JPH0325724B2 - - Google Patents

Info

Publication number
JPH0325724B2
JPH0325724B2 JP59279116A JP27911684A JPH0325724B2 JP H0325724 B2 JPH0325724 B2 JP H0325724B2 JP 59279116 A JP59279116 A JP 59279116A JP 27911684 A JP27911684 A JP 27911684A JP H0325724 B2 JPH0325724 B2 JP H0325724B2
Authority
JP
Japan
Prior art keywords
flow rate
mass flow
tube
gas
protruding piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59279116A
Other languages
Japanese (ja)
Other versions
JPS61159110A (en
Inventor
Takashi Sudo
Isao Suzuki
Takeshi Hamaguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TYLAN KK
Original Assignee
NIPPON TYLAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TYLAN KK filed Critical NIPPON TYLAN KK
Priority to JP59279116A priority Critical patent/JPS61159110A/en
Publication of JPS61159110A publication Critical patent/JPS61159110A/en
Publication of JPH0325724B2 publication Critical patent/JPH0325724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば半導体、IC等の製造プロ
セスで用いられる各種ガスの流量制御に好適な、
サーマルセンサを用いた質量流量制御装置の改良
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method suitable for controlling the flow rate of various gases used in the manufacturing process of semiconductors, ICs, etc.
This invention relates to an improvement of a mass flow control device using a thermal sensor.

〔従来の技術〕[Conventional technology]

従来、第3図の如く、抵抗発熱体(サーマルセ
ンサ)101A,101Bを用いた質量流量制御
装置が知られている。ここに、102はセンサ管
で、ガスを分流(通常、数c.c./分〜数十c.c./分)
して質量流量を求めるために用いられる。抵抗発
熱体101A,101Bでは、ガスが図の矢印の
如く流れるとき、上流側にある抵抗発熱体101
Aが、より熱を奪われ易い。このため、抵抗発熱
体101A,101Bが接続されている図示せぬ
ブリツヂ回路において回路の平衡がくずれ、抵抗
発熱体101A,101Bの抵抗変化を検出でき
得る。これに基づいてガスの質量流量を求める。
Conventionally, as shown in FIG. 3, a mass flow rate control device using resistance heating elements (thermal sensors) 101A and 101B is known. Here, 102 is a sensor tube that divides the gas (usually several cc/min to several tens of cc/min)
This is used to determine the mass flow rate. In the resistance heating elements 101A and 101B, when gas flows as shown by the arrow in the figure, the resistance heating element 101 on the upstream side
A is more likely to lose heat. Therefore, the balance of the bridge circuit (not shown) to which the resistance heating elements 101A and 101B are connected is lost, and a change in resistance of the resistance heating elements 101A and 101B can be detected. Based on this, the mass flow rate of the gas is determined.

そこで、抵抗発熱体101A,101Bが、セ
ンサ管102内のガスにより奪われる熱を正確に
検出でき得る構造とされることが望まれる。従来
は、このセンサ管102の周囲を、離間的にアル
ミ系合金等による熱伝導率の高い素材による充填
材104で包み込むようにし、センサ管102と
充填材104との間の空中に放出される熱エネル
ギーを充填材104に吸収させるようにしてい
た。これによれば、上記空中において熱エネルギ
ーの増減がないから、空気の移動(対流)が生ぜ
ず、抵抗発熱体101A,101B間で、不必要
な熱の移動を防止でき、正確な質量流量データの
検出がなされる。
Therefore, it is desirable that the resistance heating elements 101A and 101B have a structure that allows accurate detection of the heat taken away by the gas in the sensor tube 102. Conventionally, the sensor tube 102 is surrounded by a filler 104 made of a material with high thermal conductivity such as an aluminum alloy at intervals, and the heat is released into the air between the sensor tube 102 and the filler 104. Thermal energy was made to be absorbed by the filler 104. According to this, since there is no increase or decrease in thermal energy in the air, no air movement (convection) occurs, and unnecessary heat transfer between the resistance heating elements 101A and 101B can be prevented, and accurate mass flow rate data can be obtained. is detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のような手法では、充填材
104をできるだけセンサ管102に近接させる
必要があるが、このようにすると、空中の熱エネ
ルギーだけでなく、抵抗発熱体101A,101
B自体の熱エネルギーまで吸収される。これによ
つて抵抗発熱体101A,101Bの温度が下が
り、測定感度が低下するという欠点があつた。更
に、質量流量制御装置は、必ずしもセンサ管10
2が第3図の如き姿勢で用いられるとは限らな
い。例えば、第3図を90゜傾けた姿勢で用いられ
る時には、上方に位置する抵抗発熱体の方向に熱
エネルギーが移動することになり、測定誤差(姿
勢誤差)が生じた。
However, in the above method, it is necessary to place the filler 104 as close to the sensor tube 102 as possible, but in this case, not only the thermal energy in the air but also the resistance heating elements 101A, 101
Even the thermal energy of B itself is absorbed. As a result, the temperature of the resistance heating elements 101A and 101B decreases, resulting in a decrease in measurement sensitivity. Furthermore, the mass flow controller does not necessarily include the sensor tube 10.
2 is not necessarily used in the posture shown in FIG. For example, when the device in Fig. 3 is used in a 90° tilted position, thermal energy moves in the direction of the resistance heating element located above, resulting in a measurement error (posture error).

本発明は、このような従来の質量流量制御装置
の欠点に鑑みなされたもので、その目的はサーマ
ルセンサ間の不必要な熱の移動を的確に防止し得
るとともに、上記姿勢誤差の発生をも防止できる
構成を有する質量流量制御装置を提供することで
ある。
The present invention was devised in view of the shortcomings of the conventional mass flow control device, and its purpose is to accurately prevent unnecessary heat transfer between thermal sensors, and also to prevent the occurrence of the above-mentioned attitude error. It is an object of the present invention to provide a mass flow control device having a configuration that can prevent the above.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、ガスの流路を構成する管の
サーマルセンサが設けられた部分では、その先端
が上記管に近接する突出片が形成された熱伝導部
材により、上記管を包み込むように構成して、上
記目的を達成したものである。
Therefore, in the present invention, in the portion of the pipe constituting the gas flow path where the thermal sensor is provided, the pipe is configured to be wrapped by a heat conductive member having a protruding piece whose tip is close to the pipe. Thus, the above objectives have been achieved.

〔作用〕[Effect]

上記の構成によれば、突出片が形成されること
によつて管と熱伝導部材との間の空間において、
熱伝導部材の表面積が大となり、熱伝導部材の基
部から管までの距離があつても熱吸収が良好であ
り、しかも、突出片の先端がサーマルセンサに近
接するだけで、センサ自体の温度低下は多くな
い。更に、突出片によつて空気の移動が妨げら
れ、例え質量流量制御装置がどのような姿勢で用
いられても、所謂姿勢誤差の発生を防止でき得
る。
According to the above configuration, by forming the protruding piece, in the space between the tube and the heat conducting member,
The surface area of the heat conduction member is large, and heat absorption is good even if there is a distance from the base of the heat conduction member to the tube.Moreover, just by bringing the tip of the protruding piece close to the thermal sensor, the temperature of the sensor itself can be reduced. There aren't many. Furthermore, the protruding piece prevents the movement of air, and no matter what attitude the mass flow control device is used in, it is possible to prevent the occurrence of so-called attitude errors.

〔実施例〕〔Example〕

第2図は本発明の一実施例のブロツク図であ
る。同図において、2はガスの入口部を示し、3
はガスの出口部を示す。ガスは入口部2を入る
と、バイパス部4とセンサ管5とに分岐される。
センサ管5には、ガス流の上流側と下流側とに一
対の抵抗発熱体(サーマルセンサ)6A,6Bが
巻回されている。抵抗発熱体6A,6Bはブリツ
ヂ回路7に接続されている。ガスがセンサ管5を
通過するときに、抵抗発熱体6A,6Bが熱を奪
われる。このとき、抵抗発熱体6Aが抵抗発熱体
6Bより温度低下し、これによつて生じる温度差
をブリツヂ回路7において抵抗値変化として取出
す。この抵抗値変化に基づき、センサ管5を流れ
るガスの質量流量を検出できる。一方、センサ管
5とバイパス部4との分流比率が所定となつてい
るため、センサ管5を流れるガスの質量流量が、
流れるガス全体の質量流量を反映した値となる。
8は、バイパス部4に介装された金属メツシユを
示し、このメツシユ8により、バイパス部4とセ
ンサ管5とを流れるガスの分流比を所定に保つて
いる。また、9はセンサ部のケーシングであり、
このケーシング9により抵抗発熱体6A,6Bが
外部から影響されぬようにし、精度の良い質量流
量の検出を可能にしている。
FIG. 2 is a block diagram of one embodiment of the present invention. In the figure, 2 indicates the gas inlet, and 3
indicates the gas outlet. When the gas enters the inlet section 2, it is branched into a bypass section 4 and a sensor tube 5.
A pair of resistance heating elements (thermal sensors) 6A and 6B are wound around the sensor tube 5 on the upstream and downstream sides of the gas flow. The resistance heating elements 6A and 6B are connected to a bridge circuit 7. When the gas passes through the sensor tube 5, heat is removed from the resistance heating elements 6A and 6B. At this time, the temperature of the resistance heating element 6A becomes lower than that of the resistance heating element 6B, and the resulting temperature difference is extracted in the bridge circuit 7 as a resistance value change. Based on this change in resistance value, the mass flow rate of gas flowing through the sensor tube 5 can be detected. On the other hand, since the division ratio between the sensor pipe 5 and the bypass section 4 is predetermined, the mass flow rate of the gas flowing through the sensor pipe 5 is
This value reflects the mass flow rate of the entire flowing gas.
Reference numeral 8 indicates a metal mesh interposed in the bypass section 4, and this mesh 8 maintains a predetermined division ratio of gas flowing through the bypass section 4 and the sensor tube 5. In addition, 9 is a casing of the sensor part,
The casing 9 prevents the resistance heating elements 6A and 6B from being influenced by the outside, thereby making it possible to detect the mass flow rate with high accuracy.

ケーシング9の要部の断面図を第1図に示す。
91は熱伝導部材を示す。熱伝導部材91の内壁
には、多数の突出片92が所定間隔で形成されて
いる。突出片92は、その基部93から先端94
へ向つてしだいに細く構成され、かつその先端9
4はセンサ管5に近接した状態で、センサ管5の
円周に沿つて一周している。このように構成され
た突出片92は、本実施例では、第2図において
センサ管5が横方向に延びている部分に形成され
ているものとする。このため、隣接する突出片9
2の間には、部屋95が形成され、かつ、この部
屋95は隣接する部屋95と、突出片92の先端
94とセンサ管5とによつて形成されるわずかな
空隙96によつて連通されている。
A cross-sectional view of the main parts of the casing 9 is shown in FIG.
91 indicates a heat conductive member. A large number of protruding pieces 92 are formed on the inner wall of the heat conducting member 91 at predetermined intervals. The protruding piece 92 extends from its base 93 to its tip 94.
The structure gradually becomes thinner toward the end, and its tip 9
4 is close to the sensor tube 5 and goes around the circumference of the sensor tube 5. In this embodiment, the protruding piece 92 configured in this manner is assumed to be formed at a portion where the sensor tube 5 extends in the horizontal direction in FIG. 2. Therefore, the adjacent protruding pieces 9
A chamber 95 is formed between 2, and this chamber 95 is communicated with the adjacent chamber 95 by a slight gap 96 formed by the tip 94 of the protruding piece 92 and the sensor tube 5. ing.

従つて、熱伝導部材91の内壁(センサ管5を
包み込む部分)の表面積は極めて大となつてお
り、熱伝導部材91の基部97からセンサ管5の
外壁までの距離が比較的長い場合であつても、部
屋95内の熱エネルギーが良好に吸収され得る。
しかも、突出片92の先端94はセンサ管5と接
することなく、抵抗発熱体6A,6Bの熱を奪う
ことはなく、測定感度の低下がない。更に、突出
片92は、部屋95間を空隙96でのみ連通さ
せ、基本的には部屋95間を遮断しているため、
空気(熱)の移動が生じにくく、極めて精度の良
い流量検出を可能としている。そして、この突出
片92は、質量流量制御装置がどのような姿勢に
おかれても、上記と同様の理由により、所謂姿勢
誤差の発生を防止する。
Therefore, the surface area of the inner wall of the heat conductive member 91 (the part that wraps around the sensor tube 5) is extremely large, and even when the distance from the base 97 of the heat conductive member 91 to the outer wall of the sensor tube 5 is relatively long. However, the thermal energy within the room 95 can be well absorbed.
Moreover, the tip 94 of the protruding piece 92 does not come into contact with the sensor tube 5, and therefore does not absorb heat from the resistance heating elements 6A, 6B, so that there is no reduction in measurement sensitivity. Furthermore, since the protruding piece 92 communicates between the chambers 95 only through the gap 96 and basically blocks the chambers 95,
Air (heat) movement is less likely to occur, making extremely accurate flow rate detection possible. This protruding piece 92 prevents the occurrence of so-called posture error for the same reason as described above, no matter what posture the mass flow rate control device is placed in.

再び第2図に戻つて説明する。ブリツヂ回路7
の出力信号は、増幅回路10により増幅され、セ
ンサ出力端子11から外部の図示せぬ表示器等へ
出力されると共に、比較回路12へ出力される。
比較回路12には、外部から所望の質量流量の所
定値に対応した設定信号が設定信号入力端子13
を介して与えられる。比較回路12は、増幅回路
10の出力信号と設定信号とを比較して、その差
に応じた信号を出力する。この信号は、バルブ駆
動回路14に与えられ、バルブ駆動回路14は上
記信号に基づきバルブヒータ15へ駆動電圧を与
える。16はバルブを示す。このバルブ16はノ
ーマリーオープンタイプ(電圧無印加時に弁が
(開)状態であり、電圧印加時に弁が(閉)状態
となる)である。金属ピン17内にバルブヒータ
15が入れられており、バルブヒータ15の発熱
による金属ピン17の膨脹によつて、金属ピンの
先端に固着された球状弁体18が上下し、ガスの
通路部に対するオリフイスを調整する。
The explanation will be given by returning to FIG. 2 again. bridge circuit 7
The output signal is amplified by the amplifier circuit 10 and output from the sensor output terminal 11 to an external display device (not shown), etc., and is also output to the comparison circuit 12.
A setting signal corresponding to a predetermined value of a desired mass flow rate is input to the comparison circuit 12 from the outside at a setting signal input terminal 13.
given through. The comparison circuit 12 compares the output signal of the amplifier circuit 10 and the setting signal, and outputs a signal according to the difference. This signal is applied to the valve drive circuit 14, and the valve drive circuit 14 applies a drive voltage to the valve heater 15 based on the above signal. 16 indicates a valve. This valve 16 is of a normally open type (the valve is in the (open) state when no voltage is applied, and the valve is in the (closed) state when voltage is applied). A valve heater 15 is inserted into a metal pin 17, and as the metal pin 17 expands due to the heat generated by the valve heater 15, a spherical valve body 18 fixed to the tip of the metal pin moves up and down, and the valve body 18 is moved up and down against the gas passage. Adjust the orifice.

このように構成された質量流量制御装置1によ
れば、センサ管5の部分で検出される質量流量に
対応する信号が、ガス全体の質量流量を反映して
いるから、この信号と設定信号との差が無くなる
ようにバルブ16を制御することにより、適切で
高精度な質量流量の制御が可能である。
According to the mass flow rate controller 1 configured in this way, the signal corresponding to the mass flow rate detected in the sensor tube 5 reflects the mass flow rate of the entire gas, so this signal and the setting signal can be By controlling the valve 16 so that there is no difference between the two, it is possible to control the mass flow rate appropriately and with high precision.

尚、実施例においては、突出片92の先端94
を扁平としたが、鋭つていても良い。また、突出
片92は、基部93から先端94へ向つて細くな
つていなくとも良い。更に、突出片の先端94
は、センサ管の外壁の円周を一周するように連続
的であつたが、突出片が連山の如く林立し、空気
の移動を妨げる構成であつても良い。これによつ
ても同様の効果をあげられ得る。
In addition, in the embodiment, the tip 94 of the protruding piece 92
Although it is made flat, it may also be sharp. Further, the protruding piece 92 does not need to become thinner from the base portion 93 toward the tip end 94. Furthermore, the tip 94 of the protruding piece
Although the protruding pieces are continuous so as to go around the circumference of the outer wall of the sensor tube, it is also possible to have a structure in which the protruding pieces stand in a forest like a mountain range and obstruct the movement of air. Similar effects can also be achieved by this.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、突出片に
よつてサーマルセンサ間の不必要な熱移動を的確
に防止でき得るとともに、所謂姿勢誤差の発生を
も、かかる構成だけで防止できるという効果があ
る。
As explained above, according to the present invention, unnecessary heat transfer between thermal sensors can be accurately prevented by the protruding piece, and the occurrence of so-called posture errors can also be prevented by this configuration alone. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部の断面斜視
図、第2図は本発明の一実施例のブロツク図、第
3図は従来例を示すための図である。 5…センサ管、6A,6B…抵抗発熱体、91
…熱伝導部材、92…突出片、94…先端。
FIG. 1 is a cross-sectional perspective view of a main part of an embodiment of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a diagram showing a conventional example. 5...Sensor tube, 6A, 6B...Resistance heating element, 91
...Thermal conduction member, 92...Protrusion piece, 94...Tip.

Claims (1)

【特許請求の範囲】 1 流路におけるガスの温度信号を取り出すべ
く、前記流路を構成する管の外壁面にサーマルセ
ンサが設けられ、このサーマルセンサにより得ら
れる流量データと設定された設定流量データとを
比較し、この比較結果に基づくバルブ駆動信号に
よりバルブの開度調整を行ないガスの質量流量を
制御する質量流量制御装置において、前記管の前
記サーマルセンサが設けられた部分では、その先
端が前記管に近接する突出片が形成された熱伝導
部材により前記管を離間して包み込むようにした
ことを特徴とする質量流量制御装置。 2 突出片の先端は管に近接した状態で前記管の
円周に沿つて一周していることを特徴とする特許
請求の範囲第1項記載の質量流量制御装置。
[Claims] 1. A thermal sensor is provided on the outer wall surface of the pipe constituting the flow path in order to extract a temperature signal of the gas in the flow path, and the flow rate data obtained by this thermal sensor and the set flow rate data are set. In a mass flow control device that controls the mass flow rate of gas by adjusting the opening degree of the valve using a valve drive signal based on the comparison result, in the part of the pipe where the thermal sensor is provided, the tip thereof is A mass flow rate control device characterized in that the tube is spaced apart from and wrapped around the tube by a heat conductive member in which a protruding piece is formed close to the tube. 2. The mass flow rate control device according to claim 1, wherein the tip of the protruding piece extends around the circumference of the tube while being close to the tube.
JP59279116A 1984-12-29 1984-12-29 Mass flow rate controller Granted JPS61159110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279116A JPS61159110A (en) 1984-12-29 1984-12-29 Mass flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279116A JPS61159110A (en) 1984-12-29 1984-12-29 Mass flow rate controller

Publications (2)

Publication Number Publication Date
JPS61159110A JPS61159110A (en) 1986-07-18
JPH0325724B2 true JPH0325724B2 (en) 1991-04-08

Family

ID=17606642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279116A Granted JPS61159110A (en) 1984-12-29 1984-12-29 Mass flow rate controller

Country Status (1)

Country Link
JP (1) JPS61159110A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286513U (en) * 1985-11-20 1987-06-02
JPH0214029U (en) * 1988-07-11 1990-01-29
DE102013201071B3 (en) 2013-01-23 2014-05-28 Hainbuch Gmbh Spannende Technik tensioning device

Also Published As

Publication number Publication date
JPS61159110A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
US6892745B2 (en) Flow control valve with integral sensor and controller and related method
JP4594728B2 (en) Flow controller based on higher accuracy pressure
US7490512B2 (en) Detector of low levels of gas pressure and flow
US7121139B2 (en) Thermal mass flow rate sensor having fixed bypass ratio
JP4173519B2 (en) Differential pressure type flow controller for controlling gas flow for semiconductor process
JP4157034B2 (en) Thermal flow meter
US4056975A (en) Mass flow sensor system
JP4537067B2 (en) Apparatus and method for thermal management of mass flow controller
Hinkle et al. Toward understanding the fundamental mechanisms and properties of the thermal mass flow controller
JPH07218308A (en) Flow-rate measuring device
JP2005514612A (en) Apparatus and method for thermal isolation of a thermal mass flow sensor
JPH0325724B2 (en)
JP2005514614A (en) Apparatus and method for heat dissipation in a thermal mass flow sensor
US3363463A (en) Means of directionally sensing flow
JPH0887335A (en) Mass flow rate controller
JPH0466819A (en) Large flow rate mass flow meter
WO2020080189A1 (en) Flow rate measuring device, and method for controlling flow rate measuring device
JP2798184B2 (en) Flow sensor and fluidic flow meter with flow sensor
JPH0629796B2 (en) Fluid resistance type temperature measuring device
JPH02193019A (en) Flow sensor
JPS63235825A (en) Flowmeter
JPH1164060A (en) Mass flow rate controller
JPH0324973B2 (en)
KR200156818Y1 (en) Gas flow quantity control apparatus
JPH073369B2 (en) Fluid resistance type temperature measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term