JP2006238629A - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
JP2006238629A
JP2006238629A JP2005050698A JP2005050698A JP2006238629A JP 2006238629 A JP2006238629 A JP 2006238629A JP 2005050698 A JP2005050698 A JP 2005050698A JP 2005050698 A JP2005050698 A JP 2005050698A JP 2006238629 A JP2006238629 A JP 2006238629A
Authority
JP
Japan
Prior art keywords
voltage
power
circuit
output
inv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005050698A
Other languages
Japanese (ja)
Other versions
JP4520325B2 (en
JP2006238629A5 (en
Inventor
Noriyuki Matsubara
則幸 松原
Takashi Kumagai
隆 熊谷
Akihiko Iwata
明彦 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005050698A priority Critical patent/JP4520325B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to EP12153212.1A priority patent/EP2464000A3/en
Priority to PCT/JP2006/302997 priority patent/WO2006090672A1/en
Priority to US11/816,456 priority patent/US7719865B2/en
Priority to EP06714137A priority patent/EP1852962A4/en
Publication of JP2006238629A publication Critical patent/JP2006238629A/en
Publication of JP2006238629A5 publication Critical patent/JP2006238629A5/ja
Priority to US12/715,430 priority patent/US8559202B2/en
Application granted granted Critical
Publication of JP4520325B2 publication Critical patent/JP4520325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency by reducing the loss of a power conversion apparatus that supplies AC electric power to a load or a system by performing AC conversion after stepping up a photovoltaic voltage. <P>SOLUTION: An inverter unit 1 comprises single-phase inverters 1B-INV, 2B-INV, 3B-INV, into which electric power from DC power supplies V<SB>1B</SB>, V<SB>2B</SB>, V<SB>3B</SB>having the voltage ratio of 1:3:9 is input, respectively. The AC sides of the unit 1 are connected in series, and an output voltage controlled in gradation according to the total sum of each generated voltage. Also, the DC power supply V<SB>3B</SB>of the maximum voltage is formed by stepping up the photovoltaic voltage V<SB>O</SB>with a chopper circuit 3. The loss related to the stepping-up is reduced by stopping the stepping-up operation of the chopper circuit 3 when the V<SB>O</SB>exceeds a prescribed voltage V<SB>m1</SB>(195 V) and by bypassing a reactor 3b and a diode 3c inside the chopper circuit 3 with a relay 7a connected in parallel. Furthermore, conduction loss of the components inside the chopper circuit 3 is eliminated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直流電力を交流電力に変換する電力変換装置に関し、特に分散電源を系統に連系するパワーコンディショナ等に用いる電力変換装置に関するものである。   The present invention relates to a power conversion device that converts DC power into AC power, and more particularly to a power conversion device that is used in a power conditioner or the like that connects a distributed power source to a system.

従来のパワーコンディショナでは、例えばソーラパワーコンディショナに示されるように、太陽電池である分散電源からチョッパを用いて昇圧し、その後段にPWM制御のインバータを挿入して、出力の交流電圧を発生している。
このような従来のパワーコンディショナの基本的な動作を以下に示す。太陽電池から出力される直流電力は、パワーコンディショナの内部制御電源を駆動し内部回路が動作可能になる。チョッパ回路を用い、太陽電池の電圧を、系統へ連系するのに必要となる電圧まで昇圧する。インバータ部は4つのスイッチから構成され、系統電圧に同期した位相の出力電流となるようPWMスイッチングを行う。このように出力に短冊状の波形を出力し、出力する時間比率を変えることによって出力の平均電圧をコントロールし、出力された電圧は出力側に設けられた平滑フィルタによって平均化し、系統へは交流電力が出力される(例えば、非特許文献1参照)。
In a conventional power conditioner, for example, as shown in a solar power conditioner, the voltage is boosted using a chopper from a distributed power source that is a solar cell, and a PWM controlled inverter is inserted in the subsequent stage to generate an output AC voltage. is doing.
The basic operation of such a conventional power conditioner will be described below. The DC power output from the solar cell drives the internal control power supply of the power conditioner, and the internal circuit can operate. Using a chopper circuit, the voltage of the solar cell is boosted to a voltage required to connect to the grid. The inverter unit is composed of four switches, and performs PWM switching so that the output current has a phase synchronized with the system voltage. In this way, a strip-like waveform is output to the output, the output voltage is controlled by changing the output time ratio, the output voltage is averaged by the smoothing filter provided on the output side, and the system is AC Electric power is output (for example, refer nonpatent literature 1).

「ソーラーパワーコンディショナ形KP40Fの開発」OMRON TECHNICS Vol.42 No.2(通巻142号)2002年"Development of solar power conditioner type KP40F" OMRON TECHNICS Vol.42 No.2 (Vol.142) 2002

太陽光電圧を系統に連系させる従来のパワーコンディショナでは、インバータの出力電圧の最大値は、チョッパによる昇圧電圧の大きさによって決まる。このため、例えば200Vの交流電圧を出力する場合には、昇圧された直流電圧は282V以上が必要であり、通常は余裕を見てさらに高く設定されている。太陽光電圧の出力電圧は、通常200V程度、あるいはそれ以下であり、上述したように282V以上に昇圧する必要がある。昇圧率が高くなるとチョッパ部のスイッチング素子やダイオードの損失が大きくなり、パワーコンディショナ全体の効率が低下してしまうという問題点があった。   In the conventional power conditioner that links the solar voltage to the system, the maximum value of the output voltage of the inverter is determined by the magnitude of the boosted voltage by the chopper. For this reason, for example, when outputting an AC voltage of 200 V, the boosted DC voltage needs to be 282 V or higher, and is usually set higher with a margin. The output voltage of the solar voltage is usually about 200 V or less, and needs to be boosted to 282 V or more as described above. When the boosting rate is increased, the loss of the switching elements and diodes in the chopper portion is increased, and there is a problem that the efficiency of the entire power conditioner is lowered.

この発明は、上記のような問題点を解消するために成されたものであって、太陽光などの直流電源からの電力を交流に変換して系統や負荷に出力する電力変換装置において、各部の損失を低減して変換効率の向上を図ることを目的とする。   The present invention was made to solve the above-described problems, and in a power conversion device that converts electric power from a direct-current power source such as sunlight into alternating current and outputs the alternating current to a system or a load, each unit The purpose is to improve the conversion efficiency by reducing the loss.

この発明による第1の電力変換装置は、直流電源の直流電力を交流電力に変換する単相インバータの交流側を複数直列接続し、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御する。上記各単相インバータの入力となる複数の上記直流電源は、電圧が最大である第1の直流電源と、その他の1あるいは複数の第2の直流電源とから成り、第3の直流電源の電圧を昇圧し、その出力電圧を上記第1の直流電源とする昇圧回路と、該圧回路をバイパスさせるバイパス回路とを備える。そして、上記第3の直流電源の電圧が所定の電圧を超えるとき、上記昇圧回路内のスイッチのオンオフ動作を停止して昇圧動作を停止すると共に、上記バイパス回路により該昇圧回路をバイパスするものである。   According to a first power converter of the present invention, a plurality of AC sides of a single-phase inverter that converts DC power of a DC power source into AC power are connected in series, and a predetermined combination selected from the plurality of single-phase inverters is used. The gradation of the output voltage is controlled by the sum of the generated voltages. The plurality of DC power sources that are input to the single-phase inverters are composed of a first DC power source having the maximum voltage and other one or a plurality of second DC power sources. The voltage of the third DC power source Is boosted, and the output voltage is used as the first DC power supply, and the bypass circuit bypasses the voltage circuit. When the voltage of the third DC power source exceeds a predetermined voltage, the on / off operation of the switch in the booster circuit is stopped to stop the booster operation, and the booster circuit is bypassed by the bypass circuit. is there.

この発明による電力変換装置は、第3の直流電源の電圧を昇圧する昇圧回路の出力電圧より高い電圧を出力可能となり、昇圧回路の昇圧率を低減できて損失を低減できる。また、第3の直流電源の電圧が所定の電圧を超えるとき、該昇圧回路内のスイッチのオンオフ動作を停止して昇圧動作を停止すると共にバイパス回路により該昇圧回路をバイパスするため、昇圧に係る損失を大きく低減し、さらに昇圧停止の際にも昇圧回路を構成する部品の導通損失を無くすことができ、変換効率の高い電力変換装置が得られる。   The power conversion device according to the present invention can output a voltage higher than the output voltage of the booster circuit that boosts the voltage of the third DC power supply, and can reduce the boosting rate of the booster circuit and reduce the loss. Further, when the voltage of the third DC power supply exceeds a predetermined voltage, the on / off operation of the switch in the booster circuit is stopped to stop the booster operation, and the bypass circuit is bypassed by the bypass circuit. Loss is greatly reduced, and conduction loss of components constituting the booster circuit can be eliminated even when boosting is stopped, and a power conversion device with high conversion efficiency can be obtained.

実施の形態1.
以下、この発明の実施の形態1による電力変換装置(以下、パワーコンディショナと称す)を図について説明する。
図1は、この発明の実施の形態1によるパワーコンディショナを示す概略構成図である。図1(a)に示すように、複数(この場合3個)の単相インバータ3B-INV、2B-INV、1B-INVの交流側を直列に接続して単相多重変換器であるインバータユニット1を構成する。また、第3の直流電源としての太陽光による直流電源2の後段に、IGBT等のスイッチング素子(以下、スイッチと称す)3a、リアクトル3bおよびダイオード3cから成る昇圧回路としてのチョッパ回路3が設置されている。チョッパ回路3は直流電源2で得られた直流電圧Vを昇圧し、第1の直流電源となる平滑コンデンサ4に充電される電圧Vが得られる。また、昇圧停止時にチョッパ回路3をバイパスするため、例えばリレー7aから成るバイパス回路7が、チョッパ回路3に並列に接続される。
Embodiment 1 FIG.
Hereinafter, a power conversion apparatus (hereinafter referred to as a power conditioner) according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram illustrating a power conditioner according to Embodiment 1 of the present invention. As shown in Fig. 1 (a), an inverter unit that is a single-phase multiple converter by connecting the AC sides of multiple (in this case, three) single-phase inverters 3B-INV, 2B-INV, and 1B-INV in series 1 is constructed. In addition, a chopper circuit 3 as a booster circuit including a switching element (hereinafter referred to as a switch) 3a such as an IGBT 3a, a reactor 3b, and a diode 3c is installed at the subsequent stage of the direct current power source 2 using sunlight as a third direct current power source. ing. The chopper circuit 3 boosts a DC voltage V O obtained in the DC power supply 2, voltage V C to be charged in the smoothing capacitor 4 serving as a first DC power source is obtained. Further, in order to bypass the chopper circuit 3 when the boosting is stopped, for example, a bypass circuit 7 including a relay 7 a is connected in parallel to the chopper circuit 3.

各単相インバータ3B-INV、2B-INV、1B-INVは、図1(b)に示すように、ダイオードを逆並列に接続した複数個のIGBT等の自己消弧型半導体スイッチング素子で構成されて、直流電力を交流電力に変換して出力し、それぞれの入力の直流電源部分は双方向DC/DCコンバータ5にて接続される。
これらの単相インバータ3B-INV、2B-INV、1B-INVは出力として正負およびゼロの電圧を発生することができ、インバータユニット1は、これらの発生電圧を組み合わせた総和としての電圧Vを階調制御により出力する。この出力電圧Vはリアクトル6aおよびコンデンサ6bから成る平滑フィルタ6により平滑され、交流電圧Voutを系統あるいは負荷に供給する。
Each single-phase inverter 3B-INV, 2B-INV, 1B-INV is composed of a plurality of self-extinguishing semiconductor switching elements such as IGBTs having diodes connected in antiparallel as shown in FIG. 1 (b). Then, the DC power is converted into AC power and output, and the DC power supply portion of each input is connected by the bidirectional DC / DC converter 5.
These single-phase inverters 3B-INV, 2B-INV, and 1B-INV can generate positive and negative and zero voltages as outputs, and the inverter unit 1 generates a voltage VA as a sum total of these generated voltages. Output by gradation control. The output voltage V A is smoothed by the smoothing filter 6 including the reactor 6a and the capacitor 6b, and the AC voltage V out is supplied to the system or the load.

また、3B-INVの入力となる直流電源(第1の直流電源)は平滑コンデンサ4に相当し、その電圧V3B(=V)は、他の単相インバータ2B-INV、1B-INVの入力となる直流電源(第2の直流電源)の電圧V2B、V1Bよりも大きく、V1B、V2B、V3Bは所定の電圧比になるようにDC/DCコンバータ5にて制御される。このDC/DCコンバータ5は、各インバータの直流電源V1B、V2B、V3Bの電圧比を一定にしつつ、余剰もしくは不足のエネルギを互いに供給し合うものである。
なお、V1B、V2B、V3Bは各インバータ1B-INV、2B-INV、3B-INVの直流電源電圧を示すため、以後、各インバータの入力となる直流電源を便宜上、直流電源V1B、直流電源V2B、直流電源V3Bと記載する。
ここで、V1B、V2B、V3Bの関係を1:3:9とする。このとき図2(a)に示されるように3つのインバータ1B-INV、2B-INV、3B-INVの出力パターンをうまく組み合わせると、インバータユニット1の出力電圧Vは、0〜13の14階調の出力電圧が選択できる。これにより、図2(b)に示すように、ほぼ正弦波の出力電圧波形11となる出力電圧Vが得られ、平滑フィルタ6に入力される。さらに、図3に示されるように、各階調レベルにおいてPWM制御を併用すれば、より高精度に電圧波形をコントロールできる。なお、図2(a)で示した各インバータの出力パターンは、1が正電圧発生、−1が負電圧発生、0がゼロ電圧発生を表す。
In addition, the DC power source (first DC power source) serving as the input of 3B-INV corresponds to the smoothing capacitor 4, and the voltage V 3B (= V C ) of other single-phase inverters 2B-INV and 1B-INV It is controlled by the DC / DC converter 5 so that the voltages V 2B and V 1B are larger than the voltages V 2B and V 1B of the direct-current power supply (second DC power supply) as an input, and V 1B , V 2B and V 3B have a predetermined voltage ratio. . The DC / DC converter 5 supplies surplus or deficient energy to each other while keeping the voltage ratio of the DC power sources V 1B , V 2B , and V 3B of each inverter constant.
Since V 1B , V 2B , and V 3B indicate the DC power supply voltages of the inverters 1B-INV, 2B-INV, and 3B-INV, the DC power supply V 1B , It describes as DC power supply V2B and DC power supply V3B .
Here, the relationship between V 1B , V 2B , and V 3B is 1: 3: 9. At this time, as shown in FIG. 2A, if the output patterns of the three inverters 1B-INV, 2B-INV, and 3B-INV are combined well, the output voltage V A of the inverter unit 1 is 14th floor of 0-13. Selectable output voltage. As a result, as shown in FIG. 2B, an output voltage V A having an approximately sinusoidal output voltage waveform 11 is obtained and input to the smoothing filter 6. Furthermore, as shown in FIG. 3, the voltage waveform can be controlled with higher accuracy by using PWM control at each gradation level. In the output pattern of each inverter shown in FIG. 2A, 1 represents positive voltage generation, -1 represents negative voltage generation, and 0 represents zero voltage generation.

1B、V2B、V3Bの関係は1:3:9以外でもよく、1:2:4から1:3:9まで各種のパターンにより、出力電圧Vはそれぞれ連続的な階調レベルの変化が可能である。それぞれの場合について、各インバータ1B-INV、2B-INV、3B-INVの出力パターンとそれらを直列接続したインバータユニット1の出力電圧Vの階調レベルとの関係を図4のA〜Jの論理表に示す。また、これらの内、1:3:9の場合が、最もレベル数が多くなり高精度な出力電圧波形が期待できる。なお、各階調レベルにおいてPWM制御を併用すれば、より高精度に電圧波形をコントロールできる。各階調レベルにおいて電圧の出力方法にPWM制御を加えるには、V1B、V2B、V3Bの電圧関係によっては、複数の単相インバータの出力にPWM制御を加える必要がある。 The relationship between V 1B , V 2B , and V 3B may be other than 1: 3: 9, and the output voltage V A has a continuous gradation level according to various patterns from 1: 2: 4 to 1: 3: 9. Change is possible. In each case, the relationship between the output pattern of each inverter 1B-INV, 2B-INV, 3B-INV and the gradation level of the output voltage VA of the inverter unit 1 in which they are connected in series is shown in FIGS. Shown in the logical table. Of these, in the case of 1: 3: 9, the number of levels is the largest and a highly accurate output voltage waveform can be expected. In addition, if PWM control is used in combination at each gradation level, the voltage waveform can be controlled with higher accuracy. In order to apply PWM control to the voltage output method at each gradation level, depending on the voltage relationship of V 1B , V 2B , and V 3B , it is necessary to apply PWM control to the outputs of a plurality of single-phase inverters.

また、PWM制御を前提とした場合、直流電源V1Bの電圧が図4で示した電圧関係よりも大きいものであっても良く、図5(a)に示すように、PWM制御による電圧制御に加え、各階調レベル間はΔVだけオーバーラップするため、より連続的な波形出力が可能となる。図4のA〜Jの論理表に対応する条件Ax〜Jxを図5(b)に示す。例えば条件Jxでは、ΔV=V1B−V3B/9となる。 When PWM control is assumed, the voltage of the DC power supply V 1B may be larger than the voltage relationship shown in FIG. 4, and as shown in FIG. In addition, since each gradation level overlaps by ΔV, more continuous waveform output is possible. Conditions Ax to Jx corresponding to the logic tables A to J of FIG. 4 are shown in FIG. For example, under condition Jx, ΔV = V 1B −V 3B / 9.

ところで、200Vの交流出力に必要な最大出力電圧は約282Vであり、インバータユニット1の出力電圧Vは、最大でV1B+V2B+V3Bまで出力できる。このためV1B+V2B+V3Bが約282V以上であれば、パワーコンディショナは200Vの交流出力が可能になる。V1B+V2B+V3Bは、チョッパ回路3で昇圧された電圧であるV3Bより大きく、例えば、V1B、V2B、V3Bの関係が1:3:9の場合、V3Bの13/9倍となる。即ち、V3Bが約195V以上のときV1B+V2B+V3Bは282V以上となり、これが交流出力の条件となる。
このように、V1B、V2B、V3Bの関係が1:3:9の場合に所定の交流出力Voutを得るためには、V3Bが約195V以上となるようにチョッパ回路3を動作させる必要がある。
By the way, the maximum output voltage required for the AC output of 200 V is about 282 V, and the output voltage V A of the inverter unit 1 can output up to V 1B + V 2B + V 3B . For this reason, if V 1B + V 2B + V 3B is about 282V or more, the power conditioner can output 200V AC. V 1B + V 2B + V 3B is larger than V 3B which is a voltage boosted by the chopper circuit 3. For example, when the relationship between V 1B , V 2B and V 3B is 1: 3: 9, 13/9 of V 3B Doubled. That is, when V 3B is about 195 V or more, V 1B + V 2B + V 3B is 282 V or more, which is an AC output condition.
As described above, in order to obtain a predetermined AC output Vout when the relationship between V 1B , V 2B , and V 3B is 1: 3: 9, the chopper circuit 3 is operated so that V 3B becomes about 195V or more. It is necessary to let

このようなパワーコンディショナのチョッパ回路3の動作について以下に説明する。
チョッパ回路3では、入力となる直流電源2で得られた直流電圧(太陽光電圧)Vが所定の電圧Vm1(195V)までIGBTスイッチ3aをオンオフして該電圧Vm1に昇圧する。この間、バイパス回路7のリレー7aは開放されている。そして、所定の電圧Vm1を超えるとIGBTスイッチ3aを停止する。このとき、バイパス回路7のリレー7aを閉じてバイパス回路7側に電流を流し、チョッパ回路3のリアクトル3bおよびダイオード3cをバイパスする。
The operation of the chopper circuit 3 of such a power conditioner will be described below.
In the chopper circuit 3, the DC voltage (solar voltage) V O obtained by the input DC power source 2 turns on and off the IGBT switch 3a up to a predetermined voltage V m1 (195 V) and boosts the voltage to the voltage V m1 . During this time, the relay 7a of the bypass circuit 7 is opened. When the voltage V m1 is exceeded, the IGBT switch 3a is stopped. At this time, the relay 7a of the bypass circuit 7 is closed and a current is supplied to the bypass circuit 7 to bypass the reactor 3b and the diode 3c of the chopper circuit 3.

チョッパ回路3における太陽光電圧Vに対する動作電圧およびそのときの効率推定値を図6に示す。
図に示すように、太陽光電圧Vが所定の電圧Vm1以下の範囲では、チョッパ回路3は出力電圧V3Bが一定電圧Vm1となるように昇圧するため、太陽光電圧Vの増加と共に昇圧率が低下し、チョッパ回路3の効率が良くなる。太陽光電圧Vが所定の電圧Vm1を超えると、昇圧動作を停止し、バイパス回路7のリレー7aを閉じてバイパス回路7側に電流を流すため、損失がほとんど無くなる。このため太陽光電圧Vが電圧Vm1を境に効率が急に増加する。
なお、昇圧動作を停止する所定の電圧Vm1は約195V以上であれば良いが、より低い電圧とした方がチョッパ回路3の損失をより低減できる。そして昇圧動作を停止後は、IGBTスイッチ3aの停止による大幅な損失低減だけでなく、チョッパ回路3内のリアクトル3bおよびダイオード3cをバイパスさせることで、リアクトル3bおよびダイオード3cの導通損失も無くすことができて、チョッパ回路3における損失はほぼ無くなる。
FIG. 6 shows the operating voltage with respect to the sunlight voltage V O in the chopper circuit 3 and the estimated efficiency value at that time.
As shown, the range solar light voltage V O is less than or equal to the predetermined voltage V m1, because the chopper circuit 3 that boosts the output voltage V 3B is constant voltage V m1, increased solar light voltage V O At the same time, the step-up rate is lowered, and the efficiency of the chopper circuit 3 is improved. When the solar voltage V O exceeds the predetermined voltage V m1 , the boosting operation is stopped, the relay 7a of the bypass circuit 7 is closed, and a current flows to the bypass circuit 7 side, so that there is almost no loss. For this reason, the efficiency of the solar voltage V O suddenly increases with the voltage V m1 as a boundary.
The predetermined voltage V m1 for stopping the boosting operation may be about 195 V or more, but the loss of the chopper circuit 3 can be further reduced by using a lower voltage. After stopping the boosting operation, not only the loss is greatly reduced by stopping the IGBT switch 3a, but also the conduction loss of the reactor 3b and the diode 3c can be eliminated by bypassing the reactor 3b and the diode 3c in the chopper circuit 3. Thus, the loss in the chopper circuit 3 is almost eliminated.

この実施の形態では、太陽光電圧Vをチョッパ回路3で昇圧した直流電圧V3Bを直流源とした単相インバータ3B-INVと、他の単相インバータ2B-INV、1B-INVとの交流側を直列に接続して、各インバータの発生電圧の総和にて出力電圧を得るようにパワーコンディショナを構成した。また、単相インバータ2B-INV、1B-INVの入力となる直流電源V2B、V1Bは、直流電源V3BとDC/DCコンバータ5を介して接続されて、電圧制御されるため、チョッパ回路3は太陽光電圧Vから直流電源V3Bのみを生成すれば良く、効率の良い装置構成となる。このように構成されるパワーコンディショナでは、チョッパ回路3で昇圧した直流電圧V3Bよりも高い電圧を出力することができ、チョッパ回路3の昇圧率を低減できて損失を低減できる。
また、電圧V3Bの動作領域を、パワーコンディショナの出力電圧の最大値よりも低電圧領域とすると、チョッパ回路3の昇圧率を確実に低減できて損失を低減できる。
さらに、太陽光電圧Vが所定の電圧Vm1を超えるとき、昇圧動作を停止し、チョッパ回路3をバイパス回路7でバイパスさせるため、損失をほぼ無くすことができ、変換効率の高いパワーコンディショナが得られる。
In this embodiment, the AC of the single-phase inverter 3B-INV to the DC voltage V 3B boosted solar voltage V O by the chopper circuit 3 and a DC source, the other single-phase inverters 2B-INV, and 1B-INV The inverters were connected in series, and the power conditioner was configured to obtain the output voltage by the sum of the voltages generated by each inverter. Further, the DC power sources V 2B and V 1B that are input to the single-phase inverters 2B-INV and 1B-INV are connected to the DC power source V 3B via the DC / DC converter 5 and are voltage-controlled, so that the chopper circuit 3 may be generated only a DC power source V 3B from solar light voltage V O, an efficient device configuration. In the power conditioner configured as described above, a voltage higher than the DC voltage V 3B boosted by the chopper circuit 3 can be output, the boost rate of the chopper circuit 3 can be reduced, and the loss can be reduced.
Further, when the operating region of the voltage V 3B is set to a voltage region lower than the maximum value of the output voltage of the power conditioner, the boosting rate of the chopper circuit 3 can be reliably reduced and the loss can be reduced.
Further, when the solar voltage V O exceeds the predetermined voltage V m1 , the boosting operation is stopped and the chopper circuit 3 is bypassed by the bypass circuit 7, so that the loss can be almost eliminated and the power conditioner having high conversion efficiency. Is obtained.

実施の形態2.
上記実施の形態1におけるバイパス回路7の詳細について、以下に示す。
バイパス回路7はリレー7aで構成され、チョッパ回路3内の直列接続されたリアクトル3bおよびダイオード3cのいずれか一方、あるいは双方をバイパスする。
図7(a)は、上記実施の形態1で示したように、リレー7aでリアクトル3bおよびダイオード3cをバイパスするもの、図7(b)は、リレー7aでダイオード3cのみをバイパスするもの、図7(c)は、リレー7aでリアクトル3bのみをバイパスするものを、それぞれ示す。
また、リレー7aには、並列に自己消弧型の半導体スイッチ7bが接続される。リレー7aは、一般にゼロ電流にて開放するか、もしくは低い電圧で開放するため、直流電流は遮断しにくいものであるが、このように半導体スイッチ7bを並列に備えることにより容易に遮断できる。その場合、リレー7aを開放するのと同時に半導体スイッチ7bをオンさせ、一旦電流を半導体スイッチ7bに移す。これによりリレー7aを流れる電流が遮断され、その後半導体スイッチ7bをオフする。
Embodiment 2. FIG.
Details of the bypass circuit 7 in the first embodiment will be described below.
The bypass circuit 7 includes a relay 7a, and bypasses one or both of the reactor 3b and the diode 3c connected in series in the chopper circuit 3.
FIG. 7A shows the relay 7a bypassing the reactor 3b and the diode 3c as shown in the first embodiment, and FIG. 7B shows the relay 7a bypassing only the diode 3c. 7 (c) shows the relay 7a that bypasses only the reactor 3b.
The relay 7a is connected in parallel with a self-extinguishing semiconductor switch 7b. Since the relay 7a is generally opened at zero current or opened at a low voltage, the direct current is difficult to cut off. However, the relay 7a can be easily cut off by providing the semiconductor switch 7b in parallel. In that case, the semiconductor switch 7b is turned on simultaneously with opening the relay 7a, and the current is once transferred to the semiconductor switch 7b. As a result, the current flowing through the relay 7a is cut off, and then the semiconductor switch 7b is turned off.

いずれの場合も、太陽光電圧Vが所定の電圧Vm1を超えると、IGBTスイッチ3aを停止して昇圧動作を停止し、バイパス回路7のリレー7aを閉じてバイパス回路7側に電流を流す。
図7(a)の場合では、チョッパ回路3内のリアクトル3bおよびダイオード3cをバイパスさせることで、リアクトル3bおよびダイオード3cの導通損失を無くすことができて、パワーコンディショナ全体の効率を増加する。
図7(b)の場合では、チョッパ回路3内のダイオード3cのみをバイパスさせることで、ダイオード3cの導通損失を無くすことができて、パワーコンディショナ全体の効率を増加する。この場合、リアクトル3bをバイパスしないため、リアクトル3bをフィルタとして利用できる。
In any case, when the solar voltage V O exceeds the predetermined voltage V m1 , the IGBT switch 3a is stopped to stop the boosting operation, the relay 7a of the bypass circuit 7 is closed, and a current flows to the bypass circuit 7 side. .
In the case of FIG. 7A, by bypassing the reactor 3b and the diode 3c in the chopper circuit 3, the conduction loss of the reactor 3b and the diode 3c can be eliminated, and the efficiency of the entire power conditioner is increased.
In the case of FIG. 7B, by bypassing only the diode 3c in the chopper circuit 3, the conduction loss of the diode 3c can be eliminated, and the efficiency of the entire power conditioner is increased. In this case, since reactor 3b is not bypassed, reactor 3b can be used as a filter.

図7(a)、図7(b)では、ダイオード3cをバイパスさせるため、直流電源V3Bが太陽光電圧Vより高くなると電流の逆流やさらには直流電源2である太陽光パネルへの逆電圧が掛かり、パネルの損傷を招くおそれが有る。このため、リレー7aを流れる電流を検出し、該電流が一定値以下になるとリレー7aを開放し、リアクトル3bおよびダイオード3cを介した電流経路に切り換えるように構成する。このようにリレー7aを開放してダイオード3cの機能を有効にする事で、逆流防止とさらには太陽光パネルの逆電圧保護機能を備える。
なお、リレー7aを開放する際、検出の遅れなどにより既に逆電流が発生していたとしても、一旦電流を半導体スイッチ7bに移すことにより確実に遮断できる。
7 (a) and 7 (b), in order to bypass the diode 3c, when the DC power source V 3B becomes higher than the solar voltage V O , the current flows backward or further reverses to the solar panel that is the DC power source 2. There is a risk of voltage damage and panel damage. For this reason, the current flowing through the relay 7a is detected, and when the current falls below a certain value, the relay 7a is opened and switched to the current path via the reactor 3b and the diode 3c. In this way, the relay 7a is opened to enable the function of the diode 3c, thereby providing a backflow prevention and further a solar panel reverse voltage protection function.
When the relay 7a is opened, even if a reverse current has already occurred due to a detection delay or the like, the relay 7a can be reliably interrupted by temporarily transferring the current to the semiconductor switch 7b.

図7(c)の場合では、チョッパ回路3内のリアクトル3bのみをバイパスさせることで、リアクトル3bの導通損失を無くすことができて、パワーコンディショナ全体の効率を増加する。また、ダイオード3cをバイパスしないため、ダイオード3cにより逆流防止および太陽光パネルの逆電圧保護ができ、信頼性が容易に向上できる。この場合、半導体スイッチ7bを設けなくてもリレー7aは遮断できるが、半導体スイッチ7bを設けることで、ダイオード3cの異常などの場合にも遮断できる。   In the case of FIG. 7C, by bypassing only the reactor 3b in the chopper circuit 3, the conduction loss of the reactor 3b can be eliminated, and the efficiency of the entire power conditioner is increased. Moreover, since the diode 3c is not bypassed, the reverse flow can be prevented and the solar panel reverse voltage can be protected by the diode 3c, and the reliability can be easily improved. In this case, the relay 7a can be cut off without providing the semiconductor switch 7b. However, the provision of the semiconductor switch 7b can also cut off even in the case of an abnormality of the diode 3c.

この発明の実施の形態1によるパワーコンディショナを示す概略構成図である。It is a schematic block diagram which shows the power conditioner by Embodiment 1 of this invention. この発明の実施の形態1による各単相インバータの出力パターンと出力電圧波形を示す図である。It is a figure which shows the output pattern and output voltage waveform of each single phase inverter by Embodiment 1 of this invention. この発明の実施の形態1によるインバータのPWM制御における出力電圧波形を示す図である。It is a figure which shows the output voltage waveform in the PWM control of the inverter by Embodiment 1 of this invention. この発明の実施の形態1による各単相インバータの出力パターンと出力階調との関係を示す図である。It is a figure which shows the relationship between the output pattern and output gradation of each single phase inverter by Embodiment 1 of this invention. この発明の実施の形態1による各単相インバータの直流電圧条件と出力電圧波形を示す図である。It is a figure which shows the DC voltage conditions and output voltage waveform of each single phase inverter by Embodiment 1 of this invention. この発明の実施の形態1によるチョッパ回路の動作を示す図である。It is a figure which shows operation | movement of the chopper circuit by Embodiment 1 of this invention. この発明の実施の形態2によるバイパス回路の構成を示す図である。It is a figure which shows the structure of the bypass circuit by Embodiment 2 of this invention.

符号の説明Explanation of symbols

2 第3の直流電源(太陽光)、3 昇圧回路としてのチョッパ回路、
3a スイッチ、4 第1の直流電源としての平滑コンデンサ、
5,5a,5b DC/DCコンバータ、7 バイパス回路、7a リレー、
1B-INV,2B-INV,2Ba-INV,3B-INV 単相インバータ。
2 third DC power supply (sunlight), 3 chopper circuit as booster circuit,
3a switch, 4 smoothing capacitor as the first DC power supply,
5, 5a, 5b DC / DC converter, 7 bypass circuit, 7a relay,
1B-INV, 2B-INV, 2Ba-INV, 3B-INV Single-phase inverter.

Claims (7)

直流電源の直流電力を交流電力に変換する単相インバータの交流側を複数直列接続し、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御する電力変換装置において、
上記各単相インバータの入力となる複数の上記直流電源は、電圧が最大である第1の直流電源と、その他の1あるいは複数の第2の直流電源とから成り、
第3の直流電源の電圧を昇圧し、その出力電圧を上記第1の直流電源とする昇圧回路と、該昇圧回路をバイパスさせるバイパス回路とを備え、
上記第3の直流電源の電圧が所定の電圧を超えるとき、上記昇圧回路内のスイッチのオンオフ動作を停止して昇圧動作を停止すると共に、上記バイパス回路により該昇圧回路をバイパスすることを特徴とする電力変換装置。
Connect the AC side of a single-phase inverter that converts DC power of the DC power supply to AC power in series, and gradation the output voltage by the sum of each generated voltage by a predetermined combination selected from the above-mentioned single-phase inverters In the power converter to control,
The plurality of DC power sources serving as inputs of the single-phase inverters are composed of a first DC power source having a maximum voltage and other one or a plurality of second DC power sources,
A voltage boosting circuit that boosts the voltage of a third DC power supply and uses the output voltage as the first DC power supply; and a bypass circuit that bypasses the voltage boosting circuit,
When the voltage of the third DC power source exceeds a predetermined voltage, the on / off operation of the switch in the booster circuit is stopped to stop the booster operation, and the booster circuit is bypassed by the bypass circuit. Power converter.
上記昇圧回路を、リアクトル、整流用素子、および上記スイッチで構成し、上記バイパス回路により、直列接続された上記リアクトルおよび上記整流用素子の双方あるいは該整流用素子のみをバイパスすることを特徴とする請求項1記載の電力変換装置。 The step-up circuit includes a reactor, a rectifying element, and the switch, and the bypass circuit bypasses both the reactor and the rectifying element connected in series or only the rectifying element. The power conversion device according to claim 1. 上記バイパス回路を流れる電流が所定値以下となるとき該バイパス回路を遮断し、昇圧動作を停止した上記昇圧回路を介した電流経路に切り換えることを特徴とする請求項2記載の電力変換装置。 3. The power conversion device according to claim 2, wherein when the current flowing through the bypass circuit becomes equal to or less than a predetermined value, the bypass circuit is cut off and switched to a current path through the booster circuit in which the boosting operation is stopped. 上記昇圧回路を、リアクトル、整流用素子、および上記スイッチで構成し、上記バイパス回路により上記リアクトルのみをバイパスすることを特徴とする請求項1記載の電力変換装置。 The power converter according to claim 1, wherein the booster circuit is constituted by a reactor, a rectifying element, and the switch, and only the reactor is bypassed by the bypass circuit. 上記バイパス回路はリレーで構成したことを特徴とする請求項1〜4のいずれかに記載の電力変換装置。 The power converter according to claim 1, wherein the bypass circuit is configured by a relay. 上記第1の直流電源と上記各第2の直流電源とは、DC/DCコンバータを介して接続されたことを特徴とする請求項1〜5のいずれかに記載の電力変換装置。 The power converter according to claim 1, wherein the first DC power source and the second DC power sources are connected via a DC / DC converter. 所定の交流電圧、交流電流を出力して負荷に供給する、あるいは該所定の交流出力を系統に並列に接続し、上記第3の電源を該系統に連系させることを特徴とした請求項1〜6のいずれかに記載の電力変換装置。 The predetermined AC voltage and AC current are output and supplied to a load, or the predetermined AC output is connected in parallel to the system, and the third power source is connected to the system. The power converter device in any one of -6.
JP2005050698A 2005-02-25 2005-02-25 Power converter Expired - Fee Related JP4520325B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005050698A JP4520325B2 (en) 2005-02-25 2005-02-25 Power converter
PCT/JP2006/302997 WO2006090672A1 (en) 2005-02-25 2006-02-21 Power converter
US11/816,456 US7719865B2 (en) 2005-02-25 2006-02-21 Power conversion apparatus
EP06714137A EP1852962A4 (en) 2005-02-25 2006-02-21 Power conversion apparatus
EP12153212.1A EP2464000A3 (en) 2005-02-25 2006-02-21 Power conversion apparatus
US12/715,430 US8559202B2 (en) 2005-02-25 2010-03-02 Power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050698A JP4520325B2 (en) 2005-02-25 2005-02-25 Power converter

Publications (3)

Publication Number Publication Date
JP2006238629A true JP2006238629A (en) 2006-09-07
JP2006238629A5 JP2006238629A5 (en) 2007-02-08
JP4520325B2 JP4520325B2 (en) 2010-08-04

Family

ID=37045675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050698A Expired - Fee Related JP4520325B2 (en) 2005-02-25 2005-02-25 Power converter

Country Status (1)

Country Link
JP (1) JP4520325B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914857A1 (en) * 2006-10-21 2008-04-23 SMA Technologie AG Circuit apparatus and method, in particular for photovoltaic generators
JP2008140038A (en) * 2006-11-30 2008-06-19 Sanyo Electric Co Ltd Converter device, and system linkage system
JP2010207341A (en) * 2009-03-09 2010-09-24 Panasonic Corp Washing and drying machine
JP2010279167A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Power conversion apparatus and fault detection method of the same
JP2011182519A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Power converting apparatus
JP2011200099A (en) * 2009-08-31 2011-10-06 Sanyo Electric Co Ltd Inverter and power converter mounted with the same
JP2013247370A (en) * 2012-05-29 2013-12-09 Ls Industrial Systems Co Ltd Photovoltaic power generator and method thereof
JP2014524232A (en) * 2012-08-07 2014-09-18 ▲華▼▲為▼▲終▼端有限公司 Power supply apparatus and method, and user apparatus
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
JP2015154517A (en) * 2014-02-12 2015-08-24 株式会社三社電機製作所 PV power conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137267A (en) * 1991-11-12 1993-06-01 Dia Semikon Syst Kk Power system
JPH0787731A (en) * 1993-09-13 1995-03-31 Fuji Electric Co Ltd Dc/dc converter
JPH08205423A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Uninterruptible power supply
JP2004328831A (en) * 2003-04-22 2004-11-18 Mitsubishi Electric Corp Voltage fluctuation compensation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137267A (en) * 1991-11-12 1993-06-01 Dia Semikon Syst Kk Power system
JPH0787731A (en) * 1993-09-13 1995-03-31 Fuji Electric Co Ltd Dc/dc converter
JPH08205423A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Uninterruptible power supply
JP2004328831A (en) * 2003-04-22 2004-11-18 Mitsubishi Electric Corp Voltage fluctuation compensation device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914857A1 (en) * 2006-10-21 2008-04-23 SMA Technologie AG Circuit apparatus and method, in particular for photovoltaic generators
US7924582B2 (en) 2006-10-21 2011-04-12 Sma Solar Technology Ag Switching device and method, in particular for photovoltaic generators
JP2008140038A (en) * 2006-11-30 2008-06-19 Sanyo Electric Co Ltd Converter device, and system linkage system
JP2010207341A (en) * 2009-03-09 2010-09-24 Panasonic Corp Washing and drying machine
JP2010279167A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Power conversion apparatus and fault detection method of the same
JP2011200099A (en) * 2009-08-31 2011-10-06 Sanyo Electric Co Ltd Inverter and power converter mounted with the same
US8963372B2 (en) 2009-08-31 2015-02-24 Panasonic Intellectual Property Management Co., Ltd. Inverter and power converter having inverter mounted therein
JP2011182519A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Power converting apparatus
JP2013247370A (en) * 2012-05-29 2013-12-09 Ls Industrial Systems Co Ltd Photovoltaic power generator and method thereof
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
JP2014524232A (en) * 2012-08-07 2014-09-18 ▲華▼▲為▼▲終▼端有限公司 Power supply apparatus and method, and user apparatus
US9104212B2 (en) 2012-08-07 2015-08-11 Huawei Device Co., Ltd. Power supply apparatus and method, and user equipment
JP2015154517A (en) * 2014-02-12 2015-08-24 株式会社三社電機製作所 PV power conditioner

Also Published As

Publication number Publication date
JP4520325B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4527767B2 (en) Power converter
JP4520325B2 (en) Power converter
US8559202B2 (en) Power conversion apparatus
JP4468840B2 (en) Power converter
JP2007166783A (en) Power transforming apparatus
JP5132797B2 (en) Power converter
WO2006090675A1 (en) Power converter
JP2010093978A (en) Power conversion apparatus
CN109247052B (en) Power converter topology for energy storage systems
JP2007221892A (en) Power conversion device
JP2006238629A5 (en)
JP6755415B2 (en) Power converter
JP2014099986A (en) Composite power storage system
JP4953783B2 (en) Converter device and grid interconnection system
JP2014036491A (en) Dc/dc power conversion device, and power conditioner for photovoltaic system
JP5412297B2 (en) Power converter
JP4878645B2 (en) Power converter
JP5931345B2 (en) Uninterruptible power supply system
JP2019161892A (en) Power conditioner
JP5360408B2 (en) Power converter
JP4870822B2 (en) Power converter
JP5400956B2 (en) Power converter
JP5418581B2 (en) Converter device and grid interconnection system
JP2002320390A (en) Power storage apparatus
JP2008022633A (en) Power conversion device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees