JP2006243025A - Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer - Google Patents

Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer Download PDF

Info

Publication number
JP2006243025A
JP2006243025A JP2005054741A JP2005054741A JP2006243025A JP 2006243025 A JP2006243025 A JP 2006243025A JP 2005054741 A JP2005054741 A JP 2005054741A JP 2005054741 A JP2005054741 A JP 2005054741A JP 2006243025 A JP2006243025 A JP 2006243025A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
alignment
pva
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005054741A
Other languages
Japanese (ja)
Inventor
Hitoshi Mazaki
仁詩 真崎
Takashi Seki
隆史 關
Tomoo Hirai
知生 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005054741A priority Critical patent/JP2006243025A/en
Publication of JP2006243025A publication Critical patent/JP2006243025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alignment layer which has practically sufficient strength while maintaining a hybrid aligning property and a vertical aligning property of modified polyvinyl alcohol. <P>SOLUTION: The alignment layer for a liquid crystal is composed of at least an unmodified polyvinyl alcohol with the degree of polymerization of 500 or more and a modified polyvinyl alcohol. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶用配向膜および該配向膜より得られる液晶性光学フィルムに関する。   The present invention relates to an alignment film for liquid crystal and a liquid crystal optical film obtained from the alignment film.

液晶の配向膜としては、ポリイミドやポリビニルアルコールが古くから知られている。液晶ディスプレイ用としては耐久性の観点からポリイミドが最も一般的に用いられるが、材料が高価であること、前駆体のポリアミック酸をイミド化させるためのキュア工程を要するなどの課題がある。一方、ポリビニルアルコールは非常に安価であるため、さらに使用法を検討し、適用範囲を広げていく価値があると思われる。
液晶の配向のためのポリビニルアルコールとしては、液晶のダイレクターが徐々に変化するハイブリッド配向や垂直配向といった特異な配向構造を得るためには、ビニルアルコール単位と少量の酢酸ビニル単位からなる単純なポリビニルアルコール樹脂よりも、アルキル変性等の部分的に異なる単位を導入したいわゆる変性ポリビニルアルコールの方が利用価値が高いと考えられる。例えば、特許文献1にはアルキル変性ポリビニルアルコールをディスコチック液晶用の配向膜として用いることが記載されている。しかしながら変性ポリビニルアルコールを用いたとき、強度が十分強くないため、液晶を一方向に並べるための布でこする工程であるラビング工程を施したとき樹脂が削れ易いという問題がある。この場合、液晶材料を塗布した際、削れかすが液晶層の欠点の原因になったり、削れ粉がラビング時に引きずられて配向膜に傷状に溝を作り液晶の配向異常をもたらす恐れがある。このような配向膜からは、高品位の液晶のフィルムを作製することは難しいか、歩留まりは低くならざるを得なくなる。
また、特許文献2および特許文献3は、高分子液晶のホメオトロピック配向やハイブリッド配向に関するものであり、ポリビニルアルコール配向膜に関する記載はあるが、詳細な条件には全く触れられていない。
特開平8−50206号公報 特開平5−27235号公報 特開平6−347742号公報
As an alignment film for liquid crystal, polyimide and polyvinyl alcohol have been known for a long time. For liquid crystal displays, polyimide is most commonly used from the viewpoint of durability. However, there are problems such as high material cost and a curing step for imidizing the precursor polyamic acid. On the other hand, since polyvinyl alcohol is very inexpensive, it seems that it is worth investigating the usage and expanding the application range.
Polyvinyl alcohol for liquid crystal alignment is a simple polyvinyl alcohol unit and a small amount of vinyl acetate unit in order to obtain a specific alignment structure such as hybrid alignment and vertical alignment in which the liquid crystal director gradually changes. It is considered that the so-called modified polyvinyl alcohol in which partially different units such as alkyl modification are introduced has higher utility value than the alcohol resin. For example, Patent Document 1 describes that alkyl-modified polyvinyl alcohol is used as an alignment film for a discotic liquid crystal. However, when modified polyvinyl alcohol is used, since the strength is not sufficiently strong, there is a problem that the resin is easily scraped when a rubbing process, which is a process of rubbing with a cloth for aligning liquid crystals in one direction, is performed. In this case, when the liquid crystal material is applied, scraping may cause a defect of the liquid crystal layer, or the scraping powder may be dragged during rubbing to form a scratch in the alignment film, resulting in liquid crystal alignment abnormality. From such an alignment film, it is difficult to produce a high-quality liquid crystal film, or the yield must be lowered.
Patent Document 2 and Patent Document 3 relate to homeotropic alignment and hybrid alignment of polymer liquid crystals, and although there is a description regarding a polyvinyl alcohol alignment film, detailed conditions are not mentioned at all.
JP-A-8-50206 Japanese Patent Laid-Open No. 5-27235 JP-A-6-347742

本発明は、上記の点に鑑み、変性ポリビニルアルコールのハイブリッド配向能や垂直配向能を維持しつつ、実用上十分な強度を有する配向膜を提供することを目的とする。   An object of this invention is to provide the orientation film | membrane which has practically sufficient intensity | strength, maintaining the hybrid orientation ability and perpendicular orientation ability of modified polyvinyl alcohol in view of said point.

本発明者は、前記課題について鋭意研究した結果、本発明を完成するに至った。
すなわち、本発明は、重合度が500以上の無変性のポリビニルアルコールと変性ポリビニルアルコールとから少なくとも成る液晶用配向膜に関する。
また本発明は、前記配向膜上に棒状の液晶をホメオトロピック配向またはハイブリッド配向せしめて得られる液晶性光学フィルムに関する。
さらに本発明は、前記配向膜上に円盤状の液晶をホモジニアス配向またはハイブリッド配向せしめて得られる液晶性光学フィルムに関する。
As a result of earnest research on the above problems, the present inventors have completed the present invention.
That is, the present invention relates to a liquid crystal alignment film comprising at least a non-modified polyvinyl alcohol having a degree of polymerization of 500 or more and a modified polyvinyl alcohol.
The present invention also relates to a liquid crystal optical film obtained by homeotropic alignment or hybrid alignment of a rod-like liquid crystal on the alignment film.
Furthermore, the present invention relates to a liquid crystal optical film obtained by subjecting a disc-shaped liquid crystal to homogeneous alignment or hybrid alignment on the alignment film.

以下に本発明を詳述する。
本発明においては液晶用配向膜として、変性ポリビニルアルコール(以下変性PVAと表す)と重合度500以上の無変性のポリビニルアルコール(以下無変性PVAと表す)からなる材料を主成分として用いる。かかる配向膜は主に変性PVA成分の効果により、該配向膜上に液晶材料を塗布したときに液晶材料が基板に対して傾いた配向や立ち上がった配向をとるのを容易にし、重合度500以上の無変性PVA成分が膜強度を高く保つ役割を担う。
The present invention is described in detail below.
In the present invention, a material composed of modified polyvinyl alcohol (hereinafter referred to as modified PVA) and unmodified polyvinyl alcohol having a polymerization degree of 500 or more (hereinafter referred to as unmodified PVA) is used as a main component for the alignment film for liquid crystal. Such an alignment film mainly has the effect of the modified PVA component, so that when the liquid crystal material is applied on the alignment film, the liquid crystal material can easily take an inclined or rising alignment with respect to the substrate, and the degree of polymerization is 500 or more. The unmodified PVA component plays a role of keeping the film strength high.

ここでいう変性PVAとは、ビニルアルコール単位やビニル酢酸単位とともにそれ以外の単位を有するものを指す。かかる変性PVAは、重合度は通常100以上3000以下、より好ましくは200以上2000以下である。ケン化度としては、通常50%以上、より好ましくは70%以上である。前記ビニルアルコール単位やビニル酢酸単位以外の構造単位として、炭化水素基を有するものが本発明においては特に好ましく用いることができ、主鎖の末端をアルキルチオ変性させたものや、ビニルアルコール単位のヒドロキシル基に対しエステル結合、エーテル結合、あるいはアセタール結合を介して炭化水素基を有する構造を連結したものなどを挙げることができる。ここでいう炭化水素基は、長鎖のものが好ましく、炭素数としては、通常4以上60以下、好ましくは8以上50以下、特に好ましくは12以上40以下である。炭素数が4より小さいものは、変性効果が小さく、液晶分子を立ち上がらせる効果が小さくなる恐れがあり、60より大きい場合、後述の無変性のPVAと混合し液晶用の配向膜に供したとき、結晶化度が低下し、膜強度に悪影響を及ぼす恐れがある。   Modified PVA here refers to those having other units in addition to vinyl alcohol units and vinyl acetate units. Such modified PVA usually has a degree of polymerization of 100 or more and 3000 or less, more preferably 200 or more and 2000 or less. The degree of saponification is usually 50% or more, more preferably 70% or more. As the structural unit other than the vinyl alcohol unit and the vinyl acetate unit, those having a hydrocarbon group can be particularly preferably used in the present invention, and those having a main chain terminal modified with alkylthio, or the hydroxyl group of the vinyl alcohol unit. And a structure in which a structure having a hydrocarbon group is linked via an ester bond, an ether bond, or an acetal bond. The hydrocarbon group here is preferably a long chain, and the number of carbon atoms is usually 4 or more and 60 or less, preferably 8 or more and 50 or less, and particularly preferably 12 or more and 40 or less. When the number of carbon atoms is less than 4, the modification effect is small, and the effect of raising liquid crystal molecules may be small. When the number is more than 60, when mixed with unmodified PVA described later and used for an alignment film for liquid crystal There is a possibility that the crystallinity is lowered and the film strength is adversely affected.

一方、無変性のPVAは、通常重合度は500以上5000以下、より好ましくは1000以上4000以下、さらに好ましくは1500以上3000以下である。重合度が500より小さい場合は、変性PVAとブレンドしたとき、膜強度を十分に上げることが出来ない恐れがある。重合度が5000より大きいと、溶媒への溶解に時間がかかるなど作業性が低下する恐れがある。ケン化度については、通常95%以上、より好ましくは98%以上、特に好ましくは99%以上である。ケン化度が95%より低い場合には、変性PVAとブレンドしたとき、膜強度を十分に上げることが出来ない恐れがある。   On the other hand, the unmodified PVA usually has a degree of polymerization of 500 or more and 5000 or less, more preferably 1000 or more and 4000 or less, and further preferably 1500 or more and 3000 or less. If the degree of polymerization is less than 500, the film strength may not be sufficiently increased when blended with the modified PVA. When the degree of polymerization is greater than 5000, workability may be lowered, for example, it takes time to dissolve in a solvent. The degree of saponification is usually 95% or more, more preferably 98% or more, and particularly preferably 99% or more. If the degree of saponification is lower than 95%, the film strength may not be sufficiently increased when blended with modified PVA.

両者の混合割合は、重量比で表せば、変性PVA:無変性PVA=0.0001:1〜0.8:0.2、さらに好ましくは、変性PVA:無変性PVA=0.001:1〜0.5:0.5、特に好ましくは、変性PVA:無変性PVA=0.01:1〜0.2:0.8である。変性PVA:無変性PVA=0.0001:1よりも変性PVAが少ないと、液晶分子を立ち上がらせる効果が小さくなる恐れがあり、変性PVA:無変性PVA=0.8:0.2よりも変性PVAが多いと、配向膜とした時、膜強度が劣る恐れがある。   The mixing ratio of both is expressed by weight ratio: modified PVA: unmodified PVA = 0.0001: 1 to 0.8: 0.2, more preferably modified PVA: unmodified PVA = 0.001: 1 0.5: 0.5, particularly preferably modified PVA: unmodified PVA = 0.01: 1 to 0.2: 0.8. Modified PVA: Unmodified PVA = 0.0001: 1 If there is less modified PVA, there is a possibility that the effect of starting up the liquid crystal molecules may be reduced. Modified PVA: Unmodified PVA = 0.8: 0.2 When there is much PVA, there exists a possibility that film | membrane intensity | strength may be inferior when it is set as an oriented film.

次に配向膜の作製方法について説明する。
変性PVAと無変性PVAは所定量はかり取ったのち混合し、溶媒を加え溶解させる。溶媒は通常水を主成分とするが、メタノール、エタノール、イソプロピルアルコール等のアルコール類を加えた混合溶媒としても良い。通常溶液中の全PVAの濃度は、目的とする膜厚にもよるので一概には言えないが、通常1〜10重量%である。また、PVA膜の強化を目的に、アルデヒド類、ジアルデヒド類、ジアルデヒドでんぷん、メチロール化合物、ホウ酸やホウ砂などの無機架橋剤などを溶液中に加えても良い。また目的に応じ、他のポリマーの添加や他の化合物の添加も可能である。
Next, a method for manufacturing the alignment film will be described.
Modified PVA and non-modified PVA are weighed out and mixed, and dissolved by adding a solvent. The solvent usually contains water as a main component, but may be a mixed solvent to which alcohols such as methanol, ethanol, isopropyl alcohol and the like are added. The concentration of the total PVA in the normal solution depends on the target film thickness and cannot be generally specified, but is usually 1 to 10% by weight. For the purpose of strengthening the PVA film, aldehydes, dialdehydes, dialdehyde starch, methylol compounds, inorganic cross-linking agents such as boric acid and borax may be added to the solution. Depending on the purpose, other polymers or other compounds can be added.

このようにして得られた溶液を、所定の基板の上に塗布する。塗布方法としては特に限定はされないが、グラビアなどのロールコート法、バーコート法、ダイコート法などを採用できる。該基板としては、平面性を有するものであれば特に制限はなく、用途により適宜選択されるものであるが、代表的なものとしては、ガラス板、金属板、プラスチックフィルムまたはシートを挙げることができる。プラスチックフィルムまたはシートとしてさらに具体的な例を示せば、ポリエチレン、ポリプロピレン、ノルボルネン樹脂などのポリオレフィン、トリアセチルセルロース、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリイミド、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートなどを挙げることができる。なお、PVAと上記基板間の密着性を向上させる目的で、上記基板表面にプライマー処理を行っても良い。   The solution thus obtained is applied on a predetermined substrate. Although it does not specifically limit as a coating method, Roll coating methods, such as a gravure, a bar coating method, a die coating method, etc. are employable. The substrate is not particularly limited as long as it has planarity, and is appropriately selected depending on the application. Typical examples include a glass plate, a metal plate, a plastic film or a sheet. it can. Specific examples of plastic films or sheets include polyolefins such as polyethylene, polypropylene and norbornene resin, triacetyl cellulose, polycarbonate, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyphenylene sulfide, polyimide , Polyetherimide, polyethylene terephthalate, polyethylene naphthalate, and the like. In addition, you may perform a primer process on the said substrate surface in order to improve the adhesiveness between PVA and the said board | substrate.

次いで乾燥により溶媒を除去する。乾燥は、均一な乾燥を目的に低い温度から徐々に温度を上げていくことが好ましい。乾燥温度としては、通常30℃〜200℃、より好ましくは40℃〜180℃である。乾燥工程は、単に溶媒を除去するだけでなく、PVAの結晶化度を高めたり、架橋剤を添加した場合には架橋反応を促進する役割をもつ。   The solvent is then removed by drying. It is preferable that the temperature is gradually raised from a low temperature for the purpose of uniform drying. As drying temperature, it is 30 to 200 degreeC normally, More preferably, it is 40 to 180 degreeC. The drying process not only removes the solvent, but also increases the crystallinity of PVA or promotes the crosslinking reaction when a crosslinking agent is added.

このようにして得られた変性PVAと無変性PVAからなる膜は、棒状液晶のホメオトロピック配向を得る場合にはそのまま配向膜として供することもできるが、通常ラビング処理を施しておくことが好ましい。ラビングは、PVA膜表面をレイヨン、ナイロン、ポリエステルなどの繊維で一方向に擦ることにより達成される。通常は、円筒状のロールに布を巻きつけたラビングロールを作製し、該ラビングロールをフィルムに沿って移動させるか、ラビングロールに対してPVA膜を接触させつつ移動させることにより行うことができる。なお、ラビングロールは無回転でも良いし、よりラビング密度を高める目的で回転させても良い。本発明の配向膜は強度的にも優れているので、ラビングによる削れかすの発生が少なく、液晶を塗布したとき欠点が発生しにくい特徴を持つ。   The film made of modified PVA and non-modified PVA thus obtained can be used as an alignment film as it is when obtaining the homeotropic alignment of rod-like liquid crystals, but it is usually preferable to perform a rubbing treatment. The rubbing is achieved by rubbing the surface of the PVA film in one direction with fibers such as rayon, nylon and polyester. Usually, a rubbing roll in which a cloth is wound around a cylindrical roll is manufactured, and the rubbing roll is moved along the film or moved while the PVA film is in contact with the rubbing roll. . The rubbing roll may be non-rotating or may be rotated for the purpose of increasing the rubbing density. Since the alignment film of the present invention is excellent in strength, it is characterized in that there is little generation of scraping due to rubbing, and that defects are less likely to occur when liquid crystal is applied.

このようにして得られた配向膜上に、液晶材料を塗布し、配向させることにより、液晶性光学フィルムが作製できる。本発明の配向膜上では、液晶分子は液晶のダイレクターが厚み方向で角度をかえつつ傾いたハイブリッド配向や、液晶分子が立ち上がった(棒状液晶のホメオトロピック配向や円盤状液晶のホモジニアス配向)という利用価値の高い液晶配向を容易に得ることができる。以下、用いることのできる液晶について説明する。   A liquid crystalline optical film can be produced by applying a liquid crystal material on the alignment film thus obtained and aligning it. On the alignment film of the present invention, the liquid crystal molecules are said to be a hybrid alignment in which the director of the liquid crystal is tilted while changing the angle in the thickness direction, or the liquid crystal molecules have risen (the homeotropic alignment of rod-shaped liquid crystals or the homogeneous alignment of disk-shaped liquid crystals). Liquid crystal alignment with high utility value can be easily obtained. Hereinafter, liquid crystals that can be used will be described.

まず最初に棒状の液晶を挙げることが出来る。ここでいう棒状液晶とは、液晶の持つ固有複屈折が正の一軸性(特殊な材料では二軸性を示すこともある)のものを指す。本発明の配向膜上では、棒状液晶は比較的容易に、メソゲンが配向膜に対して立ち上がったホメオトロピック配向やハイブリッド配向をとることができる。分子の大きさで分類すれば、低分子液晶、側鎖型の高分子液晶、主鎖型の高分子液晶を挙げることができる。本発明の配向膜は、特定の分子構造の液晶材料に限定されることなく用いることができるが、代表的なものを以下に例示する。なお、低分子液晶や熱により流動しやすい材料は、分子内に重合性基を持たせ、配向後は速やかに架橋処理に供されることが好ましい。重合性基を有する材料を用いる場合は、その反応性に適した触媒(光ラジカル発生剤、光カチオン発生剤など)を液晶材料に添加することが好ましい。   First, a rod-shaped liquid crystal can be mentioned. The rod-like liquid crystal here refers to a liquid crystal whose intrinsic birefringence is positive uniaxial (a special material may exhibit biaxiality). On the alignment film of the present invention, the rod-like liquid crystal can take homeotropic alignment or hybrid alignment in which mesogens rise from the alignment film relatively easily. When classified by molecular size, low molecular liquid crystals, side chain polymer liquid crystals, and main chain polymer liquid crystals can be exemplified. The alignment film of the present invention can be used without being limited to a liquid crystal material having a specific molecular structure, but typical ones are exemplified below. In addition, it is preferable that the low-molecular liquid crystal or the material that easily flows by heat has a polymerizable group in the molecule and is quickly subjected to a crosslinking treatment after the alignment. When a material having a polymerizable group is used, it is preferable to add a catalyst (photo radical generator, photo cation generator, etc.) suitable for the reactivity to the liquid crystal material.

低分子の液晶としては、以下のものを例示することができる。

Figure 2006243025
The following can be illustrated as a low molecular liquid crystal.
Figure 2006243025

上記式中、Rは水素またはメチル基を表し、nは2〜12の整数を表し、RはCN、C2k+1またはOC2k+1(ここで、kは1〜12の整数を表す。)を表し、Xは以下の基を表す。

Figure 2006243025
(ここで、Rは水素、メチル基またはエチル基を表す。) In the above formula, R 1 represents hydrogen or a methyl group, n represents an integer of 2 to 12, R 2 represents CN, C k H 2k + 1 or OC k H 2k + 1 (where k is an integer of 1 to 12) And X represents the following group.
Figure 2006243025
(Here, R 3 represents hydrogen, a methyl group or an ethyl group.)

側鎖型の高分子液晶としては、以下のものを例示することができる。

Figure 2006243025
Examples of the side chain type polymer liquid crystal include the following.
Figure 2006243025

上記式中、Rはシアノ基または炭素数1〜9のアルキル基またはアルコキシ基を表し、mおよびnはそれぞれ個別に2〜8の整数を表し、kは0〜8の整数を表し、a、bおよびcは組成比を表し、Qは酸素原子を表し(ただし、k=0の時は単結合である。)、Xは以下の基を表す。

Figure 2006243025
(ここで、Rは水素、メチル基またはエチル基を表す。) In the above formula, R represents a cyano group, an alkyl group having 1 to 9 carbon atoms or an alkoxy group, m and n each independently represents an integer of 2 to 8, k represents an integer of 0 to 8, a, b and c represent a composition ratio, Q represents an oxygen atom (provided that it is a single bond when k = 0), and X represents the following group.
Figure 2006243025
(Here, R 3 represents hydrogen, a methyl group or an ethyl group.)

主鎖型高分子液晶としては、以下のものを例示することができる。

Figure 2006243025
(ただし、RおよびRは、それぞれ個別に、水素、メチル基またはt−ブチル基を表す。) Examples of the main chain polymer liquid crystal include the following.
Figure 2006243025
(However, R 1 and R 2 each independently represent hydrogen, a methyl group, or a t-butyl group.)

次に、円盤状の液晶化合物を挙げることができる。ここで、円盤状液晶とは、液晶の持つ固有複屈折が負の軸性のものを指す。本発明の配向膜上では、円盤状液晶は比較的容易に、メソゲンが配向膜に対して立ち上がったホモジニアス配向やハイブリッド配向をとることができる。分子の大きさで分類すれば、低分子のもの、メソゲンが互いに連結されたポリマー状のものを挙げることができる。なお、メソゲン同士が連結していない低分子の材料や熱により流動しやすい材料は、分子内に重合性基を持たせ、配向後は速やかに架橋処理に供されることが好ましい。   Next, a disk-shaped liquid crystal compound can be mentioned. Here, the discotic liquid crystal refers to a liquid crystal having negative axial characteristic of intrinsic birefringence. On the alignment film of the present invention, the disk-like liquid crystal can take a homogeneous alignment or a hybrid alignment in which mesogens rise with respect to the alignment film relatively easily. If classified according to the size of the molecule, there can be mentioned low molecular weight ones and polymer ones in which mesogens are linked to each other. In addition, it is preferable that the low molecular weight material in which the mesogens are not linked to each other or the material that easily flows by heat has a polymerizable group in the molecule and is subjected to a crosslinking treatment immediately after the orientation.

円盤状の液晶としては、以下のものを例示することができる。

Figure 2006243025
Examples of the disc-shaped liquid crystal include the following.
Figure 2006243025

上記式中、Qは酸素原子またはメチレン基を表し、R、R、R、R、RおよびRは、それぞれ個別に、下記の中から選ばれるもの基を表す。

Figure 2006243025
In the above formula, Q represents an oxygen atom or a methylene group, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a group selected from the following.
Figure 2006243025

上記式中、a、b、c、d、eおよびfは2〜12の整数を表し、gは1〜17の整数を表し、Xは以下の基を表す。

Figure 2006243025
(ここで、Rは水素、メチル基またはエチル基を表す。) In the above formula, a, b, c, d, e and f represent an integer of 2 to 12, g represents an integer of 1 to 17, and X represents the following group.
Figure 2006243025
(Here, R 3 represents hydrogen, a methyl group or an ethyl group.)

以上のような液晶材料は、溶融状態または溶液状態で本発明の配向膜上に塗布され、乾燥、熱処理などの工程、さらには必要に応じ液晶材料の架橋処理などを経て、液晶性光学フィルムにすることができる。得られた、液晶性光学フィルムは配向膜上でそのまま用いることもできるし、配向膜から剥離して用いることもできる。   The liquid crystal material as described above is applied on the alignment film of the present invention in a molten state or in a solution state, and subjected to steps such as drying and heat treatment, and further, a cross-linking treatment of the liquid crystal material as necessary, to a liquid crystalline optical film can do. The obtained liquid crystalline optical film can be used as it is on the alignment film, or can be peeled off from the alignment film.

以上のようにして得られた液晶性光学フィルムは光学用途に好適に用いることができ、特に液晶表示素子用の光学フィルムとして好ましく用いられる。
本発明の液晶性光学フィルムが使用される液晶ディスプレイとしては、特に制限はないが、透過型、反射型、半透過型の各種液晶ディスプレイを挙げることができる。液晶セルにおける液晶配向によるモードとして例を挙げると、TN型、STN型、VA(verticalalignment)型、MVA(multi−domain vertical alignment)型、OCB(optically compensated bend)型、ECB(electrically controlled biriefringence)型、HAN(hybrid−aligned nematic)型、IPS(in−plane switching)型などを挙げることができる。当該液晶配向については、セルの面内で単一の方向性を持つものでも良いし、配向が分割された液晶ディスプレイ等にも用いることができる。さらに液晶セルに電圧を印加する方法で言えば、例えばITO電極などを用いるパッシブ方式、TFT(薄膜トランジスター)電極やTFD(薄膜ダイオード)電極などを用いるアクティブ方式等で駆動する液晶ディスプレイを挙げることができる。
本発明の液晶性光学フィルムは、一軸性または二軸性の光学特性をもつ延伸フィルムなど他の光学フィルムとの複合も可能である。
The liquid crystalline optical film obtained as described above can be suitably used for optical applications, and is particularly preferably used as an optical film for liquid crystal display elements.
Although there is no restriction | limiting in particular as a liquid crystal display in which the liquid crystalline optical film of this invention is used, The transmissive | pervious, reflective, and semi-transmissive liquid crystal display can be mentioned. Examples of modes by liquid crystal alignment in a liquid crystal cell include a TN type, an STN type, a VA (vertical alignment) type, an MVA (multi-domain vertical alignment) type, an OCB (optically compensated bend) type, and an ECB (electrically concentrated type). HAN (hybrid-aligned nematic) type, IPS (in-plane switching) type and the like. The liquid crystal alignment may have a single directionality in the plane of the cell, or may be used for a liquid crystal display in which the alignment is divided. Further, as a method of applying a voltage to the liquid crystal cell, for example, a liquid crystal display driven by a passive method using an ITO electrode or the like, an active method using a TFT (thin film transistor) electrode, a TFD (thin film diode) electrode, or the like can be cited. it can.
The liquid crystalline optical film of the present invention can be combined with other optical films such as a stretched film having uniaxial or biaxial optical characteristics.

変性PVAと特定の重合度とケン化度を有する無変性PVAからなる液晶用配向膜は、独特の配向能と強度を併せ持つ特徴を持ち、該配向基板上で液晶材料を配向させることにより優れた光学特性と高品質を両立できる液晶性光学フィルムを提供できる。   An alignment film for liquid crystal composed of modified PVA and non-modified PVA having a specific polymerization degree and saponification degree has a characteristic of having both unique alignment ability and strength, and is excellent by aligning a liquid crystal material on the alignment substrate. It is possible to provide a liquid crystalline optical film that can achieve both optical properties and high quality.

以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例で用いた各分析方法は以下の通りである。
(1)H−NMRの測定
化合物を重水素化クロロホルムに溶解し、400MHzのH−NMR(Variant社製INOVA−400)で測定した。
(2)顕微鏡観察
オリンパス光学社製BH2偏光顕微鏡で液晶の配向状態を観察した。また付属のベレックコンペンセーターによりフィルムのリターデーションを測定した。
(3)液晶フィルムのパラメータ測定
王子計測機器(株)製のKOBRAを用いた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, each analysis method used in the Example is as follows.
(1) Measurement compound of 1 H-NMR was dissolved in deuterated chloroform and measured by 1 H-NMR of 400 MHz (Variant Co. INOVA-400).
(2) Microscope observation The alignment state of the liquid crystal was observed with an Olympus BH2 polarizing microscope. Moreover, the retardation of the film was measured with the attached Belek Compensator.
(3) Parameter measurement of liquid crystal film KOBRA manufactured by Oji Scientific Instruments Co., Ltd. was used.

<実施例1>
アルキル変性PVA((株)クラレ製MP−203)と無変性PVA((株)クラレ製PVA−117)を重量比2:8で計り取り、水/イソプロピルアルコール=8/2(重量比)混合溶媒に溶解させて、4重量%のポリビニルアルコール溶液を調製した。この溶液を、厚さ38μmのポリエチレンテレフタレートフィルム(東レ(株)製)にスピンコート法により塗布し、乾燥させ、厚さ1.5μmのPVAの膜を得た。次いでレーヨンのラビング布でPVA膜をラビング処理し、液晶用配向膜を得た。
<Example 1>
Alkyl-modified PVA (MP-203 manufactured by Kuraray Co., Ltd.) and unmodified PVA (PVA-117 manufactured by Kuraray Co., Ltd.) were weighed at a weight ratio of 2: 8, and water / isopropyl alcohol = 8/2 (weight ratio) mixed. A 4% by weight polyvinyl alcohol solution was prepared by dissolving in a solvent. This solution was applied to a 38 μm thick polyethylene terephthalate film (manufactured by Toray Industries, Inc.) by a spin coat method and dried to obtain a 1.5 μm thick PVA film. Next, the PVA film was rubbed with a rayon rubbing cloth to obtain an alignment film for liquid crystal.

下記式(1)の棒状メソゲンを有する側鎖型高分子液晶化合物を合成し、少量のフッ素系界面活性剤(液晶化合物に対して0.1重量%)とカチオン光開始剤(アデカ社製SP−172)とともにシクロヘキサノンに溶解させ、10重量%の液晶ポリマー溶液を調製した。

Figure 2006243025
(ただし、かっこ横の数字はモル組成比を表す。) A side-chain polymer liquid crystal compound having a rod-shaped mesogen of the following formula (1) was synthesized, and a small amount of a fluorosurfactant (0.1% by weight with respect to the liquid crystal compound) and a cationic photoinitiator (SP made by Adeka) -172) and dissolved in cyclohexanone to prepare a 10 wt% liquid crystal polymer solution.
Figure 2006243025
(However, the number next to the parenthesis represents the molar composition ratio.)

この液晶溶液を、先に調製したPVA膜を有する配向基板上にスピンコート法により塗布し、60℃のホットプレート上で乾燥させた後、140℃のオーブンで5分加熱処理して液晶を配向させ、次いで70℃の雰囲気下で高圧水銀灯ランプにより紫外光を300mJ/cm照射し(ただし365nmにおけるエネルギー量)、架橋基を重合させて液晶性光学フィルムを作成した。次いで、接着剤を介して、厚さ1.1mmのソーダガラスに液晶性光学フィルムを転写した。剥離は、PVA/液晶層間で起こり、ソーダガラス/接着層/液晶性光学フィルムの層構成のものが得られた。液晶性光学フィルムは、ホメオトロピック配向しており転写後の積層体をクロスニコルの偏光板の間に挟んで観察したとき、正面は偏光板のみと同様暗く、斜めから傾けて見ると光漏れが生じた。Kobraを用い、斜め入射時のリターデーション測定から、厚み方向のリターデーションは150nmと見積もられた。このフィルムの50μm以上の大きさの欠点数を数えたところ、10cm角あたり1個であった。 This liquid crystal solution is applied onto the alignment substrate having the PVA film prepared above by spin coating, dried on a hot plate at 60 ° C., and then heated in an oven at 140 ° C. for 5 minutes to align the liquid crystal. Then, ultraviolet light was irradiated at 300 mJ / cm 2 (however, energy amount at 365 nm) with a high-pressure mercury lamp lamp in an atmosphere at 70 ° C., and the crosslinking group was polymerized to prepare a liquid crystalline optical film. Subsequently, the liquid crystalline optical film was transferred to a soda glass having a thickness of 1.1 mm through an adhesive. Peeling occurred between PVA / liquid crystal layers, and a soda glass / adhesive layer / liquid crystal optical film layered structure was obtained. The liquid crystalline optical film is homeotropically oriented, and when the laminate after transfer was observed between crossed Nicols polarizing plates, the front face was dark just like the polarizing plates, and light leakage occurred when viewed from an angle. . The retardation in the thickness direction was estimated to be 150 nm from the retardation measurement at oblique incidence using Kobra. When the number of defects having a size of 50 μm or more of this film was counted, it was 1 per 10 cm square.

<比較例1>
アルキル変性PVAのみを用い、4重量%のポリビニルアルコール溶液を調製した以外は、実施例1と同様にして液晶性光学フィルムを作製した。得られた液晶性光学フィルムは、ホメオトロピック配向していた。このフィルムの50μm以上の大きさの欠点数を数えたところ、10cm角あたりで160個と欠点が多かった。またラビング布を調べてみたところ、PVAの削れかすが付着していることがわかった。
<Comparative Example 1>
A liquid crystalline optical film was produced in the same manner as in Example 1 except that only 4% by weight of a polyvinyl alcohol solution was prepared using only alkyl-modified PVA. The obtained liquid crystalline optical film was homeotropically aligned. When the number of defects of a size of 50 μm or more of this film was counted, there were many defects of 160 pieces per 10 cm square. Further, when the rubbing cloth was examined, it was found that shavings of PVA were adhered.

<実施例2>
下記式(2)のアルキル変性PVAを合成した。重合度は500であった。式(2)の変性PVAと無変性PVA((株)クラレ製PVA−117)を重量比1:99で計り取り、水/イソプロピルアルコール=8/2(重量比)混合溶媒に溶解させて、4重量%のポリビニルアルコール溶液を調製した。この溶液を、厚さ50μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製)にスピンコート法により塗布し、乾燥させ、厚さ1.0μmのPVAの膜を得た。次いでレーヨンのラビング布でPVA膜をラビング処理し、液晶用配向膜を得た。

Figure 2006243025
(ただし、かっこ横の数字はモル組成比を表す。) <Example 2>
An alkyl-modified PVA of the following formula (2) was synthesized. The degree of polymerization was 500. The modified PVA of formula (2) and the unmodified PVA (PVA-117 manufactured by Kuraray Co., Ltd.) are weighed at a weight ratio of 1:99 and dissolved in a mixed solvent of water / isopropyl alcohol = 8/2 (weight ratio). A 4% by weight polyvinyl alcohol solution was prepared. This solution was applied to a polyethylene naphthalate film (manufactured by Teijin DuPont Films Co., Ltd.) having a thickness of 50 μm by a spin coat method and dried to obtain a PVA film having a thickness of 1.0 μm. Next, the PVA film was rubbed with a rayon rubbing cloth to obtain an alignment film for liquid crystal.
Figure 2006243025
(However, the number next to the parenthesis represents the molar composition ratio.)

下記式(3)の棒状メソゲンを有する低分子液晶化合物2種を合成し、70:30の重量比で混合し、少量のフッ素系界面活性剤(液晶化合物に対して0.1重量%)とラジカル開始剤(チバガイギ社製イルガキュア907、液晶化合物に対して2重量%)とともにメチルエチルケトンに溶解させ、10重量%の液晶溶液を調製した。

Figure 2006243025
Two kinds of low-molecular liquid crystal compounds having a rod-shaped mesogen of the following formula (3) were synthesized and mixed at a weight ratio of 70:30, and a small amount of a fluorosurfactant (0.1% by weight with respect to the liquid crystal compound) and A 10 wt% liquid crystal solution was prepared by dissolving in a methyl ethyl ketone together with a radical initiator (Irgacure 907 manufactured by Ciba Geigy Co., Ltd., 2 wt% with respect to the liquid crystal compound).
Figure 2006243025

この液晶溶液を、先に調製したPVA膜を有する配向基板上にスピンコート法により塗布し、60℃のホットプレート上で乾燥させた後、80℃のオーブンで2分、60℃のオーブンで2分加熱処理して液晶を配向させ、次いで室温の窒素ガスの気流下、高圧水銀灯ランプにより紫外光を400mJ/cm照射し(ただし365nmにおけるエネルギー量)、架橋基を重合させて液晶性光学フィルムを作成した。次いで、接着剤を介して、80μmのトリアセチルセルロースフィルム(富士写真フィルム(株)製)に液晶性光学フィルムを転写した。剥離は、PVA/液晶層間で起こり、トリアセチルセルロース/接着層/液晶性光学フィルムの層構成のものが得られた。得られた液晶性光学フィルムは、ハイブリッド配向しており、得られた積層体に対しフィルム面内のリターデーションを測定したところ120nmであった。またフィルムの欠点数は10cm角あたり2個と少なかった。 This liquid crystal solution is applied onto the alignment substrate having the PVA film prepared above by spin coating, dried on a hot plate at 60 ° C., then 2 minutes in an oven at 80 ° C., and 2 in an oven at 60 ° C. Liquid crystal optical film by aligning the liquid crystal by partial heat treatment and then irradiating with 400 mJ / cm 2 of ultraviolet light (however, energy amount at 365 nm) with a high-pressure mercury lamp lamp in a stream of nitrogen gas at room temperature. It was created. Next, the liquid crystalline optical film was transferred to an 80 μm triacetyl cellulose film (Fuji Photo Film Co., Ltd.) via an adhesive. Peeling occurred between the PVA / liquid crystal layers, and a layer structure of triacetyl cellulose / adhesive layer / liquid crystal optical film was obtained. The obtained liquid crystalline optical film was hybrid-aligned, and the in-plane retardation of the obtained laminate was measured to be 120 nm. The number of defects of the film was as small as 2 per 10 cm square.

<実施例3>
アルキル変性PVA((株)クラレ製MP−103)と無変性PVA((株)クラレ製PVA−124)を重量比1:9で計り取り、水/イソプロピルアルコール=8/2(重量比)混合溶媒に溶解させて、3重量%のポリビニルアルコール溶液を調製した。
この溶液を、厚さ40μmのトリアセチルセルロースフィルム(富士写真フィルム(株)製)にスピンコート法により塗布し、乾燥させ、厚さ0.7μmのPVAの膜を得た。次いでレーヨンのラビング布でPVA膜をラビング処理し、液晶用配向膜を得た。
下記式(4)の円盤状液晶材料を合成し、少量のフッ素系界面活性剤(液晶材料に対し0.2重量%)とラジカル開始剤(チバガイギ社製イルガキュア907、液晶材料に対し2重量%)とともにジエチレングリコールジメチルエーテルに溶解させ、10重量%の液晶溶液を調製した。

Figure 2006243025
(ただし、かっこ横の数字はモル組成比を表す。) <Example 3>
Alkyl-modified PVA (MP-103 manufactured by Kuraray Co., Ltd.) and unmodified PVA (PVA-124 manufactured by Kuraray Co., Ltd.) were weighed at a weight ratio of 1: 9, and water / isopropyl alcohol = 8/2 (weight ratio) mixed. A 3% by weight polyvinyl alcohol solution was prepared by dissolving in a solvent.
This solution was applied to a 40 μm thick triacetylcellulose film (Fuji Photo Film Co., Ltd.) by spin coating and dried to obtain a 0.7 μm thick PVA film. Next, the PVA film was rubbed with a rayon rubbing cloth to obtain an alignment film for liquid crystal.
A discotic liquid crystal material of the following formula (4) was synthesized, and a small amount of a fluorosurfactant (0.2% by weight with respect to the liquid crystal material) and a radical initiator (Irgacure 907 manufactured by Ciba Geigy Co., Ltd., 2% by weight with respect to the liquid crystal material) And 10% by weight of a liquid crystal solution.
Figure 2006243025
(However, the number next to the parenthesis represents the molar composition ratio.)

この液晶溶液を、先に調製したPVA膜を有する配向基板上にスピンコート法により塗布し、60℃のホットプレート上で乾燥させた後、130℃のオーブンで5分加熱処理して液晶を配向させ、次いで室温の窒素ガスの気流下、高圧水銀灯ランプにより紫外光を400mJ/cm照射し(ただし365nmにおけるエネルギー量)、架橋基を重合させた。得られた液晶性光学フィルムは、ディスコチック液晶がハイブリッド配向しておりフィルム正面からリターデーションを測定したところ60nmであった。またフィルムの欠点数は10cm角あたり3個と少なかった。
This liquid crystal solution is applied onto the alignment substrate having the PVA film prepared above by spin coating, dried on a hot plate at 60 ° C., and then heated in an oven at 130 ° C. for 5 minutes to align the liquid crystal. Then, under a stream of nitrogen gas at room temperature, ultraviolet light was irradiated at 400 mJ / cm 2 with a high-pressure mercury lamp (however, the energy amount at 365 nm) to polymerize the crosslinking group. The obtained liquid crystalline optical film had a discotic liquid crystal in a hybrid orientation, and the retardation measured from the front of the film was 60 nm. The number of defects of the film was as small as 3 per 10 cm square.

Claims (6)

重合度が500以上の無変性のポリビニルアルコールと変性ポリビニルアルコールとから少なくとも成る液晶用配向膜。   An alignment film for liquid crystal comprising at least unmodified polyvinyl alcohol having a degree of polymerization of 500 or more and modified polyvinyl alcohol. 前記重合度が500以上のポリビニルアルコールのケン化度が95%以上であることを特徴とする請求項1に記載の液晶用配向膜。   The alignment film for liquid crystal according to claim 1, wherein the degree of saponification of the polyvinyl alcohol having a polymerization degree of 500 or more is 95% or more. 前記変性ポリビニルアルコールがアルキル変性ポリビニルアルコールであることを特徴とする請求項1に記載の液晶用配向膜。   The alignment film for liquid crystal according to claim 1, wherein the modified polyvinyl alcohol is an alkyl-modified polyvinyl alcohol. 混合割合が、変性PVA:無変性PVA(重量比)=0.0001:1〜0.8:0.2であることを特徴とする請求項1に記載の液晶用配向膜。   2. The alignment film for liquid crystal according to claim 1, wherein the mixing ratio is modified PVA: unmodified PVA (weight ratio) = 0.0001: 1 to 0.8: 0.2. 請求項1〜4のいずれかに記載の配向膜上に棒状の液晶をホメオトロピック配向またはハイブリッド配向せしめて得られる液晶性光学フィルム。   A liquid crystalline optical film obtained by homeotropic alignment or hybrid alignment of a rod-like liquid crystal on the alignment film according to claim 1. 請求項1〜4のいずれかに記載の配向膜上に円盤状の液晶をホモジニアス配向またはハイブリッド配向せしめて得られる液晶性光学フィルム。
A liquid crystalline optical film obtained by subjecting a disk-like liquid crystal to homogeneous alignment or hybrid alignment on the alignment film according to claim 1.
JP2005054741A 2005-02-28 2005-02-28 Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer Pending JP2006243025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054741A JP2006243025A (en) 2005-02-28 2005-02-28 Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054741A JP2006243025A (en) 2005-02-28 2005-02-28 Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer

Publications (1)

Publication Number Publication Date
JP2006243025A true JP2006243025A (en) 2006-09-14

Family

ID=37049541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054741A Pending JP2006243025A (en) 2005-02-28 2005-02-28 Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer

Country Status (1)

Country Link
JP (1) JP2006243025A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281758A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Method for producing optical film, optical film and liquid crystal display
JP2008281757A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Method for manufacturing optical film, optical film, and liquid crystal display device
JP2009047776A (en) * 2007-08-15 2009-03-05 Fujifilm Corp Alignment layer, alignment film, optical film, polarizing plate and liquid crystal display apparatus
JP2009075476A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Method for manufacturing optical compensation film, optical compensation film, polarizing plate, liquid crystal display device
JP2009086241A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Retardation film, optical film, polarizing plate, and liquid crystal display device
JP2012078501A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Alignment layer, optical film, polarizing plate and liquid crystal display device
JP2012523589A (en) * 2009-04-14 2012-10-04 コミトブ,ラヒェザー Composition for LCD alignment layer
JPWO2012160740A1 (en) * 2011-05-20 2014-07-31 株式会社有沢製作所 Optical diffraction element, optical pickup, and method of manufacturing optical diffraction element
US10022675B2 (en) 2013-03-29 2018-07-17 Fujifilm Corporation Method of producing composite for acid gas separation and apparatus for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281758A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Method for producing optical film, optical film and liquid crystal display
JP2008281757A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Method for manufacturing optical film, optical film, and liquid crystal display device
JP2009047776A (en) * 2007-08-15 2009-03-05 Fujifilm Corp Alignment layer, alignment film, optical film, polarizing plate and liquid crystal display apparatus
JP2009075476A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Method for manufacturing optical compensation film, optical compensation film, polarizing plate, liquid crystal display device
KR101495236B1 (en) * 2007-09-21 2015-02-24 후지필름 가부시키가이샤 Process for producing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
JP2009086241A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Retardation film, optical film, polarizing plate, and liquid crystal display device
JP2012523589A (en) * 2009-04-14 2012-10-04 コミトブ,ラヒェザー Composition for LCD alignment layer
JP2012078501A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Alignment layer, optical film, polarizing plate and liquid crystal display device
JPWO2012160740A1 (en) * 2011-05-20 2014-07-31 株式会社有沢製作所 Optical diffraction element, optical pickup, and method of manufacturing optical diffraction element
JP6008847B2 (en) * 2011-05-20 2016-10-19 株式会社有沢製作所 Optical pickup and method for manufacturing optical diffraction element
US9594276B2 (en) 2011-05-20 2017-03-14 Arisawa Mfg. Co., Ltd. Optical diffraction element, optical pickup, and optical diffraction element manufacturing method
US10022675B2 (en) 2013-03-29 2018-07-17 Fujifilm Corporation Method of producing composite for acid gas separation and apparatus for producing same

Similar Documents

Publication Publication Date Title
JP4440817B2 (en) An optically anisotropic film, a brightness enhancement film, a laminated optical film, and an image display device using them.
JP2006243025A (en) Alignment layer for liquid crystal and liquid crystalline optical film obtained from the alignment layer
WO2018216812A1 (en) Photo-alignment polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
JP4328243B2 (en) Liquid crystal display
TWI465337B (en) Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
JP6790836B2 (en) Multi-layer film, its use, and manufacturing method
JP2006268007A (en) Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate
JP2004046194A (en) Manufacturing method for optical compensator
JP2007148098A (en) Method of manufacturing optical film, optical film and image display device
WO2010032551A1 (en) Phase difference film, polarizing plate, and liquid crystal display device
JPWO2017164004A1 (en) Optical film, polarizing plate, image display device, optical film manufacturing method and polarizing plate manufacturing method
WO2009028429A1 (en) Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same
JP5876801B2 (en) Optical film, liquid crystal display device, transfer material, and optical film manufacturing method
JP6739535B2 (en) Optical film, polarizing plate and image display device
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
JP6227488B2 (en) Optical compensation film, polarizing plate, liquid crystal display device, and method for producing optical compensation film
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
CN109416429B (en) Vertically aligned liquid crystal film and method for manufacturing the same
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
JP2006285187A (en) Optical compensation film, polarizer, and liquid crystal display device
KR20100065397A (en) Method for producing optical film
JP5647483B2 (en) Alkali resistance improver, photocurable liquid crystal composition, optical film, polarizing plate, and liquid crystal display device
JP5204608B2 (en) Polarizing plate, optical film and image display device
JP2006323349A (en) Manufacturing method of optical film, the optical film and image display device using the optical film
JP2006323348A (en) Manufacturing method of optical film, optical film, and image display apparatus using optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A02