JP2006241185A - 多機能性皮膜形成用コーティング組成物 - Google Patents

多機能性皮膜形成用コーティング組成物 Download PDF

Info

Publication number
JP2006241185A
JP2006241185A JP2005054694A JP2005054694A JP2006241185A JP 2006241185 A JP2006241185 A JP 2006241185A JP 2005054694 A JP2005054694 A JP 2005054694A JP 2005054694 A JP2005054694 A JP 2005054694A JP 2006241185 A JP2006241185 A JP 2006241185A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
forming
coating composition
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005054694A
Other languages
English (en)
Other versions
JP4623503B2 (ja
Inventor
Masahiro Furuya
正裕 古谷
Moriyasu Tokiwai
守泰 常磐井
Takeshi Takahashi
高橋  毅
Hirokazu Kobayashi
博和 小林
Nobuyuki Tanaka
伸幸 田中
Miki Mikami
己紀 三上
Masahiro Kuroda
昌宏 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005054694A priority Critical patent/JP4623503B2/ja
Publication of JP2006241185A publication Critical patent/JP2006241185A/ja
Application granted granted Critical
Publication of JP4623503B2 publication Critical patent/JP4623503B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】無機バインダーと酸化チタン又はチタン合金酸化物のみで、光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている皮膜を形成することができる多機能性皮膜形成用コーティング組成物を提供すること。
【解決手段】無機バインダーと、粒子の少なくとも表面層が、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなる該粒子とを含有する多機能性皮膜形成用コーティング組成物、この粒子が、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材の粉砕物である多機能性皮膜形成用コーティング組成物。
【選択図】 なし

Description

本発明は多機能性皮膜形成用コーティング組成物に関し、より詳しくは、光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている皮膜を形成することができる多機能性皮膜形成用コーティング組成物に関する。
従来、部材表面に防汚性、親水性、防曇性、脱臭性、抗菌性等の特性を付与するために用いる、光触媒機能を呈する物質及び親水性を付与又は増強する物質を含有する光触媒性親水性コーティング組成物が提案されている(例えば、特許文献1〜3参照)。また、光触媒機能を呈する物質として二酸化チタンTiO2(本明細書、特許請求の範囲、要約書においては、単に、酸化チタンという)が知られている。
また、酸化チタンを光触媒として機能させるためには波長が400nm以下の紫外線が必要であるが、種々の元素をドープして可視光により機能する酸化チタン光触媒の研究が数多く実施されている。例えば、F、N、C、S、P、Ni等をそれぞれドープした酸化チタンを比較して、窒素ドープ酸化チタンが可視光応答型光触媒として優れているという報告がある(非特許文献1参照)。
また、このように他元素をドープした酸化チタン光触媒としては、酸化チタンの酸素サイトを窒素等の原子で置換してなるチタン化合物、酸化チタンの結晶の格子間に窒素等の原子をドーピングしてなるチタン化合物、或いは酸化チタン結晶の多結晶集合体の粒界に窒素等の原子を配してなるチタン化合物からなる光触媒が提案されている(例えば、特許文献4〜7等参照)。しかしながら、そのような光触媒からなる皮膜は耐摩耗性等の耐久性の点については必ずしも満足できるものではない。
特開2000−191960号公報 特開2000−303027号公報 特開2001−064582号公報 特開2001−205103号公報 特開2001−205094号公報 特開2002−95976号公報 国際公開第01/10553号パンフレット R. Asahi et al.、SCIENCE Vol. 293、2001年7月13日、p. 269-271
また、本発明の目的は、無機バインダーと酸化チタン又はチタン合金酸化物のみで、光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている皮膜を形成することができる多機能性皮膜形成用コーティング組成物を提供することである。
本発明者らは上記の目的を達成するために鋭意検討した結果、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる粒子の表面を、不飽和炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより、粒子の少なくとも表面層が、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなる粒子が得られること、この粒子と無機バインダーとを含有するコーティング組成物を部材の表面上に付与することにより、光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている皮膜を形成することができることを見出し、本発明を完成した。
即ち、本発明の多機能性皮膜形成用コーティング組成物は、無機バインダーと、粒子の少なくとも表面層が、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなる該粒子とを含有することを特徴とする(以下、本発明の第一の態様とする)。
また、本発明者らは、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に不飽和炭化水素、特にアセチレンの燃焼炎を直接当てて特定の条件下で加熱処理するか、又は該基体の表面を特定の条件下で不飽和炭化水素、特にアセチレンの燃焼排ガス雰囲気中で加熱処理することによって、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が形成されること、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片状部材とが得られること、この小片状部材を粉砕して得られる粒子はTi−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなること、その粉砕物も表面積が大きいので光触媒活性が高く、可視光線応答型光触媒として機能し、更にVOCやカチオンを容易に吸着でき、超親水性を発現することができ、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れている皮膜を形成することができることを見出し、本発明を完成した。
即ち、本発明の多機能性皮膜形成用コーティング組成物は、粒子が、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材の粉砕物であり、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなることを特徴とする(以下、第二の態様とする)。
本発明の多機能性皮膜形成用コーティング組成物を用いて形成される皮膜は、光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子は、粒子の少なくとも表面層が、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなる粒子であり、このような粒子はチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる粒子の表面を、不飽和炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより得られる。
加熱処理する粒子の粒径が小さい場合に上記のような加熱処理により粒子全体を炭素ドープ酸化チタン又はチタン合金酸化物とすることが可能であるが、本発明においては表面層のみが炭素ドープ酸化チタン又はチタン合金酸化物となれば良いのであり、従って、粉末の粒径については何ら制限されることはない。しかし、加熱処理の容易性、製造の容易性を考慮すると15nm以上であることが好ましい。
上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、Ti−13V−11Cr−3Al等を用いることができる。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子の製造においては、炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用いることができ、特に還元炎を利用することが望ましい。この炭化水素を主成分とするガスとは炭化水素を少なくとも50容量%含有するガスを意味し、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを意味する。この粒子の製造においては、炭化水素を主成分とするガスがアセチレンを50容量%以上含有することが好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられる。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子の製造において、加熱処理する粒子がチタン又はチタン合金である場合には、該チタン又はチタン合金を酸化する酸素が必要であり、その分だけ空気又は酸素を含んでいる必要がある。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子の製造においては、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる粒子の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理するが、この場合に、そのような粒子を炭化水素を主成分とするガスの燃焼炎中に導入し、燃焼炎中に所定時間滞留させて加熱処理しても、或いはそのような粉末を流動状態の高温の燃焼ガス中に流動床状態に所定時間維持して加熱処理することにより粒子全体を炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又はチタン合金酸化物粒子とするか、炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又はチタン合金酸化物層を有する粒子とすることができる。この加熱処理は例えば炉内で実施することができる。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子の製造における加熱処理については、粒子の表面温度が900〜1500℃、好ましくは1000〜1200℃となり、粒子の表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又はチタン合金酸化物層が形成されるように加熱処理する。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子の製造においては、加熱温度及び加熱処理時間を調整することにより、粒子の表面層が炭素を0.3〜15at%、好ましくは1〜10at%含有し、炭素がTi−C結合の状態でドープされた粒子を比較的容易に得ることができる。炭素のドープ量が少ない場合には炭素ドープ酸化チタン又はチタン合金酸化物層は透明であり、炭素のドープ量が増えるに従って炭素ドープ酸化チタン又はチタン合金酸化物層は半透明、不透明となる。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子においては、炭素ドープ酸化チタン又はチタン合金酸化物層の厚さは10nm以上であることが好ましく、高硬度、耐スクラッチ性、耐摩耗性を達成するためには50nm以上であることが一層好ましい。
本発明の第一の態様の多機能性皮膜形成用コーティング組成物で用いる粒子は、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として有効に作用するものである。従って、本発明の第一の態様の多機能性皮膜形成用コーティング組成物を用いて形成される皮膜は可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現し、また、接触角3°以下の超親水性を示す。
更に、本発明の第一の態様の多機能性皮膜形成用コーティング組成物を用いて形成される皮膜は耐薬品性にも優れており、1M硫酸及び1M水酸化ナトリウムのそれぞれの水溶液に一週間浸漬した後、皮膜硬度、耐摩耗性及び光電流密度を測定し、処理前の測定値と比較したところ、有為な変化はみられなかった。
本発明の第二の態様の多機能性皮膜形成用コーティング組成物で用いる粒子は、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材の粉砕物からなる粒子でありであり、このような粒子は、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に不飽和炭化水素、特にアセチレンの燃焼炎を直接当てて特定の条件下で加熱処理するか、又は該基体の表面を特定の条件下で不飽和炭化水素、特にアセチレンの燃焼排ガス雰囲気中で加熱処理することによって、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が形成させ、次いで、例えば熱応力、剪断応力、引張応力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片状部材とを生成させ(以下において、この両部材を合わせて多機能材と記載する)、この小片状部材を粉砕して得られる。
この少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体は、その基体の全体がチタン、酸化チタン、チタン合金又はチタン合金酸化物の何れかで構成されていてもよく、或いはチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層とその他の材質からなる心材とで構成されていてもよい。また、その基体の形状については、光触媒活性及び/又は超親水性が望まれる如何なる最終商品形状(平板状や立体状)であってもよい。
少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体が、チタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層とその他の材質からなる心材とで構成されている場合には、その表面部形成層の厚さ(量)は形成される酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の量に匹敵する厚さであっても(即ち、表面部形成層全体が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となる)、それより厚くてもよい(即ち、表面部形成層の厚さ方向の一部が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となり、残部が変化しないでそのまま残る)。また、その心材の材質は多機能材の製造における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、ガラス、セラミックス等を用いることができる。このような薄膜状の表面層と心材とで構成されている基体としては、例えば、心材の表面にチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる皮膜をスパッタリング、蒸着、溶射等の方法で形成したもの、或いは、市販の酸化チタンゾルをスプレーコーティング、スピンコーティングやディッピングにより心材の表面上に付与して皮膜を形成したもの等を挙げることができる。この表面層の厚さについては好ましくは0.5μm以上、より好ましくは4μm以上である。
上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、前記したチタン合金を用いることができる。
上記の多機能材の製造においては、例えば、不飽和炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用い、特に還元炎を利用することが望ましい。上記の多機能材の製造においては不飽和炭化水素をを少なくとも50容量%含有するガス、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを用いることが好ましい。上記の多機能材の製造においては、燃料成分がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易く、ドープされた炭素がTi−C結合の状態で含まれる。このように微細柱に炭素ドープが生じると微細柱の硬度が高くなり、結果として多機能材の硬度、耐磨耗性等の機械的強度が向上し、耐熱性も向上する。
上記の多機能材の製造においては、表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に燃焼炎を直接当てて加熱処理するか、又は該基体の表面を燃焼排ガス雰囲気中で加熱処理するのであるが、この加熱処理は例えばガスバーナーにより、或いは炉内で実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、ガスバーナーにより、その燃焼炎を該基体の表面に当てればよい。燃焼排ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼排ガスを含む雰囲気を利用すればよい。
加熱処理については、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることが可能なように、加熱温度、加熱処理時間を調整する必要がある。この加熱処理は600℃以上の温度で実施することが好ましい。
このような条件下で加熱処理することにより、微細柱が林立している層の高さが1〜20μm程度であり、その上の薄膜の厚さが0.1〜10μm程度であり、微細柱の平均太さが0.2〜3μm程度である中間体が形成される。その後に、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させることにより、該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材(即ち、基体上の微細柱が林立している層の上に存在していた薄膜の全部又は大部分が剥離するが、微細柱が林立している層の上に存在していた薄膜の一部が剥離しないで残ることがある)と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることができる。
熱応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、基体の表面及び裏面の何れか一方を冷却するか、又は加熱することにより基体の表面と裏面との間に温度差を設ける。この冷却方法として例えば上記の熱い中間体の表面又は裏面の何れかを冷却用物体、例えばステンレスブロックと接触させるか、冷気(常温の空気)を上記の熱い中間体の表面又は裏面の何れかに吹き付ける。
剪断応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、上記の中間体の表面及び裏面に摩擦力により相対的に逆方向の力を与える。また、引張力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、真空吸着盤等を用いて上記の中間体の表面及び裏面をそれらの面の垂直方向で逆方向に引張る。なお、上記の中間体の薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材に相当する部分を研磨、スパッタリング等によって回収することもできる。
上記のようにして得られた基体上の少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材においては、微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって微細柱が林立している層の高さが変化するが、微細柱が林立している層の高さは一般的には1〜20μm程度であり、微細柱の平均太さが0.5〜3μm程度である。この部材はVOCを容易に吸着でき、表面積が大きいので光触媒としての活性が高く、更には皮膜硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性にも優れた多機能材である。
一方、上記のようにして得られた薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は小片状となり、各小片上の突起部の高さは2〜12μm程度であり、該微細柱の高さは微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって変化するが、微細柱が林立している層の高さは一般的には1〜5μm程度であり、微細柱の平均太さが0.2〜0.5μm程度である。しかし、微細柱が林立している層を表面層に沿う方向で切断させ条件によっては微細柱が殆ど存在しないで多数の連続した狭幅突起部が露出している場合もある。この小片状部材を粉砕することにより、本発明の多機能性皮膜形成用コーティング組成物で用いる粒子を得ることができる。
上記の粉砕物は炭素ドープされており、表面積が大きいので、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として特に有効に作用し、可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現し、また、VOCやカチオンを吸着でき、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている。
上記の多機能材を構成する酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の各々の微細柱の形状については、図10及び図13の顕微鏡写真から判断されるように、角柱状、円柱状、角錐状、円錐状、逆角錐状若しくは逆円錐状等で、基板の表面とは直角方向又は傾斜した方向に真っ直ぐ伸びているもの、湾曲又は屈曲しながら伸びているもの、枝状に分岐して伸びているもの、それらの複合体状のもの等がある。また、その全体形状としては、霜柱状、起毛カーペット状、珊瑚状、列柱状、積木で組み立てられた柱状等の種々の表現で示すことができる。また、それらの微細柱の太さ、高さ、その付け根(底面)の大きさ等は加熱条件等により変化する。
本発明の薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は、図12の顕微鏡写真から判断されるように、その多数の連続した狭幅突起部はクルミの殻の外側の外見、軽石の外見をしていると見ることができ、また各々の連続した狭幅突起部は湯じわやちぢみ状の模様が屈曲していると見ることができる。また、該突起部上に林立している微細柱の形状は上記した基体上の微細柱が林立している層の各々の微細柱の形状と同様であるが、微細柱と薄膜との接合部で切断されるものが多いので、該突起部上に林立している微細柱の密度は上記の基体上の微細柱が林立している層の微細柱の密度よりも一般的に小さくなる。
本発明の多機能性皮膜形成用コーティング組成物においては、炭素ドープされている酸化チタン又はチタン合金酸化物からなる粒子の含有率がPVC(顔料体積濃度)で好ましくは5〜30%、より好ましくは10〜20%である。また、本発明の多機能性皮膜形成用コーティング組成物で用いることができる無機バインダーとして、例えば、エチルシリケートなどの アルコキシシラン、アルコキシシランの部分縮合物、シリカゾルなどを挙げることができる。無機バインダーとして固化状態で親水性を示すものを用いることにより、炭素ドープされている酸化チタン又はチタン合金酸化物からなる粒子の親水性効果との相乗作用により親水性に優れた被覆面を達成することができる。
以下に、実施例、参考例、試験例及び比較例に基づいて本発明をさらに詳細に説明する。
実施例1〜3(参考例)
アセチレンの燃焼炎を用い、厚さ0.3mmのチタン板をその表面温度が約1100℃となるように加熱処理することにより、表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を形成した。1100℃での加熱処理時間をそれぞれ5秒(実施例1)、3秒(実施例2)、1秒(実施例3)に調整することにより炭素ドープ量及び炭素ドープ酸化チタン層の厚さが異なる炭素ドープ酸化チタン層を有するチタン板を形成した。
この実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について蛍光X線分析装置で炭素含有量を求めた。その炭素含有量に基づいてTiO2-xxの分子構造を仮定すると、実施例1については炭素含有量8at%、TiO1.760.24、実施例2については炭素含有量約3.3at%、TiO1.900.10、実施例3については炭素含有量1.7at%、TiO1.950.05であった。また、実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
比較例1
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン板にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有するチタン板を形成した。
比較例2
SUS板上に酸化チタンがスプレーコートされている市販品を比較例2の酸化チタン皮膜を有する基体とした。
試験例1(ビッカース硬度)
実施例1で得られた炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、ナノハードネステスター(NHT)(スイスのCSM Instruments製)により、圧子:ベルコビッチタイプ、試験荷重:2mN、負荷除荷速度:4mN/minの条件下で皮膜硬度を測定したところ、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層はビッカース硬度が1340と高い値であった。一方、比較例1の酸化チタン皮膜のビッカース硬度は160であった。
これらの結果を図1に示す。なお、参考のため、硬質クロムメッキ層及びニッケルメッキ層のビッカース硬度の文献値(友野、「実用めっきマニュアル」、6章、オーム社(1971)から引用)を併せて示す。実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、ニッケルメッキ層や硬質クロムメッキ層よりも高硬度であることは明らかである。
試験例2(耐スクラッチ性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、マイクロスクラッチテスター(MST)(スイスのCSM Instruments製)により、圧子:ロックウェル(ダイヤモンド)、先端半径200μm、初期荷重:0N、最終荷重:30N、負荷速度:50N/min、スクラッチ長:6mm、ステージ速度:10.5mm/minの条件下で耐スクラッチ性試験を実施した。スクラッチ痕内に小さな膜の剥離が起こる「剥離開始」荷重及びスクラッチ痕全体に膜の剥離が起こる「全面剥離」荷重を求めた。その結果は第1表に示す通りであった。
Figure 2006241185
試験例3(耐摩耗性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、高温トライボメーター(HT−TRM)(スイスのCSM Instruments製)により、試験温度:室温及び470℃、ボール:直径12.4mmのSiC球、荷重:1N、摺動速度:20mm/sec、回転半径:1mm、試験回転数:1000回転の条件下で摩耗試験を実施した。
この結果、比較例1の酸化チタン皮膜については、室温及び470℃の両方について剥離が発生したが、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層については、室温及び470℃の両方の条件下で有意なトレース摩耗は検出されなかった。
試験例4(耐薬品性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬した後、上記の皮膜硬度、耐摩耗性、及び後記する光電流密度を測定したところ、浸漬の前後で、結果に有意な差は認められなかった。即ち、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は高い耐薬品性を有することが認められた。
試験例5(炭素がTi−C結合の状態でドープされた酸化チタン層の構造)
実施例1の炭素がTi−C結合の状態でドープされた酸化チタン層について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果を図2に示す。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.7eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例1の炭素ドープ酸化チタン層中ではCがTi−C結合としてドープされていると判断される。なお、炭素ドープ酸化チタン層の深さ方向の異なる位置の11点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
また、炭素ドープ酸化チタン層と基体との境界でもTi−C結合が確認された。従って、炭素ドープ酸化チタン層中のTi−C結合により硬度が高くなっており、また、炭素ドープ酸化チタン層と基体との境界でのTi−C結合により皮膜剥離強度が著しく大きくなっていることが予想される。
試験例6(波長応答性)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜の波長応答性をOriel社のモノクロメーターを用いて測定した。具体的には、それぞれの層、皮膜に対し、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、光電流密度を測定した。
その結果を図3に示す。図3には、得られた光電流密度jpを照射波長に対して示してある。実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の波長吸収端は、490nmに及んでおり、炭素ドープ量の増大に伴って光電流密度が増大することが認められた。なお、ここには示していないが、炭素ドープ量が10at%を越えると電流密度が減少する傾向になり、さらに15at%を越えるとその傾向は顕著になることがわかった。よって、炭素ドープ量が1〜10at%程度に最適値があることが認められた。一方、比較例1、2の酸化チタン皮膜では、光電流密度が著しく小さく、且つ波長吸収端も410nm程度であることが認められた。
試験例7(光エネルギー変換効率)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜について、式
η=jp(Ews−Eapp)/I
で定義される光エネルギー変換効率ηを求めた。ここで、Ewsは水の理論分解電圧(=1.23V)、Eappは印加電圧(=0.3V)、Iは照射光強度である。この結果を図4に示す。図4は光エネルギー変換効率ηを照射光波長に対して示してある。
図4から明らかなように、実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の光エネルギー変換効率は著しく高く、波長450nm付近での変換効率が比較例1、2の酸化チタン皮膜の紫外線領域(200〜380nm)での変換効率より優れていることが認められた。また、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の水分解効率は、波長370nmで約8%であり、350nm以下では10%を越える効率が得られることがわかった。
試験例8(消臭試験)
実施例1及び2の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、消臭試験を実施した。具体的には、消臭試験に一般的に用いられるアセトアルデヒドを炭素ドープ酸化チタン層を有する基体と共に1000mlのガラス容器に封入し、初期の吸着による濃度減少の影響が無視できるようになってから、UVカットフィルタ付き蛍光灯にて可視光を照射し、所定の照射時間毎にアセトアルデヒド濃度をガスクロマトグラフィーで測定した。なお、各皮膜の表面積は8.0cm2とした。
この結果を図5に示す。図5には、アセトアルデヒド濃度を可視光照射後の経過時間に対して示してある。実施例1及び2の炭素ドープ酸化チタン層のアセトアルデヒド分解速度は、比較例1の酸化チタン皮膜のアセトアルデヒド分解速度の約2倍以上の高い値となっており、また、炭素ドープ量が多く、光エネルギー変換効率の高い実施例1の炭素ドープ酸化チタン層の方が、実施例2の炭素ドープ酸化チタン層と比較して分解速度が高いことがわかった。
試験例9(防汚試験)
実施例1の炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、防汚試験を実施した。各皮膜を(財)電力中央研究所内の喫煙室内に設置し、145日後の表面の汚れを観察した。なお、この喫煙室内には太陽光の直接の入射はない。
この結果を示す写真を図6に示す。比較例1の酸化チタン皮膜の表面には脂が付着し、薄い黄色を呈していたが、実施例1の炭素ドープ酸化チタン層の表面は特に変化がみられず、清浄に保たれており、防汚効果が十分に発揮されたことが認められた。
実施例4〜7(参考例)
実施例1〜3と同様にアセチレンの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン板を形成した。
比較例3
天然ガスの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理した。
試験例10
実施例4〜7の炭素ドープ酸化チタン層及び比較例3の皮膜について、上記の試験例1と同様にしてビッカース硬度(HV)を測定した。それらの結果を第2表に示す。また、実施例4〜7で形成された炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
Figure 2006241185
第2表に示すデータから明らかなように、天然ガスの燃焼ガスで表面温度が850℃になるように加熱処理した場合にはビッカース硬度160の皮膜しか得られなかったが、表面温度が1000℃以上になるようにアセチレンの燃焼ガスを用いて加熱処理した実施例4〜7の場合にはビッカース硬度1200の炭素ドープ酸化チタン層が得られた。
試験例11
実施例4〜7の炭素ドープ酸化チタン層及び比較例1及び3の酸化チタン皮膜について、試験例6と同様に、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、300nm〜520nmの光を照射して光電流密度を測定した。その結果を図7に示す。図7には、得られた光電流密度jpを電位ECP(Vvs. SSE)に対して示してある。
アセチレンの燃焼ガスを用いて表面温度が1000〜1200℃になるように加熱処理して得た実施例4〜6の炭素ドープ酸化チタン層は、相対的に光電流密度が大きく優れていることがわかった。一方、表面温度が850℃になるように加熱処理して得た比較例3の酸化チタン及び表面温度が1500℃になるように加熱処理して得た実施例7の炭素ドープ酸化チタン層は光電流密度が相対的に小さいことがわかった。
実施例8(参考例)
アセチレンの燃焼炎を用い、厚さ0.3mmのTi−6Al−4V合金板をその表面温度が約1100℃となるように加熱処理することにより、表面層が炭素ドープ酸化チタンを含有するチタン合金からなる合金板を形成した。1100℃での加熱処理時間を60秒とした。このようにして形成された炭素ドープ酸化チタンを含有する層は水滴との接触角が2°程度の超親水性であり、また実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例9(参考例)
厚さ0.3mmのステンレス鋼板(SUS316)の表面にスパッタリングによって膜厚が約500nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が約900℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するステンレス鋼板を形成した。900℃での加熱処理時間を15秒とした。このようにして形成された炭素ドープ酸化チタン層は水滴との接触角が2°程度の超親水性であり、また、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例10
粒径20μmの酸化チタン粉末をアセチレンの燃焼炎中に供給し、燃焼炎中に所定時間滞留させてその表面温度が約1000℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン粉末を形成した。1000℃での加熱処理時間を4秒とした。このようにして形成された炭素ドープ酸化チタン層を有するチタン粉末、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例11〜12(参考例)
厚さ1mmのガラス板(パイレックス(登録商標))の表面にスパッタリングによって膜厚が約100nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が1100℃(実施例11)、又は1500℃(実施例12)となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するガラス板を形成した。1100℃、又は1500℃での加熱処理時間を10秒とした。このようにして形成された炭素ドープ酸化チタン層は表面温度が1100℃の場合には図8(a)に写真で示すように透明であったが、表面温度が1500℃の場合には図9に示すように海に浮かぶ多数の小島状の起伏が表面に生じており、図8(b)に示すように半透明となった。
実施例13〜16(参考例)
厚さ0.3mmのチタン板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。即ち、加熱処理で表面層内部に形成された酸化チタンからなる微細柱が林立している層がその後の冷却で該微細柱が林立している層が該表面層に沿う方向で切断された。このようにして実施例13〜16の多機能性皮膜形成用コーティング組成物を得た。
図10は、実施例13で得られた多機能性皮膜形成用コーティング組成物の顕微鏡写真であり、チタン板表面1上に白色の酸化チタンからなる微細柱が林立している層2が露出しており、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3がその層2上の一部に残っているの状態を示している。なお、実施例13〜16の製造法ではチタン板表面1は露出しないが、図10の顕微鏡写真は微細柱が林立している層2の一部を除去した状態を示している。図11は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真であり、図12は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態示す顕微鏡写真であり、図13は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。
実施例17(参考例)
厚さ0.3mmのTi−6Al−4V合金板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン合金板表面の大部分にチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上にチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
実施例18(参考例)
厚さ0.3mmのステンレス鋼板(SUS316)の表面に電子ビーム蒸着によって膜厚が約3μmのチタン薄膜を形成した。その薄膜表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、ステンレス鋼板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
試験例12(引っかき硬度試験:鉛筆法)
実施例13〜18得られた基板表面に微細柱が林立している層が露出している部材の微細柱側表面について、JIS K 5600−5−4(1999)に基づき、三菱鉛筆株式会社製ユニ1H〜9H鉛筆を用いて鉛筆引っかき硬度試験を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められなかった。
試験例13(耐薬品性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬し、水洗し、乾燥させた後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐薬品性を有することが認められた。
試験例14(耐熱性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を管状炉内に入れ、大気雰囲気下で室温から1時間かけて500℃まで昇温させ、500℃の恒温で2時間保持し、更に1時間かけて室温まで静置冷却した後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐熱性をを有することが認められた。
Figure 2006241185
試験例15(防汚試験)
試料として、実施例16で得られた基板表面に微細柱が林立している層が露出している表面積8cm2の部材及び比較例1で得られた酸化チタン皮膜を有する表面積8cm2のチタン板を用いて消臭試験を実施した。具体的には、それらの試料をそれぞれ、約10μmol/Lの濃度に調整したメチレンブルー水溶液80mL中に浸漬し、初期の吸着による濃度減少の影響が無視できるようになってから、松下電器産業株式会社製のUVカットフィルター付き蛍光灯により可視光を照射し、所定の照射時間毎に波長660nmにおけるメチレンブルー水溶液の吸光度をHACH社製水質検査装置DR/2400で測定した。その結果は図14に示す通りであった。
図14から、実施例16で得られた基板表面に微細柱が林立している層が露出している部材は、比較例1で得られた酸化チタン皮膜を有するチタン板に比較して、メチレンブルーの分解速度が速く、防汚効果が高いことが分かる。
試験例16(結晶構造と結合状態)
実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱から得た試料についてX線回折(XRD)を行った結果、ルチル型の結晶構造を有することが判明した。
また、実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱部分について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果は図15に示す通りであった。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.6eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例15の微細柱中ではCがTi−C結合としてドープされていると判断される。なお、微細柱の高さ位置の異なる位置の14点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
本発明の多機能性皮膜形成用コーティング組成物に用いる粒子は上記したような特性を示すので、本発明の多機能性皮膜形成用コーティング組成物は光触媒活性が高く、可視光応答型光触媒として機能し、超親水性を発現することができ、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れている皮膜を形成することができるので、種々の物体に付与して防汚性、消臭性、抗菌性、防曇性、環境浄化性等を達成することができる。
図1は試験例1の皮膜硬度試験の結果を示す図である。 図2は試験例5のXPS分析の結果を示す図である。 図3は試験例6の光電流密度の波長応答性を示す図である。 図4は試験例7の光エネルギー変換効率の試験結果を示す図である。 図5は試験例8の消臭試験の結果を示す図である。 図6は試験例9の防汚試験の結果を示す写真である。 図7は試験例11の結果を示す図である。 図8は実施例11及び12で得られた炭素ドープ酸化チタン層の光透過状態を示す写真である。 図9は実施例12で得られた炭素ドープ酸化チタン層の表面状態を示す写真である。 図10は実施例13で得られた多機能性皮膜形成用コーティング組成物の状態を示す顕微鏡写真である。 図11は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真である。 図12は薄膜上に酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態示す顕微鏡写真である。 図13は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。 図14は試験例15(防汚試験)の結果を示すグラフである。 図15は試験例16(結晶構造と結合状態)の結果を示すグラフである。

Claims (10)

  1. 無機バインダーと、粒子の少なくとも表面層が、Ti−C結合の状態で炭素ドープされている酸化チタン又はチタン合金酸化物からなる該粒子とを含有することを特徴とする多機能性皮膜形成用コーティング組成物。
  2. 粒子の表面層が炭素を0.3〜15at%含有していることを特徴とする請求項1記載の多機能性皮膜形成用コーティング組成物。
  3. 粒子が炭素ドープされている酸化チタン又はチタン合金酸化物からなる表面層と心材とで構成されており、該心材がチタン、チタン合金、チタン合金酸化物又は酸化チタンであることを特徴とする請求項1又は2記載の多機能性皮膜形成用コーティング組成物。
  4. 粒子が、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材の粉砕物であることを特徴とする請求項1又は2記載の多機能性皮膜形成用コーティング組成物。
  5. 多機能性皮膜形成用コーティング組成物を用いて形成される皮膜が可視光応答型光触媒として機能することを特徴とする請求項1〜4の何れかに記載の多機能性皮膜形成用コーティング組成物。
  6. 多機能性皮膜形成用コーティング組成物を用いて形成される皮膜が超親水性を発現し得ることを特徴とする請求項1〜5の何れかに記載の多機能性皮膜形成用コーティング組成物。
  7. 多機能性皮膜形成用コーティング組成物を用いて形成される皮膜が耐久性に優れていることを特徴とする請求項1〜6の何れかに記載の多機能性皮膜形成用コーティング組成物。
  8. チタン合金がTi−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、又はTi−13V−11Cr−3Alであることを特徴とする請求項1〜7の何れかに記載の多機能性皮膜形成用コーティング組成物。
  9. 多機能性皮膜形成用コーティング組成物が白色塗料であることを特徴とする請求項1〜8の何れかに記載の多機能性皮膜形成用コーティング組成物。
  10. 炭素ドープされている酸化チタン又はチタン合金酸化物からなる粒子の含有率がPVCで5〜30%であることを特徴とする請求項1〜9の何れかに記載の多機能性皮膜形成用コーティング組成物。
JP2005054694A 2005-02-28 2005-02-28 多機能性皮膜形成用コーティング組成物 Expired - Fee Related JP4623503B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054694A JP4623503B2 (ja) 2005-02-28 2005-02-28 多機能性皮膜形成用コーティング組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054694A JP4623503B2 (ja) 2005-02-28 2005-02-28 多機能性皮膜形成用コーティング組成物

Publications (2)

Publication Number Publication Date
JP2006241185A true JP2006241185A (ja) 2006-09-14
JP4623503B2 JP4623503B2 (ja) 2011-02-02

Family

ID=37047919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054694A Expired - Fee Related JP4623503B2 (ja) 2005-02-28 2005-02-28 多機能性皮膜形成用コーティング組成物

Country Status (1)

Country Link
JP (1) JP4623503B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135855A1 (en) * 2009-06-01 2012-05-31 Michio Kaneko Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (fr) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyseur ayant une activite lumineuse visible et utilisation de ce dernier
JP2001269575A (ja) * 2000-03-27 2001-10-02 Tokyo Gas Co Ltd 抗菌材
JP2003313660A (ja) * 2002-04-24 2003-11-06 Nippon Sheet Glass Co Ltd チタン化合物膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
JP2004167370A (ja) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst 高活性光触媒炭素ドープ二酸化チタンとその作製方法
JP3948738B2 (ja) * 2003-12-09 2007-07-25 財団法人電力中央研究所 炭素ドープ酸化チタン層を有する基体の製造方法
JP3948739B2 (ja) * 2003-12-09 2007-07-25 財団法人電力中央研究所 炭素ドープ酸化チタン層を有する多機能材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (fr) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyseur ayant une activite lumineuse visible et utilisation de ce dernier
JP2001269575A (ja) * 2000-03-27 2001-10-02 Tokyo Gas Co Ltd 抗菌材
JP2003313660A (ja) * 2002-04-24 2003-11-06 Nippon Sheet Glass Co Ltd チタン化合物膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
JP2004167370A (ja) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst 高活性光触媒炭素ドープ二酸化チタンとその作製方法
JP3948738B2 (ja) * 2003-12-09 2007-07-25 財団法人電力中央研究所 炭素ドープ酸化チタン層を有する基体の製造方法
JP3948739B2 (ja) * 2003-12-09 2007-07-25 財団法人電力中央研究所 炭素ドープ酸化チタン層を有する多機能材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135855A1 (en) * 2009-06-01 2012-05-31 Michio Kaneko Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
US8865612B2 (en) * 2009-06-01 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same

Also Published As

Publication number Publication date
JP4623503B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
JP3948738B2 (ja) 炭素ドープ酸化チタン層を有する基体の製造方法
JP3948739B2 (ja) 炭素ドープ酸化チタン層を有する多機能材
JP4902125B2 (ja) 鏡面を有する多機能材
JP4623502B2 (ja) 耐放射線部材及びそれを用いた原子力発電システム
JP4010558B2 (ja) 多機能材
JP3980050B2 (ja) 多機能材の製造方法
JP4692987B2 (ja) 防腐装置
JP4756575B2 (ja) 栽培培地収容具
JP4623503B2 (ja) 多機能性皮膜形成用コーティング組成物
JP5126855B2 (ja) 多機能性皮膜を有するガラス製品及びその製造方法
JP4822245B2 (ja) 電力供給機器
JP4555704B2 (ja) 多機能性皮膜を有するガラス製品及びその製造方法
JP4502325B2 (ja) 超音波ホーン
JP4587302B2 (ja) 医家向け抗菌製品
JP4656496B2 (ja) 脱臭装置乃至脱臭システム
JP4662128B2 (ja) 空気清浄装置乃至空気清浄システム
JP4480014B2 (ja) ロケット部品
JP4807726B2 (ja) 測定・測量器具
JP2006238940A (ja) 手洗具
JP4756574B2 (ja) 空調機
JP2006242401A (ja) 冷風生成装置
JP4578274B2 (ja) 畜産用器具
JP4743751B2 (ja) 家具
JP4915635B2 (ja) パネル
JP4807723B2 (ja) 耐熱部材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees