいため、間隔dは0.15λ〜0.3λで有ればよい。また、耐電力特性は、0.25λ以上でほぼ一定値を示すが、実運用上耐電力は60kW以上有れば足りるため、0.15λ以上であればよい。以上から、間隔dは0.18λ〜0.27λが優れる。なお、セプタム6は、方形導波管1の中心軸から左右均等に配置されている。   According to FIG. 3, the reflection characteristic shows an extreme value in the range of 0.18λ to 0.27λ. However, since the reflection characteristic only needs to be −20 dB or less in actual operation, the interval d is 0.15λ to 0.3λ. It only has to be. In addition, although the power durability characteristic shows a substantially constant value at 0.25λ or more, it is sufficient that the power durability is 60 kW or more in actual operation, and therefore it may be 0.15λ or more. From the above, the distance d is excellent in the range of 0.18λ to 0.27λ. Note that the septum 6 is equally disposed on the left and right sides from the central axis of the rectangular waveguide 1.

また、先端が平らになることで反射が増えるが、凸部の寸法を適当な値に選ぶことにより整合が図れる。図4(a)は方形の凸部10の半幅rkと反射特性との関係を示す図であり、図4(b)は方形の凸部10の高さΔhと反射特性との関係を示す図である。   Further, although the reflection is increased by flattening the tip, matching can be achieved by selecting an appropriate value for the size of the convex portion. 4A is a diagram showing the relationship between the half width rk of the square convex portion 10 and the reflection characteristics, and FIG. 4B is a diagram showing the relationship between the height Δh of the square convex portion 10 and the reflection characteristics. It is.

図4(a)から方形の凸部10の半幅rkは約0.002λ〜0.003λのとき反射特性は−20dB以下となる。また、図4(b)から方形の凸部10の高さΔhは約0.14λ〜0.17λのとき反射特性が−20dB以下となる。よって、方形の凸部10の半幅rkは0.002λ〜0.003λが優れ、方形の凸部10の高さΔhは0.14λ〜0.17λが優れる。   From FIG. 4A, when the half width rk of the square convex portion 10 is about 0.002λ to 0.003λ, the reflection characteristic is −20 dB or less. Also, from FIG. 4B, when the height Δh of the rectangular convex portion 10 is about 0.14λ to 0.17λ, the reflection characteristic is −20 dB or less. Therefore, the half width rk of the square protrusion 10 is excellent from 0.002λ to 0.003λ, and the height Δh of the square protrusion 10 is excellent from 0.14λ to 0.17λ.

第1の偏波7により電界が強くなるのはセプタム6の方形の凸部10であり、第2の偏波8により電界が強くなるのはセプタム6の傾斜部11である。よって、このセプタム構造にすることにより、第1の偏波7は方形の凸部10、第2の偏波7は傾斜部11とそれぞれ電界強度が強くなる位置を変えられるため、電力の分散できる。結果として、耐電力が優れた偏分波器1を提供することができる。   The first polarized wave 7 increases the electric field at the square convex portion 10 of the septum 6, and the second polarized wave 8 increases the electric field at the inclined portion 11 of the septum 6. Therefore, by using this septum structure, the first polarized wave 7 and the second polarized wave 7 can be changed in position where the electric field strength becomes strong, and the second polarized light 7 can change the position where the electric field strength becomes strong. . As a result, it is possible to provide the polarization demultiplexer 1 having excellent power durability.

なお、図3及び図4においては、図2(a)に示すように方形凸部10の高さと、傾斜部11の高さの合計を0.40λ、それ以外の高さを0.42λとしているが、設計に応じて適宜変更しても良い。   3 and 4, as shown in FIG. 2A, the sum of the height of the rectangular convex portion 10 and the height of the inclined portion 11 is 0.40λ, and the other height is 0.42λ. However, it may be appropriately changed according to the design.

もちろん、設計に応じて図5に示すようにセプタム6を4枚にしても良いし、更に増やしても良い。つまり、2枚のセプタム6を中心からずらした構成の場合、第1の偏波7と第2の偏波8の偏波間アイソレーションが十分に達成できない場合があるため、セプタム6を2枚以上とすることにより偏波間アイソレーションを向上することができる。   Of course, depending on the design, the number of septums 6 may be four as shown in FIG. That is, when the two septums 6 are shifted from the center, the isolation between the polarizations of the first polarization 7 and the second polarization 8 may not be sufficiently achieved. By doing so, it is possible to improve the polarization isolation.

図6から図8は、別の実施例におけるセプタム6の図である。図6から図8においてセプタム6の形状を変えることにより、第1の偏波7の反射、耐電力特性の微調整が可能となる。   6 to 8 are views of the septum 6 in another embodiment. By changing the shape of the septum 6 in FIGS. 6 to 8, it is possible to finely adjust the reflection of the first polarized wave 7 and the power durability characteristics.

図6において、図2(a)に示すセプタム6の平面12に代わって、2枚の面によりV字状の突起13を設けた。セプタム6にV字状の突起13を設けることにより、セプタム6がテーパー状となり、セプタムで生じる第1の偏波3の反射を小さくできる。   In FIG. 6, a V-shaped protrusion 13 is provided by two surfaces instead of the flat surface 12 of the septum 6 shown in FIG. By providing the V-shaped protrusion 13 on the septum 6, the septum 6 becomes tapered, and the reflection of the first polarized wave 3 generated by the septum can be reduced.

図7においては、図2(a)に示すセプタム6の平面12に代わって、2枚の面によりV字切込14を設けた。セプタム6にV字切込14を設けることにより第1の偏波3の反射を小さくできる共にセプタム6の小形化を図ることができる。   In FIG. 7, a V-shaped cut 14 is provided by two surfaces instead of the flat surface 12 of the septum 6 shown in FIG. By providing the V-shaped cut 14 in the septum 6, the reflection of the first polarized wave 3 can be reduced, and the septum 6 can be miniaturized.

図8においては、図2(a)に示すセプタム6の平面12に代わって、複数の面により凸状切込15を設けた。これにより、第1の偏波7のセプタム6上の電流を変えて、電力の分散を図り、耐電力特性を向上することができる。また、図8には、穴16を設けている。これにより、小型化/軽量化することができる。   In FIG. 8, instead of the flat surface 12 of the septum 6 shown in FIG. 2A, convex cuts 15 are provided by a plurality of surfaces. As a result, the current on the septum 6 of the first polarization 7 can be changed to achieve power dispersion and improve power durability. In FIG. 8, a hole 16 is provided. Thereby, it can reduce in size / weight.

なお、前記面の幅は極めて薄くても良い。   The width of the surface may be extremely thin.

以上のように、レプタム6の形状を変えることにより、耐電力特性の微調整が可能となると共に、小型化/軽量化することができる。   As described above, by changing the shape of the leptum 6, it is possible to finely adjust the power durability, and it is possible to reduce the size and weight.

この様に、本発明によれば、耐電力の優れた偏分波器を得ることができる。   As described above, according to the present invention, it is possible to obtain a polarization demultiplexer having excellent power resistance.

実施の形態1の偏分波器を示すである。1 shows a polarization demultiplexer according to a first embodiment. 実施の形態1のセプタムの形状を示す図である。FIG. 3 is a diagram showing the shape of the septum of the first embodiment. セプタム間隔変化時の耐電力、反射特性図である。It is a withstand power and reflection characteristic figure at the time of septum space | interval change. セプタム形状を変化させたときの反射特性図である。It is a reflection characteristic figure when changing a septum shape. セプタムを複数備えた実施の形態1の偏分波器を示す。1 shows a demultiplexer according to Embodiment 1 including a plurality of septa. セプタム形状図である。It is a septum shape figure. セプタム形状図である。It is a septum shape figure. セプタム形状図である。It is a septum shape figure.

符号の説明Explanation of symbols

1 偏分波器、2 方形導波管、3 第1の方形分岐導波管、4 第2の方形分岐導波管、5 中心軸、6 セプタム、7 第1の偏波、8 第2の偏波、9 分波された第2の偏波、10 方形の凸部、11 傾斜部、12 平面、13 V字状の突起、14 V字切込、15 凸状切込、16 穴。   DESCRIPTION OF SYMBOLS 1 Polarization demultiplexer, 2 Rectangular waveguide, 3 1st square branch waveguide, 4 2nd square branch waveguide, 5 Center axis, 6 Septum, 7 1st polarization, 8 2nd Polarized wave, second polarized wave divided by 9, 10 square convex part, 11 inclined part, 12 plane, 13 V-shaped protrusion, 14 V-shaped cut, 15 convex cut, 16 holes.

Claims (6)

方形導波管と、
前記方形導波管の相対する側面に直角に分岐する方形分岐導波管と、
前記方形導波管と前記方形分岐導波管の交差する空間に設けられ、前記方形導波管の前記側面と直角に設けられる2枚のセプタムと、を備え、
前記セプタムの間隔dは、前記方形導波管を通過する電磁波の波長をλとし、0.18λから0.27λであり、
前記セプタムは、前記方形導波管の中心軸からd/2の位置に配置される偏分波器。
A rectangular waveguide;
A rectangular branch waveguide that branches perpendicularly to opposite sides of the rectangular waveguide; and
Two septums provided in a space where the rectangular waveguide and the rectangular branching waveguide intersect, and provided at right angles to the side surface of the rectangular waveguide,
The interval d of the septum is 0.18λ to 0.27λ, where λ is the wavelength of the electromagnetic wave passing through the rectangular waveguide,
The septum is a demultiplexer disposed at a position d / 2 from the central axis of the rectangular waveguide.
前記セプタムは、方形の凸部と、前記方形の凸部と連続的につながる傾斜部とを備える請求項1に記載の偏分波器。 2. The demultiplexer according to claim 1, wherein the septum includes a square convex portion and an inclined portion continuously connected to the square convex portion. 前記方形導波管を通過する電磁波の波長をλとし、前記方形の凸部の半幅rkが0.002λから0.003λ、高さΔhが0.14λから0.17λである請求項2に記載の偏分波器。 The wavelength of the electromagnetic wave passing through the rectangular waveguide is λ, the half width rk of the convex portion of the rectangular shape is 0.002λ to 0.003λ, and the height Δh is 0.14λ to 0.17λ. The demultiplexer. 前記セプタムの底部が面である請求項2または請求項3に記載の偏分波器。 The demultiplexer according to claim 2 or 3, wherein the bottom of the septum is a surface. 前記セプタムの底部がV字型の突起を構成する請求項2または請求項3に記載の偏分波器。 The demultiplexer according to claim 2 or 3, wherein a bottom portion of the septum constitutes a V-shaped protrusion. 前記セプタムの底部がV字型の切込を構成する請求項2または請求項3に記載の偏分波器。 The demultiplexer according to claim 2 or 3, wherein a bottom of the septum forms a V-shaped cut.
JP2005062093A 2005-03-07 2005-03-07 Polarization splitter Active JP4222329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062093A JP4222329B2 (en) 2005-03-07 2005-03-07 Polarization splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062093A JP4222329B2 (en) 2005-03-07 2005-03-07 Polarization splitter

Publications (2)

Publication Number Publication Date
JP2006246314A true JP2006246314A (en) 2006-09-14
JP4222329B2 JP4222329B2 (en) 2009-02-12

Family

ID=37052215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062093A Active JP4222329B2 (en) 2005-03-07 2005-03-07 Polarization splitter

Country Status (1)

Country Link
JP (1) JP4222329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506605A (en) * 2008-10-22 2012-03-15 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Multipacking reduction due to spatially varying magnetization.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506605A (en) * 2008-10-22 2012-03-15 ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチ Multipacking reduction due to spatially varying magnetization.
US8723617B2 (en) 2008-10-22 2014-05-13 CERN—European Organization for Nuclear Research Reduction of multipacting by means of spatially varying magnetization

Also Published As

Publication number Publication date
JP4222329B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
Yang et al. Low-profile dual-polarized filtering magneto-electric dipole antenna for 5G applications
CA2967279C (en) Waveguide slot array antenna
CN106469848B (en) A kind of broadband paster antenna based on double resonance mode
WO2020040079A1 (en) Antenna element, antenna module, and communication device
CN106058450B (en) Plane patch filter antenna
CN112952404B (en) Millimeter wave dual circularly polarized lens antenna and electronic equipment
US20180108969A1 (en) Improved antenna
US10910731B2 (en) High performance flat panel antennas for dual band, wide band and dual polarity operation
CN107579344A (en) Millimeter-wave substrate integrated waveguide double-circle polarization Sidelobe Shared aperture array antenna
JP6973663B2 (en) Antenna module and communication device
US10361485B2 (en) Tripole current loop radiating element with integrated circularly polarized feed
JP2015091134A (en) Compact dual-polarization power splitter, array of multiple splitters, compact radiating element and planar antenna comprising such splitter
US10727555B2 (en) Multi-filtenna system
CN101356686A (en) Polarization wave switching/variable directivity antenna
CN106099324B (en) One kind being used for dual polarization dualbeam reflecting plane aerial feed source
KR20170114410A (en) Dual polarization horn antenna
CN114361787A (en) Dual-band/dual-polarization CTS antenna based on 3D orthogonal shunt feed network
US10236589B2 (en) Active antenna architecture with reconfigurable hybrid beamforming
US20140218264A1 (en) Rotman lens
KR20200132618A (en) Dual Polarization Antenna Using Shift Series Feed
CN114335999A (en) K/Ka waveband dual-band dual-circularly-polarized antenna based on gap waveguide
US20170317422A1 (en) Low Profile Wideband Planar Antenna Element With Integrated Baluns
WO2021104147A1 (en) Method and device for forming beam
US20200365999A1 (en) Ka Band Printed Phased Array Antenna for Satellite Communications
JP4769664B2 (en) Circularly polarized patch antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R151 Written notification of patent or utility model registration

Ref document number: 4222329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250