JP2006236831A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006236831A
JP2006236831A JP2005050976A JP2005050976A JP2006236831A JP 2006236831 A JP2006236831 A JP 2006236831A JP 2005050976 A JP2005050976 A JP 2005050976A JP 2005050976 A JP2005050976 A JP 2005050976A JP 2006236831 A JP2006236831 A JP 2006236831A
Authority
JP
Japan
Prior art keywords
fuel cell
valve
reformed gas
valve body
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005050976A
Other languages
Japanese (ja)
Inventor
Kazunobu Shinoda
和伸 篠田
Kazuhiro Osada
和浩 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2005050976A priority Critical patent/JP2006236831A/en
Publication of JP2006236831A publication Critical patent/JP2006236831A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system controlling a plurality of flows of fluid supplied or supplied/exhausted at the same time to a reforming device or/and a fuel cell by a valve device of a structure solving problems unique to the system. <P>SOLUTION: By turning a valve body of a valve device to a communicating position, a plurality of kinds of fluid can be supplied at the same time to a reforming device or/and a fuel cell, so that there is no need of fitting a shut-off valve for each of the plurality of kinds of fluid to enable to cut off the number of valves used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、供給された改質用燃料および水蒸気から改質ガスを生成し、該改質ガスおよびカソードエアを燃料電池に供給して発電する燃料電池システムに関する。   The present invention relates to a fuel cell system that generates a reformed gas from supplied reforming fuel and steam, and supplies the reformed gas and cathode air to a fuel cell to generate electric power.

特許文献1には、図1に示されるように、燃焼部11で生成された燃焼ガスによってメタノールと水とを蒸発器13で加熱して蒸発させ、蒸発したメタノールと水蒸気を改質触媒が充填された改質部3により所謂水素リッチな改質ガスに水蒸気改質し、この改質ガスに含まれる一酸化炭素を、シフト反応部5およびCO選択酸化部7により低減し、CO選択酸化部7から改質ガス、圧縮機からカソードエアを燃料電池9に供給して発電し、燃料電池9から導出される余剰改質ガス(以下、アノードオフガスという。)を燃焼部11に送って燃焼させる燃料電池システムが記載されている。この燃料電池システムでは、CO選択酸化部7の改質ガス送出口と燃料電池9との間に第1流量制御バルブ17が設けられ、CO選択酸化部7の改質ガス送出口と燃焼部11の入口との間には、第2流量制御バルブ19が接続されたバイパス回路15が接続されている。この燃料電池システムでは、定常運転時は、第1流量制御バルブ17を開き、第2流量制御バルブ19を閉じて、CO選択酸化部7から送出される改質ガスはすべて燃料電池9に送られる。しかし、加速時等の負荷が増加する時は、第2流量制御バルブ19を開いて、燃料電池9への改質ガスの供給量を減少させ、燃料電池からの電力の取出し(発電量)を一時制限し、その分の改質ガスを燃焼部11にバイパスすることにより、燃焼部11での発熱量を増加してメタノールと水との蒸発量を増加し、改質装置1の応答性を向上している。   In Patent Document 1, as shown in FIG. 1, methanol and water are heated and evaporated by an evaporator 13 using combustion gas generated in the combustion section 11, and the reformed catalyst is filled with the evaporated methanol and water vapor. The reforming unit 3 performs steam reforming to a so-called hydrogen-rich reformed gas, and the carbon monoxide contained in the reformed gas is reduced by the shift reaction unit 5 and the CO selective oxidation unit 7, and the CO selective oxidation unit The reformed gas from the compressor 7 and cathode air from the compressor are supplied to the fuel cell 9 to generate electricity, and the surplus reformed gas derived from the fuel cell 9 (hereinafter referred to as anode off-gas) is sent to the combustion unit 11 for combustion. A fuel cell system is described. In this fuel cell system, a first flow rate control valve 17 is provided between the reformed gas delivery port of the CO selective oxidation unit 7 and the fuel cell 9, and the reformed gas delivery port of the CO selective oxidation unit 7 and the combustion unit 11 are provided. The bypass circuit 15 to which the second flow rate control valve 19 is connected is connected between the first and second inlets. In this fuel cell system, during the steady operation, the first flow control valve 17 is opened and the second flow control valve 19 is closed, and all the reformed gas sent from the CO selective oxidation unit 7 is sent to the fuel cell 9. . However, when the load increases during acceleration or the like, the second flow rate control valve 19 is opened to reduce the supply amount of the reformed gas to the fuel cell 9 and take out the power from the fuel cell (power generation amount). By temporarily limiting and bypassing the reformed gas for that amount to the combustion unit 11, the amount of heat generated in the combustion unit 11 is increased to increase the evaporation amount of methanol and water, and the responsiveness of the reformer 1 is increased. It has improved.

一般的に、このような燃料電池システムでは、改質器3に蒸発器13を介して接続されたメタノール流路および水流路、並びに選択酸化反応器7に接続されたエア流路は、燃料改質部1への異物の侵入を防止するために、停止時は夫々電磁式遮断弁によって遮断される。そして、運転開始時には、メタノールと水が蒸発器13を介して改質器3に供給されるのとほぼ同時に、エアが選択酸化反応器7に供給される。   Generally, in such a fuel cell system, the methanol flow path and water flow path connected to the reformer 3 via the evaporator 13 and the air flow path connected to the selective oxidation reactor 7 In order to prevent intrusion of foreign matter into the mass part 1, each is stopped by an electromagnetic shut-off valve when stopped. At the start of operation, air is supplied to the selective oxidation reactor 7 almost simultaneously with the supply of methanol and water to the reformer 3 via the evaporator 13.

このように、メタノール、水およびエアをほぼ同時に燃料改質部1に供給するために、特許文献2示されるようなボール弁13の回動によって複数の流路を制御する回転弁を、燃料電池システムの電磁式遮断弁、第1、第2流量制御バルブ17,19として用いることは、従来行なわれていなかった。
特開2001−23659号公報(第3頁、図1) 特開平9−329250号公報(第3頁、図3)
Thus, in order to supply methanol, water, and air to the fuel reforming unit 1 almost simultaneously, a rotary valve that controls a plurality of flow paths by rotating the ball valve 13 as shown in Patent Document 2 is provided as a fuel cell. Conventionally, it has not been used as a system electromagnetic shut-off valve, first and second flow control valves 17 and 19.
Japanese Patent Laid-Open No. 2001-23659 (page 3, FIG. 1) JP-A-9-329250 (page 3, FIG. 3)

特許文献1に記載された燃料電池システムにおいては、上述のようにメタノール流路、水流路およびエア流路に夫々介在された電磁式遮断弁、並びに第1、第2の流量制御バルブを設けなければならず、弁の使用個数が多くなる。電磁式遮断弁は、弁体を圧縮スプリングのバネ力により弁座に押付けて通路を遮断し、ソレノイドの吸引力で弁体を圧縮スプリングのバネ力に抗して弁座から開離させて連通しているので、弁体を弁座に押付ける正方向に圧力が加わった場合は通路を確実に遮断するが、逆方向から強い圧力がかかった場合に弁体が弁座から離れることがある。また、燃料電池システムでは、運転停止時またはシステムダウン時に遮断弁が閉じ、運転時に遮断弁が開くノーマルクローズの電磁式遮断弁を用いるので、運転中ソレノイドを付勢しなければならず電磁式遮断弁が消費する電力が多くなり、発電効率が低下する。   In the fuel cell system described in Patent Document 1, as described above, the electromagnetic shut-off valve and the first and second flow control valves respectively interposed in the methanol channel, the water channel, and the air channel must be provided. This increases the number of valves used. The electromagnetic shut-off valve presses the valve body against the valve seat by the spring force of the compression spring to shut off the passage, and the solenoid is pulled away from the valve seat against the spring force of the compression spring by the suction force of the solenoid. Therefore, when pressure is applied in the forward direction to press the valve body against the valve seat, the passage is surely blocked, but the valve body may leave the valve seat when strong pressure is applied in the opposite direction. . In addition, the fuel cell system uses a normally closed electromagnetic shut-off valve that closes when the operation is stopped or when the system is down and opens the shut-off valve during operation, so the solenoid must be energized during operation. Electricity consumed by the valve increases, and power generation efficiency decreases.

そして、燃料電池システムの運転停止に伴って燃料改質部1の内部温度が高い状態でメタノール流路、水流路、エア流路に介在された各電磁式遮断弁を遮断すると、燃料改質部1の内部が温度低下により負圧状態になり、運転開始時に各電磁式遮断弁が開きにくくなる。また、電磁式遮断弁では、ソレノイドの付勢により弁体は弁座から短時間で開離するので、エア流路に介在された電磁式遮断弁を開くと、エアが急激に選択酸化反応器7に突入し、触媒の劣化、損傷、触媒粉の流出をもたらすことがある。   Then, when the electromagnetic shut-off valves interposed in the methanol flow path, the water flow path, and the air flow path are shut off while the internal temperature of the fuel reforming section 1 is high as the fuel cell system stops operating, the fuel reforming section The inside of 1 becomes a negative pressure state due to a temperature drop, and it is difficult to open each electromagnetic shut-off valve at the start of operation. In addition, in the electromagnetic shut-off valve, the valve element is released from the valve seat in a short time due to the energization of the solenoid. Therefore, when the electromagnetic shut-off valve interposed in the air flow path is opened, the air suddenly becomes a selective oxidation reactor. 7 may cause catalyst deterioration, damage, and outflow of catalyst powder.

本発明は、改質装置または/および燃料電池に同時に給排される複数の流体の流れを、燃料電池システム特有の課題を解決する構造の弁装置によって制御する燃料電池システムを提供することである。    An object of the present invention is to provide a fuel cell system that controls the flow of a plurality of fluids simultaneously supplied to and discharged from a reformer or / and a fuel cell by a valve device having a structure that solves a problem specific to the fuel cell system. .

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、 燃焼部で生成される燃焼ガスにより加熱される触媒が充填された改質部に改質用燃料および水蒸気が供給されCO選択酸化部にCO選択酸化エアが供給されて改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置から前記改質ガスが供給され、前記燃料電池のカソード電極にカソードエアを導入するカソードエア導入口にカソードエアが供給され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、弁ハウジングに形成された弁孔内に断面円形の弁体が回転軸線回りに回転可能に密嵌合され、前記弁ハウジングの外周面および前記弁孔に夫々開口する流入路および流出路の組が前記弁ハウジングに離間して複数組穿設され、前記弁体が遮断位置に位置されると、前記弁体の外周面が前記複数組の流入路および流出路を遮断し、前記弁体が連通位置に回動されると、前記複数組の流入路および流出路を同時に夫々連通する複数の連通路が前記弁体に設けられ、前記弁体が駆動装置により前記遮断位置と連通位置との間で回動される弁装置を設け、前記改質装置または/および前記燃料電池に同時に供給される複数種類の流体の各流路が前記各流入路に夫々接続され、前記各流出路が前記改質装置または/および前記燃料電池に夫々接続されたことである。   In order to solve the above problems, the structural feature of the invention according to claim 1 is that the reforming fuel and steam are supplied to the reforming section filled with the catalyst heated by the combustion gas generated in the combustion section. And a reformer that generates reformed gas by supplying CO selective oxidation air to the CO selective oxidation unit, and the reformer gas is introduced from the reformer into the reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell. Reformed gas is supplied, cathode air is supplied to a cathode air introduction port for introducing cathode air to the cathode electrode of the fuel cell, and the combustion section is connected to an anode off gas outlet for extracting anode off gas from the anode electrode. In the fuel cell system, a valve body having a circular cross section is closely fitted in a valve hole formed in the valve housing so as to be rotatable about the rotation axis, and the outer peripheral surface of the valve housing and the front are When a plurality of sets of inflow passages and outflow passages that open to the valve holes are spaced apart from the valve housing and the valve body is positioned at the blocking position, the outer peripheral surface of the valve body is the plurality of sets. When the inflow passage and the outflow passage are blocked and the valve body is rotated to the communication position, a plurality of communication passages that respectively connect the plurality of sets of inflow passages and outflow passages simultaneously are provided in the valve body. A valve device is provided in which a body is rotated between the shut-off position and the communication position by a drive device, and each flow path of a plurality of types of fluids simultaneously supplied to the reforming device and / or the fuel cell Each of the outflow paths is connected to the inflow path, and each of the outflow paths is connected to the reformer or / and the fuel cell.

請求項2に係る発明の構成上の特徴は、請求項1において、前記複数種類の流体を夫々流量制御して送出するポンプが前記弁装置の各流入路より上流側に設けられていることである。   The structural feature of the invention according to claim 2 is that, in claim 1, pumps for controlling the flow rate of the plurality of types of fluids are provided upstream of the inflow passages of the valve device. is there.

請求項3に係る発明の構成上の特徴は、請求項1または2において、前記改質装置または/および前記燃料電池に同時に供給される複数種類の流体は、前記改質用燃料および前記CO選択酸化エア、または前記改質ガスおよび前記カソードエアであり、前記各流出路が前記改質部およびCO選択酸化部、または前記燃料電池の改質ガス導入口およびカソードエア導入口に夫々接続されたことである。   The structural feature of the invention according to claim 3 is that, in claim 1 or 2, the plurality of types of fluids simultaneously supplied to the reformer or / and the fuel cell are the reforming fuel and the CO selection. Oxidized air, or the reformed gas and the cathode air, and the outflow paths are connected to the reformer and the CO selective oxidizer, or the reformed gas inlet and the cathode air inlet of the fuel cell, respectively. That is.

請求項4に係る発明の構成上の特徴は、燃焼部で生成される燃焼ガスにより加熱される触媒が充填され改質用燃料および水蒸気が供給されて改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置から前記改質ガスが供給され、前記燃料電池のカソード電極にカソードエアを導入するカソードエア導入口にカソードエアが供給され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、弁ハウジングに形成された弁孔内に断面円形の弁体が回転軸線回りに回転可能に密嵌合され、前記弁ハウジングの外周面および前記弁孔に夫々開口する第1、第2流入路および第1、第2流出路が前記弁ハウジングに穿設され、前記弁体が遮断位置に回動されると、前記弁体の外周面が前期第1、第2流入路および第1、第2流出路を閉鎖し、前記弁体が起動運転位置に回動されると、前記第1流入路と前記第2流出路、前記第2流入路と第1流出路を連通し、通常運転位置に回動されると、前記第1流入路と前記第1流出路、前記第2流入路と第2流出路を連通する一対の連通路が前記弁体に設けられ、前記弁体が駆動装置により前記遮断位置、前記起動運転位置および前記通常運転位置の間で回動される弁装置を設け、前記第1流入路が前記改質装置の改質ガス送出口、前記第1流出路が前記燃料電池の改質ガス導入口、前記第2流入路が前記アノードオフガス導出口、前記第2流出路が前記燃焼部に夫々接続されたことである。   According to a fourth aspect of the present invention, there is provided a reforming device that generates a reformed gas by being supplied with a reforming fuel and water vapor and filled with a catalyst heated by a combustion gas generated in a combustion section. The reformed gas is supplied from the reformer to the reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell, and the cathode is introduced into the cathode air inlet for introducing the cathode air into the cathode electrode of the fuel cell. In a fuel cell system in which air is supplied and the combustion section is connected to an anode off-gas outlet through which anode off-gas is led out from the anode electrode, a valve body having a circular cross section is rotated around the rotation axis in a valve hole formed in the valve housing. The valve housing has first, second inflow passages, and first and second outflow passages that are rotatably fitted in close contact with each other and open to the outer peripheral surface of the valve housing and the valve hole, respectively. When the valve body is rotated to the shut-off position, the outer peripheral surface of the valve body closes the first, second inflow passage and the first and second outflow passages in the previous period, and the valve body is in the starting operation position. When rotated, the first inflow path and the second outflow path, the second inflow path and the first outflow path are communicated, and when rotated to the normal operation position, the first inflow path and the first outflow path One outflow path, a pair of communication passages that communicate the second inflow path and the second outflow path are provided in the valve body, and the valve body is set by the drive device to the cutoff position, the start operation position, and the normal operation position. The first inflow path is a reformed gas delivery port of the reformer, the first outflow path is a reformed gas inlet of the fuel cell, and the second inflow path is The anode off-gas outlet and the second outflow path are connected to the combustion section, respectively.

上記のように構成した請求項1に係る発明においては、弁装置の弁体を連通位置に回動させることにより、複数種類の流体を改質装置または/および燃料電池に同時に供給することができるので、複数種類の流体用に夫々遮断弁を設ける必要がなく、弁の使用個数を削減することができる。また、弁孔内に密嵌合する弁体の外周面で流入路および流出路を閉鎖するので、複数組の流入路と流出路との間の差圧が大きくなった場合でも弁体の回動により容易に開弁することができる。そして、弁孔内に密嵌合する弁体を連通位置に回動することにより、複数組の流入路と流出路との間を夫々連通するので、低い消費電力で弁体を連通位置に保持することができる。さらに、流入路と流出路との連通面積が弁体の回動に連れて漸増するので、改質装置の改質部およびCO選択酸化部、または燃料電池のアノード電極およびカソード電極等に急激に流体が突入することを防止でき、触媒または電極の劣化、損傷、触媒粉の流出を低減することができる。   In the invention according to claim 1 configured as described above, a plurality of types of fluids can be simultaneously supplied to the reforming device and / or the fuel cell by rotating the valve body of the valve device to the communication position. Therefore, it is not necessary to provide a shut-off valve for each of a plurality of types of fluids, and the number of valves used can be reduced. In addition, since the inflow passage and the outflow passage are closed by the outer peripheral surface of the valve body that is closely fitted in the valve hole, even if the differential pressure between the multiple inflow passages and the outflow passages becomes large, the valve body does not rotate. The valve can be easily opened by movement. Then, by rotating the valve body closely fitted in the valve hole to the communication position, the plurality of sets of inflow passages and outflow passages are communicated with each other, so that the valve bodies are held at the communication position with low power consumption. can do. Furthermore, since the communication area between the inflow path and the outflow path gradually increases as the valve body rotates, the reforming section and the CO selective oxidation section of the reformer, the anode electrode and the cathode electrode of the fuel cell, etc. The fluid can be prevented from entering, and deterioration of the catalyst or electrode, damage, and outflow of catalyst powder can be reduced.

上記のように構成した請求項2に係る発明においては、複数種類の流体は、夫々ポンプにより流量制御して送出され、連通位置に回動された弁体の複数の連通路によって同時に連通される各組の流入路および流出路を通って送られるので、簡素な構成の弁装置により複数種類の流体を改質装置または/および燃料電池に同時に必要量だけ供給することができる。   In the invention according to claim 2 configured as described above, a plurality of types of fluids are respectively sent out by controlling the flow rate by a pump and are simultaneously communicated by a plurality of communication passages of a valve body rotated to a communication position. Since it is sent through each set of inflow path and outflow path, a necessary amount of a plurality of types of fluids can be simultaneously supplied to the reformer or / and the fuel cell by a valve device having a simple configuration.

上記のように構成した請求項3に係る発明においては、改質用燃料およびCO選択酸化エア、または改質ガスおよびカソードエアを、改質装置の改質部およびCO選択酸化部、または燃料電池の改質ガス導入口およびカソードエア導入口に同時に供給することができるので、改質用燃料およびCO選択酸化エア、または改質ガスおよびカソードエア用の各流路に遮断弁を夫々介在する必要がなく、弁の使用個数を削減することができる。特に、流入路と流出路との連通面積が弁体の回動に連れて漸増するので、改質装置の改質部およびCO選択酸化部、または燃料電池のアノード電極およびカソード電極に急激に流体が突入することを防止でき、触媒の劣化、触媒粉の流出、電極の劣化、損傷を低減することができる。   In the invention according to claim 3 configured as described above, the reforming fuel and the CO selective oxidation air, or the reformed gas and the cathode air are used as the reforming unit and the CO selective oxidation unit of the reformer, or the fuel cell. Therefore, it is necessary to provide a shut-off valve in each flow path for reforming fuel and CO selective oxidation air or reforming gas and cathode air. Therefore, the number of valves used can be reduced. In particular, since the communication area between the inflow path and the outflow path gradually increases with the rotation of the valve body, the fluid is rapidly applied to the reforming section and the CO selective oxidation section of the reformer, or the anode and cathode electrodes of the fuel cell. Can be prevented, and catalyst deterioration, catalyst powder outflow, electrode deterioration, and damage can be reduced.

上記のように構成した請求項4に係る発明においては、弁装置の弁体が起動運転位置に回動されると、改質ガスが改質装置の改質ガス送出口から燃焼部に供給され、通常運転位置に回動されると、改質装置から改質ガスが燃料電池に供給されるとともに、燃料電池からアノードオフガスが燃焼部に供給されるので、燃料電池システムの起動運転時および通常運転時に夫々必要な改質装置と燃料電池との間の流体流路の連通関係を1個の簡素な構成の弁装置の切換えにより達成することができる。   In the invention according to claim 4 configured as described above, when the valve body of the valve device is rotated to the starting operation position, the reformed gas is supplied from the reformed gas delivery port of the reformer to the combustion section. When the fuel cell system is rotated to the normal operation position, the reformer gas is supplied to the fuel cell and the anode off gas is supplied from the fuel cell to the combustion section. The fluid flow channel communication relationship between the reformer and the fuel cell, which are required during operation, can be achieved by switching a single simple valve device.

以下、本発明に係る燃料電池システムの実施の形態について説明する。燃料電池システムは、図1に示すように、燃料電池11、および燃料電池11に必要な水素ガスを生成して供給する改質装置12を備えている。燃料電池11のアノード電極には、改質装置12から改質ガスが供給され、燃料電池11のカソード電極には、外部からのエアがエアポンプにより供給され、燃料電池11において改質ガス中の水素ガスとカソードエア中の酸素ガスとが反応して発電するようになっている。   Embodiments of a fuel cell system according to the present invention will be described below. As shown in FIG. 1, the fuel cell system includes a fuel cell 11 and a reformer 12 that generates and supplies hydrogen gas necessary for the fuel cell 11. The reformed gas is supplied from the reformer 12 to the anode electrode of the fuel cell 11, and air from the outside is supplied to the cathode electrode of the fuel cell 11 by an air pump. The gas and oxygen gas in the cathode air react to generate power.

改質装置12は、天然ガス、LPGなどの炭化水素系の改質用燃料ガスおよび水蒸気が供給されて改質ガスを生成する改質部13、水ポンプ24から供給された純水を蒸発させて改質部13に供給する水蒸気を生成する蒸発器15、燃焼用燃料ガスと燃焼エアを混合して燃焼させ、改質部13および蒸発器15を加熱するための燃焼ガスを生成する燃焼部14、改質部13の下部に積層された熱交換部16、熱交換部16の下部に積層され改質部13で生成され熱交換部16で冷却された改質ガスに含まれる一酸化炭素を除去するCOシフト部17、COシフト部17に接続されCOシフト部17から送出された改質ガスに含まれる一酸化炭素をさらに除去して送出口から燃料電池11に供給するCO選択酸化部18から構成されている。CO選択酸化部18の送出口が改質装置12の改質ガス送出口となる。燃料電池11の改質ガス導入口からアノード電極に導入された改質ガスは、カソード電極に導入されたカソードエア中の酸素ガスと反応して発電し水になるが、余剰の改質ガスであるアノードオフガスは燃料電池11のアノードオフガス導出口から燃焼部14に送られて燃焼される。   The reformer 12 evaporates pure water supplied from a reforming unit 13 and a water pump 24 that are supplied with a hydrocarbon-based reforming fuel gas such as natural gas or LPG and steam to generate reformed gas. An evaporator 15 that generates water vapor to be supplied to the reforming unit 13, and a combustion unit that generates combustion gas for heating the reforming unit 13 and the evaporator 15 by mixing and burning combustion fuel gas and combustion air 14. Carbon monoxide contained in the reformed gas stacked at the lower part of the reforming unit 13 and generated at the reforming unit 13 and cooled by the heat exchanging unit 16 stacked at the lower part of the heat exchanging unit 16 CO shift unit 17 that removes CO, and a CO selective oxidation unit that is connected to CO shift unit 17 and further removes carbon monoxide contained in the reformed gas sent from CO shift unit 17 and supplies the fuel cell 11 from the outlet It is comprised from 18. The outlet of the CO selective oxidation unit 18 becomes the reformed gas outlet of the reformer 12. The reformed gas introduced into the anode electrode from the reformed gas introduction port of the fuel cell 11 reacts with oxygen gas in the cathode air introduced into the cathode electrode to generate power and become water, but it is an excess reformed gas. A certain anode off gas is sent from the anode off gas outlet of the fuel cell 11 to the combustion section 14 and burned.

改質部13の触媒が充填された反応室19は、燃焼部14の加熱室20により上部および外周を包囲され、加熱室20内に設けられたバーナ21は、ガスポンプにより送られた燃焼用燃料ガスとエアポンプにより送られた燃焼エアを混合して燃焼させ燃焼ガスを生成する。燃焼ガスは加熱室20を流れる間に反応室19の触媒を加熱し、その後に蒸発器15に流入して純水を蒸発させる。ガスポンプ22により圧送された改質用燃料ガス、および蒸発器15で生成された水蒸気が混合されて熱交換部16に導入され、熱交換部16で予加熱されて反応室19に供給され、燃焼ガスによって加熱された触媒により水蒸気改質反応および一酸化炭素シフト反応して改質ガスを生成する。   The reaction chamber 19 filled with the catalyst of the reforming unit 13 is surrounded by the heating chamber 20 of the combustion unit 14 at the top and outer periphery, and the burner 21 provided in the heating chamber 20 is a combustion fuel sent by a gas pump. The gas and combustion air sent by the air pump are mixed and burned to generate combustion gas. The combustion gas heats the catalyst in the reaction chamber 19 while flowing through the heating chamber 20, and then flows into the evaporator 15 to evaporate pure water. The reforming fuel gas pumped by the gas pump 22 and the water vapor generated by the evaporator 15 are mixed and introduced into the heat exchanging unit 16, preheated by the heat exchanging unit 16 and supplied to the reaction chamber 19 for combustion. A reformed gas is generated by a steam reforming reaction and a carbon monoxide shift reaction by a catalyst heated by the gas.

改質装置21の熱交換部16およびCO選択酸化部18には、ガスポンプ22およびエアポンプ23から流量制御して送出される改質用燃料ガスおよびCO選択酸化エアが改質用燃料ガス流路25およびエア流路26を通って同時に供給される。改質用燃料ガス流路25およびエア流路26には、両流路25,26を同時に連通、閉鎖する弁装置27が介在されている。   In the heat exchange unit 16 and the CO selective oxidation unit 18 of the reforming device 21, the reforming fuel gas and the CO selective oxidizing air that are sent from the gas pump 22 and the air pump 23 while controlling the flow rate are supplied to the reforming fuel gas channel 25. And are supplied simultaneously through the air flow path 26. The reforming fuel gas passage 25 and the air passage 26 are provided with a valve device 27 for simultaneously connecting and closing both the passages 25 and 26.

図2,3に示すように弁装置27は、弁ハウジング28の内孔にシート部材29が一体的に固定され、シート部材29に形成された球状の弁孔30内に断面円形のボール弁体31が回転軸線32回りに回転可能に密嵌合されている。シート部材29は回転軸線32と直角な平面によって球状弁孔30の中央で上下に二分割され、ボール弁体31は上下のシート部材29a,29bに挟まれて球状弁孔30内に密嵌合されている。弁ハウジング28および上下のシート部材29a,29bには、回転軸線32と直交しボール弁体31の中心を通る平面から等距離はなれて平行に延在する流路33,34が貫通して穿設されている。流入路33,34は、弁孔30によって第1,第2流入路33a,34aおよび第1、第2流出路33b,34bに分割されている。このように、一端が弁ハウジング28の上下位置で両外側面に夫々開口し他端が上下シート部材29a,29bの弁孔30の左右内周面に夫々開口する流入路33aと流出路33bおよび流入路34aと流出路34bが、弁ハウジング28および上下シート部材29a,29bに回転軸線32方向に離間して二組穿設されている。流入路33aと流出路33b、流入路34aと流出路34bは、ボール弁体31が図3の遮断位置に回動されると、ボール弁体31の外周面によって遮断される。そして、ボール弁体31には、ボール弁体31が図2の連通位置に回動されると、流入路33aと流出路33b、流入路34aと流出路34bとを同時に夫々連通する2個の連通孔(連通路)35,36が設けられている。流入路33a,34aには、ガスポンプ22およびエアポンプ23の吐出口が接続され、流出路33b,34bには、改質装置21の熱交換部16を介して改質部13が接続されるとともに、CO選択酸化部18が接続されている。   2 and 3, in the valve device 27, a seat member 29 is integrally fixed to an inner hole of a valve housing 28, and a ball valve body having a circular cross section is formed in a spherical valve hole 30 formed in the seat member 29. 31 is closely fitted so as to be rotatable around the rotation axis 32. The seat member 29 is vertically divided into two at the center of the spherical valve hole 30 by a plane perpendicular to the rotation axis 32, and the ball valve element 31 is sandwiched between the upper and lower seat members 29 a and 29 b and closely fitted into the spherical valve hole 30. Has been. The valve housing 28 and the upper and lower seat members 29a and 29b are perforated by passages 33 and 34 extending in parallel at an equal distance from a plane perpendicular to the rotation axis 32 and passing through the center of the ball valve body 31. Has been. The inflow passages 33 and 34 are divided by the valve hole 30 into first and second inflow passages 33a and 34a and first and second outflow passages 33b and 34b. As described above, the inflow path 33a and the outflow path 33b each having one end opened on both outer surfaces at the upper and lower positions of the valve housing 28 and the other end opened on the left and right inner peripheral surfaces of the valve holes 30 of the upper and lower seat members 29a and 29b, respectively. Two sets of inflow passages 34a and outflow passages 34b are formed in the valve housing 28 and the upper and lower seat members 29a, 29b so as to be spaced apart in the direction of the rotation axis 32. The inflow path 33a and the outflow path 33b, and the inflow path 34a and the outflow path 34b are blocked by the outer peripheral surface of the ball valve body 31 when the ball valve body 31 is rotated to the blocking position in FIG. When the ball valve body 31 is rotated to the communication position shown in FIG. 2, the ball valve body 31 has two inflow passages 33a and an outflow passage 33b, and an inflow passage 34a and an outflow passage 34b. Communication holes (communication paths) 35 and 36 are provided. The discharge ports of the gas pump 22 and the air pump 23 are connected to the inflow channels 33a and 34a, and the reforming unit 13 is connected to the outflow channels 33b and 34b through the heat exchange unit 16 of the reformer 21, A CO selective oxidation unit 18 is connected.

ボール弁体31に回転軸線32上で突設された弁軸37が上シート部材29aを貫通し、減速機構38を介してモータ39に連結されている。弁軸37と弁ハウジング28との間には捩りコイルバネ40が介在され、ボール弁体31はモータ39の無勢状態では捩りコイルバネ40のバネ力により遮断位置に回動されている。ボール弁体31はモータ39により減速機構38を介して捩りコイルバネ40のバネ力に抗して遮断位置から連通位置に回動される。    A valve shaft 37 protruding from the ball valve body 31 on the rotation axis 32 passes through the upper seat member 29 a and is connected to a motor 39 via a speed reduction mechanism 38. A torsion coil spring 40 is interposed between the valve shaft 37 and the valve housing 28, and the ball valve body 31 is rotated to the shut-off position by the spring force of the torsion coil spring 40 when the motor 39 is in an inactive state. The ball valve body 31 is rotated from the blocking position to the communication position by the motor 39 through the speed reduction mechanism 38 against the spring force of the torsion coil spring 40.

燃料電池システムの停止時には、改質装置12の改質ガス送出口、燃料電池11の改質ガス導入口およびアノードオフガス導出口は遮断され、起動運転時には、改質装置12のCO選択酸化部18から送出される改質ガスは、改質ガス送出管41から燃料電池11をバイパスしてオフガス流路42を通って燃焼部14に送られ、通常運転時には、改質ガスは改質ガス流路41を通って燃料電池11に供給され、燃料電池11から送出されるアノードオフガスはオフガス流路42を通って燃焼部14に送られる。このような流路を形成するために、改質ガス流路41とオフガス流路42とに跨って弁装置43が介在されている。    When the fuel cell system is stopped, the reformed gas delivery port of the reformer 12, the reformed gas inlet and the anode off-gas outlet of the fuel cell 11 are blocked, and during the start-up operation, the CO selective oxidation unit 18 of the reformer 12. From the reformed gas delivery pipe 41, the reformed gas sent out from the fuel cell 11 bypasses the fuel cell 11 and is sent to the combustion section 14 through the off-gas channel 42. During normal operation, the reformed gas is sent to the reformed gas channel. The anode offgas supplied to the fuel cell 11 through 41 and delivered from the fuel cell 11 is sent to the combustion unit 14 through the offgas flow path 42. In order to form such a flow path, a valve device 43 is interposed across the reformed gas flow path 41 and the off-gas flow path 42.

弁装置43は、図4に示すように弁ハウジング44の内孔にシート部材45が一体的に固定され、シート部材45に形成された球状の弁孔46内に断面円形のボール弁体47が回転軸線48回りに回転可能に密嵌合されている。シート部材45は回転軸線48と平行な平面によって球状弁孔46の中央で左右に二分割され、ボール弁体47は左右のシート部材45a,45bに挟まれて球状弁孔46内に密嵌合されている。弁ハウジング44および左右のシート部材45a,45bには、回転軸線48と直交しボール弁体47の中心Oを含む平面内でボール弁体47の中心Oから等距離はなれて互いに平行な流路49,50が貫通して穿設されている。流路49,50は、弁孔46によって弁ハウジング44の両外側面および弁孔46に夫々開口する第1,第2流入路49a,50aおよび第1、第2流出路49b,50bに分割されている。ボール弁体47には、ボール弁体47が図5(a)の遮断位置に回動されると、前記弁体の外周面が第1、第2流入路49a,50aおよび第1、第2流出路49b,50bを閉鎖し、ボール弁体47が図5(b)の起動運転位置に回動されると、第1流入路49aと第2流出路50b、第2流入路50aと第1流出路49bを連通し、ボール弁体47が図5(c)通常運転位置に回動されると、第1流入路49aと第1流出路49b、第2流入路50aと第2流出路50bとを連通する一対の連通孔(連通路)51,52が設けられている。第1流入路49aおよび第1流出路49bは、改質ガス流路41により改質装置12の改質ガス送出口および燃料電池11の改質ガス導入口に夫々接続され、第2流入路50aおよび第2流出路50bは、オフガス流路42により燃料電池11のアノードオフガス導出口および燃焼部14に夫々接続されている。   As shown in FIG. 4, the valve device 43 has a seat member 45 integrally fixed to the inner hole of the valve housing 44, and a ball valve body 47 having a circular section in a spherical valve hole 46 formed in the seat member 45. It is closely fitted so as to be rotatable about the rotation axis 48. The seat member 45 is divided into left and right at the center of the spherical valve hole 46 by a plane parallel to the rotation axis 48, and the ball valve body 47 is sandwiched between the left and right seat members 45a and 45b and is closely fitted in the spherical valve hole 46. Has been. The valve housing 44 and the left and right seat members 45a and 45b are parallel to each other at an equal distance from the center O of the ball valve body 47 in a plane perpendicular to the rotation axis 48 and including the center O of the ball valve body 47. , 50 are drilled through. The flow paths 49 and 50 are divided by the valve hole 46 into first and second inflow paths 49a and 50a and first and second outflow paths 49b and 50b that open to both outer side surfaces of the valve housing 44 and the valve hole 46, respectively. ing. In the ball valve body 47, when the ball valve body 47 is rotated to the blocking position of FIG. 5A, the outer peripheral surface of the valve body is the first and second inflow passages 49a and 50a and the first and second inflow passages. When the outflow passages 49b and 50b are closed and the ball valve body 47 is rotated to the starting operation position of FIG. 5B, the first inflow passage 49a, the second outflow passage 50b, the second inflow passage 50a, and the first When the outflow passage 49b is communicated and the ball valve body 47 is rotated to the normal operation position in FIG. 5C, the first inflow passage 49a and the first outflow passage 49b, the second inflow passage 50a and the second outflow passage 50b. Are provided with a pair of communication holes (communication passages) 51 and 52. The first inflow passage 49a and the first outflow passage 49b are respectively connected to the reformed gas delivery port of the reformer 12 and the reformed gas introduction port of the fuel cell 11 by the reformed gas channel 41, and the second inflow channel 50a. The second outflow passage 50 b is connected to the anode offgas outlet of the fuel cell 11 and the combustion unit 14 by an offgas passage 42.

ボール弁体47に回転軸線48上で突設された弁軸53が左右シート部材45a,45bの当接部を貫通し、減速機構54を介してモータ55に連結されている。弁軸51と弁ハウジング44との間には捩りコイルバネ56が介在され、ボール弁体47はモータ55の無勢状態では捩りコイルバネ56のバネ力により遮断位置に回動されている。ボール弁体47はモータ55により減速機構54を介して捩りコイルバネ56のバネ力に抗して、遮断位置から起動運転位置、通常運転位置に回動される。   A valve shaft 53 protruding from the ball valve body 47 on the rotation axis 48 passes through the contact portions of the left and right seat members 45a and 45b and is connected to a motor 55 via a speed reduction mechanism 54. A torsion coil spring 56 is interposed between the valve shaft 51 and the valve housing 44, and the ball valve body 47 is rotated to the cut-off position by the spring force of the torsion coil spring 56 when the motor 55 is in an inactive state. The ball valve body 47 is rotated by the motor 55 from the blocking position to the starting operation position and the normal operation position against the spring force of the torsion coil spring 56 via the speed reduction mechanism 54.

次に、上記実施の形態の作動について説明する。燃料電池システムの停止時は、弁装置27,43は、ボール弁体31,47が捩りコイルバネ40,56のバネ力により遮断位置に回動され、流入路33aと流出路33b、流入路34aと流出路34bの各連通、および第1流入路49a、第1流出路49b、第2流入路50a、第2流出路50bがボール弁体31,47の外周面で遮断されている。これにより、改質装置12の改質部13およびCO選択酸化部18に夫々接続された改質用燃料ガス流路25およびエア流路26が遮断され、CO選択酸化部18の送出口、および燃料電池11のアノード電極に改質ガスを導入する改質ガス導入口およびアノード電極からアノードオフガスを導出するアノードオフガス導出口が閉鎖され、改質装置12および燃料電池11が外部から遮断され、内部に封鎖されたガスの冷却により内部圧力が低下する。この場合、弁孔46内に密嵌合するボール弁体47の外周面で第2流出路50bを遮断するので、第2流出路50b側の圧力が高くなっても第2流出路50bと第1、第2流入路49a,50aとの間を確実に遮断することができる。    Next, the operation of the above embodiment will be described. When the fuel cell system is stopped, the valve devices 27 and 43 are moved to the cutoff position by the spring force of the torsion coil springs 40 and 56, and the inflow passage 33a, the outflow passage 33b, and the inflow passage 34a. Each communication of the outflow path 34b and the first inflow path 49a, the first outflow path 49b, the second inflow path 50a, and the second outflow path 50b are blocked by the outer peripheral surfaces of the ball valve bodies 31 and 47. As a result, the reforming fuel gas passage 25 and the air passage 26 connected to the reforming section 13 and the CO selective oxidation section 18 of the reformer 12 are shut off, and the outlet of the CO selective oxidation section 18, and The reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell 11 and the anode offgas outlet for extracting the anode offgas from the anode electrode are closed, and the reformer 12 and the fuel cell 11 are shut off from the outside, The internal pressure decreases due to the cooling of the gas sealed in. In this case, since the second outflow passage 50b is blocked by the outer peripheral surface of the ball valve body 47 that is closely fitted in the valve hole 46, the second outflow passage 50b and the second outflow passage 50b can be 1 and the 2nd inflow passages 49a and 50a can be interrupted | blocked reliably.

燃料電池システムの起動運転が指令されると、弁装置27のボール弁体31がモータ39により捩りコイルバネ40のバネ力に抗して連通位置に回動され、ガスポンプ22により流量制御して送出される改質用燃料ガスが流入路33a、連通孔35および流出路33bを通って改質装置21の改質部13に熱交換部16を介して供給されるとともに、エアポンプ23により流量制御して送出されるCO選択酸化エアが流入路34a、連通孔36および流出路34bを通ってCO選択酸化部18に同時に供給される。このとき、流入路33a,34aと流出路33b,34bとの連通面積はボール弁体31の回動に連れて漸増するので、改質装置12の改質部13およびCO選択酸化部18に急激に改質用燃料ガスおよび改質ガスが突入することがなく、触媒の劣化、損傷、触媒粉の流出を低減することができる。また、燃料電池システムの運転停止により改質装置12の内部に封鎖されたガスが冷却して内部圧力が低下し、流入路33a,34aと流出路33b,34bとの間の差圧が大きくなった場合でも、弁装置27はボール弁体31の回動により容易に開弁することができる。    When the start-up operation of the fuel cell system is commanded, the ball valve body 31 of the valve device 27 is rotated to the communication position against the spring force of the torsion coil spring 40 by the motor 39, and the flow rate is controlled by the gas pump 22 and sent out. The reforming fuel gas is supplied to the reforming unit 13 of the reformer 21 through the heat exchange unit 16 through the inflow path 33a, the communication hole 35, and the outflow path 33b, and the flow rate is controlled by the air pump 23. The sent CO selective oxidation air is simultaneously supplied to the CO selective oxidation unit 18 through the inflow path 34a, the communication hole 36, and the outflow path 34b. At this time, since the communication area between the inflow passages 33a and 34a and the outflow passages 33b and 34b gradually increases as the ball valve body 31 rotates, the reforming unit 13 and the CO selective oxidation unit 18 of the reforming device 12 are suddenly increased. Thus, the reforming fuel gas and the reformed gas do not enter, and the deterioration, damage and outflow of the catalyst powder can be reduced. In addition, the gas sealed in the reformer 12 is cooled by stopping the operation of the fuel cell system, the internal pressure is lowered, and the differential pressure between the inflow paths 33a, 34a and the outflow paths 33b, 34b is increased. Even in this case, the valve device 27 can be easily opened by the rotation of the ball valve body 31.

燃焼用燃料ガスおよび燃焼エアが燃焼部14のバーナ21に供給されて燃焼され、生成された燃焼ガスが加熱室20を流れて改質部13の触媒を加熱するとともに、蒸発器15で水蒸気を生成する。ガスポンプ22により供給された改質用燃料ガス、および蒸発器15で生成された水蒸気が混合されて熱交換部16に導入され、熱交換部16で予加熱されて改質部13に供給され、燃焼ガスによって加熱された触媒により水蒸気改質反応および一酸化炭素シフト反応して改質ガスが生成される。改質部13から導出された改質ガスは、COシフト部17、およびエアポンプ23からCO選択酸化エアが供給されるCO選択酸化部18により一酸化炭素ガスの濃度を低減される。    Combustion fuel gas and combustion air are supplied to the burner 21 of the combustion section 14 and combusted. The generated combustion gas flows through the heating chamber 20 to heat the catalyst of the reforming section 13, and steam is generated by the evaporator 15. Generate. The reforming fuel gas supplied by the gas pump 22 and the water vapor generated by the evaporator 15 are mixed and introduced into the heat exchange unit 16, preheated by the heat exchange unit 16 and supplied to the reforming unit 13, A reformed gas is generated by a steam reforming reaction and a carbon monoxide shift reaction by a catalyst heated by the combustion gas. The reformed gas derived from the reforming unit 13 is reduced in concentration of carbon monoxide gas by the CO shift unit 17 and the CO selective oxidation unit 18 to which CO selective oxidation air is supplied from the air pump 23.

そして、弁装置43のボール弁体47がモータ55により捩りコイルバネ56のバネ力に抗して起動運転位置に回動され、CO選択酸化部18から送出される改質ガスが燃焼部14にバイパスされ、燃料電池11の改質ガス導入口とアノードオフガス導出口が連通される。これにより、CO選択酸化部18から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値より高い起動運転時は、CO選択酸化部18から送出される改質ガスは第1流入路49a、連通孔51および第2流出路50bを通って燃焼部11にバイパスされて燃焼される。CO選択酸化部18の触媒温度が所定値以上となったことが検出され、システムが安定状態となりCO選択酸化部18から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値以下に減少すると、起動運転から通常運転に切替えるために、弁装置43のボール弁体47がモータ55により捩りコイルバネ56のバネ力に抗して通常運転位置に回動され、CO選択酸化部18から送出された改質ガスが改質ガス流路41を通って燃料電池11に供給され、燃料電池11から送出されるアノードオフガスがオフガス流路42を通って燃焼部14に送られる。このとき、第1、第2流入路49a,50aと第1、第2流出路49b,50bとの各連通面積はボール弁体47の回動に連れて漸増するので、多量の改質ガスが急に燃料電池11に吸込まれ、改質装置12の安定状態が壊されて改質ガスに含まれる一酸化炭素ガスの濃度が増大することがない。    Then, the ball valve body 47 of the valve device 43 is rotated to the starting operation position by the motor 55 against the spring force of the torsion coil spring 56, and the reformed gas sent from the CO selective oxidation unit 18 is bypassed to the combustion unit 14. Then, the reformed gas inlet and the anode offgas outlet of the fuel cell 11 are communicated. As a result, during the start-up operation in which the concentration of carbon monoxide gas contained in the reformed gas sent from the CO selective oxidation unit 18 is higher than a predetermined value, the reformed gas sent from the CO selective oxidation unit 18 flows into the first inflow. The fuel is bypassed by the combustion unit 11 through the passage 49a, the communication hole 51, and the second outflow passage 50b and burned. It is detected that the catalyst temperature of the CO selective oxidation unit 18 is equal to or higher than a predetermined value, the system becomes stable, and the concentration of carbon monoxide gas contained in the reformed gas sent from the CO selective oxidation unit 18 is lower than the predetermined value. In order to switch from the starting operation to the normal operation, the ball valve body 47 of the valve device 43 is rotated to the normal operation position against the spring force of the torsion coil spring 56 by the motor 55, and from the CO selective oxidation unit 18. The sent reformed gas is supplied to the fuel cell 11 through the reformed gas channel 41, and the anode offgas sent from the fuel cell 11 is sent to the combustion unit 14 through the offgas channel 42. At this time, since the communication areas of the first and second inflow passages 49a and 50a and the first and second outflow passages 49b and 50b gradually increase as the ball valve body 47 rotates, a large amount of reformed gas is generated. The fuel cell 11 is suddenly sucked in, and the stable state of the reformer 12 is not broken, so that the concentration of carbon monoxide gas contained in the reformed gas does not increase.

上記実施の形態では、弁装置27は改質用燃料ガス流路25およびエア流路26に介在されているが、弁装置27の流入路33a,34aに改質装置12の改質ガス送出口およびエアポンプを接続し、流出路33b、34bを燃料電池11の改質ガス導入口およびカソードエア導入口に接続し、改質ガスおよびカソードエアを燃料電池11のアノード電極およびカソード電極に同時に供給するようにしてもよい。    In the above embodiment, the valve device 27 is interposed in the reforming fuel gas flow path 25 and the air flow path 26, but the reformed gas delivery port of the reformer 12 is provided in the inflow passages 33 a and 34 a of the valve device 27. And the air pump are connected, the outflow paths 33b and 34b are connected to the reformed gas inlet and the cathode air inlet of the fuel cell 11, and the reformed gas and the cathode air are simultaneously supplied to the anode electrode and the cathode electrode of the fuel cell 11. You may do it.

上記実施形態の弁装置27では、弁ハウジング28および上下のシート部材29a,29bに二組の流入路および流出路を回転軸線32方向に離間して穿設しているが、三組の流入路と流出路を穿設し、各流入路にガスポンプ22、エアポンプ23および水ポンプ24の吐出口を接続し、この三組の流入路と流出路が、ボール弁体31が遮断位置に回動されると、ボール弁体31の外周面で閉鎖され、連通位置に回動されると、ボール弁体31に設けられた3個の連通孔(連通路)により同時に連通され、ガスポンプ22から送られる改質ガス燃料を熱交換部16を介して改質部13に、水ポンプ24から送られる純水を蒸発器15に、エアポンプから送られるCO選択酸化エアをCO選択酸化部18に同時に送出するようにしてもよい。    In the valve device 27 of the above embodiment, two sets of inflow passages and outflow passages are formed in the valve housing 28 and the upper and lower seat members 29a and 29b so as to be spaced apart in the direction of the rotation axis 32. And the outlets of the gas pump 22, the air pump 23 and the water pump 24 are connected to the respective inflow passages, and the ball valve body 31 is rotated to the blocking position in these three inflow passages and outflow passages. Then, when the ball valve body 31 is closed at the outer peripheral surface and rotated to the communication position, the ball valve body 31 is simultaneously communicated by three communication holes (communication passages) provided in the ball valve body 31 and sent from the gas pump 22. The reformed gas fuel is sent to the reforming unit 13 through the heat exchange unit 16, pure water sent from the water pump 24 is sent to the evaporator 15, and CO selective oxidation air sent from the air pump is sent to the CO selective oxidation unit 18 at the same time. You may do it.

上記実施の形態の弁装置43では、ボール弁体47には、ボール弁体47が閉鎖位置に回動されると、弁孔46の内周面で閉鎖され、起動運転位置に回動されると、第1流入路49aと第2流出路50b、第2流入路50aと第1流出路49bを連通し、通常運転位置に回動されると、第1流入路49aと第1流出路49b、第2流入路50aと第2流出路50bとを連通する一対の連通孔51,52が穿設されているが、図6に示すように、ボール弁体47に連通孔51と同じ位置で外周面に開口し、連通孔52の外周面への開口と僅かな間隔をおいて外周面に開口する連通孔57を穿設してもよい。連通孔57の穿設により、ボール弁体47を起動運転位置から第1、第2流入路49a,50aと第1、第2流出路49b,50bとが連通を開始する直前の位置まで短時間で回動すると、第1流入路49aと第2流出路50bとが連通孔57を介して連通される状態となり、CO選択酸化部18から送出される改質ガスの燃焼部14へのバイパスが継続される。その後、ボール弁体47の適宜速度の回動につれて第1流入路49aと第1流出路49b、および第2流入路50aと第2流出路50bの各連通面積が漸増するとともに、第1流入路49aと第2流出路50bとの連通面積が漸減する。これにより、起動運転から通常運転への切替え時に改質装置12と燃料電池11の改質ガス導入口との間の連通面積およびオフガス導出口と燃焼部14との間の連通面積を漸増し、連通孔57を経由した改質装置12と燃焼部14との間の連通面積を漸減した後に遮断するので、一時的にアノードオフガスの流れが止ることによりバーナ21の失火、または、燃焼の不安定によるエミッションの増加を抑制できる。    In the valve device 43 of the above embodiment, when the ball valve body 47 is rotated to the closed position, the ball valve body 47 is closed at the inner peripheral surface of the valve hole 46 and is rotated to the starting operation position. The first inflow path 49a and the second outflow path 50b, the second inflow path 50a and the first outflow path 49b communicate with each other, and when rotated to the normal operation position, the first inflow path 49a and the first outflow path 49b A pair of communication holes 51 and 52 for communicating the second inflow path 50a and the second outflow path 50b are formed, but the ball valve body 47 is formed at the same position as the communication hole 51 as shown in FIG. A communication hole 57 that opens to the outer peripheral surface and opens to the outer peripheral surface with a slight gap from the opening to the outer peripheral surface of the communication hole 52 may be formed. By forming the communication hole 57, the ball valve body 47 is moved from the starting operation position to a position immediately before the first and second inflow passages 49a and 50a and the first and second outflow passages 49b and 50b start to communicate. , The first inflow path 49a and the second outflow path 50b are in communication with each other through the communication hole 57, and the bypass of the reformed gas sent from the CO selective oxidation unit 18 to the combustion unit 14 is bypassed. Will continue. Thereafter, the communication areas of the first inflow path 49a and the first outflow path 49b, and the second inflow path 50a and the second outflow path 50b gradually increase as the ball valve body 47 rotates at an appropriate speed, and the first inflow path The communication area between 49a and the second outflow passage 50b gradually decreases. This gradually increases the communication area between the reformer 12 and the reformed gas inlet of the fuel cell 11 and the communication area between the offgas outlet and the combustion unit 14 when switching from the start-up operation to the normal operation. Since the communication area between the reformer 12 and the combustion unit 14 via the communication hole 57 is gradually reduced and then shut off, the anode off-gas flow temporarily stops, causing the burner 21 to misfire or unstable combustion. The increase in emissions due to can be suppressed.

上記実施形態では、弁装置27,43の弁体を球状のボール弁体としたが、弁体は、回転軸線回りの回転体で断面円形の弁体であればよい。    In the said embodiment, although the valve body of the valve apparatuses 27 and 43 was used as the spherical ball | bowl valve body, the valve body should just be a valve body with a circular cross section with the rotary body around a rotating shaft line.

上記実施形態では、ボール弁体31に2個の連通孔35,36を穿設しているが、弁体が連通位置に回動されると、流入路33aと流出路33b、流入路34aと流出路34bとを同時に夫々連通する2個の半円状の連通溝を、球形または円筒形の弁体の外周面に弁体の回転軸線方向に離間して回転軸線と直角な平面内で夫々刻設してもよい。また、上記実施形態では、ボール弁体47に一対の連通孔51,52を穿設しているが、弁体が起動運転位置に回動されると、第1流入路49aと第2流出路50b、第2流入路50aと第1流出路49bを連通し、通常運転位置に回動されると、第1流入路49aと第1流出路49b、第2流入路50aと第2流出路50bとを連通する一対の円弧状の連通溝を、球形または円筒形の弁体の外周面に弁体の回転軸線と直角な平面内に刻設してもよい。    In the above embodiment, the ball valve body 31 is provided with two communication holes 35 and 36. However, when the valve body is rotated to the communication position, the inflow path 33a, the outflow path 33b, the inflow path 34a, Two semicircular communication grooves that respectively communicate with the outflow passages 34b at the same time are spaced apart from the outer peripheral surface of the spherical or cylindrical valve body in the rotational axis direction of the valve body in a plane perpendicular to the rotational axis. It may be engraved. In the above embodiment, the ball valve body 47 is provided with the pair of communication holes 51 and 52. However, when the valve body is rotated to the starting operation position, the first inflow passage 49a and the second outflow passage are provided. 50b, the second inflow path 50a and the first outflow path 49b communicate with each other and rotated to the normal operation position, the first inflow path 49a and the first outflow path 49b, and the second inflow path 50a and the second outflow path 50b. A pair of arc-shaped communication grooves that communicate with each other may be formed on the outer peripheral surface of the spherical or cylindrical valve body in a plane perpendicular to the rotation axis of the valve body.

上記実施形態において改質装置は、供給された改質用燃料ガスと水蒸気とを改質して改質ガスを生成するものであるが、改質用燃料ガスであるメタノールを改質して改質ガスを生成する改質装置を用いてもよい。    In the above embodiment, the reformer reforms the supplied reforming fuel gas and steam to generate reformed gas, but reforms the reforming methanol, which is the reforming fuel gas. A reformer that generates a quality gas may be used.

本発明の実施形態に係る燃料電池システムの概要を示す概要図。1 is a schematic diagram showing an outline of a fuel cell system according to an embodiment of the present invention. 燃料電池システムに用いる弁装置を示す図。The figure which shows the valve apparatus used for a fuel cell system. ボール弁体が遮断位置に回動された弁装置の横断面図。The cross-sectional view of the valve apparatus by which the ball valve body was rotated to the interruption | blocking position. 燃料電池システムに用いる他の弁装置を示す図。The figure which shows the other valve apparatus used for a fuel cell system. 他の弁装置のボール弁体が各位置に回動した状態を示す図。The figure which shows the state which the ball valve body of the other valve apparatus rotated to each position. 他の弁装置の第2の実施形態の横断面図。The cross-sectional view of 2nd Embodiment of another valve apparatus.

符号の説明Explanation of symbols

11…燃料電池、12…改質装置、13…改質部、14…燃焼部、15…蒸発器、16…熱交換部、17…COシフト部、18…CO選択酸化部、19…反応室、20…加熱室、21…バーナ、22…ガスポンプ、23…エアポンプ、24…水ポンプ、25…改質用燃料ガス流路、26…エア流路、27,43…弁装置、28,44…弁ハウジング、29,45…シート部材、30,46…弁孔、31,47…ボール弁体、32,48…回転軸線、33,34,49,50…流路、33a,34a,49a,50a…流入路、33b,34b,49b,50b…流出路、35,36,51,52,57…連通孔(連通路)、37,53…弁軸、38,54…減速機構、39,55…モータ、40,56…捩りコイルバネ、41…改質ガス流路、42…オフガス流路。

DESCRIPTION OF SYMBOLS 11 ... Fuel cell, 12 ... Reformer, 13 ... Reforming part, 14 ... Combustion part, 15 ... Evaporator, 16 ... Heat exchange part, 17 ... CO shift part, 18 ... CO selective oxidation part, 19 ... Reaction chamber , 20 ... heating chamber, 21 ... burner, 22 ... gas pump, 23 ... air pump, 24 ... water pump, 25 ... reforming fuel gas passage, 26 ... air passage, 27, 43 ... valve device, 28, 44 ... Valve housing, 29, 45 ... seat member, 30, 46 ... valve hole, 31, 47 ... ball valve element, 32, 48 ... rotation axis, 33, 34, 49, 50 ... flow path, 33a, 34a, 49a, 50a ... Inflow passage, 33b, 34b, 49b, 50b ... Outflow passage, 35, 36, 51, 52, 57 ... Communication hole (communication passage), 37, 53 ... Valve shaft, 38, 54 ... Deceleration mechanism, 39, 55 ... Motor, 40, 56 ... Torsion coil spring, 41 ... Reformed gas flow path, 4 ... off-gas flow path.

Claims (4)

燃焼部で生成される燃焼ガスにより加熱される触媒が充填された改質部に改質用燃料および水蒸気が供給されCO選択酸化部にCO選択酸化エアが供給されて改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置から前記改質ガスが供給され、前記燃料電池のカソード電極にカソードエアを導入するカソードエア導入口にカソードエアが供給され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、
弁ハウジングに形成された弁孔内に断面円形の弁体が回転軸線回りに回転可能に密嵌合され、前記弁ハウジングの外周面および前記弁孔に夫々開口する流入路および流出路の組が前記弁ハウジングに離間して複数組穿設され、前記弁体が遮断位置に位置されると、前記弁体の外周面が前記複数組の流入路および流出路を遮断し、前記弁体が連通位置に回動されると、前記複数組の流入路および流出路を同時に夫々連通する複数の連通路が前記弁体に設けられ、前記弁体が駆動装置により前記遮断位置と連通位置との間で回動される弁装置を設け、
前記改質装置または/および前記燃料電池に同時に供給される複数種類の流体の各流路が前記各流入路に夫々接続され、前記各流出路が前記改質装置または/および前記燃料電池に夫々接続されたことを特徴とする燃料電池システム。
A reforming fuel and steam are supplied to the reforming section filled with a catalyst heated by the combustion gas generated in the combustion section, and CO selective oxidation air is supplied to the CO selective oxidation section to generate reformed gas. The reformed gas is supplied from the reformer to a reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell, and cathode air is introduced into the cathode electrode of the fuel cell. In the fuel cell system in which cathode air is supplied to the inlet, and the combustion unit is connected to the anode offgas outlet for extracting the anode offgas from the anode electrode,
A valve body having a circular cross section is closely fitted in a valve hole formed in the valve housing so as to be rotatable about a rotation axis, and a set of an inflow path and an outflow path that respectively open to the outer peripheral surface of the valve housing and the valve hole. When a plurality of sets are drilled apart from the valve housing and the valve bodies are positioned at the shut-off position, the outer peripheral surface of the valve body blocks the plurality of sets of inflow passages and outflow passages, and the valve bodies communicate with each other. When the valve body is rotated to a position, a plurality of communication passages that simultaneously communicate the plurality of sets of inflow passages and outflow passages are provided in the valve body, and the valve body is provided between the shut-off position and the communication position by a driving device. A valve device that is rotated by
Each flow path of a plurality of types of fluids supplied simultaneously to the reformer and / or the fuel cell is connected to each inflow path, and each outflow path is connected to the reformer and / or the fuel cell, respectively. A fuel cell system characterized by being connected.
請求項1において、前記複数種類の流体を夫々流量制御して送出するポンプが前記弁装置の各流入路より上流側に設けられていることを特徴とする燃料電池システム。 2. The fuel cell system according to claim 1, wherein a pump for controlling the flow rate of each of the plurality of types of fluids is provided upstream of each inflow path of the valve device. 請求項1または2において、前記改質装置または/および前記燃料電池に同時に供給される複数種類の流体は、前記改質用燃料および前記CO選択酸化エア、または前記改質ガスおよび前記カソードエアであり、前記各流出路が前記改質部およびCO選択酸化部、または前記燃料電池の改質ガス導入口およびカソードエア導入口に夫々接続されたことを特徴とする燃料電池システム。 3. The plurality of types of fluids simultaneously supplied to the reformer and / or the fuel cell according to claim 1 or 2, wherein the reforming fuel and the CO selective oxidation air, or the reformed gas and the cathode air are used. The fuel cell system is characterized in that each of the outflow paths is connected to the reforming unit and the CO selective oxidation unit, or the reformed gas inlet and the cathode air inlet of the fuel cell, respectively. 燃焼部で生成される燃焼ガスにより加熱される触媒が充填され改質用燃料および水蒸気が供給されて改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置から前記改質ガスが供給され、前記燃料電池のカソード電極にカソードエアを導入するカソードエア導入口にカソードエアが供給され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、
弁ハウジングに形成された弁孔内に断面円形の弁体が回転軸線回りに回転可能に密嵌合され、前記弁ハウジングの外周面および前記弁孔に夫々開口する第1、第2流入路および第1、第2流出路が前記弁ハウジングに穿設され、前記弁体が遮断位置に回動されると、前記弁体の外周面が前期第1、第2流入路および第1、第2流出路を閉鎖し、前記弁体が起動運転位置に回動されると、前記第1流入路と前記第2流出路、前記第2流入路と第1流出路を連通し、通常運転位置に回動されると、前記第1流入路と前記第1流出路、前記第2流入路と第2流出路を連通する一対の連通路が前記弁体に設けられ、前記弁体が駆動装置により前記遮断位置、前記起動運転位置および前記通常運転位置の間で回動される弁装置を設け、
前記第1流入路が前記改質装置の改質ガス送出口、前記第1流出路が前記燃料電池の改質ガス導入口、前記第2流入路が前記アノードオフガス導出口、前記第2流出路が前記燃焼部に夫々接続されたことを特徴とする燃料電池システム。
A reformer is provided that is charged with a catalyst heated by combustion gas generated in the combustion section and is supplied with reforming fuel and water vapor to generate reformed gas, and introduces the reformed gas into the anode electrode of the fuel cell. The reformed gas is supplied to the reformed gas inlet from the reformer, the cathode air is supplied to the cathode air inlet for introducing the cathode air to the cathode electrode of the fuel cell, and the anode off gas is led out from the anode electrode. In the fuel cell system in which the combustion unit is connected to the anode off-gas outlet,
A valve body having a circular cross section is closely fitted in a valve hole formed in the valve housing so as to be rotatable about a rotation axis, and the first and second inflow passages open to the outer peripheral surface of the valve housing and the valve hole, respectively. When the first and second outflow passages are drilled in the valve housing and the valve body is turned to the shut-off position, the outer peripheral surface of the valve body is the first, second inflow passage and the first and second in the previous period. When the outflow path is closed and the valve body is rotated to the starting operation position, the first inflow path and the second outflow path, the second inflow path and the first outflow path are communicated, and the normal operation position is established. When rotated, the valve body is provided with a pair of communication passages that connect the first inflow path and the first outflow path, and the second inflow path and the second outflow path. A valve device that is rotated between the shut-off position, the start-up operation position, and the normal operation position;
The first inflow path is the reformed gas delivery port of the reformer, the first outflow path is the reformed gas inlet of the fuel cell, the second inflow path is the anode offgas outlet, and the second outflow path Are each connected to the combustion section.
JP2005050976A 2005-02-25 2005-02-25 Fuel cell system Withdrawn JP2006236831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050976A JP2006236831A (en) 2005-02-25 2005-02-25 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050976A JP2006236831A (en) 2005-02-25 2005-02-25 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006236831A true JP2006236831A (en) 2006-09-07

Family

ID=37044238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050976A Withdrawn JP2006236831A (en) 2005-02-25 2005-02-25 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2006236831A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP2010073390A (en) * 2008-09-17 2010-04-02 Seiko Instruments Inc Fuel cell system
US8251093B2 (en) 2009-04-22 2012-08-28 Samsung Sdi Co., Ltd. Fuel supply apparatus for a combustor
US8328885B2 (en) 2008-12-02 2012-12-11 Samsung Electronics Co., Ltd. Fuel reformer burner of fuel cell system
US8492051B2 (en) 2009-06-19 2013-07-23 Hyundai Motor Company Integrated valve system for fuel cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP4728686B2 (en) * 2005-04-20 2011-07-20 アイシン精機株式会社 Fuel cell system
JP2010073390A (en) * 2008-09-17 2010-04-02 Seiko Instruments Inc Fuel cell system
US8328885B2 (en) 2008-12-02 2012-12-11 Samsung Electronics Co., Ltd. Fuel reformer burner of fuel cell system
US8251093B2 (en) 2009-04-22 2012-08-28 Samsung Sdi Co., Ltd. Fuel supply apparatus for a combustor
US8492051B2 (en) 2009-06-19 2013-07-23 Hyundai Motor Company Integrated valve system for fuel cell stack

Similar Documents

Publication Publication Date Title
EP1708300B1 (en) Fuel cell system
JP2021531622A (en) Fuel cell system and its control method
JP2006236831A (en) Fuel cell system
JP5064861B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP4689285B2 (en) Fuel cell system, control method and control program
EP1501147B1 (en) Fuel cell power generation system
JP2005310765A (en) Fuel cell system
JP2012099220A (en) Fuel battery system
JP5121156B2 (en) Fuel cell system
JP2005093374A (en) Fuel cell power generating system, and method of stopping the same
JP3915475B2 (en) Fuel cell system
JP4728686B2 (en) Fuel cell system
JP2007184109A (en) Oxidization gas path system and fuel cell system
JP2003243013A (en) Fuel cell system and fuel cell vehicle
US7807311B2 (en) Apparatus for hydrogen-air mixing in a fuel cell assembly and method
JP5191326B2 (en) Fuel cell system
JP2004018357A (en) Reforming reactor system
JP2005129462A (en) Fuel cell system
JP2007042496A (en) Fuel cell
JP2002156057A (en) Flow control valve and fuel cell system using the same
KR102120004B1 (en) Multi path valve for fuel cell system
KR20110033944A (en) Draining means for a fuel cell system and related adjustment mode
JP6655784B2 (en) Fuel cell system
JP2006342047A (en) Reformer, method for controlling pump in fuel cell system, and control unit
JP2002343386A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224