JP2006243932A - Control valve and piping unit therewith - Google Patents

Control valve and piping unit therewith Download PDF

Info

Publication number
JP2006243932A
JP2006243932A JP2005056047A JP2005056047A JP2006243932A JP 2006243932 A JP2006243932 A JP 2006243932A JP 2005056047 A JP2005056047 A JP 2005056047A JP 2005056047 A JP2005056047 A JP 2005056047A JP 2006243932 A JP2006243932 A JP 2006243932A
Authority
JP
Japan
Prior art keywords
valve
pressure
pressure fluid
sensor
valve chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056047A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kasama
泰彦 笠間
Kenji Omote
研次 表
Satoshi Mizogami
敏 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ideal Star Inc
Original Assignee
Ideal Star Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc filed Critical Ideal Star Inc
Priority to JP2005056047A priority Critical patent/JP2006243932A/en
Publication of JP2006243932A publication Critical patent/JP2006243932A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Sliding Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve capable of monitoring, by a temperature sensor, a change in the state of a pressure fluid caused by a change in flow velocity or the like due to valve opening, and capable of adjusting the valve opening if the temperature sensor detects that its temperature has reached a critical temperature at which the pressure fluid is liquefied or vaporized. <P>SOLUTION: The control valve has a supply passage 25 and a discharge passage 26 for the pressure fluid and a valve chamber 27, all of which are formed in a valve body 21. A pressure sensor 28 for detecting the pressure of the pressure fluid is positioned within the supply passage 25. The temperature sensor 29 for detecting the critical temperature of the liquefaction or vaporization of the pressure fluid is positioned either within the portion of the valve chamber 27 downstream of a valve plug 32 or within the discharge passage 28. A discharge side pressure sensor 30 for detecting the pressure of the pressure fluid is positioned either within the portion of the valve chamber 27 downstream of the temperature sensor 29 or within the discharge passage 26. Based on detection results from the sensors 28, 29, 30, a control circuit controls the drive part of the valve plug 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧力流体制御のためのコントロール弁に関する。   The present invention relates to a control valve for pressure fluid control.

特開2003−194648号公報JP 2003-194648 A

従来のコントロール弁としては、例えば、図11に示すものが知られている(特許文献1参照)。
図11に示すコントロール弁1は、上流側配管2と接続された配管3、下流側配管4と接続された配管5、配管3と配管5との連通状態を制御する弁プラグ6、配管5の中途部に配置されて配管5の炉内にオリフィス孔7aを形成したオリフィス7、弁プラグ6とオリフィス7との間の配管5内の流体圧力を測定する圧力センサ8、オリフィス7の温度を検出する温度センサ9、制御回路10、バルブ駆動部11を備えている。
As a conventional control valve, for example, the one shown in FIG. 11 is known (see Patent Document 1).
The control valve 1 shown in FIG. 11 includes a pipe 3 connected to the upstream pipe 2, a pipe 5 connected to the downstream pipe 4, a valve plug 6 that controls the communication state between the pipe 3 and the pipe 5, and the pipe 5. An orifice 7 disposed in the middle of the pipe 5 and having an orifice hole 7a in the furnace, a pressure sensor 8 for measuring the fluid pressure in the pipe 5 between the valve plug 6 and the orifice 7, and the temperature of the orifice 7 are detected. A temperature sensor 9, a control circuit 10, and a valve drive unit 11.

尚、コントロール弁1は、供給される流体が臨界条件にある場合、即ちオリフィス7から流出する流体の流体速度が音速である場合を前提としているため、圧力測定は一つの圧力センサ3だけで行なわれる。   Since the control valve 1 is based on the premise that the supplied fluid is in a critical condition, that is, the fluid velocity of the fluid flowing out from the orifice 7 is a sonic velocity, the pressure measurement is performed by only one pressure sensor 3. It is.

制御回路10は電子回路とマイクロコンピュータと内蔵プログラムを中心に構成されている。この制御回路10は、図示しない増幅回路やA/D変換器などの電子回路系と、実験流量式によって演算流量を求めると共にその演算流量と外部入力信号である設定流量とを比較して流量差を算出する。   The control circuit 10 is mainly composed of an electronic circuit, a microcomputer, and a built-in program. This control circuit 10 obtains a calculated flow rate by an electronic circuit system such as an amplifier circuit and an A / D converter (not shown) and an experimental flow rate equation, and compares the calculated flow rate with a set flow rate that is an external input signal, thereby calculating a flow rate difference. Is calculated.

上流側圧力は圧力センサ10により計測される。正確な圧力測定をするため、圧力センサ10のセンサ部分はガス流に接触して配置され、しかもガス流を撹乱しないように、そのセンサ部分は極めて小さく設計されている。従って、センサ部分はガス温度に等しくなっている。   The upstream pressure is measured by the pressure sensor 10. In order to perform accurate pressure measurement, the sensor portion of the pressure sensor 10 is arranged in contact with the gas flow, and the sensor portion is designed to be extremely small so as not to disturb the gas flow. Accordingly, the sensor portion is equal to the gas temperature.

そのガス温度はも温度センサ9により計測されている。温度センサ9はガス流を撹乱しないようにオリフィス7の近傍温度を測定しており、ガスとオリフィス7とが熱平衡にあれば両者の温度は等しくなるから、オリフィス7の温度をガス温度として測定する。   The gas temperature is also measured by the temperature sensor 9. The temperature sensor 9 measures the temperature in the vicinity of the orifice 7 so as not to disturb the gas flow. If the gas and the orifice 7 are in thermal equilibrium, the temperatures of the two become equal. Therefore, the temperature of the orifice 7 is measured as the gas temperature. .

上流側圧力とガス温度とは電圧として得られ、図示しない増幅回路やA/D変換器によりデジタル信号になる。これらのデジタル信号は制御回路10に入力され、ガス温度とガス物性から比例係数が算出されると共に上流側圧力を利用して演算流量が算出される。   The upstream pressure and the gas temperature are obtained as voltages and converted into digital signals by an amplifier circuit and an A / D converter (not shown). These digital signals are input to the control circuit 10, and a proportional coefficient is calculated from the gas temperature and gas physical properties, and an arithmetic flow rate is calculated using the upstream pressure.

そして、制御回路10には外部入力された設定流量と算出された演算流量との流量差がゼロとなるようにバルブ駆動部11を制御し、弁プラグ6の開度を調整する。   The control circuit 10 controls the valve drive unit 11 so as to adjust the opening of the valve plug 6 so that the flow rate difference between the set flow rate input externally and the calculated calculated flow rate becomes zero.

また、圧力センサ10のセンサ部分はガス温度に等しくなっており、ガス温度が変動すると、それに連れてセンサ部分の温度も変化するため、圧力センサの出力電圧が温度変動に従ってドリフト補正される。   Further, the sensor portion of the pressure sensor 10 is equal to the gas temperature, and when the gas temperature changes, the temperature of the sensor portion also changes accordingly, so that the output voltage of the pressure sensor is drift-corrected according to the temperature change.

ところで、図11に示した特許文献1に開示のコントロール弁1では、温度センサ9は圧力センサ10の検出精度を向上させるために用いられているため、流体の状態変化、例えば、液化や気化といった相変化を監視するものではなく、弁開度を制御するには流体種類が限定されてしまうといった問題が生じていた。   By the way, in the control valve 1 disclosed in Patent Document 1 shown in FIG. 11, the temperature sensor 9 is used to improve the detection accuracy of the pressure sensor 10, so that the state of the fluid changes, for example, liquefaction or vaporization. The phase change is not monitored, and there is a problem that the type of fluid is limited to control the valve opening.

本発明は、圧力流体が液化若しくは気化し易い物質であっても精度良く制御することができるコントロール弁及び配管ユニットを提供することを目的とする。   An object of the present invention is to provide a control valve and a piping unit that can accurately control a pressure fluid even if it is a substance that is easily liquefied or vaporized.

本発明のコントロール弁は、圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、前記供給路内に配置されて圧力流体の圧力を検出する供給側圧力センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の圧力を検出する排出側圧力センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とする。   The control valve of the present invention includes a valve body in which a valve chamber communicating with each passage is formed between a supply passage and a discharge passage for the pressure fluid, and an opening located at a boundary between the supply passage and the valve chamber. In a control valve comprising a valve plug that opens and closes and a drive unit that displaces the valve plug, a supply-side pressure sensor that is disposed in the supply passage and detects the pressure of the pressure fluid, and a downstream side of the valve plug A temperature sensor that is disposed in the valve chamber or in the discharge passage and detects a critical temperature of liquefaction or vaporization of the pressure fluid, and a pressure that is disposed in the valve chamber or in the discharge passage downstream of the temperature sensor. A discharge-side pressure sensor that detects the pressure of the fluid, and a control circuit that controls the drive unit based on detection results from the sensors.

また、本発明のコントロール弁は、圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、前記供給路内に配置されて圧力流体の速度を検出する供給側速度センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の速度を検出する排出側速度センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とする。   The control valve of the present invention is located at a boundary between the valve body in which a valve chamber communicating with each passage is formed between the supply passage and the discharge passage for the pressure fluid, and the supply passage and the valve chamber. In a control valve comprising a valve plug that opens and closes an opening and a drive unit that displaces the valve plug, a supply-side speed sensor that is arranged in the supply path and detects the speed of pressure fluid, and more than the valve plug A temperature sensor that is disposed in the valve chamber or the discharge passage on the downstream side and detects a critical temperature of liquefaction or vaporization of the pressure fluid, and is disposed in the valve chamber or the discharge passage on the downstream side of the temperature sensor. And a discharge side speed sensor for detecting the speed of the pressure fluid, and a control circuit for controlling the drive unit based on the detection results from the sensors.

本発明のコントロール弁は、圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、該弁本体に回転可能に支持され且つ一端が前記弁室内に臨む弁軸と、該弁軸に方持ちで支持されて前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、前記供給路内に配置されて圧力流体の圧力を検出する供給側圧力センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の圧力を検出する排出側圧力センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とする。   The control valve according to the present invention includes a valve body in which a valve chamber communicating with each passage is formed between a supply passage and a discharge passage for the pressure fluid, a valve body rotatably supported by the valve body, and one end of the valve chamber A valve shaft that faces the valve shaft, a valve plug that is supported by the valve shaft and that opens and closes an opening located at a boundary between the supply path and the valve chamber, and a control unit that displaces the valve plug In the valve, a supply-side pressure sensor that is disposed in the supply passage and detects the pressure of the pressure fluid, and a liquefied or vaporized pressure fluid that is disposed in the valve chamber or in the discharge passage on the downstream side of the valve plug. A temperature sensor that detects the critical temperature of the gas, a discharge-side pressure sensor that is disposed in the valve chamber or in the discharge passage downstream of the temperature sensor and detects the pressure of the pressure fluid, and detection results from the sensors Based on the drive unit Characterized in that it comprises a Gosuru control circuit.

本発明のコントロール弁は、圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、該弁本体に回転可能に支持され且つ一端が前記弁室内に臨む弁軸と、該弁軸に方持ちで支持されて前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、前記供給路内に配置されて圧力流体の速度を検出する供給側速度センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の速度を検出する排出側速度センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とする。   The control valve according to the present invention includes a valve body in which a valve chamber communicating with each passage is formed between a supply passage and a discharge passage for the pressure fluid, a valve body rotatably supported by the valve body, and one end of the valve chamber A valve shaft that faces the valve shaft, a valve plug that is supported by the valve shaft and that opens and closes an opening located at a boundary between the supply path and the valve chamber, and a control unit that displaces the valve plug In the valve, a supply-side speed sensor that is arranged in the supply passage and detects the velocity of the pressure fluid, and a liquefaction or vaporization of the pressure fluid that is arranged in the valve chamber or in the discharge passage downstream of the valve plug. A temperature sensor that detects the critical temperature of the gas, a discharge-side speed sensor that is disposed in the valve chamber or in the discharge passage downstream of the temperature sensor and detects the speed of the pressure fluid, and detection results from the sensors Based on the drive unit Characterized in that it comprises a Gosuru control circuit.

本発明のコントロール弁は、前記排出側圧力センサ又は前記排出側速度センサよりも下流側の前記排出路内にフィルターが配置されていることを特徴とする。   The control valve according to the present invention is characterized in that a filter is disposed in the discharge path downstream of the discharge side pressure sensor or the discharge side speed sensor.

本発明の配管ユニットは、請求項1乃至請求項5の何れか一つに記載のコントロール弁を備えていることを特徴とする。   A piping unit according to the present invention includes the control valve according to any one of claims 1 to 5.

本発明に係るコントロール弁によれば、弁開度による流速当の変化に起因する圧力流体の状態変化を温度センサで監視することができ、その温度が圧力流体の液化又は気化する臨界温度に達していることを温度センサが検出した場合には弁開度を調整することができ、精度の高いコントロール弁とすることができる。   According to the control valve of the present invention, it is possible to monitor the change in the state of the pressure fluid caused by the change in the flow rate due to the valve opening degree by the temperature sensor, and the temperature reaches a critical temperature at which the pressure fluid is liquefied or vaporized. When the temperature sensor detects this, the valve opening degree can be adjusted, and a highly accurate control valve can be obtained.

以下、図面に基づき本発明の実施例について説明する。図1乃至図10は本発明の実施例を示す。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 10 show an embodiment of the present invention.

(実施の形態1)
図1乃至図3は本発明のコントロール弁の実施の形態1を示し、図1は開弁状態のコントロール弁の部分断面図、図2は閉弁状態のコントロール弁の部分断面図、図3は本発明のコントロール弁を用いた配管ユニットのブロック図である。
(Embodiment 1)
1 to 3 show Embodiment 1 of the control valve of the present invention, FIG. 1 is a partial sectional view of the control valve in the opened state, FIG. 2 is a partial sectional view of the control valve in the closed state, and FIG. It is a block diagram of a piping unit using the control valve of the present invention.

図1及び図2において、コントロール弁20は、弁本体21と、この弁本体21を保持した駆動部ユニット22とを備えている。   1 and 2, the control valve 20 includes a valve main body 21 and a drive unit 22 that holds the valve main body 21.

弁本体21は、図示左右に突出した供給管部23と排出管部24とを一体に備え、これら各管部23,24には圧力流体の供給路25と排出路26とが形成されており、その内側端部が弁室27により連通されている。また、供給路25の中途部には圧力流体の圧力を検出する供給側圧力センサ28が配置されている。さらに、排出路26の中途部には、上流側に圧力流体の温度を検出する温度センサ29、下流側に圧力流体の圧力を検出する排出側圧力センサ30がそれぞれ配置されている。   The valve main body 21 is integrally provided with a supply pipe portion 23 and a discharge pipe portion 24 protruding left and right in the figure, and a pressure fluid supply passage 25 and a discharge passage 26 are formed in each of the pipe portions 23 and 24. The inner end portion thereof is communicated with the valve chamber 27. A supply-side pressure sensor 28 that detects the pressure of the pressurized fluid is disposed in the middle of the supply path 25. Further, in the middle of the discharge path 26, a temperature sensor 29 for detecting the temperature of the pressure fluid is arranged on the upstream side, and a discharge side pressure sensor 30 for detecting the pressure of the pressure fluid is arranged on the downstream side.

駆動部ユニット22は、円筒形状を呈しており、供給路25と弁室27との境界部分の開口31を開閉する弁ノズル32が設けられている。また、駆動部ユニット22の内部には、図3に示すように、各センサ28,29,30からの検出結果が入力される制御回路33が設けられている。この制御回路33は、入力結果に基づいて弁ノズル32を変位させる駆動部34を制御し、これにより弁ノズル32による開口31の開度が制御される。   The drive unit 22 has a cylindrical shape, and is provided with a valve nozzle 32 that opens and closes an opening 31 at a boundary portion between the supply path 25 and the valve chamber 27. Further, as shown in FIG. 3, a control circuit 33 to which detection results from the sensors 28, 29, and 30 are input is provided inside the drive unit 22. This control circuit 33 controls the drive part 34 which displaces the valve nozzle 32 based on an input result, and, thereby, the opening degree of the opening 31 by the valve nozzle 32 is controlled.

この際、温度センサ29は、圧力流体の種類に応じて液化又は気化する臨界温度を監視しており、その検出温度が臨界温度に達した(若しくはその直前の設定温度に達した)と制御回路33が判断した場合には、弁ノズル32を開放状態へと変位させるように制御回路33が駆動部34を制御する。   At this time, the temperature sensor 29 monitors the critical temperature to be liquefied or vaporized according to the type of the pressure fluid, and if the detected temperature has reached the critical temperature (or has reached the set temperature immediately before), the control circuit When 33 determines, the control circuit 33 controls the drive part 34 so that the valve nozzle 32 may be displaced to an open state.

ところで、この制御回路33は配管ユニット35の全体を制御するメイン制御部36と接続することも可能である。これにより、供給管部23よりも上流側の供給経路上に配置された圧力センサ36からの検出結果とを総合して圧力流体供給制御バルブ37を制御するといった応用も可能となる。   By the way, the control circuit 33 can be connected to a main control unit 36 that controls the entire piping unit 35. As a result, the application of controlling the pressure fluid supply control valve 37 by combining the detection results from the pressure sensor 36 disposed on the supply path upstream of the supply pipe portion 23 is also possible.

また、図4及び図5に示すように、排出路26の圧力センサ30よりも下流側に、使用される圧力流体の種類に応じてその圧力流体の通過を許容するものが使用されると共に圧力流体に含まれる成分(例えば、塵埃や余剰成分)の除去等を行うフィルム状やシート状などのフィルター38を配置することも可能である。   Further, as shown in FIGS. 4 and 5, a material that allows passage of the pressure fluid is used on the downstream side of the pressure sensor 30 in the discharge path 26 according to the type of the pressure fluid used and the pressure. It is also possible to arrange a filter 38 such as a film or sheet that removes components (for example, dust and excess components) contained in the fluid.

(実施の形態2)
図6及び図7は本発明のコントロール弁の実施の形態2を示す。
(Embodiment 2)
6 and 7 show Embodiment 2 of the control valve of the present invention.

図6は本発明のコントロール弁の基本構造を示す縦断面図、図7(A)は本発明のコントロール弁の圧力流体の流れを示す開弁状態の要部の横断面図、図7(B)は本発明のコントロール弁の圧力流体の流れを示す開弁状態の要部の横断面図である。   FIG. 6 is a longitudinal sectional view showing the basic structure of the control valve of the present invention, FIG. 7A is a transverse sectional view of the main part in the opened state showing the flow of the pressure fluid of the control valve of the present invention, and FIG. ) Is a cross-sectional view of the main part in the open state showing the flow of the pressure fluid of the control valve of the present invention.

図6において、コントロール弁40は、図示左右に直管状に貫通する圧力流体の流路中途部に弁室41を形成した弁本体42と、弁本体42に回転可能に支持され且つ一端が弁室41内に臨む弁軸43と、弁軸43にアーム44を介して方持ちで支持された弁プラグ45と、弁プラグ45よりも吸気側の流路中に設けられたリテーナ46及び弁座47とを備えている。   In FIG. 6, a control valve 40 includes a valve main body 42 having a valve chamber 41 formed in the middle of a flow path of a pressure fluid penetrating in a straight tube shape on the left and right in the drawing, a valve main body 42 rotatably supported, and one end of the valve chamber 42 41, a valve plug 45 that is supported by the valve shaft 43 through an arm 44, and a retainer 46 and a valve seat 47 that are provided in the flow path on the intake side of the valve plug 45. And.

弁本体42は、弁箱48と、この弁箱48と協働して弁室41を形成する蓋体49とによって分割形成されている。   The valve main body 42 is divided and formed by a valve box 48 and a lid 49 that forms the valve chamber 41 in cooperation with the valve box 48.

弁箱48の両端には配管取付用フランジ48aが形成されている。また、弁箱48の吸気側に設けられて実質的に吸気路50を形成するリテーナ46と弁座47とは、略円筒形状を呈しており、Oリング(図示せず)等によって突き当て部分の気密性が維持されている。尚、吸気路50は、弁室41を挟んで弁箱48の排出路51と直管状に連通されている。   Piping mounting flanges 48 a are formed at both ends of the valve box 48. A retainer 46 and a valve seat 47 which are provided on the intake side of the valve box 48 and substantially form the intake passage 50 have a substantially cylindrical shape and are abutted by an O-ring (not shown) or the like. Airtightness is maintained. The intake passage 50 communicates with the discharge passage 51 of the valve box 48 in a straight tube shape with the valve chamber 41 interposed therebetween.

また、吸気路50の中途部には吸気路50内の圧力流体の圧力を検出する圧力センサ28が設けられている。さらに、弁室41には弁室41内の圧力流体の温度を検出する温度センサ29が設けられている。また、排出路51の中途部には排出路51内の圧力流体の圧力を検出する圧力センサ30が設けられている。   A pressure sensor 28 that detects the pressure of the pressure fluid in the intake passage 50 is provided in the middle of the intake passage 50. Further, the valve chamber 41 is provided with a temperature sensor 29 that detects the temperature of the pressure fluid in the valve chamber 41. A pressure sensor 30 that detects the pressure of the pressure fluid in the discharge path 51 is provided in the middle of the discharge path 51.

尚これら各センサ28,29,30の機能は上記実施の形態1と同様である。   The functions of these sensors 28, 29, and 30 are the same as those in the first embodiment.

蓋体49は、弁箱48に対し開閉可能に設けられている。また、蓋体49には、軸受23が固定されている。また、蓋体49は軸受52と協働して弁軸43を端部寄りを回転可能に支持している。この際、軸受52は弁軸43の軸線方向に沿ったズレを防止する機能を備えている。   The lid 49 is provided so as to be openable and closable with respect to the valve box 48. A bearing 23 is fixed to the lid 49. In addition, the lid body 49 supports the valve shaft 43 so as to be rotatable near the end portion in cooperation with the bearing 52. At this time, the bearing 52 has a function of preventing displacement along the axial direction of the valve shaft 43.

弁軸43は、弁本体42の外側(図示省略)で回転制御される。また、弁軸43は、図7に示すように、吸気路50,51の中心Qに対して弁軸43の回転中心Pが偏心して配置されている。これにより、てこの原理で、圧力流体を止めるときの締切力を大きくすることができるうえ、弁室41内に臨む弁軸43の一端が弁室41を挟む吸気路50,51を遮らないように設計されている。   The valve shaft 43 is rotationally controlled outside the valve body 42 (not shown). Further, as shown in FIG. 7, the valve shaft 43 is arranged such that the rotation center P of the valve shaft 43 is eccentric with respect to the center Q of the intake passages 50 and 51. This makes it possible to increase the shut-off force when stopping the pressure fluid by the lever principle, and to prevent the one end of the valve shaft 43 facing the valve chamber 41 from blocking the intake passages 50 and 51 sandwiching the valve chamber 41. Designed to.

弁プラグ45は、アーム44により弁軸43の一端に片持ち状態で取り付けられる。弁軸43はアーム44の取付け箇所に四角面取り部またはスプライン部を有し、アーム44は弁軸43にボルトまたピンで固定される。弁プラグ45は、弁軸43の回転により吸気路50を開閉可能に弁室41内に設けられる。   The valve plug 45 is attached to one end of the valve shaft 43 by an arm 44 in a cantilever state. The valve shaft 43 has a square chamfered portion or a spline portion at an attachment position of the arm 44, and the arm 44 is fixed to the valve shaft 43 with a bolt or a pin. The valve plug 45 is provided in the valve chamber 41 so that the intake passage 50 can be opened and closed by the rotation of the valve shaft 43.

弁プラグ45は、吸気路50を開放したときには、弁室41を挟む直管状の吸気路50(51)を遮らない位置にまで回動される。また、弁室41は、弁プラグ45が吸気路50を開放しているときの弁室41の両側の流量がほぼ同じになるよう中心Qを挟んで水平面内で一方側(弁プラグ45の退避側)よりも他方側が狭く形成されている。   When the intake passage 50 is opened, the valve plug 45 is rotated to a position where the straight tubular intake passage 50 (51) sandwiching the valve chamber 41 is not blocked. Further, the valve chamber 41 has one side (withdrawal of the valve plug 45) across the center Q so that the flow rates on both sides of the valve chamber 41 when the valve plug 45 opens the intake passage 50 are substantially the same. The other side is narrower than (side).

尚、この実施の形態2で示したコントロール弁40においても、上記実施の形態1と同様にフィルター38を配置することも可能である。   In the control valve 40 shown in the second embodiment, the filter 38 can be arranged as in the first embodiment.

ところで、上記実施の形態2では、吸気側と排気側の各吸気路50,51が1対1であったが、例えば、図8乃至図10に示す2連3方弁構造のコントロール弁60といった構造にも適用することができる。尚、この2連3方弁は、図8乃至図10に示すような混合型の他、これとは逆の分散型にも適用することができる。   In the second embodiment, the intake passages 50 and 51 on the intake side and the exhaust side have a one-to-one relationship. For example, the control valve 60 has a two-way three-way valve structure shown in FIGS. It can also be applied to structures. This double three-way valve can be applied to a dispersion type opposite to the mixed type as shown in FIGS. 8 to 10.

図8乃至図10において、61は弁箱、62,63は蓋体、64は弁室、65,66,67は流路、68,69は弁軸、70,71はアーム、72,73は弁プラグ、74,75は弁座、28−1,28−2,30は圧力センサ、29は温度センサ(図9に図示)、33は制御回路、34−1,34−2は駆動部である。   8 to 10, 61 is a valve box, 62 and 63 are lids, 64 is a valve chamber, 65, 66 and 67 are flow paths, 68 and 69 are valve shafts, 70 and 71 are arms, and 72 and 73 are Valve plugs 74 and 75 are valve seats, 28-1, 28-2 and 30 are pressure sensors, 29 is a temperature sensor (shown in FIG. 9), 33 is a control circuit, and 34-1 and 34-2 are drive units. is there.

このように、図8の図示上下に延びる弁軸68,69とすることにより、方持ちで弁プラグ62,63を回動可能に保持しても、弁軸68,69を同軸上に配置することができるうえ、流路66,67を直管状に配置することができる。   Thus, by using the valve shafts 68 and 69 extending vertically in FIG. 8, the valve shafts 68 and 69 are arranged coaxially even if the valve plugs 62 and 63 are rotatably held by being held. In addition, the flow paths 66 and 67 can be arranged in a straight tube shape.

ところで、上記各実施の形態では、圧力流体の圧力を圧力センサ28,30で検出したものを開示したが、圧力流体の速度を検出する速度センサでも良い。   By the way, in each said embodiment, what detected the pressure of the pressure fluid with the pressure sensors 28 and 30 was disclosed, However, The speed sensor which detects the speed of a pressure fluid may be used.

本発明のコントロール弁の実施の形態1を示し、開弁状態のコントロール弁の部分断面図である。1 is a partial cross-sectional view of a control valve in an open state, showing Embodiment 1 of a control valve of the present invention. FIG. 本発明のコントロール弁の実施の形態1を示し、閉弁状態のコントロール弁の部分断面図である。1 is a partial cross-sectional view of a control valve in a closed state, showing Embodiment 1 of a control valve of the present invention. FIG. 本発明のコントロール弁を用いた配管ユニットのブロック図である。It is a block diagram of a piping unit using the control valve of the present invention. 本発明のコントロール弁の実施の形態1の応用例を示し、開弁状態のコントロール弁の部分断面図である。It is an example of application of Embodiment 1 of the control valve of the present invention, and is a partial cross-sectional view of the control valve in an open state. 本発明のコントロール弁の実施の形態1の応用例を示し、閉弁状態のコントロール弁の部分断面図である。It is an example of application of Embodiment 1 of the control valve of the present invention, and is a partial sectional view of the control valve in a closed state. 本発明のコントロール弁の実施の形態2を示し、閉弁状態のコントロール弁の部分断面図である。FIG. 8 is a partial cross-sectional view of the control valve in a closed state, showing Embodiment 2 of the control valve of the present invention. (A)は本発明のコントロール弁の圧力流体の流れを示す開弁状態の要部の横断面図、(B)は本発明のコントロール弁の圧力流体の流れを示す開弁状態の要部の横断面図である。(A) is a cross-sectional view of the main part in the opened state showing the flow of pressure fluid of the control valve of the present invention, and (B) is the main part of the opened state showing the flow of pressure fluid in the control valve of the present invention. It is a cross-sectional view. 本発明のコントロール弁の実施の形態2の変形例を示し、閉弁状態の2連3方弁方式のコントロール弁の部分断面図である。FIG. 9 is a partial cross-sectional view of a control valve of a two-way three-way valve system in a closed state, showing a modification of Embodiment 2 of the control valve of the present invention. 本発明のコントロール弁の圧力流体の流れを示す開弁状態の要部の横断面図である。It is a cross-sectional view of the principal part of the valve opening state which shows the flow of the pressure fluid of the control valve of this invention. 本発明のコントロール弁の実施の形態2の変形例を示し、2連3方弁のブロック図である。It is a block diagram of a two-way three-way valve according to a modification of the second embodiment of the control valve of the present invention. 従来のコントロール弁を示すブロック図である。It is a block diagram which shows the conventional control valve.

符号の説明Explanation of symbols

20 コントロール弁
21 弁本体
25 供給路
26 排出路
27 弁室
28 圧力センサ(供給側圧力センサ)
29 温度センサ
30 圧力センサ(排出側圧力センサ)
32 弁プラグ
33 制御回路
34 制御部
20 control valve 21 valve body 25 supply path 26 discharge path 27 valve chamber 28 pressure sensor (supply side pressure sensor)
29 Temperature sensor 30 Pressure sensor (Exhaust pressure sensor)
32 Valve plug 33 Control circuit 34 Control unit

Claims (6)

圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、
前記供給路内に配置されて圧力流体の圧力を検出する供給側圧力センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の圧力を検出する排出側圧力センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とするコントロール弁。
A valve body in which a valve chamber communicating with each passage is formed between a supply passage and a discharge passage for the pressure fluid; a valve plug that opens and closes an opening located at a boundary between the supply passage and the valve chamber; and In a control valve having a drive part for displacing a valve plug,
A supply-side pressure sensor arranged in the supply passage for detecting the pressure of the pressure fluid; and a critical temperature for liquefaction or vaporization of the pressure fluid arranged in the valve chamber or the discharge passage downstream of the valve plug. A temperature sensor for detecting the pressure, a discharge side pressure sensor for detecting the pressure of the pressure fluid disposed in the valve chamber or in the discharge path downstream of the temperature sensor, and a detection result from each sensor And a control circuit for controlling the drive unit.
圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、
前記供給路内に配置されて圧力流体の速度を検出する供給側速度センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の速度を検出する排出側速度センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とするコントロール弁。
A valve body in which a valve chamber communicating with each passage is formed between a supply passage and a discharge passage for the pressure fluid; a valve plug that opens and closes an opening located at a boundary between the supply passage and the valve chamber; and In a control valve having a drive part for displacing a valve plug,
A supply-side speed sensor disposed in the supply passage for detecting the velocity of the pressure fluid; and a critical temperature for liquefaction or vaporization of the pressure fluid disposed in the valve chamber or in the discharge passage downstream of the valve plug. A temperature sensor for detecting the pressure, a discharge side speed sensor for detecting the speed of the pressure fluid disposed in the valve chamber or in the discharge path downstream of the temperature sensor, and detection results from the sensors. And a control circuit for controlling the drive unit.
圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、該弁本体に回転可能に支持され且つ一端が前記弁室内に臨む弁軸と、該弁軸に方持ちで支持されて前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、
前記供給路内に配置されて圧力流体の圧力を検出する供給側圧力センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の圧力を検出する排出側圧力センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とするコントロール弁。
A valve body in which a valve chamber communicating with each of the passages is formed between a supply path and a discharge path of the pressure fluid; a valve shaft rotatably supported by the valve body and having one end facing the valve chamber; In a control valve comprising a valve plug that is supported on a valve shaft and opens and closes an opening located at a boundary between the supply path and the valve chamber, and a drive unit that displaces the valve plug.
A supply-side pressure sensor arranged in the supply passage for detecting the pressure of the pressure fluid; and a critical temperature for liquefaction or vaporization of the pressure fluid arranged in the valve chamber or the discharge passage downstream of the valve plug. A temperature sensor for detecting the pressure, a discharge side pressure sensor for detecting the pressure of the pressure fluid disposed in the valve chamber or in the discharge path downstream of the temperature sensor, and a detection result from each sensor And a control circuit for controlling the drive unit.
圧力流体の供給路と排出路との間に該各路に連通する弁室が形成された弁本体と、該弁本体に回転可能に支持され且つ一端が前記弁室内に臨む弁軸と、該弁軸に方持ちで支持されて前記供給路と前記弁室との境界に位置する開口を開閉する弁プラグと、該弁プラグを変位させる駆動部とを備えたコントロール弁において、
前記供給路内に配置されて圧力流体の速度を検出する供給側速度センサと、前記弁プラグよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の液化又は気化の臨界温度を検出する温度センサと、該温度センサよりも下流側の前記弁室内若しくは前記排出路内に配置されて圧力流体の速度を検出する排出側速度センサと、前記各センサからの検出結果に基づいて前記駆動部を制御する制御回路とを備えていることを特徴とするコントロール弁。
A valve body in which a valve chamber communicating with each of the passages is formed between a supply path and a discharge path of the pressure fluid; a valve shaft rotatably supported by the valve body and having one end facing the valve chamber; In a control valve comprising a valve plug that is supported on a valve shaft and opens and closes an opening located at a boundary between the supply path and the valve chamber, and a drive unit that displaces the valve plug.
A supply-side speed sensor disposed in the supply passage for detecting the velocity of the pressure fluid; and a critical temperature for liquefaction or vaporization of the pressure fluid disposed in the valve chamber or in the discharge passage downstream of the valve plug. A temperature sensor for detecting the pressure, a discharge side speed sensor for detecting the speed of the pressure fluid disposed in the valve chamber or in the discharge path downstream of the temperature sensor, and detection results from the sensors. And a control circuit for controlling the drive unit.
前記排出側圧力センサ又は前記排出側速度センサよりも下流側の前記排出路内にフィルターが配置されていることを特徴とする請求項1乃至請求項4の何れか一つに記載のコントロール弁。   The control valve according to any one of claims 1 to 4, wherein a filter is disposed in the discharge path downstream of the discharge side pressure sensor or the discharge side speed sensor. 請求項1乃至請求項5の何れか一つに記載のコントロール弁を備えていることを特徴とする配管ユニット。   A piping unit comprising the control valve according to any one of claims 1 to 5.
JP2005056047A 2005-03-01 2005-03-01 Control valve and piping unit therewith Pending JP2006243932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056047A JP2006243932A (en) 2005-03-01 2005-03-01 Control valve and piping unit therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056047A JP2006243932A (en) 2005-03-01 2005-03-01 Control valve and piping unit therewith

Publications (1)

Publication Number Publication Date
JP2006243932A true JP2006243932A (en) 2006-09-14

Family

ID=37050310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056047A Pending JP2006243932A (en) 2005-03-01 2005-03-01 Control valve and piping unit therewith

Country Status (1)

Country Link
JP (1) JP2006243932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519459A (en) * 2015-05-29 2018-07-19 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electric control valve for refrigerant compressor
CN108730608A (en) * 2018-06-26 2018-11-02 芜湖裕优机械科技有限公司 A kind of safety valve and its working method of hot water supply system
JP2019190498A (en) * 2018-04-19 2019-10-31 株式会社デンソー Valve device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103682A (en) * 1989-09-14 1991-04-30 Hitachi Ltd Control device for gas valve device
JPH0674393A (en) * 1992-08-24 1994-03-15 Nippon Buroaa Kk Cooling device for liquefied gas container
JPH11118044A (en) * 1997-10-17 1999-04-30 Motoyama Seisakusho:Kk Eccentric type rotary valve
JPH11194834A (en) * 1997-12-26 1999-07-21 Tanaka Seisakusho Kk Pressure regulator
JPH11259140A (en) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd Flow rate controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103682A (en) * 1989-09-14 1991-04-30 Hitachi Ltd Control device for gas valve device
JPH0674393A (en) * 1992-08-24 1994-03-15 Nippon Buroaa Kk Cooling device for liquefied gas container
JPH11118044A (en) * 1997-10-17 1999-04-30 Motoyama Seisakusho:Kk Eccentric type rotary valve
JPH11194834A (en) * 1997-12-26 1999-07-21 Tanaka Seisakusho Kk Pressure regulator
JPH11259140A (en) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd Flow rate controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519459A (en) * 2015-05-29 2018-07-19 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electric control valve for refrigerant compressor
JP2019190498A (en) * 2018-04-19 2019-10-31 株式会社デンソー Valve device
JP7099026B2 (en) 2018-04-19 2022-07-12 株式会社デンソー Valve device
CN108730608A (en) * 2018-06-26 2018-11-02 芜湖裕优机械科技有限公司 A kind of safety valve and its working method of hot water supply system
CN108730608B (en) * 2018-06-26 2020-04-07 天正阀门有限公司 Safety valve for hot water supply system and working method thereof

Similar Documents

Publication Publication Date Title
KR101930304B1 (en) Flow meter
US6892745B2 (en) Flow control valve with integral sensor and controller and related method
KR101036589B1 (en) Flow measurement valve
JP5079401B2 (en) Pressure sensor, differential pressure type flow meter and flow controller
KR20150121156A (en) Flow volume control device equipped with flow rate monitor
JP2004246826A (en) Mass flow controller
CN108027618A (en) Pressure flow-rate controller and its method for detecting abnormality
WO2017122714A1 (en) Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
JP2006243932A (en) Control valve and piping unit therewith
JP7131561B2 (en) Mass flow control system and semiconductor manufacturing equipment and vaporizer including the system
JP2004157719A (en) Mass-flow controller
WO2003067352A1 (en) Flow regulating valve, flow rate measuring device, flow control device, and flow rate measuring method
JP2004302914A (en) Mass flow controller equipped with sensor for primary side pressure
US6408879B1 (en) Fluid control device
JPH03263209A (en) Flow rate controller
JP2001289832A (en) Gas chromatograph
JP5294576B2 (en) Flowmeter
KR100418683B1 (en) Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication
JPH04160276A (en) Flow passage valve
US7624758B2 (en) Fluid flow controller
JPH0325724B2 (en)
JPH0530168Y2 (en)
JPS62112014A (en) Mass flow meter
JPH04141709A (en) Hot and cold water mixing device
JPH05302700A (en) Gas switching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Effective date: 20100107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Effective date: 20100602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101020