JP2006238725A - 灌漑装置及び灌漑用部材、並びに、灌漑システム - Google Patents

灌漑装置及び灌漑用部材、並びに、灌漑システム Download PDF

Info

Publication number
JP2006238725A
JP2006238725A JP2005055071A JP2005055071A JP2006238725A JP 2006238725 A JP2006238725 A JP 2006238725A JP 2005055071 A JP2005055071 A JP 2005055071A JP 2005055071 A JP2005055071 A JP 2005055071A JP 2006238725 A JP2006238725 A JP 2006238725A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
carbon
irrigation
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005055071A
Other languages
English (en)
Other versions
JP4995425B2 (ja
Inventor
Masahiro Furuya
正裕 古谷
Moriyasu Tokiwai
守泰 常磐井
Takeshi Takahashi
高橋  毅
Hirokazu Kobayashi
博和 小林
Nobuyuki Tanaka
伸幸 田中
Miki Mikami
己紀 三上
Masahiro Kuroda
昌宏 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005055071A priority Critical patent/JP4995425B2/ja
Publication of JP2006238725A publication Critical patent/JP2006238725A/ja
Application granted granted Critical
Publication of JP4995425B2 publication Critical patent/JP4995425B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

【課題】 高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性等を含む耐久性に優れ、可視光応答型光触媒として機能する多機能材が適用された灌漑装置等を提供する
【解決手段】 灌漑装置は、心材101と、該心材101の外側に形成されている表面層であって、少なくとも最表面が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む表面層102とを含む。
【選択図】 図20

Description

本発明は、酸化チタン又はチタン合金酸化物を含み、可視光応答型光触媒として機能する機能性材料の応用に関する。特に、本発明は、そのような機能性材料が適用された灌漑装置及び灌漑用部材、並びに、灌漑システムに関する。
従来より、光触媒機能を呈する物質として二酸化チタンTiO(本明細書、請求の範囲においては、単に、酸化チタンという)が知られている。チタン金属上に酸化チタン膜を形成する方法として、1970年代より、チタン金属上に陽極酸化によって酸化チタン膜を形成する方法、酸素を供給した電気炉中でチタン金属板上に熱的に酸化チタン膜を形成する方法、チタン板を都市ガスの1100℃〜1400℃の火炎中で加熱してチタン金属上に酸化チタン膜を形成する方法等が知られている(非特許文献1参照)。また、光触媒の実用化を図るための研究が多くの技術分野で数多く実施されている。
このような光触媒機能により消臭、抗菌、防曇や防汚の効果が得られる光触媒製品を製造する場合、一般的には、酸化チタンゾルをスプレーコーティング、スピンコーティング、ディッピング等により基体上に付与して成膜している(例えば、特許文献1〜3参照)が、そのように成膜された被膜は剥離や摩耗が生じやすいので、長期に亘っての使用が困難であった。また、スパッタリング法によって光触媒被膜を成膜する方法も知られている(例えば、特許文献4〜5参照)。
また、酸化チタンを光触媒として機能させるためには波長が400nm以下の紫外線が必要であるが、種々の元素をドープして可視光により機能する酸化チタン光触媒の研究が数多く実施されている。例えば、F、N、C、S、P、Ni等をそれぞれドープした酸化チタンを比較して、窒素ドープ酸化チタンが可視光応答型光触媒として優れているという報告がある(非特許文献2参照)。
また、このように他元素をドープした酸化チタン光触媒としては、酸化チタンの酸素サイトを窒素等の原子で置換してなるチタン化合物、酸化チタンの結晶の格子間に窒素等の原子をドーピングしてなるチタン化合物、或いは酸化チタン結晶の多結晶集合体の粒界に窒素等の原子を配してなるチタン化合物からなる光触媒が提案されている(例えば、特許文献6〜9等参照)。しかしながら、そのような光触媒は耐摩耗性等の耐久性の点については必ずしも満足できるものではない。更に、例えば、天然ガス及び酸素の流量を調整することによって燃焼炎の温度が850℃付近に維持された天然ガス燃焼炎をチタン金属に当てることにより化学修飾酸化チタンであるn−TiO-xCxが得られ、これが535nm以下の光を吸収する旨の報告がある(非特許文献3参照)。
更に、CVD法又はPVD法などの各種製法により作製した結晶核を無機金属化合物又は有機金属化合物から成るゾル溶液中に入れるか、又は該結晶核にゾル溶液を塗布し、固化させ、熱処理して酸化チタン結晶を該結晶核より成長させることにより、その結晶核より成長させた酸化チタン結晶の結晶形状が柱状結晶を成すことで高活性な光触媒機能が得られることが特許出願されている(例えば、特許文献10〜12参照)。しかしながら、その場合には単に基体上に置かれた種結晶から柱状結晶が成長するだけであるので、形成された柱状結晶は基体への付着強度が充分ではなく、それでそのようにして作製された光触媒は耐摩耗性等の耐久性の点については必ずしも満足できるものではない。
特開平09−241038号公報 特開平09−262481号公報 特開平10−053437号公報 特開平11−012720号公報 特開2001−205105号公報 特開2001−205103号公報(特許請求の範囲) 特開2001−205094号公報(特許請求の範囲) 特開2002−95976号公報(特許請求の範囲) 国際公開第01/10553号パンフレット(請求の範囲) 特開2002−253975号公報 特開2002−370027号公報 特開2002−370034号公報 フジシマ(A. Fujishima)、他、ジャーナル・オブ・ジ・エレクトロ・ケミカル・ソサエティ(Journal of The Electrochemical Society)、1975年11月、第122巻、第11号、p.1487−1489 アサヒ(R. Asahi)、他、「ニトロゲン・ドープ酸化チタンにおける可視光域光触媒反応(Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides)」、サイエンス(SCIENCE)、AAAS、2001年7月13日、第293巻、p.269−271 シャヘッド、カーン、他、「化学的に改質されたn−TiO2による効率的な光化学水層間剥離(Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2)」、サイエンス(SCIENCE)、2002年9月27日、第297巻、p.2243−2245
ところで、農業用水を水路から導いて田畑を潤す灌漑システムにおいて用いられる灌漑装置、即ち、揚水ポンプや制御弁や散水機等は、通常、ステンレス等の防錆性を有する合金によって形成されている。また、用水を通す水路は、コンクリートによって形成される場合が多い。近年において、そのような灌漑システムは、遠隔操作により制御されるようになっている。
通常の使用状態において、灌漑装置には、貯水池等から汲み上げられた水が常に流れている。そのため、灌漑装置には、水に混入している汚れが付着して蓄積し易い。しかしながら、灌漑装置の動作部分に蓄積した汚れを放置しておくと、例えば、灌漑装置の動作が悪くなったり、弁の内部や流路に目詰まりが生じて水の流れが悪くなってしまう。また、灌漑装置が屋外に設置されている場合には、それらの灌漑装置は常に風雨に晒されるため、灌漑装置の劣化が、屋内で使用する場合と比較して早くなってしまう。さらに、灌漑装置の動作が悪くなると、遠隔操作による灌漑システムの制御に障害が発生してしまう。
このような灌漑システムの各部に、先に述べたような酸化チタン系光触媒を適用することにより、上記の問題を改善できる可能性はある。しかしながら、従来の酸化チタン系光触媒は、紫外線応答型のもの及び可視光応答型のものの何れも耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に問題があり、実用化の面でのネックとなっている。
上記の点に鑑み、本発明は、防汚効果等を発現すると共に、高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性等を含む耐久性に優れ、可視光応答型光触媒として機能する多機能材が適用された灌漑装置及び灌漑用部材、並びに、そのような灌漑装置を含む灌漑システムを提供することを目的とする。
上記課題を解決するため、本発明の1つの観点に係る灌漑装置は、金属又は合金によって形成されている心材と、該心材の外側に形成されている表面層であって、少なくとも最表面が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む上記表面層とを具備する。
また、本発明の1つの観点に係る灌漑用部材は、非金属によって形成されている心材と、該心材の外側に形成されている表面層であって、少なくとも最表面が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む前記表面層とを具備する。
さらに、本発明に係る灌漑システムは、上記の灌漑装置と、該灌漑装置を遠隔操作により制御する制御手段とを具備する。
本発明の1つの観点によれば、最表面にTi−C結合によって炭素がドープ酸化チタン又はチタン合金酸化物を含む層が形成されている構造材を用いて灌漑装置及び灌漑用部材を作製するので、そのような層が有する光触媒機能により、灌漑装置及び灌漑用部材において防汚効果を得ることができる。また、Ti−C結合によって炭素がドープされた酸化チタン又はチタン合金酸化物を含む層は、高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性等を含む耐久性に優れているので、耐久性が高く、且つ、防汚効果が長期に渡って継続する灌漑装置及び灌漑用部材を得ることが可能となる。さらに、そのような灌漑装置を用いることにより、灌漑装置の動作不良に起因する障害が発生し難い灌漑システムを得ることが可能となる。
以下、本発明を実施するための最良の形態について、図面を参照しながら詳しく説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の一実施形態に係る灌漑システムの構成を示す模式図である。この灌漑システムは、ポンプシステム10と、複数の制御弁20〜22と、スプリンクラー等の複数の散水機30と、灌漑システム全体を遠隔操作により制御する制御部100とを含んでいる。また、各灌漑装置10、20〜22、及び、散水機30は、水路40を介して繋がっている。後で詳しく説明するように、これらの灌漑装置は、光触媒機能を有する材料によって作製されている。そのため、図1に示す灌漑システムの内で、太陽光が当たり難い箇所に設置される灌漑装置については、光触媒機能を発現させるために、その近傍に光源をさらに設けても良い。
ポンプシステム10は、揚水ポンプ11とタンク12とを含んでいる。揚水ポンプ11は、制御部100の制御の下で動作し、貯水池から水を汲み上げてタンク12に補給する。また、タンク12には、水量センサ又は圧力センサが備えられている。制御部100は、水量センサ又は圧力センサの検出値に基づいて、タンク12内の水量が所定の範囲内に保たれるように揚水ポンプ11の動作を制御する。
複数の制御弁20〜22は、制御部100の制御の下で動作し、用水の流量制御、水路の水位制御、タンクの圧力制御、安全制御等を行う。また、複数の散水機30は、制御弁22を経て供給された用水を農地に散布する。
本実施形態に係る灌漑システムにおいて、ポンプシステム10、制御弁20〜23、散水機30、及び、水路40を含む灌漑装置は、以下に説明する第1又は第2の多機能材を含む材料によって作製されている。まず、これらの灌漑装置の材料の一部として用いられる第1又は第2の多機能材について詳しく説明する。
第1の多機能材は、少なくとも表面層が炭素ドープ酸化チタン層によって形成されており、該炭素がTi−C結合の状態でドープされている材料である。このような多機能材は、耐久性に優れ且つ可視光応答型光触媒として機能する。なお、以下において、炭素がTi−C結合の状態でドープされている炭素ドープ酸化チタン層のことを、「Ti−C結合を有する炭素ドープ酸化チタン層」ともいう。
第1の多機能材は、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面を、例えば、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することによって製造される。この少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体は、その基体の全体がチタン、チタン合金、チタン合金酸化物又は酸化チタンの何れかで構成されていてもよいし、心材と、該心材とは異なる材料によって形成されている表面部形成層とによって構成されていてもよい。また、その基体の形状については、高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性等の耐久性が望まれる最終商品形状(平板状や立体状)や、表面に可視光応答型光触媒機能を有することが望まれる最終商品形状であってもよいし、粉末状であってもよい。
少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が、心材と、該心材とは異なる材料の表面部形成層とによって構成されている場合に、表面部形成層の厚さは、形成される炭素ドープ酸化チタン層の厚さと同一であってもよいし(即ち、表面部形成層全体が炭素ドープ酸化チタン層となる)、炭素ドープ酸化チタン層より厚くてもよい(即ち、表面部形成層の厚さ方向の一部が炭素ドープ酸化チタン層となり、一部がそのまま残る)。また、その心材の材質は、多機能材の製造過程における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、セラミックス、その他の陶磁器、高温耐熱性ガラス等を用いることができる。そのような心材の表面に、例えば、スパッタリング、蒸着、溶射等の方法を用いてチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる被膜を形成したり、市販の酸化チタンゾルをスプレーコーティング、スピンコーティング、又は、ディッピングして被膜を形成することにより、基体を作製することができる。
また、第1の多機能材は、炭素ドープされた酸化チタン又はチタン合金酸化物からなる層と中間層と心材とで構成されており、該中間層がチタン、チタン合金、チタン合金酸化物又は酸化チタンであり、該心材がチタン、チタン合金及び酸化チタン以外の材質で構成されていてもよい。
少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が粉末状である場合に、その粉末の粒径が小さい場合には、先に述べた加熱処理により、粒子全体を炭素ドープ酸化チタンとすることが可能である。第1の多機能材においては、少なくとも表面層が炭素ドープ酸化チタンとなっていれば良いのであるから、粉末の粒径については何ら制限されることはない。しかし、加熱処理の容易性や製造の容易性を考慮すると15nm以上であることが好ましい。
上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、Ti−13V−11Cr−3Al等を用いることができる。
第1の多機能材の製造においては、炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用いることができ、特に還元炎を利用することが望ましい。炭化水素含有量が少ない燃料を用いる場合には、炭素のドープ量が不十分であったり、皆無であったりするので、その結果として、硬度が不十分となると共に、可視光下における光触媒活性も不十分となるからである。第1の多機能材の製造において、炭化水素を主成分とするガスとは、炭化水素を少なくとも50容量%含有するガスを意味する。例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスが該当する。第1の多機能材の製造においては、炭化水素を主成分とするガスがアセチレンを50容量%以上含有することが好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分において、不飽和結合部分が分解して中間的なラジカル物質が形成される。このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられる。
第1の多機能材の製造において、加熱処理される基体の表面層がチタン又はチタン合金である場合には、該チタン又はチタン合金を酸化する酸素が必要であるので、加熱処理する際に用いられるガスは、その分だけ空気又は酸素を含んでいる必要がある。
第1の多機能材は、表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することによって製造される。その際には、炭化水素を主成分とするガスの燃焼炎を基体の表面に直接当てて高温で加熱処理してもよいし、炭化水素を主成分とするガスの燃焼ガス雰囲気中において基体の表面を高温で加熱処理してもよい。このような加熱処理は、例えば炉内で実施することができる。燃焼炎を基体に直接当てて高温で加熱処理する場合には、上記燃料ガスを炉内で燃焼させ、その燃焼炎を該基体の表面に当てればよい。また、燃焼ガス雰囲気中において基体を高温で加熱処理する場合には、上記燃料ガスを炉内で燃焼させ、その高温の燃焼ガス雰囲気を利用する。なお、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が粉末状である場合には、そのような粉末状の基体を火炎中に導入し、火炎中に所定時間滞留させて加熱処理したり、粉末状の基体を流動状態の高温の燃焼ガス中に流動床状態のまま所定時間維持することにより、粒子全体がTi−C結合を有する炭素ドープ酸化チタンとなった粉末状の多機能材や、Ti−C結合を有する炭素ドープ酸化チタン層が形成された粉末状の多機能材を製造することができる。
加熱処理については、基体の表面温度が900℃〜1500℃、好ましくは1000℃〜1200℃となり、基体の表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層が形成されるように行う必要がある。加熱処理において基体の表面温度が900℃未満に留まる場合には、得られる炭素ドープ酸化チタン層を有する基体の耐久性は不十分となり、且つ可視光下での光触媒活性も不十分となる。一方、加熱処理において基体の表面温度が1500℃を超える場合には、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じてしまうので、製造される第1の多機能材において耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)の効果が得られない。又、加熱処理における基体の表面温度が900℃〜1500℃の範囲内となる場合であっても、加熱処理時間が長くなると、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じてしまうので、製造される第1の多機能材において耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)の効果が得られない。従って、加熱処理時間は、その後の冷却時に、基体表面部に剥離をもたらさない程度の時間に設定することが必要である。即ち、その加熱処理時間は、該表面層を炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層とするのに十分な時間であるが、加熱後の冷却時にその基体表面部からの極薄膜の剥離をもたらすことのない時間である必要がある。この加熱処理時間は、加熱温度との関係にも依存するが、約400秒以下であることが好ましい。
第1の多機能材の製造においては、加熱温度及び加熱処理時間を調整することにより、炭素を0.3at%〜15at%、好ましくは1at%〜10at%含有するTi−C結合を有する炭素ドープ酸化チタン層を比較的容易に得ることができる。炭素のドープ量が少ない場合には炭素ドープ酸化チタン層は透明であり、炭素のドープ量が増えるに従って、炭素ドープ酸化チタン層は半透明又は不透明となる。従って、透明な板状心材の上に透明な炭素ドープ酸化チタン層を形成することにより、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する透明板を得ることができる。また、表面に有色模様を有する板上に透明な炭素ドープ酸化チタン層を形成することにより、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する化粧板を得ることができる。なお、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が、表面部形成層と心材とによって構成されており、表面部形成層の厚さが500nm以下である場合には、その表面部形成層の融点近傍まで加熱することにより、海に浮かぶ多数の小島状の起伏が表面に生じて半透明となる。
第1の多機能材、即ち、炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有する多機能材においては、炭素ドープ酸化チタン層の厚さは10nm以上であることが好ましく、高硬度、耐スクラッチ性、耐摩耗性を達成するためには50nm以上であることが一層好ましい。炭素ドープ酸化チタン層の厚さが10nm未満である場合には、炭素ドープ酸化チタン層を有する多機能材の耐久性は不十分となる傾向がある。炭素ドープ酸化チタン層の厚さの上限については、コストと達成される効果とを考慮する必要があるが、特に制限されるものではない。
第1の多機能材の炭素ドープ酸化チタン層は、非特許文献3に記載されているように、化学修飾酸化チタンや、従来から提案されている種々の原子又はアニオンXをドープしてなるチタン化合物Ti−O−Xを含有する酸化チタンとは異なり、炭素を比較的多量に含有していると共に、ドープされた炭素がTi−C結合の状態で含まれている。この結果として、耐スクラッチ性、耐磨耗性等の機械的強度が向上し、ビッカース硬度が著しく増大すると考えられる。また、耐熱性も向上する。
また、第1の多機能材の炭素ドープ酸化チタン層は、300Hv以上、好ましくは500Hv以上、さらに好ましくは700Hv以上、最も好ましくは1000Hv以上のビッカース硬度を有している。1000Hv以上のビッカース硬度は硬質クロムめっきの硬度よりも固いものである。従って、第1の多機能材は、従来硬質クロムめっきが利用されていた種々の技術分野に有意に利用できる。
第1の多機能材に含まれる炭素ドープ酸化チタン層は、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として有効に作用するものである。従って、このような第1の多機能材は可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現する。また、第1の多機能材の炭素ドープ酸化チタン層は接触角3°以下の超親水性を示す。
また、第1の多機能材に含まれる炭素ドープ酸化チタン層は耐薬品性にも優れており、1M硫酸及び1M水酸化ナトリウムのそれぞれの水溶液に一週間浸漬した後、被膜硬度、耐摩耗性及び光電流密度を測定し、処理前の測定値と比較したところ、有為な変化はみられなかった。因みに、市販の酸化チタン被膜については、一般的にはバインダーはその種類によって酸又はアルカリに溶解するので膜が剥離してしまい、耐酸性、耐アルカリ性がほとんどない。
さらに、第1の多機能材に含まれる炭素ドープ酸化チタン層は、γ線等の放射線にも応答する触媒としても使用できる。すなわち、本発明者らは、酸化チタン等の溶射膜が放射線に応答して原子炉構造部材の応力腐食割れやスケール付着等を抑制することを先に発明しているが、このような放射線応答型触媒として第1の多機能材に含まれる炭素ドープ酸化チタン層を使用した場合に、基材の電位を低下させて孔食や全面腐食、並びに応力腐食割れを抑制できると共に、酸化力によりスケールや汚れ等を分解することができるという効果を奏する。他の放射線触媒の成膜法と比較して簡便であり、かつ耐薬品性及び耐摩耗性等の耐久性の観点からも優れている。
次に、本実施形態に係る灌漑システムに含まれる灌漑装置の材料として用いられる第2の多機能材について説明する。
第2の多機能材は、表面の少なくとも一部に、酸化チタン又はチタン合金酸化物からなり、炭素ドープされている多数の突起部を有している。この突起部は、例えば、微細柱(微細な柱状構造物)が林立している層であっても良いし、薄膜上に露出している多数の連続した狭幅突起部及び該突起部上に林立している微細柱であっても良い。
第2の多機能材は、次のようにして製造される。まず、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面を、例えば、不飽和炭化水素、特にアセチレンの燃焼炎によって加熱処理する。それにより、該表面層の内部に、酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が形成される。次に、この基体に、例えば、熱応力、剪断応力、引張力を与えることにより、該微細柱が林立している層を該表面層に沿う方向において切断させる。それにより、該基体上の少なくとも一部(一般には、該基体上の大部分)に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とが得られる。これらの基体側の部材及び薄膜側の部材は、共に、表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有しており、両者とも第2の多機能材として用いられる。
この少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体は、その基体の全体がチタン、酸化チタン、チタン合金又はチタン合金酸化物の何れかで構成されていてもよく、或いはチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層と、表面部形成層とは異なる材質からなる心材とによって構成されていてもよい。また、その基体の形状については、光触媒活性及び/又は超親水性が望まれる如何なる最終商品形状(平板状や立体状)であってもよい。
少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体が、チタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層とそれ以外の材質からなる心材とによって構成されている場合には、その表面部形成層の厚さ(量)は、形成される酸化チタン又はチタン合金酸化物からなる微細柱が林立している層に相当する厚さであってもよいし(即ち、表面部形成層全体が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となる)、それより厚くてもよい(即ち、表面部形成層の厚さ方向の一部が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となり、残部が変化しないでそのまま残る)。また、心材の材質は、第2の多機能材の製造過程における加熱処理の際に、燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、ガラス、セラミックス、その他の陶磁器を用いることができる。このような薄膜状の表面層と心材とで構成されている基体は、第1の多機能材におけるのと同様に作製することができる。この表面層の厚さは、好ましくは0.5μm以上、より好ましくは4μm以上である。
また、チタン合金としては、公知の種々のチタン合金を用いることができ、特に制限されることはなく、第1の多機能材におけるのと同様のものが用いられる。
第2の多機能材の製造においては、例えば、不飽和炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用い、特に還元炎を利用することが望ましい。第2の多機能材を製造する際には、不飽和炭化水素を少なくとも50容量%含有するガス、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを用いることが好ましい。また、第2の多機能材の製造においては、燃料成分をアセチレン100%とすることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分において、不飽和結合部分が分解して中間的なラジカル物質が形成される。このラジカル物質は活性が強いので炭素ドープが生じ易く、ドープされた炭素がTi−C結合の状態で含まれる。このように微細柱に炭素ドープが生じると微細柱の硬度が高くなり、結果として多機能材の硬度、耐磨耗性等の機械的強度が向上し、耐熱性も向上する。
第2の多機能材の製造過程においては、表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に燃焼炎を直接当てて加熱処理するか、又は、該基体の表面を燃焼排ガス雰囲気中において加熱処理することが行われる。この加熱処理は、例えばガスバーナーを用いて、或いは、炉内において実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、ガスバーナーにより、その燃焼炎を該基体の表面に当てればよい。燃焼排ガス雰囲気中において高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼排ガスを含む雰囲気を利用すればよい。
加熱処理については、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させることにより、該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に該酸化チタン又はチタン合金酸化物からなる多数の連続した幅狭突起部及び該突起部上に林立している微細柱が露出している部材とを得ることが可能なように、加熱温度及び加熱処理時間を調整する必要がある。この加熱処理は600℃以上の温度で実施することが好ましい。
このような条件下で加熱処理することにより、微細柱が林立している層の高さが1μm〜20μm程度であり、その上の薄膜の厚さが0.1μm〜10μm程度であり、微細柱の平均太さが0.2μm〜3μm程度である中間体が形成される。その後に、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させることにより、少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している基体側の部材(即ち、基体上の微細柱が林立している層の上に存在していた薄膜の全部又は大部分が剥離するが、微細柱が林立している層の上に存在していた薄膜の一部が剥離しないで残ることがある)と、酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している薄膜側の部材とを得ることができる。
熱い中間体に熱応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、熱い中間体の表面及び裏面の何れか一方を冷却し、又は、加熱することにより、中間体の表面と裏面との間に温度差を設ける。冷却方法としては、例えば、熱い中間体の表面又は裏面の何れかに、ステンレスブロック等の冷却用物体を接触させたり、熱い中間体の表面又は裏面の何れかに冷気(常温の空気)を吹き付ける。なお、熱い中間体を放冷しても熱応力が生じるが、その程度は低い。
上記中間体に剪断応力を与えることにより微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、上記中間体の表面及び裏面に摩擦力により相対的に逆方向の力を与える。また、上記中間体に引張力を与えることにより微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、真空吸着盤等を用いて上記中間体の表面及び裏面を、それらの面の垂直方向で逆方向に引張る。なお、少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している基体側の部材のみを利用する場合には、上記の中間体から、酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している薄膜側の部材に相当する部分を研磨、スパッタリング等によって除去しても良い。
上記のようにして得られた少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している基体側の部材においては、微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって微細柱が林立している層の高さが変化するが、微細柱が林立している層の高さは、一般的には1μm〜20μm程度であり、微細柱の平均太さは0.5μm〜3μm程度である。この基体側の部材はVOCを容易に吸着でき、表面積が大きいので光触媒としての活性が高く、更には被膜硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性にも優れた多機能材である。
一方、上記のようにして得られた酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している薄膜側の部材は、小片状となっている。各小片上の突起部の高さは2μm〜12μm程度であり、該微細柱の高さは微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって変化するが、微細柱が林立している層の高さは一般的には1μm〜5μm程度であり、微細柱の平均太さは0.2μm〜0.5μm程度である。しかし、微細柱が林立している層を表面層に沿う方向で切断させる条件によっては微細柱がほとんど存在しないで多数の連続した幅狭突起部が露出している場合もある。この薄膜側の部材もVOCを吸着できると共に、表面積が大きいので、光触媒としての活性が高い。また、この薄膜側の部材は、薄膜状のまま用いても良いし、粉砕して用いても良い。薄膜側部材の粉砕物もVOCを容易に吸着できると共に、表面積が大きいので、光触媒としての活性が高い。
第2の多機能材においては、酸化チタン又はチタン合金酸化物からなる微細柱、又は、多数の連続した狭幅突起部及び該突起部上に林立している微細柱が炭素ドープされているので、紫外線は勿論、400nm以上の波長の可視光にも応答する。従って、光触媒として特に有効に作用し、可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現する。
第2の多機能材を構成する酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の各々の微細柱の形状については、図11及び図14の顕微鏡写真から判断されるように、角柱状、円柱状、角錐状、円錐状、逆角錐状若しくは逆円錐状等で、基板の表面とは直角方向又は傾斜した方向に真っ直ぐ伸びているもの、湾曲又は屈曲しながら伸びているもの、枝状に分岐して伸びているもの、それらの複合体状のもの等がある。また、その全体形状としては、霜柱状、起毛カーペット状、珊瑚状、列柱状、積木で組み立てられた柱状等の種々の表現で示すことができる。また、それらの微細柱の太さ、高さ、その付け根(底面)の大きさ等は、加熱条件等により変化する。
第2の多機能材の内で、酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している薄膜側の部材においては、図13の顕微鏡写真から判断されるように、その多数の連続した幅狭突起部はクルミの殻の外側の外見、軽石の外見をしていると見ることができ、また各々の連続した狭幅突起部は湯じわやちぢみ状の模様が屈曲していると見ることができる。さらに、該突起部上に林立している微細柱の形状は上記した基体上の微細柱が林立している層の各々の微細柱の形状と同様であるが、微細柱と薄膜との接合部で切断されるものが多いので、該突起部上に林立している微細柱の密度は上記の基体上の微細柱が林立している層の微細柱の密度よりも一般的に小さくなる。
以下に、実施例及び比較例に基づいて本発明をさらに詳細に説明する。
実施例1〜3
アセチレンの燃焼炎を用い、厚さ0.3mmのチタン板をその表面温度が約1100℃となるように加熱処理することにより、表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を形成した。1100℃での加熱処理時間をそれぞれ5秒(実施例1)、3秒(実施例2)、1秒(実施例3)に調整することにより炭素ドープ量及び炭素ドープ酸化チタン層の厚さが異なる炭素ドープ酸化チタン層を有するチタン板を形成した。
この実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について蛍光X線分析装置で炭素含有量を求めた。その炭素含有量に基づいてTiO2-xCxの分子構造を仮定すると、実施例1については炭素含有量8at%、TiO1.760.24、実施例2については炭素含有量約3.3at%、TiO1.900.10、実施例3については炭素含有量1.7at%、TiO1.950.05であった。また、実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
比較例1
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン板にスピンコートした後、加熱して密着性を高めた酸化チタン被膜を有するチタン板を形成した。
比較例2
SUS板上に酸化チタンがスプレーコートされている市販品を比較例2の酸化チタン被膜を有する基体とした。
試験例1(ビッカース硬度)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン被膜について、ナノハードネステスター(NHT)(スイスのCSM Instruments製)により、圧子:ベルコビッチタイプ、試験荷重:2mN、負荷除荷速度:4mN/minの条件下で被膜硬度を測定したところ、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層はビッカース硬度が1340と高い値であった。一方、比較例1の酸化チタン被膜のビッカース硬度は160であった。
これらの結果を図2に示す。なお、参考のため、硬質クロムメッキ層及びニッケルメッキ層のビッカース硬度の文献値(友野、「実用めっきマニュアル」、6章、オーム社(1971)から引用)を併せて示す。実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、ニッケルメッキ層や硬質クロムメッキ層よりも高硬度であることは明らかである。
試験例2(耐スクラッチ性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン被膜について、マイクロスクラッチテスター(MST)(スイスのCSM Instruments製)により、圧子:ロックウェル(ダイヤモンド)、先端半径200μm、初期荷重:0N、最終荷重:30N、負荷速度:50N/min、スクラッチ長:6mm、ステージ速度:10.5mm/minの条件下で耐スクラッチ性試験を実施した。スクラッチ痕内に小さな膜の剥離が起こる「剥離開始」荷重及びスクラッチ痕全体に膜の剥離が起こる「全面剥離」荷重を求めた。その結果は第1表に示す通りであった。
試験例3(耐摩耗性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン被膜について、高温トライボメーター(HT−TRM)(スイスのCSM Instruments製)により、試験温度:室温及び470℃、ボール:直径12.4mmのSiC球、荷重:1N、摺動速度:20mm/sec、回転半径:1mm、試験回転数:1000回転の条件下で摩耗試験を実施した。
この結果、比較例1の酸化チタン被膜については、室温及び470℃の両方について剥離が発生したが、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層については、室温及び470℃の両方の条件下で有意なトレース摩耗は検出されなかった。
試験例4(耐薬品性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬した後、上記の被膜硬度、耐摩耗性、及び後記する光電流密度を測定したところ、浸漬の前後で、結果に有意な差は認められなかった。即ち、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は高い耐薬品性を有することが認められた。
試験例5(炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の構造)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果を図3に示す。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.7eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例1の炭素ドープ酸化チタン層中ではCがTi−C結合としてドープされていると判断される。なお、炭素ドープ酸化チタン層の深さ方向の異なる位置の11点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
また、炭素ドープ酸化チタン層と基体との境界でもTi−C結合が確認された。従って、炭素ドープ酸化チタン層中のTi−C結合により硬度が高くなっており、また、炭素ドープ酸化チタン層と基体との境界でのTi−C結合により被膜剥離強度が著しく大きくなっていることが予想される。
試験例6(波長応答性)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン被膜の波長応答性をOriel社のモノクロメーターを用いて測定した。具体的には、それぞれの層、被膜に対し、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、光電流密度を測定した。
その結果を図4に示す。図4には、得られた光電流密度jpを照射波長に対して示してある。実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の波長吸収端は、490nmに及んでおり、炭素ドープ量の増大に伴って光電流密度が増大することが認められた。なお、ここには示していないが、炭素ドープ量が10at%を越えると電流密度が減少する傾向になり、さらに15at%を越えるとその傾向は顕著になることがわかった。よって、炭素ドープ量が1at%〜10at%程度に最適値があることが認められた。一方、比較例1、2の酸化チタン被膜では、光電流密度が著しく小さく、且つ波長吸収端も410nm程度であることが認められた。
試験例7(光エネルギー変換効率)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン被膜について、次式によって定義される光エネルギー変換効率ηを求めた。
η=jp(Ews−Eapp)/I
ここで、Ewsは水の理論分解電圧(=1.23V)、Eappは印加電圧(=0.3V)、Iは照射光強度である。この結果を図5に示す。図5は光エネルギー変換効率ηを照射光波長に対して示してある。
図5から明らかなように、実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の光エネルギー変換効率は著しく高く、波長450nm付近での変換効率が比較例1、2の酸化チタン被膜の紫外線領域(200nm〜380nm)での変換効率より優れていることが認められた。また、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の水分解効率は、波長370nmで約8%であり、350nm以下では10%を越える効率が得られることがわかった。
試験例8(消臭試験)
実施例1及び2の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン被膜について、消臭試験を実施した。具体的には、消臭試験に一般的に用いられるアセトアルデヒドを炭素ドープ酸化チタン層を有する基体と共に1000mlのガラス容器に封入し、初期の吸着による濃度減少の影響が無視できるようになってから、UVカットフィルタ付き蛍光灯にて可視光を照射し、所定の照射時間毎にアセトアルデヒド濃度をガスクロマトグラフィーで測定した。なお、各被膜の表面積は8.0cmとした。
この結果を図6に示す。図6には、アセトアルデヒド濃度を可視光照射後の経過時間に対して示してある。実施例1及び2の炭素ドープ酸化チタン層のアセトアルデヒド分解速度は、比較例1の酸化チタン被膜のアセトアルデヒド分解速度の約2倍以上の高い値となっており、また、炭素ドープ量が多く、光エネルギー変換効率の高い実施例1の炭素ドープ酸化チタン層の方が、実施例2の炭素ドープ酸化チタン層と比較して分解速度が高いことがわかった。
試験例9(防汚試験)
実施例1の炭素ドープ酸化チタン層及び比較例1の酸化チタン被膜について、防汚試験を実施した。各被膜を(財)電力中央研究所内の喫煙室内に設置し、145日後の表面の汚れを観察した。なお、この喫煙室内には太陽光の直接の入射はない。
この結果を示す写真を図7に示す。比較例1の酸化チタン被膜の表面には脂が付着し、薄い黄色を呈していたが、実施例1の炭素ドープ酸化チタン層の表面は特に変化がみられず、清浄に保たれており、防汚効果が十分に発揮されたことが認められた。
実施例4〜7
実施例1〜3と同様にアセチレンの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン板を形成した。
比較例3
天然ガスの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理した。
試験例10
実施例4〜7の炭素ドープ酸化チタン層及び比較例3の被膜について、上記の試験例1と同様にしてビッカース硬度(HV)を測定した。それらの結果を第2表に示す。また、実施例4〜7で形成された炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
第2表に示すデータから明らかなように、天然ガスの燃焼ガスで表面温度が850℃になるように加熱処理した場合にはビッカース硬度160の被膜しか得られなかったが、表面温度が1000℃以上になるようにアセチレンの燃焼ガスを用いて加熱処理した実施例4〜7の場合にはビッカース硬度1200の炭素ドープ酸化チタン層が得られた。
試験例11
実施例4〜7の炭素ドープ酸化チタン層及び比較例1及び3の酸化チタン被膜について、試験例6と同様に、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、300nm〜520nmの光を照射して光電流密度を測定した。その結果を図8に示す。図8には、得られた光電流密度jpを電位ECP(V vs. SSE)に対して示してある。
アセチレンの燃焼ガスを用いて表面温度が1000℃〜1200℃になるように加熱処理して得た実施例4〜6の炭素ドープ酸化チタン層は、相対的に光電流密度が大きく優れていることがわかった。一方、表面温度が850℃になるように加熱処理して得た比較例3の酸化チタン及び表面温度が1500℃になるように加熱処理して得た実施例7の炭素ドープ酸化チタン層は光電流密度が相対的に小さいことがわかった。
実施例8
アセチレンの燃焼炎を用い、厚さ0.3mmのTi−6Al−4V合金板をその表面温度が約1100℃となるように加熱処理することにより、表面層が炭素ドープ酸化チタンを含有するチタン合金からなる合金板を形成した。1100℃での加熱処理時間を60秒とした。このようにして形成された炭素ドープ酸化チタンを含有する層は水滴との接触角が2°程度の超親水性であり、また実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例9
厚さ0.3mmのステンレス鋼板(SUS316)の表面にスパッタリングによって膜厚が約500nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が約900℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するステンレス鋼板を形成した。900℃での加熱処理時間を15秒とした。このようにして形成された炭素ドープ酸化チタン層は水滴との接触角が2°程度の超親水性であり、また、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例10
粒径20μmの酸化チタン粉末をアセチレンの燃焼炎中に供給し、燃焼炎中に所定時間滞留させてその表面温度が約1000℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン粉末を形成した。1000℃での加熱処理時間を4秒とした。このようにして形成された炭素ドープ酸化チタン層を有するチタン粉末、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
実施例11〜12
厚さ1mmのガラス板(パイレックス(登録商標))の表面にスパッタリングによって膜厚が約100nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が1100℃(実施例11)、又は1500℃(実施例12)となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するガラス板を形成した。1100℃、又は1500℃での加熱処理時間を10秒とした。このようにして形成された炭素ドープ酸化チタン層は表面温度が1100℃の場合には図9(a)に写真で示すように透明であったが、表面温度が1500℃の場合には図10に示すように海に浮かぶ多数の小島状の起伏が表面に生じており、図9(b)に示すように半透明となった。
実施例13〜16
厚さ0.3mmのチタン板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。即ち、加熱処理で表面層内部に形成された酸化チタンからなる微細柱が林立している層がその後の冷却で該微細柱が林立している層が該表面層に沿う方向で切断された。このようにして実施例13〜16の多機能材を得た。
図11は、実施例13で得られた多機能材の顕微鏡写真であり、チタン板表面1上に白色の酸化チタンからなる微細柱が林立している層2が露出しており、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3がその層2上の一部に残っている状態を示している。なお、実施例13〜16の製造法ではチタン板表面1は露出しないが、図11の顕微鏡写真は微細柱が林立している層2の一部を除去した状態を示している。図12は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真であり、図13は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態示す顕微鏡写真であり、図14は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。
実施例17
厚さ0.3mmのTi−6Al−4V合金板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン合金板表面の大部分にチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上にチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
実施例18
厚さ0.3mmのステンレス鋼板(SUS316)の表面に電子ビーム蒸着によって膜厚が約3μmのチタン薄膜を形成した。その薄膜表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、ステンレス鋼板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
比較例4
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン板にスピンコートした後、加熱して密着性を高めた酸化チタン被膜を有するチタン板を形成した。
試験例12(引っかき硬度試験:鉛筆法)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材の微細柱側表面について、JIS K 5600−5−4(1999)に基づき、三菱鉛筆株式会社製ユニ1H〜9H鉛筆を用いて鉛筆引っかき硬度試験を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められなかった。
試験例13(耐薬品性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬し、水洗し、乾燥させた後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐薬品性を有することが認められた。
試験例14(耐熱性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を管状炉内に入れ、大気雰囲気下で室温から1時間かけて500℃まで昇温させ、500℃の恒温で2時間保持し、更に1時間かけて室温まで静置冷却した後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐熱性を有することが認められた。
試験例15(防汚試験)
試料として、実施例16で得られた基板表面に微細柱が林立している層が露出している表面積8cm2の部材及び比較例4で得られた酸化チタン皮膜を有する表面積8cm2のチタン板を用いて防汚試験を実施した。具体的には、それらの試料をそれぞれ、約10μmol/Lの濃度に調整したメチレンブルー水溶液80mL中に浸漬し、初期の吸着による濃度減少の影響が無視できるようになってから、松下電器産業株式会社製のUVカットフィルター付き蛍光灯により可視光を照射し、所定の照射時間毎に波長660nmにおけるメチレンブルー水溶液の吸光度をHACH社製水質検査装置DR/2400で測定した。その結果は図15に示す通りであった。
図15から、実施例16で得られた基板表面に微細柱が林立している層が露出している部材は、比較例4で得られた酸化チタン皮膜を有するチタン板に比較して、メチレンブルーの分解速度が速く、防汚効果が高いことが分かる。
試験例16(結晶構造と結合状態)
実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱から得た試料についてX線解析(XRD)を行った結果、ルチル型の結晶構造を有することが判明した。
また、実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱部分について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果は図16に示す通りであった。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.6eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例15の微細柱中ではCがTi−C結合としてドープされていると判断される。なお、微細柱の高さ位置の異なる位置の14点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
実施例19
試験片として直径32mm、厚さ0.3mmの円板を用い、その表面を表面温度が約1150℃に維持されるようにアセチレンの燃焼炎により加熱した。第一の試験片については加熱時間120秒の時点で加熱を止めて放冷した。第二の試験片については180秒の時点で加熱を止めて放冷した。第三の試験片については480秒間加熱し、直ちにその燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却した。この冷却によりチタン板表面から薄膜が剥離し、その下から白色の酸化チタンからなる微細柱が林立している層が露出している部材が得られた。これらの3枚の試験片について、セイコーインスツルメンツ社製FIB−SEM装置SMI8400SEを用いて試験片表面に3μm×12μmで深さ10μmの穴を掘り、その側面及び底面をキーエンス社製SEM装置VE7800により観察を行った。120秒後の試験片のSEM写真は図17であり、180秒後の試験片のSEM写真は図18であり、480秒後の試験片のSEM写真は図19である。180秒後の図18では皮膜下部に微細柱構造の兆候が現れ始めており、更に火炎処理を続けることで微細柱長く伸びて本発明で目的とするような微細柱構造が形成されると考えられる。
次に、図1に示す灌漑システムにおいて用いられる灌漑装置に適用される構造材について説明する。なお、以下において、炭素ドープ酸化チタン又はチタン合金酸化物を含む層又は被膜とは、先に説明した第1又は第2の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物(望ましくは、Ti−C結合を有する)の層又は膜と同様の構造を有するものである。
図20は、図1に示す揚水ポンプ11、タンク12、制御弁20〜22、及び、散水機30を含む灌漑装置に適用される構造材を示す断面図である。
図20に示すように、この構造材は、金属又は合金(例えば、ステンレス)によって形成されている心材101と、心材101の外側に形成されている表面層102とを含んでいる。表面層102は、チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成されており、少なくともその最表面には、先に説明した第1又は第2の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物を含む層が形成されている。なお、図20においては、表面層102の全体が炭素ドープ酸化チタン又はチタン合金酸化物を含む層となっている。
このような構造材は、次のようにして製造される。まず、心材101として、所定の幅、長さ、及び、厚さを有する金属又は合金板を用意する。この心材101の表面に、溶射等の方法を用いて、チタン、チタン合金、酸化チタン、又は、チタン合金酸化物の被膜を形成する。或いは、酸化チタンゾルをスプレーコーティングしても良い。そして、被膜が形成された心材を、第1又は第2の多機能材の製造方法において説明したのと同様に、所定の条件の下で熱処理する。この熱処理は、被膜の少なくとも表面に、炭素ドープ酸化チタン又はチタン合金酸化物を含む層が形成されるまで行われる。言い換えれば、表面層102の深層(心材101側の部分)においては、チタン又はチタン合金、或いは、炭素ドープされていない酸化チタン又はチタン合金酸化物が残留していても構わない。それにより、表面層102が形成される。
さらに、熱処理後の表面層102に対して必要に応じて後処理を施し、自然冷却させることにより、図20に示す構造材が完成する。なお、この後処理には、第2の多機能材を形成するための熱処理によって同時に形成される薄膜側の部材の剥離等が含まれる。
このように、金属又は合金板の表面に、炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜を形成することにより、剛性が高く、且つ、被膜の光触媒機能により汚れが付着し難い構造材を得ることができる。
なお、図20に示す構造材においては、心材層101の両面に表面層102が形成されているが、一方の面のみに表面層102を形成するようにしても良い。
次に、図1に示す揚水ポンプ11、タンク12、制御弁20〜22、及び、散水機30を含む灌漑装置に適用される別の構造材について、図21を参照しながら説明する。
図21に示すように、この構造材は、チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成されている心材層201と、心材層201の表面を覆っている表面層202とを含んでいる。表面層202は、先に説明した第1又は第2の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物を含む層によって形成されている。
このような構造材は、次のようにして製造される。まず、チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成され、所定の幅、長さ、及び、厚さを有する材料板を用意する。この材料板を、第1又は第2の多機能材の製造方法において説明したのと同様に、所定の条件の下で熱処理する。それにより、材料板の表面に炭素ドープ酸化チタン又はチタン合金酸化物を含む層(表面層202)が形成される。さらに、熱処理された構造材に対して必要に応じて後処理を施し、自然冷却させることにより、図21に示す構造材が完成する。
このように、チタン等の成形体の表面に、炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜を形成することにより、軽量で剛性が高く、且つ、被膜の光触媒機能により汚れが付着し難い構造材を得ることができる。特に、そのような構造材においては、チタン等の基体の一部を炭素ドープ酸化チタン又はチタン合金酸化物に変化させるので、基体と表面層との間に光電流の流れを妨げる明確な界面は存在せず、電気的コンダクタンスは高い。従って、基材の電位を低下させて孔食や腐食を抑制したり、酸化力により汚れを分解する効果が、非常に効率良く発現する。
以上説明したように、本実施形態に係る灌漑システムを構成する各灌漑装置を、図20及び図21に示す構造材を用いて作製することにより、各灌漑装置において防汚効果を得ることができる。それにより、各灌漑装置のメンテナンスの手間を軽減しつつ、汚れの蓄積を抑制できるので、遠隔操作による灌漑システムの制御を円滑に行うことが可能となる。また、灌漑装置の内面(水と接触する面)における汚れの蓄積を抑制することにより、スムーズな水流を維持することができるので、ポンプ動力の上昇も抑えられる。特に、先に説明した第1の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜は、超親水性及び光触媒機能による高い酸化分解力を有しているので、高いセルフクリーニング効果を発揮する。さらに、屋外に設置される灌漑装置についても、外的環境による腐食等を抑制して製品寿命を伸ばすことが可能となる。
さらに、第1の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜は、表面が極めて平滑なので、灌漑装置の内面と水流との間に生じる管摩擦を決定する管摩擦係数が小さい。従って、そのような被膜が内面に形成された灌漑装置においては、物理的にも汚れが付着し難いことに加えて、水流がよりスムーズとなるので、ポンプ動力を低く抑えられるという利点もある。
なお、炭素ドープ酸化チタン又はチタン合金酸化物を含む表面層102及び202は高い剛性及び耐スクラッチ性を有しているので、灌漑装置の通常の製造工程において、表面層が剥離したり削れることはない。
或いは、図1に示す灌漑システムにおいて用いられる灌漑装置の別の作製方法として、通常用いられる材料(例えば、ステンレス)によって灌漑装置の部品を作製し、その表面にチタン、チタン合金、酸化チタン、又は、チタン合金酸化物の被膜を形成し、第1又は第2の多機能材の製造方法において説明したのと同様に、所定の条件の下で熱処理する方法を用いても良い。さらに、それらの部品を組み立てることにより、防汚性能を有する灌漑装置が完成する。
次に、図1に示す水路40を構成する灌漑用部材について説明する。図22は、灌漑用部材である水路用ブロックを示す一部断面斜視図である。
図22に示す水路用ブロックは、コンクリートやセラミックス等の非金属によって形成されている心材301と、心材の外側に形成されている表面層302とを含んでいる。表面層302は、チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成されており、少なくともその最表面には、先に説明した第1又は第2の多機能材における炭素ドープ酸化チタン又はチタン合金酸化物を含む層が形成されている。なお、図22においては、表面層302の全体が炭素ドープ酸化チタン又はチタン合金酸化物を含む層となっている。
このような水路用ブロックは、次のようにして製造される。まず、セラミックスによって水路用ブロックの形状を有する心材301を作製する。この心材301の表面に、溶射等の方法を用いてチタン、チタン合金、酸化チタン、又は、チタン合金酸化物の被膜を形成する。或いは、酸化チタンゾルをスプレーコーティングしても良い。そして、被膜が形成された心材301を、先に第1又は第2の多機能材の製造方法において説明したのと同様に、所定の条件の下で熱処理する。それにより、表面層302が形成される。この熱処理は、被膜の少なくとも表面に炭素ドープ酸化チタン又はチタン合金酸化物を含む層が形成されるまで行われる。
さらに、熱処理後の表面層302に対して必要に応じて後処理を施し、自然冷却させることにより、図22に示す水路用ブロックが完成する。
このように、水路用ブロックの表面に炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜を形成することにより、水路用ブロックにおいて、被膜が有する光触媒機能によって生じる防汚効果を得ることができる。そのため、このような水路用ブロックを用いて灌漑用水路を形成することにより、水路に汚れが蓄積して詰まりを生じさせたり、蓄積した汚れが剥離して制御弁等に流れ着いた結果、制御弁等に悪影響を及ぼしたりすることがなくなる。また、先にも述べたように、炭素ドープ酸化チタン又はチタン合金酸化物を含む被膜は、高い耐食性を有しているので、簡単なメンテナンスで長期に渡って水路を使用することが可能となる。
本発明は、揚水ポンプ、タンク、制御弁、及び、散水機等の灌漑装置、並びに、水路用ブロック等の灌漑用部材を含む灌漑システムにおいて利用することが可能である。
本発明の一実施形態に係る灌漑システムの構成を示す模式図である。 試験例1の被膜硬度試験の結果を示す図である。 試験例5のXPS分析の結果を示す図である。 試験例6の光電流密度の波長応答性を示す図である。 試験例7の光エネルギー変換効率の試験結果を示す図である。 試験例8の消臭試験の結果を示す図である。 試験例9の防汚試験の結果を示す写真である。 試験例11の結果を示す図である。 実施例11及び12で得られた炭素ドープ酸化チタン層の光透過状態を示す写真である。 実施例11で得られた炭素ドープ酸化チタン層の表面状態を示す写真である。 実施例13で得られた多機能材の状態を示す顕微鏡写真である。 薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真である。 薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態示す顕微鏡写真である。 白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。 試験例15(防汚試験)の結果を示すグラフである。 試験例16(結晶構造と結合状態)の結果を示すグラフである。 実施例19における加熱時間120秒後のSEM写真である。 実施例19における加熱時間180秒後のSEM写真である。 実施例19における加熱時間480秒後のSEM写真である。 図1に示す灌漑装置に適用される構造材を示す断面図である。 図1に示す灌漑装置に適用される別の構造材を示す断面図である。 図1に示す水路に適用される水路用ブロックを示す一部断面斜視図である。
符号の説明
1 チタン板表面
2 微細柱が林立している層
3 狭幅突起部が露出している小片部材
10 ポンプシステム
11 揚水ポンプ
12 タンク
20〜22 制御弁
23 散水機
40 水路
100 制御部
101、301 心材
102、202、302 表面層
201 心材層

Claims (17)

  1. 金属又は合金によって形成されている心材と、
    前記心材の外側に形成されている表面層であって、少なくとも最表面が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む前記表面層と、
    を具備する灌漑装置。
  2. 金属又は合金によって形成されている心材と、
    前記心材の外側に形成されている表面層であって、少なくとも一部に、炭素ドープされている酸化チタン又はチタン合金酸化物によって形成されている複数の突起部、微細柱が林立している層、又は、複数の連続した狭幅突起部及び該突起部上に林立している微細柱を含む前記表面層と、
    を具備する灌漑装置。
  3. 前記表面層が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む、請求項2記載の灌漑装置。
  4. 前記表面層が、前記心材の表面にチタン、チタン合金、酸化チタン、又は、チタン合金酸化物を含む被膜を形成し、該被膜を所定の条件の下で熱処理することによって形成されたものである、請求項1〜3のいずれか1項記載の灌漑装置。
  5. チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成されている心材と、
    前記心材の表面に形成されている表面層であって、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む前記表面層と、
    を具備する灌漑装置。
  6. チタン、チタン合金、酸化チタン、又は、チタン合金酸化物によって形成されている心材と、
    前記心材の表面に形成されている表面層であって、少なくとも一部に、炭素ドープされている酸化チタン又はチタン合金酸化物によって形成されている複数の突起部、微細柱が林立している層、又は、複数の連続した狭幅突起部及び該突起部上に林立している微細柱を含む前記表面層と、
    を具備する灌漑装置。
  7. 前記表面層が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む、請求項6記載の灌漑装置。
  8. 前記表面層が、前記心材を所定の条件の下で熱処理することによって形成されたものである、請求項5〜7のいずれか1項記載の灌漑装置。
  9. 非金属によって形成されている心材と、
    前記心材の外側に形成されている表面層であって、少なくとも最表面が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む前記表面層と、
    を具備する灌漑用部材。
  10. 非金属によって形成されている心材と、
    前記心材の外側に形成されている表面層であって、少なくとも一部に、炭素ドープされている酸化チタン又はチタン合金酸化物によって形成されている複数の突起部、微細柱が林立している層、又は、複数の連続した狭幅突起部及び該突起部上に林立している微細柱を含む前記表面層と、
    を具備する灌漑用部材。
  11. 前記表面層が、Ti−C結合の状態で炭素がドープされている酸化チタン又はチタン合金酸化物を含む、請求項10記載の灌漑用部材。
  12. 前記表面層が、前記心材の表面に配置されたチタン、チタン合金、酸化チタン、又は、チタン合金酸化物の膜を所定の条件の下で熱処理することによって形成されたものである、請求項9〜11のいずれか1項記載の灌漑用部材。
  13. 前記表面層のビッカース硬度が300以上である、請求項1、5、又は、9記載の灌漑装置又は灌漑用部材。
  14. 前記表面層のビッカース硬度が1000以上である、請求項13記載の灌漑装置又は灌漑用部材。
  15. 前記表面層が、炭素を0.3at%〜15at%含有している、請求項1〜14のいずれか1項記載の灌漑装置又は灌漑用部材。
  16. 前記チタン合金が、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、又は、Ti−13V−11Cr−3Alを含む、請求項1〜15のいずれか1項記載の灌漑装置又は灌漑用部材。
  17. 請求項1〜16のいずれか1項記載の灌漑装置と、
    前記灌漑装置を遠隔操作により制御する制御手段と、
    を具備する灌漑システム。
JP2005055071A 2005-02-28 2005-02-28 灌漑装置及び灌漑用部材及びそれらの製造方法、並びに、灌漑システム Expired - Fee Related JP4995425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055071A JP4995425B2 (ja) 2005-02-28 2005-02-28 灌漑装置及び灌漑用部材及びそれらの製造方法、並びに、灌漑システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055071A JP4995425B2 (ja) 2005-02-28 2005-02-28 灌漑装置及び灌漑用部材及びそれらの製造方法、並びに、灌漑システム

Publications (2)

Publication Number Publication Date
JP2006238725A true JP2006238725A (ja) 2006-09-14
JP4995425B2 JP4995425B2 (ja) 2012-08-08

Family

ID=37045748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055071A Expired - Fee Related JP4995425B2 (ja) 2005-02-28 2005-02-28 灌漑装置及び灌漑用部材及びそれらの製造方法、並びに、灌漑システム

Country Status (1)

Country Link
JP (1) JP4995425B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228022A (ja) * 1995-12-22 1997-09-02 Toto Ltd 親水性部材、及び親水性維持方法
JPH1042726A (ja) * 1996-07-31 1998-02-17 Ebara Corp 農業用水給水設備
JP2732770B2 (ja) * 1993-03-23 1998-03-30 株式会社パディ研究所 水田の用水制御機構および地区内の用水管理機構
JP2001275501A (ja) * 2000-03-31 2001-10-09 Hitachi Ltd 圃場灌漑システム
JP2002028998A (ja) * 2000-07-13 2002-01-29 Toyota Central Res & Dev Lab Inc 防汚材およびタッチパネル
JP2002370034A (ja) * 2001-06-15 2002-12-24 Andes Denki Kk 無機金属化合物を用いた酸化物光触媒材料およびその応用品
JP2004322045A (ja) * 2003-04-28 2004-11-18 Kagawa Industry Support Foundation 新規な可視光励起型光触媒とその製造方法
JP2005047787A (ja) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd 二酸化チタン微粒子およびその製造方法
JP2006241485A (ja) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind 構造材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732770B2 (ja) * 1993-03-23 1998-03-30 株式会社パディ研究所 水田の用水制御機構および地区内の用水管理機構
JPH09228022A (ja) * 1995-12-22 1997-09-02 Toto Ltd 親水性部材、及び親水性維持方法
JPH1042726A (ja) * 1996-07-31 1998-02-17 Ebara Corp 農業用水給水設備
JP2001275501A (ja) * 2000-03-31 2001-10-09 Hitachi Ltd 圃場灌漑システム
JP2002028998A (ja) * 2000-07-13 2002-01-29 Toyota Central Res & Dev Lab Inc 防汚材およびタッチパネル
JP2002370034A (ja) * 2001-06-15 2002-12-24 Andes Denki Kk 無機金属化合物を用いた酸化物光触媒材料およびその応用品
JP2005047787A (ja) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd 二酸化チタン微粒子およびその製造方法
JP2004322045A (ja) * 2003-04-28 2004-11-18 Kagawa Industry Support Foundation 新規な可視光励起型光触媒とその製造方法
JP2006241485A (ja) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind 構造材

Also Published As

Publication number Publication date
JP4995425B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
JP3948738B2 (ja) 炭素ドープ酸化チタン層を有する基体の製造方法
JP3948739B2 (ja) 炭素ドープ酸化チタン層を有する多機能材
JP4623502B2 (ja) 耐放射線部材及びそれを用いた原子力発電システム
JP4902125B2 (ja) 鏡面を有する多機能材
JP4692987B2 (ja) 防腐装置
JP4716309B2 (ja) 熱交換器
JP4995425B2 (ja) 灌漑装置及び灌漑用部材及びそれらの製造方法、並びに、灌漑システム
JP4822245B2 (ja) 電力供給機器
JP4534144B2 (ja) 浄化装置
JP4587302B2 (ja) 医家向け抗菌製品
JP4480014B2 (ja) ロケット部品
JP4814536B2 (ja) 非鉄金属製品の製造方法
JP5041392B2 (ja) 油処理設備
JP4502325B2 (ja) 超音波ホーン
JP5240789B2 (ja) 浄化装置
JP4756574B2 (ja) 空調機
JP4623503B2 (ja) 多機能性皮膜形成用コーティング組成物
JP2006239477A (ja) サニタリー製品および炭素ドープ酸化チタン表層を備えたサニタリー製品の洗浄システム
JP4814535B2 (ja) 鉄鋼製品の製造方法
JP4915634B2 (ja) 防汚建築物
JP4915635B2 (ja) パネル
JP4958029B2 (ja) 建築用資材
JP4807723B2 (ja) 耐熱部材の製造方法
JP4578274B2 (ja) 畜産用器具
JP2006240625A (ja) 金属製容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees