JP2006241525A - Method for depositing tantalum nitride film - Google Patents

Method for depositing tantalum nitride film Download PDF

Info

Publication number
JP2006241525A
JP2006241525A JP2005059086A JP2005059086A JP2006241525A JP 2006241525 A JP2006241525 A JP 2006241525A JP 2005059086 A JP2005059086 A JP 2005059086A JP 2005059086 A JP2005059086 A JP 2005059086A JP 2006241525 A JP2006241525 A JP 2006241525A
Authority
JP
Japan
Prior art keywords
film
tantalum
gas
tantalum nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005059086A
Other languages
Japanese (ja)
Other versions
JP4931174B2 (en
JP2006241525A5 (en
Inventor
Shigefumi Itsudo
成史 五戸
Satoshi Toyoda
聡 豊田
Harunori Ushigawa
治憲 牛川
Tomoyasu Kondo
智保 近藤
Kyuzo Nakamura
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005059086A priority Critical patent/JP4931174B2/en
Priority to TW095106850A priority patent/TWI410517B/en
Priority to PCT/JP2006/304073 priority patent/WO2006093263A1/en
Priority to CN2006800014756A priority patent/CN101091005B/en
Priority to US11/885,347 priority patent/US8158197B2/en
Priority to KR1020077012312A priority patent/KR100911643B1/en
Publication of JP2006241525A publication Critical patent/JP2006241525A/en
Publication of JP2006241525A5 publication Critical patent/JP2006241525A5/ja
Application granted granted Critical
Publication of JP4931174B2 publication Critical patent/JP4931174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76859After-treatment introducing at least one additional element into the layer by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing a low-resistance tantalum nitride film which is low in C and N contents, high in Ta/N composition ratio, and favorable for a barrier film capable of ensuring adhesion to a Cu film by the CVD method. <P>SOLUTION: A raw material gas composed of a coordinate compound with N=(R, R') (R and R' are each 1-6C alkyl, and may be the same or different) coordinated around Ta element, and a halogen gas is introduced in a film deposition chamber to deposit a TaN<SB>x</SB>(Hal)<SB>y</SB>(R, R')<SB>z</SB>compound film (where, Hal denotes a halogen atom). Then, a hydrogen atom-containing gas is introduced and reacted with halogenated product to form a Ta-rich tantalum nitride film. Tantalum particles are implanted in the obtained film through sputtering so as to be further tantalum-rich. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、タンタル窒化物膜の形成方法に関し、特に、CVD法に従って配線膜用のバリア膜として有用なタンタル窒化物膜を形成する方法に関する。   The present invention relates to a method for forming a tantalum nitride film, and more particularly to a method for forming a tantalum nitride film useful as a barrier film for a wiring film according to a CVD method.

近年、半導体分野の薄膜製造技術において微細加工の要求が加速しており、それに伴い様々な問題が生じている。   In recent years, demands for microfabrication have been accelerated in thin film manufacturing technology in the semiconductor field, and various problems have arisen accordingly.

半導体デバイスにおける薄膜配線加工を例にあげれば、配線材料としては、抵抗率が小さい等の理由から銅の使用が主流化している。しかし、銅は、エッチングが困難であり、下地層の絶縁膜中に拡散しやすいという性質があるため、デバイスの信頼性が低下するという問題が生じている。   Taking thin film wiring processing in semiconductor devices as an example, the use of copper has become mainstream as a wiring material because of its low resistivity. However, copper is difficult to etch and has a property of easily diffusing into the insulating film of the underlying layer, which causes a problem that the reliability of the device is lowered.

この問題を解決するために、従来、多層配線構造における多層間接続孔の内壁表面にCVD法等で金属薄膜(すなわち、導電性のバリア膜)を形成し、その上に銅薄膜を形成して配線層とすることにより、銅薄膜と下地層のシリコン酸化膜等の絶縁膜とが直接接触しないようにして、銅の拡散を防いでいた(例えば、特許文献1参照)。   In order to solve this problem, conventionally, a metal thin film (that is, a conductive barrier film) is formed on the inner wall surface of the connection hole between the multilayers in the multilayer wiring structure by a CVD method or the like, and a copper thin film is formed thereon. By using the wiring layer, the copper thin film and the insulating film such as the silicon oxide film of the base layer are not in direct contact with each other, thereby preventing the diffusion of copper (for example, see Patent Document 1).

この場合、上記多層配線化やパターンの微細化に伴い、アスペクト比の高い微細なコンタクトホールやトレンチ等を、薄いバリア膜で、ステップカバレッジ良く埋め込むことが要求されている。
特開2002−26124号公報(特許請求の範囲等)
In this case, it is required to bury fine contact holes and trenches having a high aspect ratio with a thin barrier film with good step coverage along with the multilayer wiring and pattern miniaturization.
JP 2002-26124 A (Claims etc.)

上記従来技術の場合、Cu配線膜との密着性を確保しながらバリア膜として有用な低抵抗のタンタル窒化物(TaN)膜をCVD法により形成することは困難であるという問題がある。この問題を解決するためには、原料ガス中のアルキル基等の有機基を切断除去してC含有量を減らし、かつ、TaとNとの結合を切断してTa/N組成比を高くすることの可能な成膜プロセスを開発することが必要になる。   In the case of the above prior art, there is a problem that it is difficult to form a low-resistance tantalum nitride (TaN) film useful as a barrier film by CVD while ensuring adhesion with the Cu wiring film. In order to solve this problem, organic groups such as alkyl groups in the source gas are cut and removed to reduce the C content, and the bond between Ta and N is cut to increase the Ta / N composition ratio. It is necessary to develop a film forming process capable of this.

そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、CVD法に従って、C、N含有量が低く、Ta/N組成比が高く、また、配線膜(例えば、Cu配線膜)との密着性が確保されたバリア膜として有用な低抵抗タンタル窒化物膜を形成する方法を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art. According to the CVD method, the C and N content is low, the Ta / N composition ratio is high, and a wiring film (for example, Cu wiring) It is an object of the present invention to provide a method for forming a low resistance tantalum nitride film useful as a barrier film in which adhesion to the film is ensured.

本発明のタンタル窒化物膜の形成方法は、CVD法に従って、成膜室に、タンタル元素(Ta)の周りにN=(R,R')(R及びR'は、炭素原子数1〜6個のアルキル基を示し、それぞれが同じ基であっても異なった基であってもよい)が配位した配位化合物からなる原料ガス及びハロゲンガスを同時に導入して、基板上でTaN(Hal)(R,R')化合物(式中、Halは、ハロゲン原子を表す)からなるハロゲン化化合物膜を形成し、次いでH原子含有ガスを導入して前記ハロゲン化化合物膜中のTaに結合したNを切断削除し、かつ、Nに結合しているハロゲン原子やR(R')基を切断除去し、タンタルリッチのタンタル窒化物膜を形成することを特徴とする。上記配位化合物中の炭素原子数が6を超えると、炭素が膜中に多く残存するという問題がある。 According to the tantalum nitride film forming method of the present invention, N = (R, R ′) (where R and R ′ are from 1 to 6 carbon atoms) around the tantalum element (Ta) in accordance with the CVD method. A source gas consisting of a coordination compound coordinated with each other, which may be the same group or different groups) and a halogen gas, and TaN x ( Hal) y (R, R ′) z compound (wherein Hal represents a halogen atom) is formed, and then a H atom-containing gas is introduced to form Ta in the halogenated compound film. The N atom bonded to is cut and deleted, and the halogen atom and R (R ′) group bonded to N are cut and removed to form a tantalum-rich tantalum nitride film. When the number of carbon atoms in the coordination compound exceeds 6, there is a problem that a large amount of carbon remains in the film.

前記H原子含有ガスは、成膜室内で、熱又はプラズマによりラジカルに変換され、このラジカルとハロゲン化化合物膜とを反応させてタンタルリッチのタンタル窒化物膜を形成することを特徴とする。   The H atom-containing gas is converted into radicals by heat or plasma in the deposition chamber, and reacts with the radicals and the halogenated compound film to form a tantalum-rich tantalum nitride film.

前記構成によれば、得られた膜中のC、N含有量が減少し、Ta/N組成比が増大し、また、配線膜(例えば、Cu配線膜)との密着性が確保されたバリア膜として有用な低抵抗タンタル窒化物膜を形成することができる。   According to the above configuration, the C and N contents in the obtained film are reduced, the Ta / N composition ratio is increased, and a barrier in which adhesion with a wiring film (for example, Cu wiring film) is ensured. A low-resistance tantalum nitride film useful as a film can be formed.

前記原料ガスは、ペンタジメチルアミノタンタル(PDMAT)、tert-アミルイミドトリス(ジメチルアミド)タンタル(TAIMATA)、ペンタジエチルアミノタンタル(PEMAT)、tert-ブチルイミドトリス(ジメチルアミド)タンタル(TBTDET)、tert-ブチルイミドトリス(エチルメチルアミド)タンタル(TBTEMT)、Ta(N(CH))(NCHCH)(DEMAT)、TaX(X:塩素、臭素及びヨウ素から選ばれたハロゲン原子)から選ばれた少なくとも一種の配位化合物のガスであることが望ましい。 The source gases are pentadimethylamino tantalum (PDMAT), tert-amylimidotris (dimethylamido) tantalum (TAIMATA), pentadiethylaminotantalum (PEMAT), tert-butylimidotris (dimethylamido) tantalum (TBTDET), tert- Butylimidotris (ethylmethylamido) tantalum (TBTEMT), Ta (N (CH 3 ) 2 ) 3 (NCH 3 CH 2 ) 2 (DEMAT), TaX 5 (X: halogen atom selected from chlorine, bromine and iodine) It is desirable that the gas is at least one coordination compound gas selected from

前記ハロゲンガスが、フッ素、塩素、臭素、ヨウ素から選ばれた少なくとも一種のガスであることが望ましい。このようなハロゲンガスを用いれば、上記TaN(Hal)(R,R')化合物を生成することができる。 The halogen gas is desirably at least one gas selected from fluorine, chlorine, bromine and iodine. When such a halogen gas is used, the TaN x (Hal) y (R, R ′) z compound can be produced.

前記H原子含有ガスは、H、NH、SiHから選ばれた少なくとも一種のガスであることが望ましい。 The H atom-containing gas, H 2, NH 3, it is desirable that at least one gas selected from SiH 4.

前記タンタル窒化物膜の形成方法によれば、膜中のタンタルと窒素との組成比がTa/N≧2.0を満足するタンタルリッチの低抵抗の薄膜が得られる。   According to the method for forming the tantalum nitride film, a tantalum-rich low-resistance thin film can be obtained in which the composition ratio of tantalum and nitrogen in the film satisfies Ta / N ≧ 2.0.

本発明のタンタル窒化物膜の形成方法はまた、上記形成方法により得られたタンタル窒化物膜に対して、タンタルを主構成成分とするターゲットを用いるスパッタリングにより、タンタル粒子を入射させることを特徴とする。これにより、さらにタンタルリッチな、Ta/N≧2.0を十分に満足するタンタル窒化物膜が形成され得る。   The tantalum nitride film forming method of the present invention is also characterized in that tantalum particles are incident on the tantalum nitride film obtained by the above-described forming method by sputtering using a target containing tantalum as a main constituent. To do. As a result, a tantalum-rich tantalum nitride film sufficiently satisfying Ta / N ≧ 2.0 can be formed.

前記スパッタリングは、DCパワーとRFパワーとを調整して、DCパワーが低く、かつ、RFパワーが高くなるようにして行われることが望ましい。   The sputtering is preferably performed by adjusting the DC power and the RF power so that the DC power is low and the RF power is high.

本発明によれば、CVD法に従って、低いC、N含有量、かつ、高いTa/N組成比を有し、配線膜(例えば、Cu配線膜)との密着性が確保されたバリア膜として有用な低抵抗のタンタル窒化物膜を形成することができるという効果を奏する。   According to the present invention, it is useful as a barrier film having a low C and N content, a high Ta / N composition ratio, and ensuring adhesion with a wiring film (for example, Cu wiring film) according to the CVD method. Such an effect that a low resistance tantalum nitride film can be formed.

また、本発明によれば、上記CVD法により得られたタンタル窒化物膜に対して、スパッタ法等のPVD法によりタンタルを打ち込んで、さらにタンタルリッチのタンタル窒化物膜を形成することができるという効果を奏する。   Further, according to the present invention, it is possible to form a tantalum-rich tantalum nitride film by implanting tantalum into the tantalum nitride film obtained by the CVD method by a PVD method such as sputtering. There is an effect.

さらに、本発明によれば、上記バリア膜上に、優れた密着性と平滑性とを併せ持って、配線膜を形成できという効果を奏する。   Furthermore, according to the present invention, there is an effect that a wiring film can be formed on the barrier film with excellent adhesion and smoothness.

本発明によれば、低いC、N含有量、高いTa/N組成比を有する低抵抗のタンタル窒化物膜は、熱CVD法やプラズマCVD法等のCVD法に従って、成膜室である真空チャンバ内に載置された基板上で、上記タンタル含有配位化合物からなる原料ガスとハロゲンガスとを反応させることにより、TaN(Hal)(R,R')化合物膜を形成させ、次いでこのハロゲン化化合物膜と、真空チャンバ内へ導入されたH原子含有ガスを熱やプラズマにより活性化して生成されたHガス又はHNガス由来のHラジカル、NHガス由来のNHラジカル等のラジカルとを反応させて得られる。 According to the present invention, a low resistance tantalum nitride film having a low C and N content and a high Ta / N composition ratio is formed in accordance with a CVD method such as a thermal CVD method or a plasma CVD method. A TaN x (Hal) y (R, R ′) z compound film is formed by reacting a source gas composed of the tantalum-containing coordination compound with a halogen gas on the substrate placed in the substrate, This halogenated compound film, H radicals derived from H 2 gas or HN 3 gas generated by activating the H atom-containing gas introduced into the vacuum chamber with heat or plasma, NH x radicals derived from NH 3 gas, etc. It can be obtained by reacting with the radical.

原料ガス、ハロゲンガス及びH原子含有ガスとしては、上記したものをそのまま導入しても、NガスやArガス等の不活性ガスと共に導入してもよい。これらの反応体の量に関しては、ハロゲンガスは、原料ガスに対して、例えば、原料ガス5sccmに対して5sccm程度以下の流量で用い、また、H原子含有化合物ガスは、原料ガスに対してハロゲンガスに比べて多量、例えば、原料ガス5sccmに対して100〜1000sccm(H換算)の流量で用いることが望ましい。 The source gas, halogen gas, and H atom-containing gas may be introduced as they are or may be introduced together with an inert gas such as N 2 gas or Ar gas. Regarding the amount of these reactants, the halogen gas is used at a flow rate of about 5 sccm or less with respect to the source gas, for example, about 5 sccm with respect to the source gas, and the H atom-containing compound gas is halogen with respect to the source gas. It is desirable to use a larger amount than the gas, for example, at a flow rate of 100 to 1000 sccm (H 2 conversion) with respect to 5 sccm of the source gas.

上記二つの反応の温度は、反応が生じる温度であればよく、例えば、原料ガスとハロゲンガスとのハロゲン化反応では、一般に300℃以下、好ましくは150〜300℃、また、このハロゲン化反応の生成物とラジカルとの反応では、一般に300℃以下、好ましくは150〜300℃である。真空チャンバ内の圧力は最初のハロゲン化反応の場合1〜10Pa、次の成膜反応の場合1〜100Paであることが望ましい。   The temperature of the above two reactions may be any temperature at which the reaction occurs. For example, in the halogenation reaction between the source gas and the halogen gas, generally 300 ° C. or less, preferably 150 to 300 ° C. In the reaction between the product and the radical, it is generally 300 ° C. or lower, preferably 150 to 300 ° C. The pressure in the vacuum chamber is preferably 1 to 10 Pa for the first halogenation reaction and 1 to 100 Pa for the next film formation reaction.

配位化合物は、上記したように、タンタル元素(Ta)の周りにN=(R,R')(R及びR'は、炭素原子数1〜6個のアルキル基を示し、それぞれが同じ基であっても異なった基であってもよい)が配位したものである。このアルキル基は、例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル基であり、直鎖でも分岐したものでもよい。この配位化合物は、通常、Taの周りに4つから5つのN−(R,R')が配位した化合物である。   As described above, in the coordination compound, N = (R, R ′) (R and R ′ represent an alkyl group having 1 to 6 carbon atoms around the tantalum element (Ta), and each represents the same group. Or a different group) may be coordinated. This alkyl group is, for example, a methyl, ethyl, propyl, butyl, pentyl, hexyl group, and may be linear or branched. This coordination compound is usually a compound in which 4 to 5 N- (R, R ′) are coordinated around Ta.

上記本発明の方法は、CVD法に従って、成膜室である真空チャンバ内において、原料ガスとハロゲンガスとを導入してハロゲン化反応を行ってTaN(Hal)(R,R')化合物膜を基板上に形成し、次いで水素原子含有化合物ガスを導入して、熱又はプラズマにより生成されたラジカルと上記ハロゲン化生成物とを反応せしめて、タンタル窒化物膜を形成してもよいし、また、その後このプロセスを所望の回数繰り返してもよいし、或いはまた、上記ハロゲン化反応を所望の回数繰り返した後、ラジカルとの反応を行ってもよい。 According to the above-described method of the present invention, TaN x (Hal) y (R, R ′) z is performed by introducing a source gas and a halogen gas and performing a halogenation reaction in a vacuum chamber, which is a film forming chamber, according to the CVD method. A tantalum nitride film may be formed by forming a compound film on a substrate and then introducing a hydrogen-containing compound gas to react radicals generated by heat or plasma with the halogenated product. The process may then be repeated a desired number of times, or the halogenation reaction may be repeated a desired number of times before reacting with the radical.

本発明のタンタル窒化物の形成方法は、CVD法を実施できる成膜装置であれば特に制約なく実施できる。例えば、図1に示すプラズマCVD成膜装置を使用して本発明方法を実施する場合の一実施の形態について、以下説明する。   The tantalum nitride forming method of the present invention can be carried out without any limitation as long as it is a film forming apparatus capable of performing the CVD method. For example, an embodiment in which the method of the present invention is carried out using the plasma CVD film forming apparatus shown in FIG. 1 will be described below.

図1に示すプラズマCVD装置は、成膜室である真空チャンバ1からなり、この真空チャンバの壁壁には真空排気系2が接続されており、真空チャンバの上方部には真空チャンバと絶縁した状態で電極3が配置されている。この電極3に接続された高周波電源4が真空チャンバ1の外部に配置されており、電極に高周波電力を印加し、真空チャンバ内にプラズマを発生させることができるように構成されている。真空チャンバ1内には、その下方部にヒータ等の加熱手段5を内蔵する基板載置用ステージ6が、その基板載置面を電極面と互いに平行して対向するように配設されている。   The plasma CVD apparatus shown in FIG. 1 includes a vacuum chamber 1 that is a film forming chamber. A vacuum exhaust system 2 is connected to the wall of the vacuum chamber, and the vacuum chamber is insulated from the vacuum chamber above the vacuum chamber. The electrode 3 is arranged in a state. A high-frequency power source 4 connected to the electrode 3 is disposed outside the vacuum chamber 1 and is configured to apply high-frequency power to the electrode and generate plasma in the vacuum chamber. In the vacuum chamber 1, a substrate mounting stage 6 having a heating means 5 such as a heater built in a lower portion thereof is disposed so that the substrate mounting surface faces the electrode surface in parallel with each other. .

電極3の内部には、ガス室7が設けられ、電極の基板載置用ステージ6に対向する面にはシャワーノズルとして機能する複数の孔8が開口され、この孔からガスを真空チャンバ内へ導入し、基板表面へ供給できるように構成されており、この電極はシャワープレートとして機能する。   A gas chamber 7 is provided inside the electrode 3, and a plurality of holes 8 functioning as shower nozzles are opened on the surface of the electrode facing the substrate mounting stage 6, and gas is supplied into the vacuum chamber from these holes. The electrode can be introduced and supplied to the substrate surface, and this electrode functions as a shower plate.

ガス室7には、ガス導入系9の一端が接続され、このガス導入系の他端には原料ガスやハロゲンガスやH原子含有ガス等がそれぞれ充填された複数のガスボンベ(図示せず)が接続されている。この場合、ガス室7にガス導入系9が複数接続され、それぞれが、別個のガスボンベに接続されていてもよい。図示していないが、マスフローコントローラで各ガス流量を制御できるようになっている。   One end of a gas introduction system 9 is connected to the gas chamber 7, and a plurality of gas cylinders (not shown) each filled with a source gas, a halogen gas, a H atom-containing gas, etc. are connected to the other end of the gas introduction system. It is connected. In this case, a plurality of gas introduction systems 9 may be connected to the gas chamber 7 and each may be connected to a separate gas cylinder. Although not shown, each gas flow rate can be controlled by a mass flow controller.

原料ガスは、原料ガス充填ガスボンベを用いて導入することもできるが、その他に、上記タンタル含有有機金属化合物を加熱保温された容器内に収容し、バブリングガスとしてのAr等の不活性ガスをマスフローコントローラー等を介して容器内に供給して原料を昇華させ、このバブリングガスと共に原料ガスを真空チャンバ内へ導入するようにしてもよいし、気化器等を介して気化された原料ガスを真空チャンバ内へ導入してもよい。   The source gas can be introduced using a source gas filling gas cylinder. In addition, the tantalum-containing organometallic compound is contained in a heated and heat-insulated container, and an inert gas such as Ar as a bubbling gas is mass-flowed. The raw material gas may be sublimated by supplying it into the container through a controller or the like, and the raw material gas may be introduced into the vacuum chamber together with the bubbling gas, or the raw material gas vaporized through the vaporizer or the like It may be introduced inside.

図1に示すプラズマCVD成膜装置を用い、本発明のタンタル窒化物形成方法を実施するプロセスの一実施の形態は、以下の通りである。   An embodiment of a process for implementing the tantalum nitride forming method of the present invention using the plasma CVD film forming apparatus shown in FIG. 1 is as follows.

まず、真空排気系2により、真空チャンバー1内を所定の圧力(例えば、10−4〜10−5Pa)まで真空排気し、基板載置用ステージ6上に基板Sを載置した後、加熱手段5に通電して基板を所定の温度(例えば、150〜300℃)に加熱する。次いで、ガス導入系9からガス室7へ原料ガスとハロゲンガスとを導入し、孔8から基板S表面に向かって供給する。この基板Sとしては、特に制限はないが、例えば、公知の下地密着層が絶縁層上に設けられたものであって、その表面が脱ガス等の前処理をしてあるものであってもよい。 First, the inside of the vacuum chamber 1 is evacuated to a predetermined pressure (for example, 10 −4 to 10 −5 Pa) by the evacuation system 2, the substrate S is placed on the substrate placement stage 6, and then heated. The means 5 is energized to heat the substrate to a predetermined temperature (for example, 150 to 300 ° C.). Next, a source gas and a halogen gas are introduced from the gas introduction system 9 into the gas chamber 7 and supplied from the hole 8 toward the surface of the substrate S. Although there is no restriction | limiting in particular as this board | substrate S, For example, even if the well-known base adhesion layer is provided on the insulating layer, and the surface has carried out pretreatments, such as degassing, Good.

真空チャンバ1内の圧力が所定の圧力で安定した後、高周波電源4から、周波数27.12MHz、電力密度0.2W/cmの高周波交流電圧を出力させる。この高周波電源からの交流電圧が電極3に印加されると、カソードとして機能するように構成されている電極3とアノードとして機能するように構成されている基板ホルダー6上に載置された基板S表面との間に原料ガスとハロゲンガスとのプラズマが発生する。このプラズマ中で原料ガス及びハロゲンガスのラジカルが生成され、基板S表面上でハロゲン化反応が起こり、TaN(Hal)化合物膜が形成される。所定の膜厚を有するハロゲン化化合物膜が形成された後、高周波電源4の動作を停止し、原料ガスとハロゲンガスとの導入を停止する。 After the pressure in the vacuum chamber 1 is stabilized at a predetermined pressure, a high frequency AC voltage having a frequency of 27.12 MHz and a power density of 0.2 W / cm 2 is output from the high frequency power source 4. When an alternating voltage from the high frequency power source is applied to the electrode 3, the substrate 3 placed on the electrode holder 3 configured to function as an anode and the electrode 3 configured to function as a cathode. Plasma of source gas and halogen gas is generated between the surfaces. In this plasma, radicals of a source gas and a halogen gas are generated, and a halogenation reaction occurs on the surface of the substrate S to form a TaN x (Hal) y R z compound film. After the halogenated compound film having a predetermined thickness is formed, the operation of the high frequency power source 4 is stopped, and the introduction of the source gas and the halogen gas is stopped.

次いで、真空チャンバー1内へガス導入系9を介してH原子含有ガスを導入して活性化する。すなわち、上記したようにして、チャンバー内にプラズマを発生せしめ、このプラズマ中で発生したラジカルを、上記したようにして形成したハロゲン化化合物膜の表面に入射して反応せしめ、このハロゲン化化合物膜を分解し、膜中のTaに結合したNを切断除去し、かつ、残っているNに結合したR(R')基を切断除去して、タンタルリッチのタンタル窒化物膜を形成する。所定の膜厚を有するタンタル窒化物膜が形成されたら、高周波電源4の動作を停止し、H原子含有ガスの導入を停止し、基板Sを真空チャンバー1外へ搬出する。   Next, an H atom-containing gas is introduced into the vacuum chamber 1 through the gas introduction system 9 and activated. That is, as described above, plasma is generated in the chamber, and radicals generated in the plasma are incident on the surface of the halogenated compound film formed as described above to react with the halogenated compound film. , And the N bonded to Ta in the film is cut and removed, and the remaining R (R ′) group bonded to N is cut and removed to form a tantalum-rich tantalum nitride film. When the tantalum nitride film having a predetermined film thickness is formed, the operation of the high frequency power supply 4 is stopped, the introduction of the H atom-containing gas is stopped, and the substrate S is carried out of the vacuum chamber 1.

上記したようにして形成されたタンタル窒化物膜について、AESによって分析したところ、C2%以下、N33〜35%、Ta/N=1.9〜2.0であり、比抵抗は450μΩ・cm以下であった。   The tantalum nitride film formed as described above was analyzed by AES. Met.

上記したように、プラズマCVD法では、NHガスやH含有ガス等の反応ガスがプラズマ中で活性化されるので、比較的低温でも薄膜を形成することができる。また、熱CVD法によっても、公知のプロセス条件で上記と同じようにしてタンタルリッチのタンタル窒化物膜を形成することができる。 As described above, in the plasma CVD method, a reactive gas such as NH 3 gas or H-containing gas is activated in the plasma, so that a thin film can be formed even at a relatively low temperature. A tantalum-rich tantalum nitride film can also be formed by a thermal CVD method in the same manner as described above under known process conditions.

上記したようにして所望の膜厚を有するタンタル窒化物膜が形成された基板に対して、例えば、公知のスパッタ成膜法に従って、Ar等のスパッタリングガスを用い、ターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして上記タンタル窒化物膜の表面に金属薄膜、すなわち配線膜側密着層(バリア膜側下地層)を形成させてもよい。   For example, according to a known sputtering film forming method, a sputtering gas such as Ar is applied to a substrate on which a tantalum nitride film having a desired film thickness is formed as described above, and a voltage is applied to the target to generate plasma. And a target is sputtered to form a metal thin film, that is, a wiring film side adhesion layer (barrier film side base layer) on the surface of the tantalum nitride film.

以上の工程を経て基板S上に積層膜が形成され、次いで、上記配線膜側密着層の上に、公知の方法により配線膜(例えば、Cu配線膜)を形成する。   A laminated film is formed on the substrate S through the above steps, and then a wiring film (for example, a Cu wiring film) is formed on the wiring film side adhesion layer by a known method.

ところで、本発明のタンタル窒化物形成方法では、このバリア膜が形成される前に、基板表面に吸着しているガス等の不純物を除去する公知の脱ガス処理を行うことが必要であり、また、この基板上にバリア膜を形成した後に、最終的に例えばCuからなる配線膜が形成される。そのため、この成膜装置を、真空排気可能な搬送室を介して、少なくとも脱ガス室及び配線膜形成室に接続して、基板が搬送用ロボットによって搬送室から成膜装置と脱ガス室と配線膜形成室との間を搬送できるように構成された複合型配線膜形成装置とすれば、前処理から配線膜形成までの一連の工程をこの装置で実施できる。   By the way, in the tantalum nitride forming method of the present invention, it is necessary to perform a known degassing treatment for removing impurities such as gas adsorbed on the substrate surface before the barrier film is formed. After forming the barrier film on the substrate, a wiring film made of Cu, for example, is finally formed. Therefore, the film forming apparatus is connected to at least the degassing chamber and the wiring film forming chamber via a transfer chamber that can be evacuated, and the substrate is transferred from the transfer chamber to the film forming apparatus, the degassing chamber, and the wiring by the transfer robot. If a composite wiring film forming apparatus configured to be able to transport between the film forming chambers, a series of steps from pretreatment to wiring film formation can be performed with this apparatus.

上記したようにして形成されたタンタル窒化物膜に対して、スパッタリング法等のPVD法によりタンタル粒子を打ち込んで、さらにタンタルリッチのタンタル窒化物膜を形成することもできる。例えば、真空チャンバの上方で、基板ホルダーに対向する位置にターゲットが設置されている公知のスパッタリング装置を用いて実施できる。   A tantalum-rich tantalum nitride film can also be formed by implanting tantalum particles into the tantalum nitride film formed as described above by a PVD method such as sputtering. For example, it can be carried out by using a known sputtering apparatus in which a target is installed at a position facing the substrate holder above the vacuum chamber.

このようなスパッタリング装置の場合、ターゲットには、その表面をスパッタリングし、ターゲット構成物質の粒子を放出させるプラズマを発生させるための電圧印加装置が接続されている。ここで用いるターゲットは、上記原料ガスに含まれる金属の構成元素(Ta)を主成分とするもので構成されており、また、電圧印加装置は、高周波発生装置と、ターゲットに接続された電極とから構成されている。スパッタリングガスは、公知の不活性ガス、例えばアルゴンガス、キセノンガス等であればよい。   In the case of such a sputtering apparatus, a voltage application apparatus is connected to the target for generating plasma for sputtering the surface of the target and releasing particles of the target constituent material. The target used here is composed mainly of a metal constituent element (Ta) contained in the source gas, and the voltage application device includes a high-frequency generator, an electrode connected to the target, It is composed of The sputtering gas may be a known inert gas such as argon gas or xenon gas.

上記のようにして得られたタンタル窒化物膜であるバリア膜の形成された基板Sをスパッタ室内に載置した後に、スパッタ室内へAr等の不活性ガスを導入して放電させ、原料ガスの構成成分であるタンタルを主構成成分とするターゲットをスパッタリングし、基板上に形成された薄膜中にスパッタリング粒子であるタンタル粒子を入射させるようする。このように、スパッタリングによって、ターゲットから基板表面の薄膜中にタンタルを入射させることができるので、バリア膜中のタンタルの含有率をさらに増加せしめることができ、所望の低抵抗のタンタルリッチのタンタル窒化物膜を得ることができる。なお、原料ガスが有機タンタル化合物であるので、上記スパッタリングによって構成元素(タンタル)が基板の表面に入射することにより、分解が促進されてCやN等の不純物がバリア膜からはじき出されて、不純物の少ない低抵抗のバリア膜を得ることができる。   After placing the substrate S on which the barrier film, which is a tantalum nitride film obtained as described above, is placed in the sputtering chamber, an inert gas such as Ar is introduced into the sputtering chamber and discharged, and the source gas A target having tantalum as a main component as a main component is sputtered so that tantalum particles as sputtering particles are incident on a thin film formed on the substrate. In this way, since tantalum can be incident from the target into the thin film on the substrate surface by sputtering, the tantalum content in the barrier film can be further increased, and the desired low resistance tantalum-rich tantalum nitride can be obtained. A material film can be obtained. Since the source gas is an organic tantalum compound, when the constituent element (tantalum) is incident on the surface of the substrate by the sputtering, decomposition is accelerated and impurities such as C and N are expelled from the barrier film. A low-resistance barrier film with a small amount can be obtained.

このスパッタリングは、タンタル粒子をタンタル窒化物膜中に打ち込んで、CやNをスパッタ除去し、この膜の改質を行うために行われるのであって、タンタル膜を積層するのではないので、タンタル膜が形成されない条件、すなわちタンタル粒子によるエッチングができる条件で行うことが必要である。そのため、例えば、DCパワーとRFパワーとを調整して、DCパワーが低く、かつ、RFパワーが高くなるようにする必要がある。例えば、DCパワーを5kW以下に設定し、RFパワーを高く、例えば400〜800Wとすることで、タンタル膜が形成されない条件が達成できる。RFパワーはDCパワーに依存するので、DCパワーとRFパワーを適宜調整することにより、膜の改質程度を調整できる。また、スパッタリング温度は、通常のスパッタリング温度でよく、例えばタンタル窒化物膜の形成温度と同一温度でよい。   This sputtering is performed to implant tantalum particles into a tantalum nitride film, to sputter and remove C and N, and to modify this film, not to stack a tantalum film. It is necessary to carry out under conditions that do not form a film, that is, conditions that allow etching with tantalum particles. Therefore, for example, it is necessary to adjust the DC power and the RF power so that the DC power is low and the RF power is high. For example, by setting the DC power to 5 kW or less and the RF power high, for example, 400 to 800 W, a condition in which a tantalum film is not formed can be achieved. Since the RF power depends on the DC power, the degree of film modification can be adjusted by appropriately adjusting the DC power and the RF power. The sputtering temperature may be a normal sputtering temperature, for example, the same temperature as the tantalum nitride film formation temperature.

上記したようにして所望の膜厚を有するバリア膜が形成された基板Sに対して、例えば、公知のスパッタ成膜法に従って、Ar等のスパッタリングガスを導入し、電圧印加装置からターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして上記バリア膜の表面に金属薄膜、すなわち配線膜側密着層(バリア膜側下地層)を形成させてもよい。   A sputtering gas such as Ar is introduced into the substrate S on which the barrier film having a desired film thickness is formed as described above, for example, according to a known sputtering film forming method, and a voltage is applied from the voltage application device to the target. Plasma may be generated by application, and a target may be sputtered to form a metal thin film, that is, a wiring film side adhesion layer (barrier film side base layer) on the surface of the barrier film.

以上の工程を経て基板S上に積層膜が形成され、次いで、上記配線膜側密着層の上に、公知の方法で配線膜を形成する。   A laminated film is formed on the substrate S through the above steps, and then a wiring film is formed on the wiring film side adhesion layer by a known method.

図2は、図1に示す成膜装置を備えた複合型配線膜形成装置の構成図を模式的に示す。   FIG. 2 schematically shows a configuration diagram of a composite wiring film forming apparatus including the film forming apparatus shown in FIG.

この複合型配線膜形成装置100は、前処理部101と成膜処理部103とこれらをつなぐ中継部102とから構成されている。いずれも、処理を行う前には、内部を真空雰囲気にしておく。   The composite wiring film forming apparatus 100 includes a preprocessing unit 101, a film forming processing unit 103, and a relay unit 102 that connects them. In any case, the inside is kept in a vacuum atmosphere before the treatment.

まず、前処理部101では、搬入室101aに配置された処理前基板を前処理部側搬出入ロボット101bによって脱ガス室101cに搬入する。この脱ガス室101cで処理前基板を加熱し、表面の水分等を蒸発させて脱ガス処理を行う。次に、この脱ガス処理された基板を搬出入ロボット101bによって還元処理室101dに搬入する。この還元処理室101d内では、上記基板を加熱して水素ガス等の還元性ガスによって下層配線のメタル酸化物を除去するアニール処理を行う。   First, in the pretreatment unit 101, a pretreatment substrate disposed in the carry-in chamber 101a is carried into the degassing chamber 101c by the pretreatment unit side carry-in / out robot 101b. The substrate before processing is heated in the degassing chamber 101c to evaporate moisture on the surface and perform degassing processing. Next, the degassed substrate is carried into the reduction treatment chamber 101d by the carry-in / out robot 101b. In the reduction treatment chamber 101d, an annealing process is performed in which the substrate is heated and the metal oxide in the lower layer wiring is removed by a reducing gas such as hydrogen gas.

アニール処理の終了後、搬出入ロボット101bによって還元処理室101dから上記基板を取り出し、中継部102に搬入する。搬入された基板は、中継部102で成膜処理部103の成膜処理部側搬出入ロボット103aに受け渡される。   After the annealing process, the substrate is taken out from the reduction processing chamber 101d by the carry-in / out robot 101b and carried into the relay unit 102. The loaded substrate is transferred by the relay unit 102 to the film formation processing unit side carry-in / out robot 103 a of the film formation processing unit 103.

受け渡された上記基板は、搬出入ロボット103aによって成膜室103bに搬入される。この成膜室103bは、上記成膜装置1に相当する。成膜室103bでバリア膜及び密着層が形成された積層膜は、搬出入ロボット103aによって成膜室103bから搬出され、配線膜室103cに搬入される。ここで、上記バリア膜(バリア膜上に密着層が形成されている場合は、密着層)の上に配線膜が形成される。配線膜が形成された後、この基板を搬出入ロボット103aによって配線膜室103cから搬出室103dに移動し、搬出する。   The transferred substrate is carried into the film forming chamber 103b by the carry-in / out robot 103a. The film forming chamber 103b corresponds to the film forming apparatus 1 described above. The laminated film on which the barrier film and the adhesion layer are formed in the film formation chamber 103b is unloaded from the film formation chamber 103b by the loading / unloading robot 103a and loaded into the wiring film chamber 103c. Here, a wiring film is formed on the barrier film (in the case where an adhesion layer is formed on the barrier film). After the wiring film is formed, the substrate is moved from the wiring film chamber 103c to the carry-out chamber 103d by the carry-in / out robot 103a and carried out.

以上の通り、上記バリア膜形成の前後の工程、すなわち、脱ガス工程と配線膜形成工程とを一連で行う上記複合型配線膜形成装置100の構成をとれば、作業効率が向上する。   As described above, if the configuration of the composite wiring film forming apparatus 100 that performs a series of steps before and after the barrier film formation, that is, a degassing process and a wiring film forming process, the working efficiency is improved.

なお、上記複合型配線膜形成装置100の構成は、前処理部101に脱ガス室101cと還元処理室101dとを各々1室ずつ設け、成膜処理部103に成膜室103bと配線膜室103cとを各々1室ずつ設けたが、この構成に限定されるものではない。   The composite wiring film forming apparatus 100 has a configuration in which the pretreatment unit 101 is provided with a degassing chamber 101c and a reduction processing chamber 101d, and the film forming unit 103 is provided with a film forming chamber 103b and a wiring film chamber. 103c is provided for each chamber, but the present invention is not limited to this configuration.

従って、例えば、前処理部101及び成膜処理部103の形状を多角形状にし、各々の面に上記脱ガス室101c及び還元処理室101、並びに成膜室103b及び配線膜室103cを複数個設ければ、さらに処理能力は向上する。   Therefore, for example, the pretreatment unit 101 and the film forming unit 103 are formed in polygonal shapes, and a plurality of the degassing chamber 101c and the reduction processing chamber 101, the film forming chamber 103b, and the wiring film chamber 103c are provided on each surface. If so, the processing capability is further improved.

本実施例では、図1に示す成膜装置1を用い、原料ガスとしてペンタジメチルアミノタンタル(MO)ガス、ハロゲンガスとしてフッ素ガス及び反応ガスとしてNHガスを用いてタンタル窒化物膜を形成した。 In this example, a tantalum nitride film was formed by using the film forming apparatus 1 shown in FIG. 1 using pentadimethylamino tantalum (MO) gas as a source gas, fluorine gas as a halogen gas, and NH 3 gas as a reaction gas. .

公知の方法に従って、SiO絶縁膜を有する基板Sの表面の脱ガス前処理工程を実施した後、真空排気系2によって10−5Paまで真空排気された真空チャンバ1内に基板Sを搬入した。この基板としては、特に制限はないが、例えば、通常のスパッタ成膜法に従って、Arスパッタリングガスを用い、Taを主構成成分として有するターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして表面に基板側密着層を形成させた基板を用いてもよい。 After performing a degassing pretreatment process on the surface of the substrate S having the SiO 2 insulating film according to a known method, the substrate S was carried into the vacuum chamber 1 evacuated to 10 −5 Pa by the evacuation system 2. . The substrate is not particularly limited. For example, according to a normal sputtering film forming method, Ar sputtering gas is used, a voltage is applied to a target having Ta as a main component to generate plasma, and the target is sputtered. Alternatively, a substrate having a substrate-side adhesion layer formed on the surface may be used.

真空チャンバ1内に基板Sを搬入し、基板載置用ステージ6上に基板Sを載置した後、この基板をヒーター5で250℃に加熱し、ガス導入系9からガス室7へ上記原料ガスを5sccm、上記ハロゲンガスを5sccm導入し、孔8から基板S表面に向かって供給した。   After the substrate S is carried into the vacuum chamber 1 and the substrate S is mounted on the substrate mounting stage 6, the substrate is heated to 250 ° C. by the heater 5, and the raw material is transferred from the gas introduction system 9 to the gas chamber 7. 5 sccm of gas and 5 sccm of the halogen gas were introduced and supplied from the hole 8 toward the surface of the substrate S.

真空チャンバ1内の圧力が所定の圧力で安定した後、高周波電源4から、周波数27.12MHz、電力密度0.2W/cmの高周波交流電圧を出力させ、電極3と基板S表面との間に原料ガスとハロゲンガスとのプラズマを発生せしめた。このプラズマ中で原料ガス及びハロゲンガスのラジカルを生成せしめて、基板S表面上でのハロゲン化反応によって、TaN(Hal)化合物膜を形成した。所定の膜厚を有するハロゲン化化合物膜を形成した後、高周波電源4の動作を停止し、原料ガスとハロゲンガスとの導入を停止した。 After the pressure in the vacuum chamber 1 is stabilized at a predetermined pressure, a high-frequency AC voltage having a frequency of 27.12 MHz and a power density of 0.2 W / cm 2 is output from the high-frequency power source 4, and between the electrode 3 and the substrate S surface. A plasma of source gas and halogen gas was generated. Source gas and halogen gas radicals were generated in this plasma, and a TaN x (Hal) y R z compound film was formed by a halogenation reaction on the surface of the substrate S. After the halogenated compound film having a predetermined thickness was formed, the operation of the high frequency power source 4 was stopped, and the introduction of the source gas and the halogen gas was stopped.

次いで、真空チャンバー1内へガス導入系9を介して上記H原子含有ガスを導入し、上記したようにして、チャンバー内にプラズマを発生せしめ、このプラズマ中で発生したラジカルを、上記したようにして形成したハロゲン化化合物膜の表面に入射して反応せしめた。この反応により、このハロゲン化化合物膜中のTa−N結合が切断されNが除去され、かつ、Nに結合したR(R')基が切断除去された。その結果、タンタルリッチのタンタル窒化物膜が形成された。所定の膜厚を有するタンタル窒化物膜を形成した後、高周波電源4の動作を停止し、H原子含有ガスの導入を停止し、基板Sを真空チャンバー1外へ搬出した。   Next, the H atom-containing gas is introduced into the vacuum chamber 1 through the gas introduction system 9, and plasma is generated in the chamber as described above, and radicals generated in the plasma are generated as described above. It was incident on the surface of the halogenated compound film formed and reacted. By this reaction, the Ta—N bond in this halogenated compound film was cleaved to remove N, and the R (R ′) group bonded to N was cleaved and removed. As a result, a tantalum-rich tantalum nitride film was formed. After forming a tantalum nitride film having a predetermined film thickness, the operation of the high frequency power supply 4 was stopped, the introduction of the H atom-containing gas was stopped, and the substrate S was carried out of the vacuum chamber 1.

かくして得られたバリア膜の組成は、Ta/N=1.9であり、C含有量は2%以下であり、N含有量は33%であった。   The composition of the barrier film thus obtained was Ta / N = 1.9, the C content was 2% or less, and the N content was 33%.

なお、比較のために、上記原料ガス(MOガス)とハロゲンガス(フッ素ガス)とを用いた場合、及び上記原料ガスと反応ガス(H:但し、反応ガス由来のHラジカル照射による処理時間を、3秒、5秒、10秒として行った)とを用いた場合について、上記方法に準じて成膜した。 For comparison, the raw material gas (MO gas) and the halogen gas (fluorine gas) are used, and the raw material gas and the reactive gas (H 2, where the processing time by irradiation with H radicals derived from the reactive gas is used. Was carried out for 3 seconds, 5 seconds, and 10 seconds).

上記方法で得られたそれぞれの薄膜について、比抵抗ρ(μΩ・cm)を算出した。この比抵抗は、4探針プローブ法でシート抵抗(Rs)を測定し、SEMで膜厚(T)を測定して、式:ρ=Rs・Tに基づいて算出したものである。   The specific resistance ρ (μΩ · cm) was calculated for each thin film obtained by the above method. This specific resistance is calculated based on the formula: ρ = Rs · T by measuring the sheet resistance (Rs) by the four-probe probe method and measuring the film thickness (T) by the SEM.

原料ガス(MOガス)をフッ素ガスで変換(ハロゲン化)した後に反応ガス(Hラジカルを10秒間照射して成膜した場合には、MOガスとフッ素ガスとを用いて成膜した場合(10μΩ・cm)、MOガスとフッ素ガスと反応ガス(Hラジカルを3秒間照射)とを用いて成膜した場合(3×10μΩ・cm)、及びMOガスとフッ素ガスと反応ガス(Hラジカルを5秒間照射)とを用いて成膜した場合(4800μΩ・cm)よりも低い比抵抗(450μΩ・cm)が得られた。 After the source gas (MO gas) is converted (halogenated) with fluorine gas, the reaction gas (when the film is formed by irradiation with H radicals for 10 seconds, the film is formed using MO gas and fluorine gas (10 6 μΩ · cm), MO film, fluorine gas and reactive gas (H radical irradiation for 3 seconds) (3 × 10 5 μΩ · cm), and MO gas, fluorine gas and reactive gas ( The specific resistance (450 μΩ · cm) was lower than that (4800 μΩ · cm).

このことから、MOガスとハロゲンガスとの成膜で得られる膜はハロゲンを含むため、高抵抗の膜が生成され、この膜をHラジカルで処理していくと、その処理時間に応じて比抵抗が変化し、処理時間が長くなるに従い比抵抗が下がっていくことが分かる。この結果から、Hラジカル処理を好ましくは10秒以上で行うことで、効果的にハロゲン、R,R'基及びNが除去されることが分かる。   From this, since the film obtained by forming the MO gas and the halogen gas contains halogen, a high-resistance film is formed. When this film is processed with H radicals, the ratio is increased according to the processing time. It can be seen that the specific resistance decreases as the resistance changes and the processing time increases. From this result, it is understood that halogen, R, R ′ group and N are effectively removed by performing H radical treatment preferably for 10 seconds or more.

上記したように、MOガスとハロゲンガスとH原子含有ガス(ラジカル)とを用いた成膜では、ハロゲンにより原料ガスのTa−N−(R,R')結合のNとRとの結合が一部切断されて選択的にRが除去されるが、次いでHラジカルの照射により高抵抗のハロゲン化Ta系化合物におけるTaとNとの結合、Nとハロゲン原子との結合及び残っているNとR,R'基(アルキル基)との結合が切断されて、ハロゲン原子、C及びNが除去されることにより、C、Nの含有割合が減少し、その結果、形成された膜組成がタンタルリッチとなり、膜の比抵抗が下がったことを示しているものと考えられる。   As described above, in the film formation using the MO gas, the halogen gas, and the H atom-containing gas (radical), the bond between N and R of the Ta—N— (R, R ′) bond of the source gas is caused by the halogen. R is selectively removed by partial cleavage, and then, by irradiation with H radicals, bonds between Ta and N, bonds between N and halogen atoms, and remaining N and N in a high-resistance halogenated Ta compound. The bond with the R, R ′ group (alkyl group) is cleaved and the halogen atoms, C and N are removed, so that the content ratio of C and N is reduced. As a result, the formed film composition is tantalum. It is considered that the film becomes rich and indicates that the specific resistance of the film has decreased.

上記したようにして所望の膜厚を有するバリア膜が得られた基板に対し、例えば、公知のスパッタ成膜方法に従って、Arスパッタリングガスを用い、ターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして上記バリア膜の表面に金属薄膜、すなわち下地層としての配線膜側密着層を形成させてもよい(S6)。   For the substrate on which a barrier film having a desired film thickness is obtained as described above, a plasma is generated by applying a voltage to the target using an Ar sputtering gas, for example, according to a known sputtering film forming method, A metal thin film, that is, a wiring film side adhesion layer as an underlayer may be formed on the surface of the barrier film by sputtering (S6).

以上の工程を経て積層膜が形成された基板S上に、すなわち上記バリア膜側密着層の上に、公知のプロセス条件に従ってCu配線膜を形成した。各膜同士の接着性は優れていることが確認された。   A Cu wiring film was formed on the substrate S on which the laminated film was formed through the above steps, that is, on the barrier film-side adhesion layer according to known process conditions. It was confirmed that the adhesion between the films was excellent.

本実施例では、実施例1で得られたタンタル窒化物膜に対して、公知のスパッタ装置を用いて、スパッタリングによりタンタル粒子を打ち込んで、さらにタンタルリッチのタンタル窒化物膜を形成した。   In this example, a tantalum-rich tantalum nitride film was formed by implanting tantalum particles into the tantalum nitride film obtained in Example 1 by sputtering using a known sputtering apparatus.

スパッタ装置内にArスパッタリングガスを導入し、電圧印加装置からターゲットに電圧を印加して放電させて、プラズマを発生させ、タンタルを主構成成分とするターゲットをスパッタリングし、基板S上に形成された薄膜中にスパッタリング粒子であるタンタル粒子を入射させるようにした。このスパッタリング条件は、DCパワー:5kW、RFパワー:600Wとした。また、スパッタリング温度は、−30〜150℃で行った。   An Ar sputtering gas was introduced into the sputtering apparatus, a voltage was applied to the target from the voltage application apparatus to cause discharge, plasma was generated, and a target containing tantalum as a main component was sputtered to form on the substrate S. Tantalum particles as sputtering particles were allowed to enter the thin film. The sputtering conditions were DC power: 5 kW and RF power: 600 W. Moreover, sputtering temperature was -30-150 degreeC.

上記タンタル粒子を打ち込むスパッタリングにより、バリア膜中のタンタルの含有率をさらに増加せしめることができ、所望の低抵抗のタンタルリッチのタンタル窒化物膜を得ることができた。なお、タンタルが基板Sの表面薄膜中に入射することにより、薄膜の分解が促進されてCやN等の不純物が膜からはじき出されて、不純物の少ない低抵抗のバリア膜を得ることができた。かくして得られた薄膜は、Ta/N=3.4、C及びNの含有量:C=0.1%以下、N=23%、及び得られた薄膜の比抵抗:250μΩ・cmであった。   By sputtering in which the tantalum particles are implanted, the content of tantalum in the barrier film can be further increased, and a desired low-resistance tantalum-rich tantalum nitride film can be obtained. When tantalum is incident on the surface thin film of the substrate S, decomposition of the thin film is promoted and impurities such as C and N are ejected from the film, so that a low resistance barrier film with few impurities can be obtained. . The thin film thus obtained had Ta / N = 3.4, C and N content: C = 0.1% or less, N = 23%, and the specific resistance of the obtained thin film: 250 μΩ · cm. .

上記のようにして所望の膜厚の改質タンタル窒化物膜を形成した後、例えば、Arスパッタリングガスを導入し、公知のスパッタ成膜プロセス条件に従って電圧印加装置からターゲットに電圧を印加してプラズマを発生させ、ターゲットをスパッタリングして上記バリア膜の表面に金属薄膜、すなわち下地層としての配線膜側密着層を形成させてもよい。   After the modified tantalum nitride film having a desired film thickness is formed as described above, for example, Ar sputtering gas is introduced, and a voltage is applied from the voltage application device to the target in accordance with known sputtering film formation process conditions. And sputtering a target to form a metal thin film on the surface of the barrier film, that is, a wiring film side adhesion layer as an underlayer.

以上の工程を経て積層膜が形成された基板S上に、すなわち上記配線膜側密着層の上に、公知のプロセス条件に従ってCu配線膜を形成した。各膜同士の接着性は優れていることが確認された。   A Cu wiring film was formed on the substrate S on which the laminated film was formed through the above steps, that is, on the wiring film-side adhesion layer according to known process conditions. It was confirmed that the adhesion between the films was excellent.

原料ガスとして、ペンタジメチルアミノタンタルの代わりにtert-アミルイミドトリス(ジメチルアミノ)タンタルを用いたこと以外は、実施例1に準じて成膜プロセスを実施したところ、タンタルリッチの低抵抗のタンタル窒化物膜が得られた。得られた膜において、Ta/N=1.8、C含有量3%、N含有量35.7%、比抵抗550μΩ・cmであった。   Except that tert-amylimidotris (dimethylamino) tantalum was used in place of pentadimethylaminotantalum as the source gas, the film forming process was carried out according to Example 1, and tantalum-rich, low-resistance tantalum nitride A material film was obtained. In the obtained film, Ta / N = 1.8, C content 3%, N content 35.7%, specific resistance 550 μΩ · cm.

ハロゲンガスとして、フッ素ガスの代わりに塩素ガス、臭素ガス又はヨウ素ガスを用いたこと、また、Hラジカルを生成するガスとして、Hガスを用いたこと以外は、実施例1に準じて成膜プロセスを実施したところ、実施例1と同様な結果が得られた。 Film formation according to Example 1 except that chlorine gas, bromine gas or iodine gas was used as the halogen gas instead of fluorine gas, and H 2 gas was used as the gas for generating H radicals. When the process was carried out, the same results as in Example 1 were obtained.

本発明によれば、CVD法に従って、C、N含有量が低く、Ta/N組成比が高く、Cu膜との密着性が確保されるバリア膜として有用な低抵抗のタンタル窒化物膜を形成することができる。そのため、本発明は、半導体デバイス分野の薄膜形成プロセスに適用可能である。   According to the present invention, a low resistance tantalum nitride film which is useful as a barrier film having a low C and N content, a high Ta / N composition ratio and ensuring adhesion with a Cu film is formed according to the CVD method. can do. Therefore, the present invention is applicable to a thin film formation process in the semiconductor device field.

本発明の成膜方法を実施するための成膜装置の一例を模式的に示す構成図。The block diagram which shows typically an example of the film-forming apparatus for enforcing the film-forming method of this invention. 本発明の成膜方法を実施するための成膜装置を組み込んだ複合型配線膜形成装置の模式的構成図。The typical block diagram of the composite type wiring film forming apparatus incorporating the film-forming apparatus for enforcing the film-forming method of this invention.

符号の説明Explanation of symbols

1 真空チャンバ 2 真空排気系
3 電極 4 高周波電源
5 加熱手段 6 基板載置用ステージ
7 ガス室 8 孔
9 ガス導入系 S 基板
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Vacuum exhaust system 3 Electrode 4 High frequency power supply 5 Heating means 6 Substrate mounting stage 7 Gas chamber 8 Hole 9 Gas introduction system S Substrate

Claims (9)

CVD法に従って、成膜室内に、タンタル元素(Ta)の周りにN=(R,R')(R及びR'は、炭素原子数1〜6個のアルキル基を示し、それぞれが同じ基であっても異なった基であってもよい)が配位した配位化合物からなる原料ガス及びハロゲンガスを同時に導入して、基板上でTaN(Hal)(R,R')化合物(式中、Halは、ハロゲン原子を表す)からなるハロゲン化化合物膜を形成し、次いでH原子含有ガスを導入して前記ハロゲン化化合物膜と反応させて、この膜中のTaに結合したNを切断除去し、かつ、Nに結合しているハロゲン原子やR(R')基を切断除去し、タンタルリッチのタンタル窒化物膜を形成することを特徴とするタンタル窒化物膜の形成方法。 According to the CVD method, N = (R, R ′) (R and R ′ are alkyl groups having 1 to 6 carbon atoms, and each of them is the same group, around the tantalum element (Ta). A source gas composed of a coordination compound coordinated with any of these groups (which may be different groups) and a halogen gas are simultaneously introduced, and a TaN x (Hal) y (R, R ′) z compound ( (Wherein Hal represents a halogen atom) is formed, and then an H atom-containing gas is introduced to react with the halogenated compound film, and N bonded to Ta in this film is formed. A method of forming a tantalum nitride film, comprising cutting off and removing a halogen atom or R (R ′) group bonded to N to form a tantalum-rich tantalum nitride film. 前記H原子含有ガスが、成膜室内で、熱又はプラズマによりラジカルに変換され、このラジカルとハロゲン化化合物とを反応させてタンタルリッチのタンタル窒化物膜を形成することを特徴とする請求項1記載のタンタル窒化物膜の形成方法。 2. The tantalum-rich tantalum nitride film is formed by converting the H atom-containing gas into radicals by heat or plasma in a film forming chamber and reacting the radicals with a halogenated compound. The tantalum nitride film forming method described. 前記原料ガスが、ペンタジメチルアミノタンタル、tert-アミルイミドトリス(ジメチルアミド)タンタル、ペンタジエチルアミノタンタル、tert-ブチルイミドトリス(ジメチルアミド)タンタル、tert-ブチルイミドトリス(エチルメチルアミド)タンタル、Ta(N(CH))(NCHCH)、TaX(X:ハロゲン原子)から選ばれた少なくとも一種の配位化合物のガスであることを特徴とする請求項1又は2に記載のタンタル窒化物膜の形成方法。 The source gas is pentadimethylamino tantalum, tert-amylimidotris (dimethylamido) tantalum, pentadiethylaminotantalum, tert-butylimidotris (dimethylamido) tantalum, tert-butylimidotris (ethylmethylamido) tantalum, Ta ( The gas of at least one coordination compound selected from N (CH 3 ) 2 ) 3 (NCH 3 CH 2 ) 2 and TaX 5 (X: halogen atom). Of forming a tantalum nitride film. 前記ハロゲンガスが、フッ素、塩素、臭素、ヨウ素から選ばれた少なくとも一種のガスであることを特徴とする請求項1〜3のいずれかに記載のタンタル窒化物膜の形成方法。 The method for forming a tantalum nitride film according to claim 1, wherein the halogen gas is at least one gas selected from fluorine, chlorine, bromine, and iodine. 前記H原子含有ガスが、H、NH、SiHから選ばれた少なくとも一種のガスであることを特徴とする請求項1〜4のいずれかに記載のタンタル窒化物膜の形成方法。 5. The method for forming a tantalum nitride film according to claim 1, wherein the H atom-containing gas is at least one gas selected from H 2 , NH 3 , and SiH 4 . 前記タンタル窒化物膜において、タンタルと窒素との組成比が、Ta/N≧2.0を満足する膜であることを特徴とする請求項1〜5のいずれかに記載のタンタル窒化物膜の形成方法。 6. The tantalum nitride film according to claim 1, wherein the tantalum nitride film has a composition ratio of tantalum and nitrogen satisfying Ta / N ≧ 2.0. Forming method. 請求項1〜6のいずれかに記載の形成方法により得られたタンタル窒化物膜に対して、タンタルを主構成成分とするターゲットを用いるスパッタリングにより、タンタル粒子を入射させることを特徴とするタンタル窒化物膜の形成方法。 Tantalum nitride is incident on the tantalum nitride film obtained by the forming method according to claim 1 by sputtering using a target containing tantalum as a main constituent. Method for forming a material film. 前記スパッタリングが、DCパワーとRFパワーとを調整して、DCパワーが低く、かつ、RFパワーが高くなるようにして行われることを特徴とする請求項7記載のタンタル窒化物膜の形成方法。 8. The method of forming a tantalum nitride film according to claim 7, wherein the sputtering is performed by adjusting DC power and RF power so that the DC power is low and the RF power is high. 前記タンタル粒子を入射させたタンタル窒化物膜において、タンタルと窒素との組成比が、Ta/N≧2.0を満足する膜であることを特徴とする請求項7又は8に記載のタンタル窒化物膜の形成方法。 The tantalum nitride film according to claim 7 or 8, wherein the tantalum nitride film in which the tantalum particles are incident is a film in which a composition ratio of tantalum and nitrogen satisfies Ta / N ≧ 2.0. Method for forming a material film.
JP2005059086A 2005-03-03 2005-03-03 Method for forming tantalum nitride film Active JP4931174B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005059086A JP4931174B2 (en) 2005-03-03 2005-03-03 Method for forming tantalum nitride film
TW095106850A TWI410517B (en) 2005-03-03 2006-03-01 Method for forming tantalum nitride film
CN2006800014756A CN101091005B (en) 2005-03-03 2006-03-03 Method for forming tantalum nitride film
US11/885,347 US8158197B2 (en) 2005-03-03 2006-03-03 Method for forming tantalum nitride film
PCT/JP2006/304073 WO2006093263A1 (en) 2005-03-03 2006-03-03 Method for forming tantalum nitride film
KR1020077012312A KR100911643B1 (en) 2005-03-03 2006-03-03 Method for forming tantalum nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059086A JP4931174B2 (en) 2005-03-03 2005-03-03 Method for forming tantalum nitride film

Publications (3)

Publication Number Publication Date
JP2006241525A true JP2006241525A (en) 2006-09-14
JP2006241525A5 JP2006241525A5 (en) 2008-04-24
JP4931174B2 JP4931174B2 (en) 2012-05-16

Family

ID=36941293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059086A Active JP4931174B2 (en) 2005-03-03 2005-03-03 Method for forming tantalum nitride film

Country Status (5)

Country Link
JP (1) JP4931174B2 (en)
KR (1) KR100911643B1 (en)
CN (1) CN101091005B (en)
TW (1) TWI410517B (en)
WO (1) WO2006093263A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045831B1 (en) * 2007-10-31 2011-07-01 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 Semiconductor device and manufacturing method thereof
WO2011162255A1 (en) * 2010-06-22 2011-12-29 株式会社アルバック Process for production of barrier film, and process for production of metal wiring film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135155A (en) * 1996-10-16 1998-05-22 Samsung Electron Co Ltd Method of forming barrier metal film
JP2003342732A (en) * 2002-05-20 2003-12-03 Mitsubishi Materials Corp Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2005203569A (en) * 2004-01-15 2005-07-28 Semiconductor Leading Edge Technologies Inc Fabrication process of semiconductor device and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989999A (en) * 1994-11-14 1999-11-23 Applied Materials, Inc. Construction of a tantalum nitride film on a semiconductor wafer
US6265311B1 (en) * 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
US6410432B1 (en) * 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
US7098131B2 (en) * 2001-07-19 2006-08-29 Samsung Electronics Co., Ltd. Methods for forming atomic layers and thin films including tantalum nitride and devices including the same
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
TW200411923A (en) * 2002-07-19 2004-07-01 Asml Us Inc In-situ formation of metal insulator metal capacitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135155A (en) * 1996-10-16 1998-05-22 Samsung Electron Co Ltd Method of forming barrier metal film
JP2003342732A (en) * 2002-05-20 2003-12-03 Mitsubishi Materials Corp Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2005203569A (en) * 2004-01-15 2005-07-28 Semiconductor Leading Edge Technologies Inc Fabrication process of semiconductor device and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045831B1 (en) * 2007-10-31 2011-07-01 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 Semiconductor device and manufacturing method thereof
WO2011162255A1 (en) * 2010-06-22 2011-12-29 株式会社アルバック Process for production of barrier film, and process for production of metal wiring film
JPWO2011162255A1 (en) * 2010-06-22 2013-08-22 株式会社アルバック Barrier film formation method and metal wiring film formation method

Also Published As

Publication number Publication date
WO2006093263A1 (en) 2006-09-08
TW200641176A (en) 2006-12-01
TWI410517B (en) 2013-10-01
KR100911643B1 (en) 2009-08-10
CN101091005A (en) 2007-12-19
KR20070085593A (en) 2007-08-27
CN101091005B (en) 2010-05-19
JP4931174B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4931171B2 (en) Method for forming tantalum nitride film
JP4931170B2 (en) Method for forming tantalum nitride film
JP4931169B2 (en) Method for forming tantalum nitride film
JP4931174B2 (en) Method for forming tantalum nitride film
JP4931173B2 (en) Method for forming tantalum nitride film
JP4931172B2 (en) Method for forming tantalum nitride film
US8158197B2 (en) Method for forming tantalum nitride film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4931174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250