JP2005310765A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2005310765A
JP2005310765A JP2005086183A JP2005086183A JP2005310765A JP 2005310765 A JP2005310765 A JP 2005310765A JP 2005086183 A JP2005086183 A JP 2005086183A JP 2005086183 A JP2005086183 A JP 2005086183A JP 2005310765 A JP2005310765 A JP 2005310765A
Authority
JP
Japan
Prior art keywords
port
fuel cell
reformed gas
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005086183A
Other languages
Japanese (ja)
Inventor
Kazuhiro Osada
和浩 長田
Kazunobu Shinoda
和伸 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2005086183A priority Critical patent/JP2005310765A/en
Publication of JP2005310765A publication Critical patent/JP2005310765A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system switching starting operation to normal operation without increasing the density of a carbon monoxide contained in reformed gas drawn out from a reforming device. <P>SOLUTION: First to third ports of a lead-in side three-way valve are connected to a reformed gas exhaustion port, a reformed gas lead-in port of the fuel cell, and a burner of a combustion part, respectively. The three-way valve shuts a the second port by making the first port communicate with the third port at the starting operation, gradually increases a communicating area between the first port and the second port, and gradually decreases a communication area between the first port and the third port when switching the starting operation to the normal operation, shuts the third port by making the first port communicate with the second port at the normal operation, and shuts the mutual communication of every ports at stopping. By this, when switching the starting operation to the normal operation, the reformed gas is prevented from being suctioned into the fuel cell of which the pressure is turned into negative pressure at stopping, and the stable state of the reforming device is not disturbed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、供給された改質用燃料および水蒸気から改質ガスを生成し、該改質ガスおよび空気を燃料電池に供給して発電する燃料電池システムに関する。   The present invention relates to a fuel cell system that generates a reformed gas from supplied reforming fuel and steam and supplies the reformed gas and air to a fuel cell to generate electric power.

特許文献1には、図1に示されるように、燃焼部11で生成された燃焼ガスによってメタノールと水とを蒸発器13で加熱して蒸発させ、蒸発したメタノールと水蒸気を改質触媒が充填された改質部3により所謂水素リッチな改質ガスに水蒸気改質し、この改質ガスに含まれる一酸化炭素をシフト反応部5、選択酸化反応部7(以下、CO選択酸化部7という。)により低減し、CO選択酸化部7から改質ガス、圧縮機から空気を燃料電池9に供給して発電し、燃料電池9から導出される余剰改質ガス(以下、アノードオフガスという。)を燃焼部11に送って燃焼させる燃料電池システムにおいて、CO選択酸化部7の改質ガス送出口と燃料電池9との間に第1流量制御バルブ17を設けるとともに、CO選択酸化部7の改質ガス送出口と燃焼部11の入口との間を第2流量制御バルブ19が接続されたバイパス回路15によりバイパスした燃料電池システムが開示されている。この燃料電池システムでは、通常運転時は、第1流量制御バルブ17を開き、第2流量制御バルブ19を閉じて、CO選択酸化部7から出てくる改質ガスをすべて燃料電池9に送る。しかし、加速時等の負荷が増加する時は、第2流量制御バルブ19を開いて、燃料電池9への改質ガスの供給量を減少させ、燃料電池からの電力の取出し(発電量)を一時制限し、その分の改質ガスを燃焼部11にバイパスすることにより、燃焼部11での発熱量を増加してメタノールと水との蒸発量を増加し、改質装置1の応答性を向上している。   In Patent Document 1, as shown in FIG. 1, methanol and water are heated and evaporated by an evaporator 13 using combustion gas generated in the combustion section 11, and the reformed catalyst is filled with the evaporated methanol and water vapor. The reforming unit 3 performs steam reforming to a so-called hydrogen-rich reformed gas, and carbon monoxide contained in the reformed gas is converted into a shift reaction unit 5 and a selective oxidation reaction unit 7 (hereinafter referred to as a CO selective oxidation unit 7). The excess reformed gas derived from the fuel cell 9 (hereinafter referred to as anode off gas) is generated by supplying the reformed gas from the CO selective oxidation unit 7 and the air from the compressor to the fuel cell 9 to generate power. In the fuel cell system in which the fuel is sent to the combustion unit 11 and combusted, the first flow rate control valve 17 is provided between the reformed gas delivery port of the CO selective oxidation unit 7 and the fuel cell 9, and the modification of the CO selective oxidation unit 7 is performed. Quality gas outlet The fuel cell system is disclosed in which between the inlet of the tempering unit 11 and the second flow rate control valve 19 was bypassed by the bypass circuit 15 connected. In this fuel cell system, during normal operation, the first flow rate control valve 17 is opened, the second flow rate control valve 19 is closed, and all the reformed gas coming out of the CO selective oxidation unit 7 is sent to the fuel cell 9. However, when the load increases during acceleration or the like, the second flow rate control valve 19 is opened to reduce the supply amount of the reformed gas to the fuel cell 9 and take out the power from the fuel cell (power generation amount). By temporarily limiting and bypassing the reformed gas for that amount to the combustion unit 11, the amount of heat generated in the combustion unit 11 is increased to increase the evaporation amount of methanol and water, and the responsiveness of the reformer 1 is increased. It has improved.

しかし、特許文献1に記載の燃料電池システムでは、燃料電池9のアノードオフガスを導出するアノードオフガス導出口と燃焼部11との間にバルブが設けられていないので、運転終了後に燃焼部11からの空気が燃料電池9のアノード電極に侵入し、アノード電極を酸化させる可能性がある。このため、図7に示すように、CO選択酸化部7の改質ガス送出口と燃料電池9との間に第1バルブ21を設けるとともに、CO選択酸化部7の送出口と燃焼部11の流入口との間を第2バルブ22が接続されたバイパス回路24によりバイパスし、燃料電池9のアノードオフガス導出口と燃焼部11との間にバイパス回路24の接続点より上流側で第3バルブ23を設けることが行われている。係る従来装置では、起動運転時に第1および第3バルブ21,23を閉じて第2バルブ22を開くことにより、起動時の一酸化炭素の濃度が高い改質ガスを燃料電池9をバイパスさせて燃焼部11に送り燃焼させている。これにより、起動運転時に改質ガスに含まれる一酸化炭素が燃料電池9のアノード電極を被毒することを防止している。通常運転時には、第1および第3バルブ21,23を開き、第2バルブ22を閉じることにより、改質ガスを燃料電池9に導入している。停止時には、第1乃至第3バルブ21〜23を閉じることにより燃焼部11から燃料電池9、改質装置3に空気が侵入することを遮断し、アノード電極、改質触媒の酸化劣化による耐久性・性能の低下を防止している。
特開2001−23659号公報(第3頁、図1)
However, in the fuel cell system described in Patent Document 1, since a valve is not provided between the anode offgas outlet for extracting the anode offgas of the fuel cell 9 and the combustion unit 11, the fuel cell system from the combustion unit 11 after the operation is completed. Air may enter the anode electrode of the fuel cell 9 and oxidize the anode electrode. For this reason, as shown in FIG. 7, the first valve 21 is provided between the reformed gas delivery port of the CO selective oxidation unit 7 and the fuel cell 9, and the delivery port of the CO selective oxidation unit 7 and the combustion unit 11 are provided. A bypass circuit 24 to which a second valve 22 is connected is bypassed between the inlet and the third valve on the upstream side of the connection point of the bypass circuit 24 between the anode off-gas outlet of the fuel cell 9 and the combustion unit 11. 23 is performed. In such a conventional apparatus, the first and third valves 21 and 23 are closed during the start-up operation and the second valve 22 is opened, thereby bypassing the fuel cell 9 with the reformed gas having a high carbon monoxide concentration at the start-up. It is sent to the combustion section 11 and burned. Thereby, carbon monoxide contained in the reformed gas during start-up operation is prevented from poisoning the anode electrode of the fuel cell 9. During normal operation, the reformed gas is introduced into the fuel cell 9 by opening the first and third valves 21 and 23 and closing the second valve 22. At the time of stoppage, the first to third valves 21 to 23 are closed to block the air from entering the fuel cell 9 and the reforming device 3 from the combustion unit 11, and the durability due to the oxidative deterioration of the anode electrode and the reforming catalyst.・ Prevents performance degradation.
Japanese Patent Laid-Open No. 2001-23659 (page 3, FIG. 1)

図7に示す燃料電池システムでは、停止時には燃料電池9のアノード電極に改質ガスを導入する改質ガス導入口およびアノード電極からアノードオフガスを導出するアノードオフガス導出口が第1および第3バルブ21,23により閉鎖されているので、燃料電池9内の圧力が封入されたガスの冷却により減少している。この状態で第1および第3バルブ21,23を閉じ第2バルブ22を開いて起動運転が開始される。即ち、燃焼用燃料ガスが燃焼部11のバーナで燃焼され、生成された燃焼ガスが改質部3内の触媒を加熱し、蒸発器13で水蒸気を生成する。続いて改質用燃料ガスと水蒸気が混合して改質部3に供給され、触媒により水蒸気改質反応、一酸化炭素シフト反応して改質ガスが生成される。改質部3から導出された改質ガスはCOシフト部5、CO選択酸化部7により一酸化炭素ガスを低減される。CO選択酸化部7から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値より高い起動運転時は、CO選択酸化部7から送出される改質ガスはバイパス回路24を通って燃焼部11で燃焼される。そして、システムが安定状態となりCO選択酸化部7から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値以下に減少したことが、CO選択酸化部7の触媒温度が所定値以上となったことにより検出されると、第1および第3バルブ21,23を開き、第2バルブを閉じて通常運転に移行する。ところが、燃料電池9内の圧力は封入されたガスが停止中に冷却して低下しており、起動運転中のCO選択酸化部7の送出口の圧力より低くなっているので、第1バルブ21を急に開くとCO選択酸化部7から多量の改質ガスが燃料電池9に吸込まれ、システムの安定状態が壊されてCO選択酸化部7から送出される改質ガスの一酸化炭素ガスの濃度が増大するという問題が生じる。    In the fuel cell system shown in FIG. 7, the first and third valves 21 are the reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell 9 and the anode offgas outlet for extracting the anode offgas from the anode electrode when stopped. , 23, the pressure in the fuel cell 9 is reduced by cooling the sealed gas. In this state, the first and third valves 21 and 23 are closed, the second valve 22 is opened, and the starting operation is started. That is, the combustion fuel gas is burned by the burner of the combustion unit 11, the generated combustion gas heats the catalyst in the reforming unit 3, and steam is generated by the evaporator 13. Subsequently, the reforming fuel gas and steam are mixed and supplied to the reforming unit 3, and the reformed gas is generated by the steam reforming reaction and the carbon monoxide shift reaction by the catalyst. The reformed gas derived from the reforming unit 3 is reduced in carbon monoxide gas by the CO shift unit 5 and the CO selective oxidation unit 7. During the start-up operation in which the concentration of carbon monoxide gas contained in the reformed gas delivered from the CO selective oxidation unit 7 is higher than a predetermined value, the reformed gas delivered from the CO selective oxidation unit 7 passes through the bypass circuit 24. Burned in the combustion section 11. When the system becomes stable and the concentration of carbon monoxide gas contained in the reformed gas sent from the CO selective oxidation unit 7 has decreased to a predetermined value or less, the catalyst temperature of the CO selective oxidation unit 7 exceeds the predetermined value. Is detected, the first and third valves 21 and 23 are opened, the second valve is closed, and the normal operation is started. However, the pressure in the fuel cell 9 is lowered by cooling the enclosed gas while it is stopped, and is lower than the pressure at the outlet of the CO selective oxidation unit 7 during the start-up operation. Is suddenly opened, a large amount of reformed gas is sucked into the fuel cell 9 from the CO selective oxidation unit 7, the stable state of the system is broken, and the carbon monoxide gas of the reformed gas sent from the CO selective oxidation unit 7 The problem arises that the concentration increases.

さらに、図7に示す燃料電池システムで使用されている第1乃至第3バルブ21〜23は、弁体を圧縮スプリングのバネ力により弁座に押付けて弁孔を閉鎖してバルブを閉じ、ソレノイドの磁力で弁体をバネ力に抗して弁座から開離させてバルブを開くものであるので、出口側から入口側への閉止性が悪く、停止後にCO選択酸化部7および燃料電池9が冷却して内部圧が負圧になると、出口側に接続された燃焼部11からの空気が弁体をバネ力に抗して弁座から開離させて第2、第3バルブ22,23を通過し、燃料電池9、改質装置1に侵入してアノード電極、改質触媒を酸化させる虞があった。また、通常運転中に第1および第3バルブ21,23のソレノイドをバネ力に抗して付勢しなければならず消費電力が多くなる。    Further, the first to third valves 21 to 23 used in the fuel cell system shown in FIG. 7 press the valve body against the valve seat by the spring force of the compression spring to close the valve hole and close the valve. Since the valve body is opened by opening the valve against the spring force against the spring force by the magnetic force, the closing performance from the outlet side to the inlet side is poor, and the CO selective oxidation unit 7 and the fuel cell 9 are stopped after stopping. When the internal pressure becomes negative due to cooling, the air from the combustion unit 11 connected to the outlet side separates the valve body from the valve seat against the spring force, and the second and third valves 22 and 23. And then enters the fuel cell 9 and the reformer 1 to oxidize the anode electrode and the reforming catalyst. Further, during normal operation, the solenoids of the first and third valves 21 and 23 must be urged against the spring force, which increases power consumption.

本発明は、上述した問題を解消するためになされたもので、改質装置から導出される改質ガスに含まれる一酸化炭素ガスの濃度を増加することなく、燃料電池システムを起動運転から通常運転に切替えることである。    The present invention has been made in order to solve the above-described problems, and the fuel cell system is normally operated from the start-up operation without increasing the concentration of carbon monoxide gas contained in the reformed gas derived from the reformer. It is to switch to driving.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、燃焼部で生成される燃焼ガスにより加熱される触媒によって改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置の改質ガス送出口が接続され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、第1乃至第3ポートが前記改質装置の改質ガス送出口、前記燃料電池の改質ガス導入口、前記燃焼部のバーナに夫々接続された導入側3方バルブを備え、起動運転時に第1ポートを第3ポートに連通して第2ポートを閉鎖し、起動運転から通常運転への切替えにおいて第1ポートと第2ポートとの間の連通面積を漸増し、第1ポートと第3ポートとの間の連通面積を漸減し、通常運転時に第1ポートを第2ポートに連通して第3ポートを閉鎖し、運転停止時に各ポート間の連通を全て遮断することである。   In order to solve the above-described problem, the structural feature of the invention according to claim 1 includes a reformer that generates a reformed gas using a catalyst heated by the combustion gas generated in the combustion section. The reformed gas inlet of the reformer is connected to the reformed gas inlet for introducing the reformed gas into the anode electrode, and the combustion section is connected to the anode offgas outlet for extracting the anode offgas from the anode electrode. In the fuel cell system, the first to third ports include a reformed gas delivery port of the reformer, a reformed gas inlet of the fuel cell, and an inlet side three-way valve connected to a burner of the combustion unit. The first port communicates with the third port during the start-up operation, the second port is closed, and the communication area between the first port and the second port is gradually increased in the switching from the start-up operation to the normal operation. Port and Gradually decreases the area of communication between the third port, the third port is closed communicating the first port to the second port during normal operation, it is to cut off all communication between the ports during shutdown.

請求項2に係る発明の構成上の特徴は、請求項1において、導出側3方バルブの第1乃至第3ポートが前記燃焼部のバーナ、前記アノードオフガス導出口、前記導入側3方バルブの第3ポートに夫々接続され、前記導出側3方バルブは、起動運転時に第1ポートを第3ポートに連通して第2ポートを閉鎖し、起動運転から通常運転への切替えにおいては第1ポートと第2ポートとの間の連通面積を漸増し、第1ポートと第3ポートとの間の連通面積を漸減し、通常運転においては第1ポートを第2ポートに連通して第3ポートを閉鎖し、運転停止時に各ポート間の連通を全て遮断することである。   The structural feature of the invention according to claim 2 is that, in claim 1, the first to third ports of the outlet side three-way valve are the burner of the combustion section, the anode off-gas outlet port, and the inlet side three-way valve. The derivation side three-way valve is connected to each of the third ports, and communicates the first port with the third port during the start-up operation and closes the second port. When switching from the start-up operation to the normal operation, the first port The communication area between the first port and the second port is gradually increased, and the communication area between the first port and the third port is gradually decreased. In normal operation, the first port is connected to the second port, and the third port is connected. It is closed and all communication between each port is cut off when the operation is stopped.

請求項3に係る発明の構成上の特徴は、請求項1において、前記導入側3方バルブの第3ポートが暖機部を介して前記燃焼部のバーナに接続され、前記アノードオフガス導出口が運転停止時に閉鎖されるバルブを介して前記燃焼部のバーナに接続されたことである。   The structural feature of the invention according to claim 3 is that, in claim 1, the third port of the introduction-side three-way valve is connected to the burner of the combustion section through a warm-up section, and the anode off-gas outlet port is It is connected to the burner of the combustion section through a valve that is closed when the operation is stopped.

請求項4に係る発明の構成上の特徴は、請求項1乃至3のいずれか1項において、前記導入側および導出側3方向バルブは、ボール状弁体をアクチュエータで回転させる構成の3方向ボールバルブであることである。   The structural feature of the invention according to claim 4 is the three-way ball according to any one of claims 1 to 3, wherein the introduction-side and lead-out-side three-way valves are configured to rotate a ball-shaped valve element by an actuator. It is a valve.

請求項5に係る発明の構成上の特徴は、請求項1乃至4のいずれか1項において、前記導入側および導出側3方向バルブは、電源遮断時に各ポート間の連通を全て遮断する閉止位置に弁体を切替える緊急遮断装置を備えていることである。   A structural feature of the invention according to claim 5 is that, in any one of claims 1 to 4, the introduction side and outlet side three-way valves are closed positions that block all communication between the ports when the power is shut off. And an emergency shut-off device for switching the valve body.

上記のように構成した請求項1に係る発明においては、起動運転から通常運転に切替えるとき、導入側3方バルブの作動により、改質装置の改質ガス送出口と燃料電池の改質ガス導入口との間の連通面積を漸増し、改質装置の改質ガス送出口と燃焼部のバーナとの間の連通面積を漸減した後に遮断するので、停止時に負圧になっている燃料電池に多量の改質ガスが急に吸込まれることがない。これにより、改質装置から多量の改質ガスが急に燃料電池に吸込まれ、改質装置の安定状態が壊されて改質ガスに含まれる一酸化炭素ガスの濃度が増大し、燃料電池のアノード電極を被毒することが防止できる。さらに、導入側3方バルブを介して改質装置からバーナに送られる改質ガスおよびアノードオフガス導出口からバーナに送られるアノードオフガスの流れが同時に止ることがなく、バーナ失火、または、燃焼の不安定によるエミッションの増加を抑制することができる。    In the invention according to claim 1 configured as described above, when the start-up operation is switched to the normal operation, the reformed gas delivery port of the reformer and the reformed gas introduction of the fuel cell are introduced by the operation of the introduction side three-way valve. The communication area between the inlet and the outlet is gradually increased, and the communication area between the reformer gas outlet of the reformer and the burner in the combustion section is gradually reduced and shut off. A large amount of reformed gas is not suddenly sucked. As a result, a large amount of the reformed gas is suddenly sucked into the fuel cell from the reformer, the stable state of the reformer is broken, and the concentration of carbon monoxide gas contained in the reformed gas increases. It is possible to prevent the anode electrode from being poisoned. Furthermore, the flow of the reformed gas sent from the reformer to the burner via the introduction side three-way valve and the anode off-gas sent from the anode off-gas outlet to the burner do not stop at the same time, and burner misfire or non-combustion is prevented. Increase in emission due to stability can be suppressed.

上記のように構成した請求項2に係る発明においては、起動運転から通常運転に切替えるとき、導入側3方バルブの作動により、改質装置の改質ガス送出口と燃料電池の改質ガス導入口との間の連通面積を漸増し、改質装置の改質ガス送出口と導出側3方バルブとの間の連通面積を漸減し、導出側3方バルブの作動により、アノードオフガス導出口と燃焼部のバーナとの間の連通面積を漸増し、導入側3方バルブと燃焼部のバーナとの間の連通面積を漸減した後に遮断するので、停止時に負圧になっている燃料電池に多量の改質ガスが急に吸込まれることがない。これにより、改質装置から多量の改質ガスが急に燃料電池に吸込まれ、改質装置の安定状態が壊されて改質ガスに含まれる一酸化炭素ガスの濃度が増大し、燃料電池のアノード電極を被毒することが防止できる。そして、導入側および導出側3方バルブを介して改質装置から燃焼部のバーナに送られる改質ガスが、アノードオフガス導出口から導出側3方バルブを介してバーナに送られるアノードオフガスに徐々に切替わるので、バーナ失火、または、燃焼の不安定によるエミッションの増加を抑制することができる。   In the invention according to claim 2 configured as described above, when the start-up operation is switched to the normal operation, the reformed gas delivery port of the reformer and the reformed gas introduction of the fuel cell are introduced by the operation of the introduction side three-way valve. The communication area between the outlet is gradually increased, the communication area between the reforming gas delivery port of the reformer and the outlet side three-way valve is gradually decreased, and the operation of the outlet side three-way valve causes the anode off-gas outlet port to Since the communication area between the burner in the combustion section is gradually increased and the communication area between the three-way valve on the introduction side and the burner in the combustion section is gradually reduced and shut off, the fuel cell that is negative pressure when stopped The reformed gas is not suddenly sucked. As a result, a large amount of the reformed gas is suddenly sucked into the fuel cell from the reformer, the stable state of the reformer is broken, and the concentration of carbon monoxide gas contained in the reformed gas increases. It is possible to prevent the anode electrode from being poisoned. Then, the reformed gas sent from the reformer to the burner of the combustion section through the inlet side and outlet side three-way valve is gradually changed into the anode off gas sent from the anode off gas outlet to the burner via the outlet side three-way valve. Therefore, it is possible to suppress an increase in emission due to burner misfire or combustion instability.

上記のように構成した請求項3に係る発明においては、起動運転時に改質ガスが改質装置から暖機部を介して燃焼部のバーナに送られるので、使用するバルブの個数が少ない簡素な構成により、請求項1に係る発明が奏する効果に加え、温度上昇が必要な部分を起動運転中に容易に昇温させることができる。また、アノードオフガス導出口は運転停止時にバルブにより閉鎖されるので、停止中に空気が燃料電池内に侵入することを防止できる。   In the invention according to claim 3 configured as described above, since the reformed gas is sent from the reformer to the burner of the combustion section through the warm-up section at the start-up operation, the number of valves used is simple. According to the configuration, in addition to the effect exhibited by the invention according to claim 1, it is possible to easily raise the temperature of a portion that requires a temperature increase during the start-up operation. Further, since the anode off-gas outlet is closed by a valve when the operation is stopped, air can be prevented from entering the fuel cell during the stop.

上記のように構成した請求項4に係る発明においては、導入側および導出側3方向バルブを構成が簡単な3方向ボールバルブで構成したので、バルブに異物の噛み込みが少なく、燃料電池システムを各運転状態に円滑かつ確実に切替えることができる。また、3方ボールバルブはボール状弁体をアクチュエータで回転させる構成であるので、出口側から入口側への閉止性がよく、停止後に改質装置および燃料電池が冷却して内部圧が負圧になっても、出口側に接続された燃焼部から空気が燃料電池、改質装置に侵入することがなく、アノード電極、改質触媒の酸化を確実に防止することができる。   In the invention according to claim 4 configured as described above, the introduction-side and outlet-side three-way valves are configured by simple three-way ball valves, and therefore, the fuel cell system is less likely to have foreign matter caught in the valves. It is possible to smoothly and reliably switch to each operation state. The three-way ball valve has a configuration in which the ball-shaped valve body is rotated by an actuator, so that the closing performance from the outlet side to the inlet side is good, and the reformer and the fuel cell are cooled after the stop so that the internal pressure is negative. Even in this case, air does not enter the fuel cell and the reformer from the combustion section connected to the outlet side, and the anode electrode and the reforming catalyst can be reliably prevented from being oxidized.

さらに、3方向ボールバルブは、通常運転時においてボール弁体を所定の回転位相位置に低い消費電力で維持することができ、発電効率を向上することができる。   Furthermore, the three-way ball valve can maintain the ball valve body at a predetermined rotational phase position with low power consumption during normal operation, and can improve power generation efficiency.

上記のように構成した請求項5に係る発明においては、導入側および導出側3方バルブは、停電などの電源遮断時に緊急遮断装置が各ポート間の連通を全て遮断するので、燃料電池のアノード電極および改質装置の触媒が浸入する空気に触れて酸化することを防止できる。    In the invention according to claim 5 configured as described above, the introduction-side and outlet-side three-way valves prevent all communication between the ports from being interrupted by the emergency shut-off device when the power is shut off such as a power failure. It is possible to prevent the electrodes and the catalyst of the reformer from being in contact with the invading air and being oxidized.

以下、本発明に係る燃料電池システムの第1の実施形態について説明する。燃料電池システム10は、図1に示すように、燃料電池11、および燃料電池11に必要な水素ガスを生成して供給する改質装置12を備えている。燃料電池11のアノード電極には、改質装置12から改質ガスが供給され、燃料電池11のカソード電極には、外部からの空気がエアポンプにより供給され、燃料電池11において改質ガス中の水素ガスと空気中の酸素ガスとが反応して発電するようになっている。   Hereinafter, a first embodiment of a fuel cell system according to the present invention will be described. As shown in FIG. 1, the fuel cell system 10 includes a fuel cell 11 and a reformer 12 that generates and supplies hydrogen gas necessary for the fuel cell 11. The reformed gas is supplied from the reformer 12 to the anode electrode of the fuel cell 11, and air from the outside is supplied to the cathode electrode of the fuel cell 11 by an air pump. The gas and oxygen gas in the air react to generate power.

改質装置12は、天然ガス、LPGなどの炭化水素系の改質用燃料ガスおよび水蒸気が供給されて改質ガスを生成する改質部13、水ポンプから供給された純水を蒸発させて改質部13に供給する水蒸気を生成する蒸発器15、燃焼用燃料ガスと燃焼空気を混合して燃焼させ、改質部13および蒸発器15を加熱するための燃焼ガスを生成する燃焼部14、改質部13の下部に積層された熱交換部16、熱交換部16の下部に積層され改質部13で生成され熱交換部16で冷却された改質ガスに含まれる一酸化炭素を除去する一酸化炭素シフト反応部(以下、COシフト部という。)17、COシフト部17に接続されCOシフト部17から送出された改質ガスに含まれる一酸化炭素をさらに除去して送出口から燃料電池11に供給する一酸化炭素選択酸化部(以下、CO選択酸化部という。)18から構成されている。CO選択酸化部18の送出口が改質装置12の改質ガス送出口46となる。燃料電池11の改質ガス導入口47からアノード電極に導入された改質ガスは、カソード電極に導入された空気中の酸素ガスと反応して発電し水になるが、余剰の改質ガスであるアノードオフガスは燃料電池11のアノードオフガス導出口から燃焼部14に送られて燃焼される。   The reformer 12 evaporates pure water supplied from a reforming unit 13 that generates a reformed gas by supplying a hydrocarbon-based reforming fuel gas such as natural gas or LPG and water vapor, and a water pump. An evaporator 15 that generates water vapor to be supplied to the reforming unit 13, a combustion unit 14 that generates combustion gas for heating the reforming unit 13 and the evaporator 15 by mixing and burning combustion fuel gas and combustion air. The carbon monoxide contained in the reformed gas stacked in the lower part of the reforming unit 13 and generated in the reforming unit 13 and cooled in the heat exchanging unit 16 is stacked in the lower part of the heat exchanging unit 16. A carbon monoxide shift reaction section (hereinafter referred to as a CO shift section) 17 to be removed, and carbon monoxide contained in the reformed gas sent from the CO shift section 17 connected to the CO shift section 17 is further removed to send out the outlet. Acid supplied to the fuel cell 11 from Carbon selective oxidation unit (hereinafter, referred to as the CO selective oxidizing unit.) 18 and a. The outlet of the CO selective oxidation unit 18 becomes the reformed gas outlet 46 of the reformer 12. The reformed gas introduced into the anode electrode from the reformed gas inlet 47 of the fuel cell 11 reacts with the oxygen gas in the air introduced into the cathode electrode to generate power and become water, but it is an excess reformed gas. A certain anode off gas is sent from the anode off gas outlet of the fuel cell 11 to the combustion section 14 and burned.

改質部13の触媒が充填された反応室19は、燃焼部14の加熱室20により上部および外周を包囲され、加熱室20内に設けられたバーナ21は、ガスポンプにより送られた燃焼用燃料ガスとエアポンプにより送られた燃焼空気を混合して燃焼させ燃焼ガスを生成する。燃焼ガスは加熱室20を流れる間に反応室19の触媒を加熱し、その後に蒸発器15に流入して純水を蒸発させる。ガスポンプ22により圧送された改質用燃料ガス、および蒸発器15で生成された水蒸気が混合されて熱交換部16に導入され、熱交換部16で予加熱されて反応室19に供給され、燃焼ガスによって加熱された触媒により水蒸気改質反応および一酸化炭素シフト反応して改質ガスを生成する。   The reaction chamber 19 filled with the catalyst of the reforming unit 13 is surrounded by the heating chamber 20 of the combustion unit 14 at the top and outer periphery, and the burner 21 provided in the heating chamber 20 is a combustion fuel sent by a gas pump. The gas and combustion air sent by the air pump are mixed and burned to generate combustion gas. The combustion gas heats the catalyst in the reaction chamber 19 while flowing through the heating chamber 20, and then flows into the evaporator 15 to evaporate pure water. The reforming fuel gas pumped by the gas pump 22 and the water vapor generated by the evaporator 15 are mixed and introduced into the heat exchanging unit 16, preheated by the heat exchanging unit 16 and supplied to the reaction chamber 19 for combustion. A reformed gas is generated by a steam reforming reaction and a carbon monoxide shift reaction by a catalyst heated by the gas.

改質装置12と燃料電池11との間に接続された導入側3方バルブ24の共通ポート33Cは第1ポートして改質装置12の改質ガス送出口46に、ポート34Aは第2ポートとして燃料電池11の改質ガス導入口47に、ポート34Bは第3ポートとしてバイパス路26に夫々接続されている。バイパス路26は改質装置12から送出される改質ガスを燃料電池11をバイパスして燃焼部14に送るためのものである。導出側3方バルブ25の共通ポート33Cは第1ポートとして燃焼部14に、ポート34Aは第2ポートとして燃料電池11のアノードオフガス導出口に、ポート34Bは第3ポートとしてバイパス路26に夫々接続されている。    The common port 33C of the introduction-side three-way valve 24 connected between the reformer 12 and the fuel cell 11 is a first port to the reformed gas delivery port 46 of the reformer 12, and the port 34A is a second port. As described above, the reformed gas inlet 47 of the fuel cell 11 and the port 34B are connected to the bypass 26 as a third port. The bypass passage 26 is for bypassing the reformed gas sent from the reformer 12 to the combustion unit 14 by bypassing the fuel cell 11. The common port 33C of the outlet side three-way valve 25 is connected to the combustion section 14 as a first port, the port 34A is connected to the anode off-gas outlet of the fuel cell 11 as a second port, and the port 34B is connected to the bypass path 26 as a third port. Has been.

導入側および導出側3方バルブ24,25は、図2,3に示すように、ハウジング27にボール弁体28が回動可能に嵌合され、ボール弁体28に突設された弁軸29が減速機構30を介してモータ31に連結されている。ハウジング27には、ボール弁体28が嵌合する弁室32と、一端が弁室32の底面に開口し他端がハウジング27の下面に開口する共通ポート33Cと、各一端が弁室32の側面に互いに直交する方向から開口し各他端がハウジング27の側面に開口するポート34A,34Bが形成されている。ボール弁体28には、ボール弁体28の下面に開口し共通ポート33Cと常時連通する弁穴35と、弁穴35と連通しボール弁体28の側面に開口してポート34A,34Bと連通、遮断する弁穴36が穿設されている。弁軸29とハウジング27との間には捩りコイルバネ37が介在され、ボール弁体28はモータ31の無勢状態では捩りコイルバネ37のバネ力により弁穴36がポート34A,34Bと連通しない図4(イ)に示す閉止位置に付勢されている。3方バルブ24,25が電源遮断時に各ポート間の連通を全て遮断する閉止位置に切替えられる緊急遮断装置は、捩りコイルバネ37等により構成されている。ボール弁体28が減速機構30を介して捩りコイルバネ37のバネ力に抗してモータ31により回動されると、図4(ロ)〜(ニ)に示すように、共通ポート33Cが弁穴35,36を介して、ポート34Bと連通するC−B位置、ポート34A,34Bと連通するC−AB位置、ポート34Aと連通するC−A位置に順次割出される。    As shown in FIGS. 2 and 3, the inlet side and outlet side three-way valves 24, 25 have a valve shaft 29 projecting from the ball valve body 28. Is connected to the motor 31 via the speed reduction mechanism 30. The housing 27 has a valve chamber 32 into which the ball valve body 28 is fitted, a common port 33C having one end opened on the bottom surface of the valve chamber 32 and the other end opened on the lower surface of the housing 27, and each end of the valve chamber 32. Ports 34 </ b> A and 34 </ b> B are formed in the side surface so as to open from directions orthogonal to each other and the other ends open to the side surface of the housing 27. The ball valve body 28 has a valve hole 35 that opens on the lower surface of the ball valve body 28 and always communicates with the common port 33C, and communicates with the valve hole 35 and opens on the side surface of the ball valve body 28 to communicate with the ports 34A and 34B. A valve hole 36 for blocking is formed. A torsion coil spring 37 is interposed between the valve shaft 29 and the housing 27, and the ball valve body 28 does not communicate with the ports 34A and 34B due to the spring force of the torsion coil spring 37 when the motor 31 is in an inactive state (FIG. 4 ( It is biased to the closed position shown in b). The emergency shut-off device in which the three-way valves 24 and 25 are switched to the closed position that shuts off all communication between the ports when the power is shut off is constituted by a torsion coil spring 37 and the like. When the ball valve body 28 is rotated by the motor 31 against the spring force of the torsion coil spring 37 through the speed reduction mechanism 30, the common port 33C is connected to the valve hole as shown in FIGS. Through 35 and 36, the position is sequentially indexed to a CB position communicating with the port 34B, a C-AB position communicating with the ports 34A and 34B, and a C-A position communicating with the port 34A.

導入側および導出側3方バルブ24,25が、ボール弁体28の回動に応じてC−B位置からC−AB位置を経由してC−A位置に切替わるとき、C−B位置近傍では共通ポート33Cとポート34Aとの間の連通面積は全閉状態から漸増し、共通ポート33Cとポート34Bとの間の連通面積は全開状態から漸減し、C−AB位置において両連通面積が等しくなり、C−A位置では夫々全開、全閉状態となる。これにより、導入側および導出側3方バルブ24,25がC−B位置からC−A位置に切替わるときのガスの流量特性は、図5に示すように、ボール弁体28の回動に応じてポート34Aを流れるガスの流量QAが、C−B位置近傍で漸増し、C−AB位置近傍で急増し、C−A位置近傍で漸増し、ポート34Bを流れるガスの流量QBがC−B位置近傍で漸減し、C−AB位置近傍で急減し、C−A位置近傍で漸減する。C−AB位置ではポート34A,33Bを流れるガスの流量がほぼ等しくなる。    When the inlet side and outlet side three-way valves 24 and 25 are switched from the CB position to the CA position via the C-AB position according to the rotation of the ball valve body 28, the vicinity of the CB position. Then, the communication area between the common port 33C and the port 34A gradually increases from the fully closed state, the communication area between the common port 33C and the port 34B gradually decreases from the fully open state, and both communication areas are equal at the C-AB position. Thus, at the C-A position, they are fully opened and fully closed, respectively. As a result, the gas flow rate characteristics when the inlet side and outlet side three-way valves 24, 25 are switched from the CB position to the CA position are as shown in FIG. Accordingly, the flow rate QA of the gas flowing through the port 34A gradually increases near the C-B position, rapidly increases near the C-AB position, gradually increases near the C-A position, and the flow rate QB of the gas flowing through the port 34B becomes C- It gradually decreases near the B position, rapidly decreases near the C-AB position, and gradually decreases near the C-A position. At the C-AB position, the flow rates of the gas flowing through the ports 34A and 33B are substantially equal.

次に、上記実施の形態の作動について説明する。運転停止時には、導入側および導出側3方バルブ24,25は捩りコイルバネ37のバネ力により閉止位置に停止され、燃料電池11のアノード電極に改質ガスを導入するする改質ガス導入口47およびアノード電極からアノードオフガスを導出するアノードオフガス導出口48が閉鎖され、燃料電池11および改質装置12内の圧力が封鎖されたガスの冷却により低下している。この状態で導入側および導出側3方バルブ24,25の各ボール弁体28がモータ31により捩りコイルバネ37のバネ力に抗して回動されC−B位置に停止され、改質装置12の改質ガス送出口46が導入側3方バルブ24の共通ポート33C、ポート34B、バイパス路26、導出側3方バルブ25のポート34Bおよび共通ポート33Cを介して燃焼部14にバイパスされ、起動運転が開始される。    Next, the operation of the above embodiment will be described. When the operation is stopped, the introduction side and outlet side three-way valves 24, 25 are stopped at the closed position by the spring force of the torsion coil spring 37, and a reformed gas inlet 47 for introducing the reformed gas into the anode electrode of the fuel cell 11 and The anode off-gas outlet 48 for extracting the anode off-gas from the anode electrode is closed, and the pressure in the fuel cell 11 and the reformer 12 is lowered by cooling the sealed gas. In this state, the ball valve bodies 28 of the inlet side and outlet side three-way valves 24 and 25 are rotated against the spring force of the torsion coil spring 37 by the motor 31 and stopped at the CB position. The reformed gas outlet 46 is bypassed to the combustion section 14 via the common port 33C, port 34B, bypass path 26, port 34B of the outlet side three-way valve 25 and common port 33C of the inlet side three-way valve 24, and the starting operation is performed. Is started.

改質装置12において、燃焼用燃料ガスおよび燃焼空気が燃焼部14のバーナに供給されて燃焼され、生成された燃焼ガスが加熱室20を流れて反応室19内の触媒を加熱するとともに、蒸発器15で水蒸気を生成する。改質用燃料ガスと蒸発器15で生成された水蒸気が混合して反応室19に供給され、触媒により水蒸気改質反応、一酸化炭素シフト反応して改質ガスが生成される。改質部13から導出された改質ガスはCOシフト部17、CO選択酸化部18により一酸化炭素ガスを低減される。CO選択酸化部18から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値より高い起動運転時は、CO選択酸化部18から送出される改質ガスはバイパス路26を通って燃焼部14で燃焼される。    In the reformer 12, combustion fuel gas and combustion air are supplied to the burner of the combustion unit 14 and burned, and the generated combustion gas flows through the heating chamber 20 to heat the catalyst in the reaction chamber 19 and evaporates. Steam is generated in the vessel 15. The reforming fuel gas and the steam generated in the evaporator 15 are mixed and supplied to the reaction chamber 19, and the reformed gas is generated by the steam reforming reaction and the carbon monoxide shift reaction by the catalyst. The reformed gas derived from the reforming unit 13 is reduced in carbon monoxide gas by the CO shift unit 17 and the CO selective oxidation unit 18. During the start-up operation in which the concentration of carbon monoxide gas contained in the reformed gas delivered from the CO selective oxidation unit 18 is higher than a predetermined value, the reformed gas delivered from the CO selective oxidation unit 18 passes through the bypass 26. It is burned in the combustion unit 14.

CO選択酸化部18の触媒温度が所定値以上となったことが検出され、システム10が安定状態となりCO選択酸化部18から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値以下に減少すると、起動運転から通常運転に切替えるために、導入側および導出側3方バルブ24,25の各ボール弁体28がC−B位置からモータ31により回動され、C−AB位置を経由してC−A位置に割出される。これにより、C−B位置近傍では、導入側および導出側3方弁24,25の共通ポート33Cとポート34Aとの間の連通面積が全閉状態から漸増し、改質装置12の改質ガス送出口46と燃料電池11の改質ガス導入口47との間の連通面積およびアノードオフガス導出口48と燃焼部14との間の連通面積が漸増するので、改質装置12から多量の改質ガスが急激に燃料電池11に吸込まれ、改質装置12の安定状態が壊されて改質ガスに含まれる一酸化炭素ガスの濃度が増大することがない。共通ポート33Cとポート34Bとの間の連通面積は全開状態から漸減し、バイパス路26を経由した改質装置12と燃焼部14との間の連通面積が漸減する。C−AB位置近傍では、導入側および導出側3方弁24,25の共通ポート33Cとポート34Aとの間の連通面積が急増し、ポート34Bとの間の連通面積が急減し、C−A位置近傍では、ポート34Aとの連通面積が漸増し、ポート34Bとの連通面積が漸減し、C−A位置でポート34Bは閉止する。これにより、導入側および導出側3方バルブ24,25の各ボール弁体28がC−B位置からC−A位置に回動される間において、導入側および導出側3方バルブ24,25のポート34Bを流れるガスの流量とポート34Aを流れるガスの流量との合計は、図5に示すように略一定となり、急激な変化が起きないので、起動運転から通常運転に切替えるときに改質装置12の安定状態を良好に維持することができる。    It is detected that the catalyst temperature of the CO selective oxidation unit 18 has reached a predetermined value or more, the system 10 becomes stable, and the concentration of carbon monoxide gas contained in the reformed gas sent from the CO selective oxidation unit 18 is a predetermined value. When reduced to the following, in order to switch from the starting operation to the normal operation, the ball valve bodies 28 of the introduction-side and outlet-side three-way valves 24 and 25 are rotated by the motor 31 from the CB position to change the C-AB position. Via, it is indexed to the CA position. Thereby, in the vicinity of the CB position, the communication area between the common port 33C and the port 34A of the introduction side and outlet side three-way valves 24, 25 gradually increases from the fully closed state, and the reformed gas of the reformer 12 Since the communication area between the outlet 46 and the reformed gas inlet 47 of the fuel cell 11 and the communication area between the anode offgas outlet 48 and the combustion section 14 are gradually increased, a large amount of reforming is performed from the reformer 12. The gas is not rapidly aspirated into the fuel cell 11, and the stable state of the reformer 12 is not broken, and the concentration of carbon monoxide gas contained in the reformed gas does not increase. The communication area between the common port 33C and the port 34B gradually decreases from the fully open state, and the communication area between the reformer 12 and the combustion unit 14 via the bypass path 26 gradually decreases. In the vicinity of the C-AB position, the communication area between the common port 33C and the port 34A of the introduction-side and outlet-side three-way valves 24, 25 increases rapidly, the communication area between the port 34B decreases rapidly, and C-A In the vicinity of the position, the communication area with the port 34A gradually increases, the communication area with the port 34B gradually decreases, and the port 34B closes at the C-A position. As a result, while the ball valve bodies 28 of the inlet side and outlet side three-way valves 24, 25 are rotated from the CB position to the CA position, the inlet side and outlet side three-way valves 24, 25 The sum of the flow rate of the gas flowing through the port 34B and the flow rate of the gas flowing through the port 34A is substantially constant as shown in FIG. 5 and does not change rapidly. Therefore, the reformer is used when switching from the startup operation to the normal operation. The 12 stable states can be maintained well.

また、従来のように起動運転から通常運転への切替え時にCO選択酸化部と燃料電池との間のバルブを急激に開くと、一時的にアノードオフガスの流れが止り、バーナ失火等の問題が生ずる可能性があるが、上記実施形態では、起動運転から通常運転への切替え時に改質装置12と燃料電池11の改質ガス導入口47との間の連通面積およびオフガス導出口と燃焼部14との間の連通面積を漸増し、バイパス路26を経由した改質装置12と燃焼部14との間の連通面積を漸減した後に遮断するので、改質装置12からバイパス路26を介してバーナ21に送られる改質ガスおよび燃料電池11のアノードオフガス導出口48からバーナ21に送られるアノードオフガスの流れが同時に止ることがなく、バーナ失火、または、燃焼の不安定によるエミッションの増加を抑制することができる。    In addition, when the valve between the CO selective oxidation unit and the fuel cell is suddenly opened at the time of switching from start-up operation to normal operation as in the prior art, the anode off-gas flow temporarily stops, causing problems such as burner misfire. Although there is a possibility, in the above-described embodiment, the communication area between the reformer 12 and the reformed gas inlet 47 of the fuel cell 11 and the off-gas outlet and the combustion unit 14 when switching from the startup operation to the normal operation. Is gradually increased, and the communication area between the reformer 12 and the combustion section 14 via the bypass passage 26 is gradually reduced and shut off, so that the burner 21 is passed from the reformer 12 via the bypass passage 26. The flow of the reformed gas sent to the fuel cell 11 and the anode off gas sent from the anode off gas outlet 48 of the fuel cell 11 to the burner 21 do not stop at the same time, resulting in burner misfire or unstable combustion. The increase in emission can be suppressed that.

上記実施形態では、導出側3方バルブ25の共通ポート33Cを第1ポートとして燃焼部14に、ポート34Aを第2ポートとして燃料電池11のオフガス導出口に、ポート34Bを第3ポートとしてバイパス路26に夫々接続しているが、ポート34Bを第1ポートとして燃焼部14に、ポート34Aを第2ポートとして燃料電池11のアノードオフガス導出口48に、共通ポート33Cを第3ポートとしてバイパス路26に夫々接続してもよい。この場合、導出側3方バルブ25は、通常運転時にC−AB位置に維持される。    In the above-described embodiment, the common port 33C of the outlet side three-way valve 25 is the first port to the combustion unit 14, the port 34A is the second port to the off-gas outlet of the fuel cell 11, and the port 34B is the third port. 26, the port 34B as a first port to the combustion section 14, the port 34A as a second port to the anode offgas outlet 48 of the fuel cell 11, and the common port 33C as a third port 26 You may connect to each. In this case, the outlet side three-way valve 25 is maintained at the C-AB position during normal operation.

次に、第2の実施形態に係る燃料電池システム40について、第1の実施形態と構成が異なる部分を図6に基づいて説明し、同一構成部分については、同一参照番号を付して説明を省略する。    Next, with respect to the fuel cell system 40 according to the second embodiment, parts different in configuration from those in the first embodiment will be described with reference to FIG. 6, and the same constituent parts will be described with the same reference numerals. Omitted.

改質装置12と燃料電池11との間には、導入側3方バルブ41が改質ガス用凝縮器42を介して接続されている。導入側3方バルブ41の共通ポート33Cは第1ポートとして改質装置12の改質ガス送出口46に凝縮器42を介して接続され、ポート34Aは第2ポートとして燃料電池11の改質ガス導入口47に接続され、ポート34Bは改質装置12の暖機部43を通って燃焼部14のバーナ21に接続されている。    An introduction side three-way valve 41 is connected between the reformer 12 and the fuel cell 11 via a reformed gas condenser 42. The common port 33C of the introduction side three-way valve 41 is connected as a first port to the reformed gas outlet 46 of the reformer 12 via the condenser 42, and the port 34A is used as the second port for the reformed gas of the fuel cell 11. Connected to the introduction port 47, the port 34 </ b> B is connected to the burner 21 of the combustion unit 14 through the warm-up unit 43 of the reformer 12.

暖機部43は、CO選択酸化部18から導出され燃料電池11を通らないで供給される改質ガスおよび酸化剤ガスである空気を導入して内蔵の燃焼触媒(例えば、パラジウム系の触媒、白金系の触媒、白金−パラジウム系の触媒)によって燃焼させ、その燃焼ガスを熱交換器に供給している。熱交換器では、起動運転時にCOシフト部17に導入される改質ガスを燃焼ガスとの間で熱交換して温度上昇させる。    The warm-up unit 43 introduces a reformed gas and an oxidant gas, which is derived from the CO selective oxidation unit 18 and supplied without passing through the fuel cell 11, and incorporates a built-in combustion catalyst (for example, a palladium-based catalyst, A platinum-based catalyst, a platinum-palladium-based catalyst), and the combustion gas is supplied to a heat exchanger. In the heat exchanger, the temperature of the reformed gas introduced into the CO shift unit 17 during the start-up operation is increased by exchanging heat with the combustion gas.

燃料電池11のアノードオフガス導出口48はバルブ44およびアノードオフガス用凝縮器45を介して燃焼部14のバーナ21に接続されている。バルブ44は、弁体を圧縮スプリングのバネ力により弁座に押付けて弁孔を閉鎖してバルブを閉じ、ソレノイドの磁力で弁体をバネ力に抗して弁座から開離させてバルブを開くものである。なお、バルブ44は、燃料電池11のアノードオフガス導出口48側からバーナ21側へのアノードオフガスの流れを許容し、バーナ21側から燃料電池側11への流れを阻止する逆止弁としてもよい。    The anode offgas outlet 48 of the fuel cell 11 is connected to the burner 21 of the combustion unit 14 via a valve 44 and an anode offgas condenser 45. The valve 44 is pressed against the valve seat by the spring force of the compression spring to close the valve hole to close the valve, and the valve body is released from the valve seat against the spring force by the magnetic force of the solenoid. Open. The valve 44 may be a check valve that allows the anode off-gas flow from the anode off-gas outlet 48 side of the fuel cell 11 to the burner 21 side and blocks the flow from the burner 21 side to the fuel cell side 11. .

改質ガス用凝縮器42は燃料電池11の改質ガス導入口47に供給される改質ガス中の水蒸気を凝縮する。アノードオフガス用凝縮器45は、燃料電池11のアノードオフガス導出口48と燃焼部14のバーナ21とを連通する配管の途中に設けられており、その配管中を流れるアノードオフガス中の水蒸気を凝縮する。なお、凝縮器42,45には、図示しない低温液体またはラジエータによって冷却された液体が供給されるようになっており、この液体との熱交換によって各ガス中の水蒸気を凝縮している。   The reformed gas condenser 42 condenses water vapor in the reformed gas supplied to the reformed gas inlet 47 of the fuel cell 11. The anode off-gas condenser 45 is provided in the middle of a pipe that connects the anode off-gas outlet 48 of the fuel cell 11 and the burner 21 of the combustion unit 14, and condenses water vapor in the anode off-gas flowing through the pipe. . The condensers 42 and 45 are supplied with a low-temperature liquid (not shown) or a liquid cooled by a radiator, and water vapor in each gas is condensed by heat exchange with the liquid.

第2の実施形態では、運転停止時に導入側3方バルブ41が捩りコイルバネ37のバネ力によって閉止位置に停止されることにより、燃料電池11の改質ガス導入口47、改質装置12の改質ガス送出口46および暖機部43が閉鎖され、バルブ44が圧縮スプリングのバネ力により弁体が付勢されて閉止されることにより、燃料電池11のアノードオフガス導出口48が閉鎖されている。このとき、燃料電池11および改質装置12内の圧力は、封鎖されたガスの冷却により低下している。この状態で導入側3方バルブ41のボール弁体28がモータ31により捩りコイルバネ37のバネ力に抗して回動されC−B位置に停止され、改質装置12の改質ガス送出口46が導入側3方バルブ41の共通ポート33C、ポート34B、暖機部43を介して燃焼部14にバイパスされ、起動運転が開始される。起動運転時に改質装置12の改質ガス送出口46から送出される改質ガスは、一酸化炭素ガスの濃度が所定値より高いので、暖機部43を通って燃焼部14のバーナ21に送られ、燃焼用燃料ガスとともに燃焼空気で燃焼される。改質ガスは燃焼部14に送られる前に暖機部43で触媒燃焼して発熱し、COシフト部17に導入される改質ガスの温度を上昇させ、改質ガスがCOシフト部17において安定状態で一酸化炭素シフト反応するまでの立ち上げ時間を短縮する。    In the second embodiment, when the operation is stopped, the introduction side three-way valve 41 is stopped at the closed position by the spring force of the torsion coil spring 37, so that the reformed gas inlet 47 of the fuel cell 11 and the reformer 12 are modified. The quality gas outlet 46 and the warming-up portion 43 are closed, and the valve 44 is closed by urging the valve body by the spring force of the compression spring, whereby the anode off-gas outlet 48 of the fuel cell 11 is closed. . At this time, the pressure in the fuel cell 11 and the reformer 12 is lowered by cooling the sealed gas. In this state, the ball valve body 28 of the introduction side three-way valve 41 is rotated against the spring force of the torsion coil spring 37 by the motor 31 and stopped at the CB position, and the reformed gas outlet 46 of the reformer 12 is reached. Is bypassed to the combustion section 14 via the common port 33C, port 34B, and warm-up section 43 of the introduction side three-way valve 41, and the start-up operation is started. The reformed gas delivered from the reformed gas outlet 46 of the reformer 12 during the start-up operation has a carbon monoxide gas concentration higher than a predetermined value, and therefore passes through the warm-up unit 43 to the burner 21 of the combustion unit 14. It is sent and burned with combustion air along with fuel gas for combustion. Before the reformed gas is sent to the combustion unit 14, the warm-up unit 43 performs catalytic combustion to generate heat, and the temperature of the reformed gas introduced into the CO shift unit 17 is increased. Shorten the start-up time until carbon monoxide shift reaction in a stable state.

CO選択酸化部18の触媒温度が所定値以上となったことが検出され、システム40が安定状態となりCO選択酸化部18から送出される改質ガスに含まれる一酸化炭素ガスの濃度が所定値以下に減少すると、起動運転から通常運転に切替えるために、バルブ44が開放されて燃料電池11のアノードオフガス導出口48が燃焼部11に連通されるとともに、導入側3方バルブ41のボール弁体28がC−B位置からモータ31により回動され、C−AB位置を経由してC−A位置に割出される。C−B位置近傍では、導入側3方弁41の共通ポート33Cとポート34Aとの間の連通面積が全閉状態から漸増し、改質装置12の改質ガス送出口46と燃料電池11の改質ガス導入口47との間の連通面積が漸増し、共通ポート33Cとポート34Bとの間の連通面積は全開状態から漸減し、改質装置12と暖機部43、燃焼部14との間の連通面積が漸減する。    It is detected that the catalyst temperature of the CO selective oxidation unit 18 has reached a predetermined value or more, the system 40 becomes stable, and the concentration of carbon monoxide gas contained in the reformed gas sent from the CO selective oxidation unit 18 is a predetermined value. When reduced to the following, in order to switch from the start-up operation to the normal operation, the valve 44 is opened, the anode off-gas outlet 48 of the fuel cell 11 is communicated with the combustion unit 11, and the ball valve body of the introduction-side three-way valve 41. 28 is rotated from the C-B position by the motor 31 and is indexed to the C-A position via the C-AB position. In the vicinity of the CB position, the communication area between the common port 33C and the port 34A of the introduction side three-way valve 41 gradually increases from the fully closed state, and the reformed gas outlet 46 of the reformer 12 and the fuel cell 11 The communication area between the reformed gas introduction port 47 gradually increases, the communication area between the common port 33C and the port 34B gradually decreases from the fully open state, and the reformer 12, the warm-up unit 43, and the combustion unit 14 The communication area between them gradually decreases.

これにより、改質装置12から多量の改質ガスが急激に燃料電池11に吸込まれ、改質装置12の安定状態が壊されて改質ガスに含まれる一酸化炭素ガスの濃度が増大し、燃料電池のアノード電極を被毒することがない。さらに、導入側3方バルブ41のポート34Bを通って改質装置12からバーナ21に送られる改質ガスおよび燃料電池11のアノードオフガス導出口からバルブ44を通ってバーナ21に送られるアノードオフガスの流れが同時に止ることがなく、バーナ失火、または、燃焼の不安定によるエミッションの増加を抑制することができる。    As a result, a large amount of reformed gas is rapidly sucked into the fuel cell 11 from the reformer 12, the stable state of the reformer 12 is broken, and the concentration of carbon monoxide gas contained in the reformed gas increases. The anode electrode of the fuel cell is not poisoned. Further, the reformed gas sent from the reformer 12 to the burner 21 through the port 34B of the introduction side three-way valve 41 and the anode offgas sent from the anode offgas outlet of the fuel cell 11 to the burner 21 through the valve 44. The flow does not stop at the same time, and an increase in emission due to burner misfire or combustion instability can be suppressed.

上記第2の実施形態では、導入側3方バルブ41のポート34Bを改質装置12の暖機部43を介して燃焼部14に接続しているが、導入側3方バルブ41と燃焼部14との間に介在される暖機部は、起動運転時に燃料電池11等の冷却装置の冷媒を昇温させる暖機部としてもよい。    In the second embodiment, the port 34B of the introduction side three-way valve 41 is connected to the combustion unit 14 via the warm-up unit 43 of the reformer 12, but the introduction side three-way valve 41 and the combustion unit 14 are connected. The warming-up part interposed between the two may be a warming-up part that raises the temperature of the refrigerant of the cooling device such as the fuel cell 11 during the start-up operation.

上記実施形態では、3方バルブを弁体が球状の3方ボールバルブとしたが、弁体をスプールで形成した直動タイプの3方バルブとしてもよい。    In the above embodiment, the three-way valve is a three-way ball valve having a spherical valve body, but may be a direct-acting three-way valve in which the valve body is formed of a spool.

上記実施形態において改質装置は、供給された改質用燃料ガスと水蒸気とを改質して改質ガスを生成するものであるが、改質用燃料であるメタノールを改質して改質ガスを生成する改質装置を用いてもよい。    In the above embodiment, the reformer reforms the supplied reforming fuel gas and steam to generate reformed gas, but reforms the reforming methanol to reform. A reformer that generates gas may be used.

本発明の第1の実施形態に係る燃料電池システムの概要を示す概要図。1 is a schematic diagram showing an overview of a fuel cell system according to a first embodiment of the present invention. 燃料電池システムに用いる3方バルブの断面図。Sectional drawing of the three-way valve used for a fuel cell system. 図2の3−3断面図。3-3 sectional drawing of FIG. 3方バルブの各ポートの連通関係を示す図。The figure which shows the communication relation of each port of a three-way valve. 3方バルブの各ポートの流量特性を示す図。The figure which shows the flow volume characteristic of each port of a three-way valve. 第2の実施形態に係る燃料電池システムの概要を示す概要図。The schematic diagram which shows the outline | summary of the fuel cell system which concerns on 2nd Embodiment. 従来の燃料電池システムを示す図。The figure which shows the conventional fuel cell system.

符号の説明Explanation of symbols

10,40…燃料電池システム、11…燃料電池、12…改質装置、13…改質部、14…燃焼部、15…蒸発器、16…熱交換部、17…一酸化炭素シフト反応部(COシフト部)、18…一酸化炭素選択酸化部(CO選択酸化部)、19…反応室、20…加熱室、21…バーナ、22…ガスポンプ、24,41…導入側3方バルブ、25…導出側3方バルブ、26…バイパス路、27…ハウジング、28…ボール弁体、29…弁軸、30…減速機構、31…モータ、32…弁室、33C…共通ポート、34A,34B…ポート、35,36…弁穴、37…捩りコイルバネ、42,45…凝縮器、43…暖機部、44…バルブ、46…改質ガス送出口、47…改質ガス導入口、48…アノードオフガス導出口。
DESCRIPTION OF SYMBOLS 10,40 ... Fuel cell system, 11 ... Fuel cell, 12 ... Reformer, 13 ... Reforming part, 14 ... Combustion part, 15 ... Evaporator, 16 ... Heat exchange part, 17 ... Carbon monoxide shift reaction part ( CO shift unit), 18 ... carbon monoxide selective oxidation unit (CO selective oxidation unit), 19 ... reaction chamber, 20 ... heating chamber, 21 ... burner, 22 ... gas pump, 24, 41 ... introduction side three-way valve, 25 ... Derived side three-way valve, 26 ... Bypass passage, 27 ... Housing, 28 ... Ball valve element, 29 ... Valve shaft, 30 ... Deceleration mechanism, 31 ... Motor, 32 ... Valve chamber, 33C ... Common port, 34A, 34B ... Port 35, 36 ... valve hole, 37 ... torsion coil spring, 42, 45 ... condenser, 43 ... warm-up part, 44 ... valve, 46 ... reformed gas outlet, 47 ... reformed gas inlet, 48 ... anode off gas Outlet.

Claims (5)

燃焼部で生成される燃焼ガスにより加熱される触媒によって改質ガスを生成する改質装置を備え、燃料電池のアノード電極に改質ガスを導入する改質ガス導入口に前記改質装置の改質ガス送出口が接続され、前記アノード電極からアノードオフガスを導出するアノードオフガス導出口に前記燃焼部が接続された燃料電池システムにおいて、
第1乃至第3ポートが前記改質装置の改質ガス送出口、前記燃料電池の改質ガス導入口、前記燃焼部のバーナに夫々接続された導入側3方バルブを備え、起動運転時に第1ポートを第3ポートに連通して第2ポートを閉鎖し、起動運転から通常運転への切替えにおいて第1ポートと第2ポートとの間の連通面積を漸増し、第1ポートと第3ポートとの間の連通面積を漸減し、通常運転時に第1ポートを第2ポートに連通して第3ポートを閉鎖し、運転停止時に各ポート間の連通を全て遮断することを特徴とする燃料電池システム。
A reformer that generates reformed gas by a catalyst heated by the combustion gas generated in the combustion section is provided, and the reformer is modified at the reformed gas inlet for introducing the reformed gas into the anode electrode of the fuel cell. In the fuel cell system, wherein a gas outlet is connected, and the combustion section is connected to an anode offgas outlet for extracting anode offgas from the anode electrode,
The first to third ports include a reformed gas delivery port of the reformer, a reformed gas inlet of the fuel cell, and an inlet side three-way valve respectively connected to the burner of the combustion section. 1 port communicates with the 3rd port, the 2nd port is closed, and the communication area between the 1st port and the 2nd port is gradually increased in switching from the start operation to the normal operation, and the 1st port and the 3rd port The communication area is gradually reduced, the first port communicates with the second port during normal operation and the third port is closed, and all communication between the ports is shut off when the operation is stopped. system.
請求項1において、導出側3方バルブの第1乃至第3ポートが前記燃焼部のバーナ、前記アノードオフガス導出口、前記導入側3方バルブの第3ポートに夫々接続され、前記導出側3方バルブは、起動運転時に第1ポートを第3ポートに連通して第2ポートを閉鎖し、起動運転から通常運転への切替えにおいては第1ポートと第2ポートとの間の連通面積を漸増し、第1ポートと第3ポートとの間の連通面積を漸減し、通常運転においては第1ポートを第2ポートに連通して第3ポートを閉鎖し、運転停止時に各ポート間の連通を全て遮断することを特徴とする燃料電池システム。 In Claim 1, the 1st thru | or 3rd port of the derivation | leading-out three-way valve is respectively connected to the burner of the said combustion part, the said anode offgas derivation | leading-out port, and the 3rd port of the said introduction | transduction side three-way | valve, The valve communicates the first port with the third port and closes the second port during start-up operation, and gradually increases the communication area between the first port and the second port when switching from start-up operation to normal operation. The communication area between the first port and the third port is gradually reduced. In normal operation, the first port is connected to the second port and the third port is closed. A fuel cell system characterized by being cut off. 請求項1において、前記導入側3方バルブの第3ポートが暖機部を介して前記燃焼部のバーナに接続され、前記アノードオフガス導出口が運転停止時に閉鎖されるバルブを介して前記燃焼部のバーナに接続されたことを特徴とする燃料電池システム。 2. The combustion section according to claim 1, wherein a third port of the introduction side three-way valve is connected to a burner of the combustion section via a warm-up section, and the anode offgas outlet is closed when the operation is stopped. A fuel cell system characterized by being connected to a burner. 請求項1乃至3のいずれか1項において、前記導入側および導出側3方向バルブは、ボール状弁体をアクチュエータで回転させる構成の3方向ボールバルブであることを特徴とする燃料電池システム。 4. The fuel cell system according to claim 1, wherein the introduction-side and lead-out-side three-way valves are three-way ball valves configured to rotate a ball-shaped valve body with an actuator. 5. 請求項1乃至4のいずれか1項において、前記導入側および導出側3方向バルブは、電源遮断時に各ポート間の連通を全て遮断する閉止位置に弁体を切替える緊急遮断装置を備えていることを特徴とする燃料電池システム。 5. The inlet side and outlet side three-way valve according to claim 1, further comprising an emergency shut-off device that switches the valve body to a closed position that shuts off all communication between the ports when the power is shut off. A fuel cell system.
JP2005086183A 2004-03-26 2005-03-24 Fuel cell system Withdrawn JP2005310765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086183A JP2005310765A (en) 2004-03-26 2005-03-24 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004093538 2004-03-26
JP2005086183A JP2005310765A (en) 2004-03-26 2005-03-24 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2005310765A true JP2005310765A (en) 2005-11-04

Family

ID=35439253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086183A Withdrawn JP2005310765A (en) 2004-03-26 2005-03-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2005310765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP2007257923A (en) * 2006-03-22 2007-10-04 Aisin Seiki Co Ltd Fuel cell system
JP2011003524A (en) * 2009-06-19 2011-01-06 Hyundai Motor Co Ltd Unified valve device for fuel cell stack
US8125001B2 (en) 2008-11-17 2012-02-28 Lg Innotek Co., Ltd. Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
JP2017223225A (en) * 2016-06-16 2017-12-21 ゼネラル・エレクトリック・カンパニイ Liquid fuel control valve for gas turbine engine and method for controlling flow of liquid fuel to engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP4728686B2 (en) * 2005-04-20 2011-07-20 アイシン精機株式会社 Fuel cell system
JP2007257923A (en) * 2006-03-22 2007-10-04 Aisin Seiki Co Ltd Fuel cell system
US8125001B2 (en) 2008-11-17 2012-02-28 Lg Innotek Co., Ltd. Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
JP2011003524A (en) * 2009-06-19 2011-01-06 Hyundai Motor Co Ltd Unified valve device for fuel cell stack
JP2017223225A (en) * 2016-06-16 2017-12-21 ゼネラル・エレクトリック・カンパニイ Liquid fuel control valve for gas turbine engine and method for controlling flow of liquid fuel to engine
CN107524525A (en) * 2016-06-16 2017-12-29 通用电气公司 The method of the liquid fuel stream of engine is led in control valve for liquid fuel and control

Similar Documents

Publication Publication Date Title
JP5189719B2 (en) Fuel cell system
JP4799751B2 (en) Fuel cell start control device
US7691510B2 (en) Fuel cell system with differential pressure control
JP2005310765A (en) Fuel cell system
JP2004031135A (en) Fuel cell and its control method
US20070134526A1 (en) Fuel cell system and water recovery method thereof
JP4467415B2 (en) Fuel cell system
JP5645645B2 (en) Solid oxide fuel cell device
JP5382408B2 (en) Fuel cell system
JP4687039B2 (en) Polymer electrolyte fuel cell system
JP2006236831A (en) Fuel cell system
JP2002280029A (en) Control device for fuel cell system
JP2005093374A (en) Fuel cell power generating system, and method of stopping the same
JPH11162489A (en) Fuel cell device and operating method for fuel cell device
JP4271472B2 (en) Hydrogen generator and operation method of hydrogen generator
JP2006300249A (en) Direct driven type switching valve and fuel cell system using the same
JP2003229161A (en) Fuel cell generating system and its operation method
JP2005116256A (en) Fuel cell cogeneration system
JP2006318798A (en) Fuel cell system
JP5121156B2 (en) Fuel cell system
JP4728686B2 (en) Fuel cell system
JP2003142134A (en) Fuel cell system
JP2007294347A (en) Fuel cell system
JP2005129462A (en) Fuel cell system
JP5212889B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091222