JP2006242840A - Photoelectric field sensor and directivity adjusting method for the same - Google Patents

Photoelectric field sensor and directivity adjusting method for the same Download PDF

Info

Publication number
JP2006242840A
JP2006242840A JP2005060965A JP2005060965A JP2006242840A JP 2006242840 A JP2006242840 A JP 2006242840A JP 2005060965 A JP2005060965 A JP 2005060965A JP 2005060965 A JP2005060965 A JP 2005060965A JP 2006242840 A JP2006242840 A JP 2006242840A
Authority
JP
Japan
Prior art keywords
antenna pattern
optical
electric field
field sensor
directivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060965A
Other languages
Japanese (ja)
Inventor
Atsushi Ichijo
淳 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005060965A priority Critical patent/JP2006242840A/en
Publication of JP2006242840A publication Critical patent/JP2006242840A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric field sensor which prevents the maximum sensitivity orientation of its directivity from shifting due to being dependent on positional relations and length values of a lead wire, an antenna rod and a metallic electrode formed on an electro-optic crystal, or an antenna formed on a print circuit board, and to provide a directivity adjusting method for the photoelectric field sensor. <P>SOLUTION: In the photoelectric field sensor having an optical modulator using an electro-optic effect, an angle between length directions of a modulation electrode and an antenna pattern is given by adding a value of 54.7° to a shift angle Δϕ in the directivity between the direction of the maximum sensitivity and the length direction along which the antenna pattern extends, i.e., the angle=(Δϕ+54.7°). Moreover, in the respective length directions, the length of the lead wire is made shorter than that of the antenna pattern, and the maximum sensitivity is set in a direction of electric field detection (i.e., at the angle between the length direction of the modulator and the length direction of the antenna pattern). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光を用いて電界の測定を行う光電界センサに関するもので、特に、狭い空間領域の電界測定に好適な小型の光電界センサ及び光電界センサの指向性調整方法に関する。   The present invention relates to an optical electric field sensor that measures an electric field using light, and more particularly to a small-sized optical electric field sensor suitable for electric field measurement in a narrow space region and a directivity adjustment method for the optical electric field sensor.

従来、電気光学効果を利用した干渉型光導波路を用いた光電界センサは、
(1)金属部を殆ど持たないので、被測定電界を乱さない。
(2)光ファイバーで検出信号を伝送するので、伝送途中で電磁誘導の影響により電気的雑音を発生しない。
(3)結晶の電気光学効果を利用することで、高速応答を可能とし、且つその検出信号をそのまま低損失に伝送できる。
(4)センサ部に電源を必要としない。
以上の優れた特徴があるので、EMC分野などの広範囲な電界測定に用いられている。
Conventionally, an optical electric field sensor using an interference optical waveguide utilizing an electro-optic effect is
(1) Since there is almost no metal part, the electric field to be measured is not disturbed.
(2) Since the detection signal is transmitted through the optical fiber, no electrical noise is generated due to the influence of electromagnetic induction during the transmission.
(3) By utilizing the electro-optic effect of the crystal, a high-speed response is possible and the detection signal can be transmitted as it is with low loss.
(4) No power is required for the sensor unit.
Since it has the above excellent features, it is used for a wide range of electric field measurements in the EMC field and the like.

図9は、従来の光電界センサの構造を示す斜視図である。光ファイバー61から入射した光は、LiNbO3単結晶基板67上の光導波路68を経て、2本に分岐した光導波路69aおよび69bに分岐され、一方の分岐した光導波路69aには金属電極70a,70bから電界が印加され、屈折率の変化が生じる。他方の分岐した光導波路69bは、電界がかからないので、屈折率の変化が起きない。また、いずれの分岐した光導波路を伝播する光は、反射ミラー71によって反射され、分岐光導波路を逆方向に伝播し、再び合波され、光ファイバー61に結合後出射する。この2つの光路を伝播する光は、屈折率の差により位相差を生じ、合波後の光強度は変化する。更に、変調された光は光ファイバーや光サーキュレータを通って、光検出器に導かれ、電気信号に変換される(特許文献1参照)。 FIG. 9 is a perspective view showing the structure of a conventional optical electric field sensor. Light incident from the optical fiber 61 is branched into two optical waveguides 69a and 69b via an optical waveguide 68 on the LiNbO 3 single crystal substrate 67, and one of the branched optical waveguides 69a has metal electrodes 70a and 70b. An electric field is applied from, causing a change in refractive index. Since the other branched optical waveguide 69b is not subjected to an electric field, the refractive index does not change. The light propagating through any branched optical waveguide is reflected by the reflection mirror 71, propagates in the opposite direction through the branched optical waveguide, is combined again, and is emitted after being coupled to the optical fiber 61. The light propagating through these two optical paths produces a phase difference due to the difference in refractive index, and the light intensity after combining changes. Further, the modulated light passes through an optical fiber or an optical circulator, is guided to a photodetector, and is converted into an electric signal (see Patent Document 1).

EMC測定(ノイズ測定)に代表される、フィールド内の電界強度を測定するために用いる光電界センサおよび光電界センサの指向性調整方法が、特許文献2に開示されている。電気光学効果を有する光学結晶基板上に光を分岐させた後、再び合流する形状の光導波路を形成し、分岐後に光導波路の屈折率を変動させる変調電極と変調電極に電圧を導くアンテナパターンを形成した光変調器を備えた光電界センサにおいて、変調電極の分割方向の長さ方向とアンテナパターンの長さ方向のなす角度を調整した光電界センサおよび光電界センサの指向性調整方法である。この方法により、内蔵アンテナの指向性に依存していた光電界センサを、任意の指向性に制御することを可能にする。   Patent Document 2 discloses an optical electric field sensor represented by EMC measurement (noise measurement) and a method for adjusting the directivity of the optical electric field sensor used for measuring the electric field strength in the field. After splitting the light on an optical crystal substrate having an electro-optic effect, an optical waveguide having a shape that merges again is formed, and a modulation electrode that changes the refractive index of the optical waveguide after branching and an antenna pattern that guides voltage to the modulation electrode are formed. In the optical electric field sensor including the formed optical modulator, there are an optical electric field sensor in which an angle formed by the length direction of the modulation electrode in the dividing direction and the length direction of the antenna pattern is adjusted, and a directivity adjustment method for the optical electric field sensor. This method makes it possible to control the optical electric field sensor, which has been dependent on the directivity of the built-in antenna, to have an arbitrary directivity.

また、高い指向性を有する光電界センサの技術は、特許文献3に開示されている。電気光学効果を有する光学結晶基板上に光を分岐させた後、再び合流する形状の光導波路を形成し、分岐後に光導波路の屈折率を変動させる変調電極と変調電極に電圧を導くアンテナパターンを形成した光変調器を備えた光電界センサにおいて、アンテナパターンの光導波路に近接する辺の長さを対向する辺の長さより小さくした光電界センサである。この方法は、アンテナパターン領域を広くとり、アンテナパターン端辺を延ばすことで、高い指向性を得ている。   A technique of an optical electric field sensor having high directivity is disclosed in Patent Document 3. After splitting the light on an optical crystal substrate having an electro-optic effect, an optical waveguide having a shape that merges again is formed, and a modulation electrode that changes the refractive index of the optical waveguide after branching and an antenna pattern that guides voltage to the modulation electrode are formed. In the optical electric field sensor including the formed optical modulator, the length of the side adjacent to the optical waveguide of the antenna pattern is made smaller than the length of the opposite side. This method obtains high directivity by taking a wide antenna pattern area and extending the edge of the antenna pattern.

特開2004−219088号公報Japanese Patent Laid-Open No. 2004-219088 特開2002−55133号公報JP 2002-55133 A 特開2002−31659号公報JP 2002-31659 A

上述の特許文献1の光電界センサは、感度を向上するために外部にアンテナロッドを備えるかまたはプリント基板上にアンテナを形成して接続する。この方法では、電気光学結晶上に形成された金属電極、リード線およびアンテナロッド、またはプリント基板上に形成したアンテナの相関する位置関係およびその長さに依存して指向性の最大感度方向がずれるという問題があった。   The above-mentioned optical electric field sensor of Patent Document 1 is provided with an antenna rod on the outside or an antenna formed on a printed circuit board to improve sensitivity. In this method, the direction of maximum sensitivity of directivity shifts depending on the relative positional relationship and the length of the metal electrode, lead wire and antenna rod formed on the electro-optic crystal, or the antenna formed on the printed circuit board. There was a problem.

上述の特許文献2の光電界センサは、従来の内蔵アンテナの指向性に依存していた光電界センサを任意の指向性に制御する手段を提供しているが、電気光学結晶上に形成された金属電極、リード線およびアンテナロッド、またはプリント基板上に形成したアンテナの相関する位置関係およびその長さに依存して指向性の最大感度方向がずれるという問題を解決できていないという問題があった。   The above-mentioned optical electric field sensor of Patent Document 2 provides means for controlling the optical electric field sensor, which has been dependent on the directivity of the conventional built-in antenna, to an arbitrary directivity, but is formed on an electro-optic crystal. There is a problem that the maximum sensitivity direction of the directivity has not been solved depending on the relative position and length of the metal electrode, lead wire and antenna rod, or antenna formed on the printed circuit board. .

上述の特許文献3の光電界センサは、アンテナパターン領域を広くとり、アンテナパターン端辺を延ばすことで、高い指向性を得ているが、電気光学結晶上に形成された金属電極、リード線およびアンテナロッド、またはプリント基板上に形成したアンテナの相関する位置関係およびその長さに依存して指向性の最大感度方向がずれるという問題を解決できていないという問題があった。   The above-described optical electric field sensor of Patent Document 3 obtains high directivity by taking a wide antenna pattern region and extending the edge of the antenna pattern, but the metal electrode, the lead wire and the electrode formed on the electro-optic crystal. There has been a problem that the problem that the maximum sensitivity direction of the directivity shifts depending on the relative position and length of the antenna rod or the antenna formed on the printed circuit board cannot be solved.

本発明は、このような問題点を解決すべくなされたもので、その技術課題は、電気光学結晶上に形成された金属電極、リード線およびアンテナロッド、またはプリント基板上に形成したアンテナの相関する位置関係およびその長さに依存して指向性の最大感度方向がずれない光電界センサおよび光電界センサの指向性調整方法を提供することにある。   The present invention has been made to solve such problems, and its technical problem is to correlate metal electrodes, lead wires and antenna rods formed on an electro-optic crystal, or antennas formed on a printed circuit board. It is an object of the present invention to provide an optical electric field sensor and a directivity adjustment method for the optical electric field sensor in which the maximum sensitivity direction of directivity does not shift depending on the positional relationship and the length thereof.

上記目的を達成するための第1の発明は、電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサにおいて、前記変調電極の長さ方向と前記アンテナパターンの長さ方向のなす角度を、前記アンテナパターンが伸びる長さ方向と最大感度方向との指向性のずれ角度Δφと54.7°を加えた角度=(Δφ+54.7°)にした光電界センサである。   According to a first aspect of the present invention for achieving the above object, after splitting light on an optical crystal substrate having an electro-optic effect, the light is propagated in the opposite direction by the reflecting mirror in the reverse direction and joined again. Optical modulation in which a waveguide is formed, and after branching, a modulation electrode for changing the refractive index of the optical waveguide, an antenna pattern for guiding a voltage to the modulation electrode, and a lead wire connecting the modulation electrode and the antenna pattern are formed In the optical electric field sensor provided with a detector, the angle formed between the length direction of the modulation electrode and the length direction of the antenna pattern is defined as a deviation angle Δφ in directivity between the length direction in which the antenna pattern extends and the maximum sensitivity direction. This is an optical electric field sensor in which an angle obtained by adding 54.7 ° = (Δφ + 54.7 °).

上記目的を達成するための第2の発明は、電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサにおいて、前記リード線の長さが、前記アンテナパターンの長さより、短く設定され、最大感度の電界検出方向と前記アンテナパターンが伸びる長さ方向とが一致した光電界センサである。   According to a second aspect of the invention for achieving the above object, after splitting light on an optical crystal substrate having an electro-optic effect, the light is propagated in the opposite direction by the reflecting mirror in the reverse direction and joined again. Optical modulation in which a waveguide is formed, and after branching, a modulation electrode for changing the refractive index of the optical waveguide, an antenna pattern for guiding a voltage to the modulation electrode, and a lead wire connecting the modulation electrode and the antenna pattern are formed In the optical electric field sensor provided with the detector, the length of the lead wire is set shorter than the length of the antenna pattern, and the electric field detection direction with the maximum sensitivity coincides with the length direction in which the antenna pattern extends. It is.

上記目的を達成するための第3の発明は、電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサの指向性調整方法において、前記変調電極の長さ方向と前記アンテナパターンの長さ方向のなす角度を、前記アンテナパターンが伸びる長さ方向と最大感度方向との指向性のずれ角度Δφと54.7°を加えた角度=(Δφ+54.7°)に調整する光電界センサの指向性調整方法である。   According to a third aspect of the present invention for achieving the above object, after splitting light onto an optical crystal substrate having an electro-optic effect, the light is propagated in the opposite direction by the reflecting mirror in the reverse direction and joined again. Optical modulation in which a waveguide is formed, and after branching, a modulation electrode for changing the refractive index of the optical waveguide, an antenna pattern for guiding a voltage to the modulation electrode, and a lead wire connecting the modulation electrode and the antenna pattern are formed In the method for adjusting the directivity of an optical electric field sensor provided with a detector, the angle formed between the length direction of the modulation electrode and the length direction of the antenna pattern is the directivity between the length direction in which the antenna pattern extends and the maximum sensitivity direction. This is a directivity adjustment method for an optical electric field sensor that is adjusted to an angle obtained by adding 54.7 ° to the deviation angle Δφ of the optical field sensor = (Δφ + 54.7 °).

上記目的を達成するための第4の発明は、電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサの指向性調整方法において、前記リード線の長さが、前記アンテナパターンの長さより、短く設定され、最大感度の電界検出方向と前記アンテナパターンが伸びる長さ方向とが一致した光電界センサの指向性調整方法である。   According to a fourth aspect of the invention for achieving the above object, after splitting light on an optical crystal substrate having an electro-optic effect, the light is propagated in the opposite direction by the reflecting mirror in the reverse direction and joined again. Optical modulation in which a waveguide is formed, and after branching, a modulation electrode for changing the refractive index of the optical waveguide, an antenna pattern for guiding a voltage to the modulation electrode, and a lead wire connecting the modulation electrode and the antenna pattern are formed In the method of adjusting the directivity of the optical electric field sensor provided with the detector, the length of the lead wire is set shorter than the length of the antenna pattern, and the electric field detection direction with the maximum sensitivity and the length direction in which the antenna pattern extends It is the directivity adjustment method of the coincident optical electric field sensor.

電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、光導波路の屈折率を変動させるための変調電極と、その変調電極に電圧を導くアンテナパターンとその変調電極とそのアンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサにおいて、変調電極の長さ方向とアンテナパターンの長さ方向のなす角度を、アンテナパターンが伸びる長さ方向と最大感度方向との指向性のずれ角度Δφと54.7°を加えた角度=(Δφ+54.7°)とする。また、リード線の長さを、アンテナパターンの長さより、短く設定し、最大感度の電界検出方向とアンテナパターンが伸びる長さ方向を一致させる。   After branching light on an optical crystal substrate having an electro-optic effect, a reflecting mirror propagates the branched optical waveguide in the reverse direction to form an optical waveguide that merges again. After branching, the refractive index of the optical waveguide The length of the modulation electrode in an optical electric field sensor comprising an optical modulator having a modulation electrode for varying the voltage, an antenna pattern for guiding a voltage to the modulation electrode, and a lead wire connecting the modulation electrode and the antenna pattern The angle formed by the direction of the antenna pattern and the length direction of the antenna pattern is an angle obtained by adding a directivity deviation angle Δφ of the length direction in which the antenna pattern extends and the maximum sensitivity direction and 54.7 ° = (Δφ + 54.7 °). . In addition, the length of the lead wire is set shorter than the length of the antenna pattern, and the electric field detection direction with the maximum sensitivity is matched with the length direction in which the antenna pattern extends.

その結果、光電界センサのアンテナの相関する位置関係およびその長さに依存しないで、その指向性のずれを補正しつつ指向性を調整し、最大感度の電界検出方向とアンテナパターンが伸びる長さ方向を一致させることで、指向性の最大感度方向のずれを解消した光電界センサおよび光電界センサの指向性調整方法の提供を可能とする。   As a result, regardless of the relative positional relationship and length of the antenna of the optical electric field sensor, the directivity is adjusted while correcting the deviation in directivity, and the electric field detection direction with the maximum sensitivity and the length that the antenna pattern extends. By matching the directions, it is possible to provide an optical electric field sensor and a directivity adjustment method for the optical electric field sensor in which the shift of the directivity maximum sensitivity direction is eliminated.

本発明を実施するための最良の形態に係る光電界センサについて、以下、図面を用いて詳細に説明する。   Hereinafter, an optical electric field sensor according to the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明を実施するための最良の形態に係るアンテナパターンの角度を調整した光電界センサを示す模式図である。図2は、本発明を実施するための最良の形態に係るリード線の長さを調整した光電界センサを示す模式図である。図3は、本発明を実施するための最良の形態に係る光電界センサのアンテナパターンの角度を調整したセンサ出力の指向性評価結果を示すグラフである。図4は、光電界センサのセンサ出力の指向性評価状態を示す図である。図5は、プリント基板リード線の長さを調整した光電界センサのセンサ出力の指向性評価結果を示す図である。   FIG. 1 is a schematic diagram showing an optical electric field sensor in which the angle of an antenna pattern according to the best mode for carrying out the present invention is adjusted. FIG. 2 is a schematic view showing an optical electric field sensor in which the length of the lead wire according to the best mode for carrying out the present invention is adjusted. FIG. 3 is a graph showing the directivity evaluation result of the sensor output in which the angle of the antenna pattern of the optical electric field sensor according to the best mode for carrying out the present invention is adjusted. FIG. 4 is a diagram showing a directivity evaluation state of the sensor output of the optical electric field sensor. FIG. 5 is a diagram showing the directivity evaluation result of the sensor output of the optical electric field sensor in which the length of the printed circuit board lead wire is adjusted.

本発明を実施するための最良の形態に係る光電界センサは、LiNbO3基板上に作製されたTi拡散導波路とそこに電圧を印加する金属電極2と反射ミラー6と光ファイバー7で構成される。金属電極2とプリント基板上に形成されたアンテナパターン3a,3bまたはアンテナロッドが、金属電極2がプリント基板のリード線4a,4bまたはワイヤーで接続された導波路型マッハツェンダ干渉計である。 An optical electric field sensor according to the best mode for carrying out the present invention comprises a Ti diffusion waveguide fabricated on a LiNbO 3 substrate, a metal electrode 2 for applying a voltage thereto, a reflection mirror 6 and an optical fiber 7. . The antenna pattern 3a, 3b or antenna rod formed on the printed circuit board and the metal electrode 2 is a waveguide type Mach-Zehnder interferometer in which the metal electrode 2 is connected by lead wires 4a, 4b or wires of the printed circuit board.

本発明を実施するための最良の形態では、図1に示すように、プリント基板のリード線4a,4bの長さは各4mm、アンテナパターン3a,3bのトータル長さは21mm、金属電極2の長さは6mmにする。次に、この光電界センサの指向性を測定し、プリント基板のリード線4a,4bと金属電極2の位置関係に起因する指向性のずれ角度Δφ=15°を考慮し、更に、計算値と実験値の相関関係を考慮して、アンテナパターン3a,3bの長さ方向と金属電極2の長さ方向のなす角度が、68.7°に設計することで、54.7°のセンサの最大感度方向8の最大感度が一致するように調整する。   In the best mode for carrying out the present invention, as shown in FIG. 1, the lengths of the lead wires 4a and 4b of the printed circuit board are 4 mm each, the total length of the antenna patterns 3a and 3b is 21 mm, and the metal electrode 2 The length is 6 mm. Next, the directivity of this optical electric field sensor is measured, the directivity deviation angle Δφ = 15 ° due to the positional relationship between the lead wires 4a and 4b of the printed circuit board and the metal electrode 2 is taken into consideration, and the calculated value Considering the correlation between the experimental values, the angle between the length direction of the antenna patterns 3a and 3b and the length direction of the metal electrode 2 is designed to be 68.7 °, so that the maximum of the sensor of 54.7 ° can be obtained. Adjustment is made so that the maximum sensitivities in the sensitivity direction 8 coincide.

次に、図4に示す評価系でこの光電界センサのセンサ出力の指向性を評価する。図4に示すように、平行平板9a,9bにRF信号を印加することで、10の方向に電界が発生する。その後、光電界センサをその間に置き、アンテナ3a,3bがセンサの最大感度方向8と平行になる位置を基準0°として、回転方向11に360°回転しながら、回転方向でのセンサ出力を測定する。   Next, the directivity of the sensor output of this optical electric field sensor is evaluated by the evaluation system shown in FIG. As shown in FIG. 4, an electric field is generated in 10 directions by applying an RF signal to the parallel plates 9a and 9b. After that, the optical electric field sensor is placed between them, and the sensor output in the rotational direction is measured while rotating 360 ° in the rotational direction 11 with the position where the antennas 3a and 3b are parallel to the maximum sensitivity direction 8 of the sensor as the reference 0 °. To do.

図3に示すように、本発明を実施するための最良の形態では、0°の位置で電界検出方向 (変調器の長さ方向とアンテナパターンの長さ方向のなす角度)=54.7°と最大感度が一致していることがわかる。   As shown in FIG. 3, in the best mode for carrying out the present invention, the electric field detection direction (angle formed by the length direction of the modulator and the length direction of the antenna pattern) at the position of 0 ° = 54.7 °. It can be seen that the maximum sensitivity matches.

また、本発明を実施するための最良の形態に係る光電界センサでは、図2に示すようにアンテナパターン3a,3bの長さ方向が金属電極2の長さ方向に対して54.7°傾いた方向にのびる形状で作製される。アンテナパターン3a,3bのトータル長さを21mm、金属電極2の長さを6mmに固定し、プリント基板のリード線4a,4bの長さをアンテナパターン3a,3bの長さに対して、2分の1程度にする。その後、センサ出力の指向性を評価した上で、少しずつプリント基板リード線4a,4bの長さを短くする。最終的には、プリント基板のリード線4a,4bの長さをアンテナパターン3a,3bの長さに対して、10分の1程度にして、センサの最大感度方向8で感度が最大になるように調整する。   In the optical electric field sensor according to the best mode for carrying out the present invention, the length direction of the antenna patterns 3a and 3b is inclined by 54.7 ° with respect to the length direction of the metal electrode 2 as shown in FIG. It is manufactured in a shape that extends in the selected direction. The total length of the antenna patterns 3a and 3b is fixed to 21 mm, the length of the metal electrode 2 is fixed to 6 mm, and the length of the lead wires 4a and 4b of the printed circuit board is 2 minutes with respect to the length of the antenna patterns 3a and 3b. 1 or so. Thereafter, after evaluating the directivity of the sensor output, the lengths of the printed circuit board lead wires 4a and 4b are gradually reduced. Finally, the length of the lead wires 4a and 4b of the printed circuit board is set to about 1/10 of the length of the antenna patterns 3a and 3b so that the sensitivity becomes maximum in the maximum sensitivity direction 8 of the sensor. Adjust to.

次に、図4に示す評価系でこの光電界センサのセンサ出力の指向性を評価する。図5より、0°の位置で電界検出方向 (変調器の長さ方向とアンテナパターンの長さ方向のなす角度)=54.7°と最大感度が一致していることがわかる。   Next, the directivity of the sensor output of this optical electric field sensor is evaluated by the evaluation system shown in FIG. FIG. 5 shows that the maximum sensitivity matches the electric field detection direction (angle formed by the length direction of the modulator and the length direction of the antenna pattern) = 54.7 ° at the position of 0 °.

本発明の実施例と従来例の比較に関して図面を用いて詳細に説明する。図6は、従来の光電界センサの構造を示す図である。図7は、従来の光電界センサのセンサ出力の指向性評価結果を示すグラフである。図8は、従来例の光電界センサで金属電極にリード線だけ接続して測定したセンサ出力の指向性評価結果である。   A comparison between an embodiment of the present invention and a conventional example will be described in detail with reference to the drawings. FIG. 6 is a diagram showing the structure of a conventional optical electric field sensor. FIG. 7 is a graph showing the directivity evaluation result of the sensor output of the conventional optical electric field sensor. FIG. 8 shows the directivity evaluation result of the sensor output measured by connecting only the lead wire to the metal electrode with the conventional optical electric field sensor.

本発明の実施例の光電界センサは、上述した本発明の最良の形態に係る光電界センサと同様に作製し、同様な評価結果を得た。   The optical electric field sensor of the example of the present invention was manufactured in the same manner as the above-described optical electric field sensor according to the best mode of the present invention, and the same evaluation result was obtained.

従来例の光電界センサは、LiNbO3基板上に作製されたTi拡散導波路とそこに電圧を印加する金属電極2と反射ミラー6と光ファイバー7で構成される。金属電極2とプリント基板上に形成されたアンテナパターン3a,3bまたはアンテナロッドが、金属電極2がプリント基板のリード線4a,4bまたはワイヤーで接続された導波路型マッハツェンダ干渉計である。   The conventional optical electric field sensor includes a Ti diffusion waveguide fabricated on a LiNbO3 substrate, a metal electrode 2 for applying a voltage thereto, a reflection mirror 6 and an optical fiber 7. The antenna pattern 3a, 3b or antenna rod formed on the printed circuit board and the metal electrode 2 is a waveguide type Mach-Zehnder interferometer in which the metal electrode 2 is connected by lead wires 4a, 4b or wires of the printed circuit board.

従来例では、プリント基板のリード線4a,4bの長さは各4mm、アンテナパターン3a,3bのトータル長さは21mm、金属電極2の長さは6mmにする。次に、この光電界センサのセンサ出力の指向性を測定した。   In the conventional example, the lengths of the lead wires 4a and 4b of the printed circuit board are 4 mm each, the total length of the antenna patterns 3a and 3b is 21 mm, and the length of the metal electrode 2 is 6 mm. Next, the directivity of the sensor output of this optical electric field sensor was measured.

図6の従来例の光電界センサでは、最大感度方向はアンテナパターン3a,3bの方向であるセンサの最大感度方向8(図7の評価データでは0°、180°の位置)を向いていなければならないが、その方向から15°程度ずれていた。   In the conventional optical electric field sensor of FIG. 6, the maximum sensitivity direction is the direction of the antenna patterns 3a and 3b unless the sensor is in the maximum sensitivity direction 8 (0 ° and 180 ° positions in the evaluation data of FIG. 7). However, it was deviated from the direction by about 15 °.

従来の光電界センサの指向性の最大感度方向がセンサの最大感度方向8(変調器の長さ方向とアンテナパターンの長さ方向のなす角度=54.7°)に対して15°程度ずれた要因を調べるために、上記方法で従来例の光電界センサからアンテナ部分を取り除いて、光電界センサの指向性を測定した。   The maximum sensitivity direction of the directivity of the conventional optical electric field sensor is shifted by about 15 ° with respect to the maximum sensitivity direction 8 of the sensor (angle formed by the modulator length direction and the antenna pattern length direction = 54.7 °). In order to investigate the factor, the antenna portion was removed from the conventional optical electric field sensor by the above method, and the directivity of the optical electric field sensor was measured.

図8の測定結果から、リード線4a,4bと金属電極2のセンサ出力の指向性とアンテナパターン3a,3bのセンサ出力の指向性がずれていたことがわかる。また、その感度と外部に取付けたアンテナロッドの感度の合計値が光電界センサの最終的な感度になるために、従来例の光電界センサの指向性は15°程度ずれたと推定される。   From the measurement results of FIG. 8, it can be seen that the directivities of the sensor outputs of the lead wires 4a and 4b and the metal electrode 2 and the directivity of the sensor outputs of the antenna patterns 3a and 3b are shifted. Further, since the total value of the sensitivity and the sensitivity of the antenna rod attached to the outside becomes the final sensitivity of the optical electric field sensor, it is estimated that the directivity of the conventional optical electric field sensor is shifted by about 15 °.

以上のとおり、本発明の実施例では、光電界センサのアンテナの相関する位置関係およびその長さに依存しないで、その指向性のずれを補正しつつ指向性を調整し、電界検出方向(変調器の長さ方向とアンテナパターンの長さ方向のなす角度)に指向性の最大感度方向を一致させることで、指向性の最大感度方向がずれを解消した光電界センサおよび光電界センサの指向性調整方法の提供を可能とすることを確認した。   As described above, according to the embodiment of the present invention, the directivity is adjusted while correcting the deviation in directivity without depending on the correlated positional relationship and the length of the antenna of the optical electric field sensor, and the electric field detection direction (modulation) The directionality of the optical electric field sensor and the optical electric field sensor in which the deviation of the maximum directionality of directivity has been eliminated by making the maximum sensitivity direction of the directivity coincide with the angle between the length direction of the device and the length direction of the antenna pattern) It was confirmed that an adjustment method could be provided.

本発明を実施するための最良の形態に係るアンテナパターンの角度を調整した光電界センサを示す模式図。The schematic diagram which shows the optical electric field sensor which adjusted the angle of the antenna pattern which concerns on the best form for implementing this invention. 本発明を実施するための最良の形態に係るリード線の長さを調整した光電界センサを示す模式図。The schematic diagram which shows the optical electric field sensor which adjusted the length of the lead wire which concerns on the best form for implementing this invention. 本発明を実施するための最良の形態に係るアンテナパターンの角度を調整した光電界センサのセンサ出力の指向性評価結果を示すグラフ。The graph which shows the directivity evaluation result of the sensor output of the optical electric field sensor which adjusted the angle of the antenna pattern which concerns on the best form for implementing this invention. 光電界センサのセンサ出力の指向性評価状態を示す図。The figure which shows the directivity evaluation state of the sensor output of an optical electric field sensor. プリント基板リード線の長さを調整した光電界センサのセンサ出力の指向性評価結果を示すグラフ。The graph which shows the directivity evaluation result of the sensor output of the optical electric field sensor which adjusted the length of the printed circuit board lead wire. 従来の光電界センサの構造を示す模式図。The schematic diagram which shows the structure of the conventional optical electric field sensor. 従来の光電界センサのセンサ出力の指向性評価結果を示すグラフ。The graph which shows the directivity evaluation result of the sensor output of the conventional optical electric field sensor. 従来例の光電界センサで金属電極にリード線だけ接続して測定したセンサ出力の指向性評価結果を示す図。The figure which shows the directivity evaluation result of the sensor output measured by connecting only a lead wire to the metal electrode with the optical electric field sensor of a prior art example. 従来の光電界センサの構造を示す斜視図。The perspective view which shows the structure of the conventional optical electric field sensor.

符号の説明Explanation of symbols

1 LiNbO3基板
2 金属電極
3a,3b アンテナパターン
4a,4b リード線
5 プリント基板
6 反射ミラー
7 光ファイバー
8 センサの最大感度方向
9a,9b 平行平板
10 電界方向
11 光電界センサ回転方向
61 光ファイバー
67 LiNbO3単結晶基板
69a,69b 光導波路
70a,70b 金属電極
71 反射ミラー
1 LiNbO 3 substrate
2 Metal electrodes 3a and 3b Antenna patterns 4a and 4b Lead wire 5 Printed circuit board 6 Reflection mirror 7 Optical fiber 8 Maximum sensitivity direction 9a and 9b of sensor Parallel plate 10 Electric field direction 11 Optical electric field sensor rotation direction 61 Optical fiber 67 LiNbO 3 single crystal substrate 69a 69b Optical waveguides 70a, 70b Metal electrode 71 Reflection mirror

Claims (4)

電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサにおいて、前記変調電極の長さ方向と前記アンテナパターンの長さ方向のなす角度を、前記アンテナパターンが伸びる長さ方向と最大感度方向との指向性のずれ角度Δφと54.7°を加えた角度=(Δφ+54.7°)にしたことを特徴とする光電界センサ。   After branching light on an optical crystal substrate having an electro-optic effect, a reflecting mirror propagates the branched optical waveguide in the reverse direction to form an optical waveguide that merges again. After branching, the optical waveguide is refracted. An optical electric field sensor comprising: a modulation electrode for varying a rate; an antenna pattern for guiding a voltage to the modulation electrode; and an optical modulator having a lead wire connecting the modulation electrode and the antenna pattern. The angle between the length direction of the antenna pattern and the length direction of the antenna pattern is obtained by adding the directivity deviation angle Δφ between the length direction in which the antenna pattern extends and the maximum sensitivity direction to 54.7 ° = (Δφ + 54.7) An optical electric field sensor characterized by 電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサにおいて、前記リード線の長さが、前記アンテナパターンの長さより、短く設定され、最大感度の電界検出方向と前記アンテナパターンが伸びる長さ方向とが一致したことを特徴とする光電界センサ。   After branching light on an optical crystal substrate having an electro-optic effect, a reflecting mirror propagates the branched optical waveguide in the reverse direction to form an optical waveguide that merges again. After branching, the optical waveguide is refracted. An optical electric field sensor comprising: a modulation electrode for changing a rate; an antenna pattern for guiding a voltage to the modulation electrode; and an optical modulator formed with a lead wire for connecting the modulation electrode and the antenna pattern. An optical electric field sensor characterized in that a length is set to be shorter than a length of the antenna pattern, and an electric field detection direction with maximum sensitivity coincides with a length direction in which the antenna pattern extends. 電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサの指向性調整方法において、前記変調電極の長さ方向と前記アンテナパターンの長さ方向のなす角度を、前記アンテナパターンが伸びる長さ方向と最大感度方向との指向性のずれ角度Δφと54.7°を加えた角度=(Δφ+54.7°)に調整することを特徴とする光電界センサの指向性調整方法。   After branching light on an optical crystal substrate having an electro-optic effect, a reflecting mirror propagates the branched optical waveguide in the reverse direction to form an optical waveguide that merges again. After branching, the optical waveguide is refracted. In a method of adjusting the directivity of an optical electric field sensor comprising a modulation electrode for varying a rate, an antenna pattern for guiding a voltage to the modulation electrode, and an optical modulator formed with a lead wire connecting the modulation electrode and the antenna pattern The angle formed between the length direction of the modulation electrode and the length direction of the antenna pattern is the angle obtained by adding 54.7 ° to the directivity deviation angle Δφ between the length direction in which the antenna pattern extends and the maximum sensitivity direction. = (Δφ + 54.7 °) is adjusted, and the directivity adjustment method of the optical electric field sensor is characterized. 電気光学効果を有する光学結晶基板上に光を分岐させた後、反射ミラーによって、分岐光導波路を逆方向に伝播し、再び合流する形状の光導波路を形成し、分岐後、前記光導波路の屈折率を変動させるための変調電極と、該変調電極に電圧を導くアンテナパターンと前記変調電極と前記アンテナパターンを接続するリード線を形成した光変調器を備えた光電界センサの指向性調整方法において、前記リード線の長さが、前記アンテナパターンの長さより、短く設定され、最大感度の電界検出方向と前記アンテナパターンが伸びる長さ方向とが一致したことを特徴とする光電界センサの指向性調整方法。   After branching light on an optical crystal substrate having an electro-optic effect, a reflecting mirror propagates the branched optical waveguide in the reverse direction to form an optical waveguide that merges again. After branching, the optical waveguide is refracted. In a method of adjusting the directivity of an optical electric field sensor comprising a modulation electrode for varying a rate, an antenna pattern for guiding a voltage to the modulation electrode, and an optical modulator formed with a lead wire connecting the modulation electrode and the antenna pattern The directivity of the optical electric field sensor is characterized in that the length of the lead wire is set shorter than the length of the antenna pattern, and the electric field detection direction with the maximum sensitivity coincides with the length direction in which the antenna pattern extends. Adjustment method.
JP2005060965A 2005-03-04 2005-03-04 Photoelectric field sensor and directivity adjusting method for the same Pending JP2006242840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060965A JP2006242840A (en) 2005-03-04 2005-03-04 Photoelectric field sensor and directivity adjusting method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060965A JP2006242840A (en) 2005-03-04 2005-03-04 Photoelectric field sensor and directivity adjusting method for the same

Publications (1)

Publication Number Publication Date
JP2006242840A true JP2006242840A (en) 2006-09-14

Family

ID=37049401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060965A Pending JP2006242840A (en) 2005-03-04 2005-03-04 Photoelectric field sensor and directivity adjusting method for the same

Country Status (1)

Country Link
JP (1) JP2006242840A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943288A (en) * 1995-07-31 1997-02-14 Tokin Corp Electric field sensor
JPH0954128A (en) * 1995-08-09 1997-02-25 Tokin Corp Reflection-type photoelectric field sensor
JPH10270931A (en) * 1997-03-26 1998-10-09 Asahi Glass Co Ltd Antenna for vehicle
JP2002055133A (en) * 2000-08-09 2002-02-20 Tokin Corp Photoelectric field sensor and directivity adjusting method therefor
JP2004219088A (en) * 2003-01-09 2004-08-05 Nec Tokin Corp Triaxial optical field sensor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943288A (en) * 1995-07-31 1997-02-14 Tokin Corp Electric field sensor
JPH0954128A (en) * 1995-08-09 1997-02-25 Tokin Corp Reflection-type photoelectric field sensor
JPH10270931A (en) * 1997-03-26 1998-10-09 Asahi Glass Co Ltd Antenna for vehicle
JP2002055133A (en) * 2000-08-09 2002-02-20 Tokin Corp Photoelectric field sensor and directivity adjusting method therefor
JP2004219088A (en) * 2003-01-09 2004-08-05 Nec Tokin Corp Triaxial optical field sensor element

Similar Documents

Publication Publication Date Title
JP5782974B2 (en) Light modulator and light receiving amount adjustment method of light receiving element of light modulator
US5488677A (en) Electric field sensor
EP0668507B1 (en) Electric field sensor
WO2012115133A1 (en) Light modulator
JP5889123B2 (en) Optical sensor system
JP5163850B2 (en) Electromagnetic field measuring device
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP2006242840A (en) Photoelectric field sensor and directivity adjusting method for the same
JP2004212137A (en) Triaxial photoelectric field sensor
JP4977789B1 (en) Light modulator
JP4977788B1 (en) Light modulator
JP2008298523A (en) Optical voltage probe and voltage-measuring method using the optical voltage probe
JPH09113557A (en) Operating point adjusting method for electric field sensor and electric field sensor
JP3404604B2 (en) Optical electric field sensor
JP2006313072A (en) Triaxial optical field sensor
JP2004219088A (en) Triaxial optical field sensor element
JP3435583B2 (en) Electric field sensor
JP6769818B2 (en) Antenna characteristic measuring device
JP2000230955A (en) Waveguide-type electric field sensor head, and electric field sensor
JPH0954128A (en) Reflection-type photoelectric field sensor
JP3673611B2 (en) Electric field sensor
JP2004212136A (en) Electric field sensing device and its manufacturing method
JP2002040071A (en) Photoelectric field sensor
JP3355502B2 (en) Electric field sensor
JPH08220166A (en) Electric field sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329