JP2006233786A - Vertical shaft type pump - Google Patents

Vertical shaft type pump Download PDF

Info

Publication number
JP2006233786A
JP2006233786A JP2005046552A JP2005046552A JP2006233786A JP 2006233786 A JP2006233786 A JP 2006233786A JP 2005046552 A JP2005046552 A JP 2005046552A JP 2005046552 A JP2005046552 A JP 2005046552A JP 2006233786 A JP2006233786 A JP 2006233786A
Authority
JP
Japan
Prior art keywords
pump
bearing
bearings
impeller
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005046552A
Other languages
Japanese (ja)
Other versions
JP4704066B2 (en
Inventor
Shigehisa Tezuka
重久 手塚
Tadahiro Tsuchiya
忠博 土屋
Yukio Asami
幸男 浅見
Tadamitsu Nomura
忠充 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengyosha Machine Works Ltd
DMW Corp
Original Assignee
Dengyosha Machine Works Ltd
DMW Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengyosha Machine Works Ltd, DMW Corp filed Critical Dengyosha Machine Works Ltd
Priority to JP2005046552A priority Critical patent/JP4704066B2/en
Publication of JP2006233786A publication Critical patent/JP2006233786A/en
Application granted granted Critical
Publication of JP4704066B2 publication Critical patent/JP4704066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft type pump 10 being suitable for preceding stand-by operation using a bearing 1 having excellent resistance to wear even if operation time in air without pouring water is long and bearings 2, 3 capable of withstanding load due to vibration at air lock operation time sufficiently. <P>SOLUTION: A pump shaft 40 is supported by the bearings 1, 2, 3 on the upstream side and the downstream side of an impeller 41 in a pump flow passage. A sliding member of the bearing 1 arranged on the upstream side is formed by a ringlike square braid packing made of aramid fibers having excellent resistance to wear for non-water pouring operation and polytetrafluoroethylene-graphite compound fibers. Sliding members of the bearings 2, 3 arranged on the downstream side are formed by a composite material made of polyether etherketone having excellent resistance to load for vibration by air lock operation and carbon fibers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無注水で先行待機運転が可能なようにした立軸ポンプに関するものである。   The present invention relates to a vertical shaft pump capable of performing a preliminary standby operation without water injection.

急な出水に対して迅速に排水ができるようにする目的で、ポンプ機場に先行待機運転が可能な先行待機型立軸ポンプが設置される。従来の先行待機型立軸ポンプの構造の一例を図6を参照して説明する。図6は、従来の先行待機型立軸ポンプの構造の一例の縦断面図である。   For the purpose of enabling quick drainage in response to sudden water discharge, a stand-by type vertical shaft pump capable of pre-standby operation is installed in the pump station. An example of the structure of a conventional prior standby vertical shaft pump will be described with reference to FIG. FIG. 6 is a longitudinal cross-sectional view of an example of the structure of a conventional advance standby type vertical shaft pump.

図6において、吸込水槽30のポンプ設置床31に、立軸ポンプ32の吐出エルボ33が設置固定され、この吐出エルボ33の下端に揚水管34とポンプケーシング35および吸込管36が順次に連結されて垂架され、吸込管36が水面下に水没される。また、吐出エルボ33の他端に短管37と吐出弁38および吐出管39が順次に連結される。排水は、吐出管39から図示しない排水先に排出される。吸込管36から吐出管39に至る管路により、ポンプ流路が形成される。そして、吐出エルボ33の外壁を貫通して揚水管34およびポンプケーシング35の軸心位置に配設されるポンプ軸40に、ポンプケーシング35内で羽根車41が配設される。このポンプ軸40は、ポンプ流路内にて羽根車41の下流側で軸受46、47により回転自在に支承される。これらの軸受46、47の摺動部材は、一般的にゴム素材で形成されたゴム軸受が用いられる。さらに、ポンプ流路内のポンプ軸40および軸受46、47を全体的に覆うように、軸保護管48およびこれに連結された内ケーシング50が設けられ、この軸保護管48の上端部内に注水ポンプ49により潤滑水が供給され、軸保護管48を経て内ケーシング50内にも潤滑水が供給され、さらに内ケーシング50に一端が開口された排水管51を経て外部に排水される。さらにまた、吸込管36の管壁に羽根車41の入口レベルCより上流側の位置のレベルBで吸気孔52が穿設され、この吸気孔52に吸気管42の一端が接続され、その他端が吸気弁53を介して外気に連通される。   In FIG. 6, a discharge elbow 33 of a vertical shaft pump 32 is installed and fixed on a pump installation floor 31 of the suction water tank 30, and a pumping pipe 34, a pump casing 35 and a suction pipe 36 are sequentially connected to the lower end of the discharge elbow 33. It is suspended and the suction pipe 36 is submerged under the water surface. A short pipe 37, a discharge valve 38, and a discharge pipe 39 are sequentially connected to the other end of the discharge elbow 33. The drainage is discharged from the discharge pipe 39 to a drainage destination (not shown). A pump flow path is formed by a pipe line extending from the suction pipe 36 to the discharge pipe 39. An impeller 41 is disposed in the pump casing 35 on a pump shaft 40 that passes through the outer wall of the discharge elbow 33 and is disposed at the axial center of the pumping pipe 34 and the pump casing 35. The pump shaft 40 is rotatably supported by bearings 46 and 47 on the downstream side of the impeller 41 in the pump flow path. As the sliding members of these bearings 46 and 47, rubber bearings formed of a rubber material are generally used. Further, a shaft protection pipe 48 and an inner casing 50 connected to the shaft protection pipe 48 are provided so as to cover the pump shaft 40 and the bearings 46 and 47 in the pump flow path, and water is poured into the upper end portion of the shaft protection pipe 48. Lubricating water is supplied by the pump 49, the lubricating water is also supplied into the inner casing 50 through the shaft protection pipe 48, and further drained to the outside through the drain pipe 51 having one end opened in the inner casing 50. Furthermore, an intake hole 52 is formed in the pipe wall of the suction pipe 36 at a level B upstream of the inlet level C of the impeller 41, and one end of the intake pipe 42 is connected to the intake hole 52, and the other end. Is communicated to the outside air through the intake valve 53.

かかる構成において、出水時に、ポンプ軸40に連結された駆動装置(図示せず)が運転されて、立軸ポンプ32の揚水運転が行われ、吸込水槽30の水位が高水位から次第に低下し、水位がある程度の水深となるレベルAに達すると、開かれた吸気弁53と吸気管42および吸気孔52を介して、空気が吸込管36内に吸い込まれるようになり、通常の揚水運転から気水混合運転に移行する。さらに、水位が吸気孔52が穿設されたレベルBまで低下すると、吸込管36内は空気で満たされて真空破壊がなされ、羽根車41より上流側の水が完全に落水し、気水混合運転から気中運転に移行する。ここで、吸込管36内の水が落水しても、羽根車41の回転による落水規制作用により、羽根車41より下流側のポンプケーシング35および揚水管34内の水は落水せずに保持されたまま運転が継続されてエアロック運転となる。このエアロック運転においても徐々にポンプケーシング35および揚水管34内の水が落水し、ポンプケーシング35および揚水管34内の水が完全に落水すると完全な気中運転となる。吸込水槽30の水位が再び上昇して、羽根車41の入口レベルCまで達すると揚水が再開されて、揚水運転に再び移行する。   In such a configuration, a drive device (not shown) connected to the pump shaft 40 is operated at the time of water discharge, the pump operation of the vertical shaft pump 32 is performed, and the water level of the suction water tank 30 gradually decreases from the high water level. Reaches a level A at which the water reaches a certain depth, air is sucked into the suction pipe 36 through the opened intake valve 53, the intake pipe 42, and the intake hole 52. Transition to mixed operation. Further, when the water level is lowered to the level B where the intake holes 52 are formed, the suction pipe 36 is filled with air and the vacuum is broken, and the water upstream of the impeller 41 is completely dropped, and the air-water mixing is performed. Shift from driving to air driving. Here, even if the water in the suction pipe 36 falls, the water in the pump casing 35 and the pumping pipe 34 on the downstream side of the impeller 41 is retained without dropping due to the falling water regulating action by the rotation of the impeller 41. Operation is continued and airlock operation is performed. Also in this air lock operation, the water in the pump casing 35 and the pumping pipe 34 gradually falls, and when the water in the pump casing 35 and the pumping pipe 34 is completely dropped, a complete air operation is performed. When the water level in the suction tank 30 rises again and reaches the inlet level C of the impeller 41, the pumping is resumed and the pumping operation is resumed.

ポンプ軸40が回転駆動されている間は、ポンプケーシング35および揚水管34内の水が完全に落水した気中運転時にあっても、軸保護管48および内ケーシング50内に供給される潤滑水で軸受46、47が潤滑されており、軸受46、47の摩耗等の不具合は生じない。   While the pump shaft 40 is being rotationally driven, the lubricating water supplied into the shaft protection tube 48 and the inner casing 50 even during the air operation in which the water in the pump casing 35 and the pumping pipe 34 has completely dropped. Thus, the bearings 46 and 47 are lubricated, and no troubles such as wear of the bearings 46 and 47 occur.

上述のごとき図6に示す構造の従来の立軸ポンプ32にあっては、気中運転時の軸受46、47の損傷を防止するために、軸受46、47に潤滑水を供給する軸保護管48や内ケーシング50および注水ポンプ49等の付帯設備の設置が必要である。しかるに、これらの付帯設備が、急な出水の緊急時に故障状態であると、立軸ポンプ32の運転が不能となり、極めて重大な問題を発生させかねない。そこで、緊急時に確実に運転ができるように、できるだけ付帯設備等の必要がなく、外部から潤滑水を注水する必要なしに運転が可能な無注水軸受を用いた先行待機型の立軸ポンプの採用が望まれている。図6に示す構造の従来の立軸ポンプ32で、軸受46、47の摺動部材にセラミックス等を用いることで無注水運転が可能である。しかしながら、セラミックス等を摺動部材に採用した無注水軸受を採用すると、エアロック運転時に発生するポンプ軸40の振動により、軸受46、47の摺動部材に過大な負荷が加わって損傷され易いという問題がある。   In the conventional vertical shaft pump 32 having the structure shown in FIG. 6 as described above, the shaft protection pipe 48 for supplying lubricating water to the bearings 46 and 47 in order to prevent damage to the bearings 46 and 47 during the air operation. In addition, it is necessary to install incidental facilities such as the inner casing 50 and the water injection pump 49. However, if these incidental facilities are in a failure state at the time of sudden water discharge, the operation of the vertical pump 32 becomes impossible, which may cause a very serious problem. Therefore, in order to ensure reliable operation in an emergency, there is no need for auxiliary equipment as much as possible, and the adoption of a stand-by type vertical shaft pump that uses a non-water-filled bearing that can be operated without the need to inject lubricating water from the outside. It is desired. The conventional vertical shaft pump 32 having the structure shown in FIG. 6 can be operated without water injection by using ceramics or the like for the sliding members of the bearings 46 and 47. However, if a non-water-filled bearing using ceramics or the like as a sliding member is used, it is easy to damage the sliding members of the bearings 46 and 47 due to vibration of the pump shaft 40 that occurs during the airlock operation. There's a problem.

そこで、エアロック運転時のポンプ軸40の振動を軽減させて軸受46、47の摺動部材に加わる負荷を少なくするために、ポンプ軸40を羽根車41の上流側まで延長し、羽根車41の上流側でもポンプ軸40を軸受で支承する構造が提案されている。しかるに、かかる構造において、羽根車41より上流側の軸受は、吸込管36内の水が完全に落水してから再び水位が軸受の位置に上昇するまでの間は、無注水状態での気中運転が継続される。そのために、無注水での運転時間が長くなる確率が高く、それだけ温度上昇と摩耗による損傷を生じさせ易く、摺動部材としてセラミックス等を用いた軸受であっても十分に満足できるものでなかった。なお、羽根車41より下流側に配設される軸受46、47は、エアロック運転時にはポンプケーシング35および揚水管34内に保持された水により潤滑されるために、羽根車41より上流側に配設される軸受よりも、無注水での運転時間が短く、それだけ摩耗等による損傷は軽減される。   Therefore, in order to reduce vibrations of the pump shaft 40 during the airlock operation and reduce the load applied to the sliding members of the bearings 46 and 47, the pump shaft 40 is extended to the upstream side of the impeller 41, and the impeller 41 A structure in which the pump shaft 40 is supported by a bearing on the upstream side is also proposed. However, in such a structure, the bearing on the upstream side of the impeller 41 is in an air-free state until the water level rises to the position of the bearing again after the water in the suction pipe 36 has completely dropped. Driving continues. For this reason, there is a high probability that the operation time without water injection will be long, and it is easy to cause damage due to temperature rise and wear, and even a bearing using ceramics etc. as a sliding member was not satisfactory. . The bearings 46 and 47 disposed on the downstream side of the impeller 41 are lubricated by the water held in the pump casing 35 and the pumping pipe 34 during the airlock operation, so that the bearings 46 and 47 are disposed on the upstream side of the impeller 41. The operation time without water injection is shorter than that of the installed bearing, and damage due to wear or the like is reduced accordingly.

本発明は、かかる従来技術の事情に鑑みてなされたもので、無注水での気中運転時間が長くても耐摩耗性に優れた軸受と、エアロック運転時の振動による負荷に十分に耐え得る軸受を用いて、先行待機運転に好適な立軸ポンプを提供することを目的とする。   The present invention has been made in view of the circumstances of the prior art, and has a bearing that is excellent in wear resistance even when the air operation time without water is long and the load caused by vibration during air lock operation. An object of the present invention is to provide a vertical shaft pump suitable for the preceding standby operation using the obtained bearing.

本発明は上述のごとき問題点を解決するためになされたもので、本発明の立軸ポンプは、ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側に配設される軸受の摺動部材を形成し、ポリエーテルエーテルケトンと炭素繊維の複合材料で、前記下流側に配設される軸受の摺動部材を形成して構成されている。   The present invention has been made to solve the above-described problems. The vertical shaft pump of the present invention supports the pump shaft with bearings on the upstream side and the downstream side of the impeller in the pump flow path, and aramid fibers. A ring-shaped square knitting packing made of polytetrafluoroethylene-graphite compound fiber, which forms a sliding member of a bearing disposed on the upstream side, and a composite material of polyether ether ketone and carbon fiber, on the downstream side The sliding member of the bearing arrange | positioned in is formed and comprised.

そして、ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側に配設される軸受の摺動部材を形成し、ポリエーテルエーテルケトンと炭素繊維の複合材料およびその上流側と下流側に密接または近接して配設したアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンとで、前記下流側に配設される軸受の摺動部材を形成して構成しても良い。   The pump shaft is supported by bearings on the upstream side and downstream side of the impeller in the pump flow path, and is arranged on the upstream side with a ring-shaped square knitting packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. Formed from a polyether ether ketone and carbon fiber composite material and an aramid fiber and a polytetrafluoroethylene-graphite compound fiber disposed in close proximity or close to the upstream side and downstream side of the composite material The sliding member of the bearing disposed on the downstream side may be formed with a ring-shaped square knitting packing.

また、ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側および前記下流側に配設されるそれぞれの軸受の摺動部材を形成して構成することも可能である。   Further, the pump shaft is supported by bearings on the upstream side and the downstream side of the impeller in the pump flow path, and a ring-shaped square braided packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber, the upstream side and the It is also possible to form a sliding member for each bearing disposed on the downstream side.

請求項1記載の立軸ポンプにあっては、耐摩耗性に優れたアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、羽根車より上流側に配設される軸受の摺動部材を形成し、耐荷重性に優れたポリエーテルエーテルケトンと炭素繊維の複合材料で、羽根車より下流側に配設される軸受の摺動部材を形成したので、無注水での運転時間が長くなる確率が高い上流側の軸受が、温度上昇と摩耗による損傷を受けにくく、またエアロック運転により過大な負荷が加わる虞のある下流側の軸受が、負荷による損傷を受けにくい。もって、無注水での運転が十分に可能である。   2. The vertical shaft pump according to claim 1, wherein the ring-shaped square braided packing is composed of an aramid fiber and a polytetrafluoroethylene-graphite compound fiber excellent in wear resistance, and is disposed upstream of the impeller. The sliding member of the bearing arranged downstream of the impeller is formed with a composite material of polyether ether ketone and carbon fiber with excellent load resistance. The upstream bearing, which is likely to have a long operating time, is less likely to be damaged by temperature rise and wear, and the downstream bearing, which may be subjected to an excessive load due to air lock operation, is less likely to be damaged by the load. Therefore, it is possible to operate without water injection.

そして、請求項2記載の立軸ポンプにあっては、耐摩耗性に優れたアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、羽根車より上流側に配設される軸受の摺動部材を形成し、耐荷重性に優れたポリエーテルエーテルケトンと炭素繊維の複合材料およびその上流側と下流側に密接または近接して配設した耐摩耗性に優れたアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンとで、羽根車より下流側に配設される軸受の摺動部材を形成したので、無注水での運転時間が長くなる確率が高い上流側の軸受が、温度上昇と摩耗による損傷を受けにくく、またエアロック運転により過大な負荷が加わる虞のある下流側の軸受が、負荷による損傷を受けにくく、しかも砂やシルトなどの摩耗成分が多く含まれる液体に対しても、上下両側に密接または近接して配設された耐摩耗性に優れた素材で摩耗成分が内部へ侵入するのが阻止されて耐荷重性に優れた素材の摩耗が抑制される。よって、摩耗成分の多く含まれる液体に対する無注水での運転が十分に可能である。   The vertical pump according to claim 2 is a ring-shaped square knitting packing made of an aramid fiber and a polytetrafluoroethylene-graphite compound fiber excellent in wear resistance, and is disposed upstream of the impeller. A composite material of polyether ether ketone and carbon fiber with excellent load resistance and aramid fiber with excellent wear resistance arranged close or close to its upstream and downstream sides And a ring-shaped square knitted packing made of polytetrafluoroethylene-graphite compound fiber formed a sliding member for the bearing disposed downstream from the impeller, so the probability that the operating time without water injection will be longer High-speed upstream bearing is less susceptible to damage due to temperature rise and wear, and the downstream shaft may be overloaded by airlock operation However, even with liquids that are not easily damaged by load and contain a large amount of wear components such as sand and silt, the wear components are made of a highly wear-resistant material that is placed close to or close to the top and bottom sides. Intrusion to the inside is prevented and wear of the material having excellent load resistance is suppressed. Therefore, it is possible to operate with no water for a liquid containing a lot of wear components.

また、請求項3記載の立軸ポンプにあっては、耐摩耗性に優れたアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、羽根車の上流側および下流側に配設されるそれぞれの軸受の摺動部材を形成したので、エアロック運転時間が短くなるように改良された立軸ポンプにあっては、羽根車より下流側の軸受も振動による過大な負荷が加わる虞が少ないので、下流側に耐摩耗性に優れた軸受を配設しても十分に運転が可能である。そして、軸受の摺動部材が1種類であることにより、保守管理のために必要な部品の種類が少なくできる。   The vertical shaft pump according to claim 3 is a ring-shaped square knitting packing made of an aramid fiber and a polytetrafluoroethylene-graphite compound fiber excellent in wear resistance, on the upstream side and the downstream side of the impeller. Since the sliding members of the respective bearings are formed, in the vertical shaft pump improved so as to shorten the airlock operation time, the bearing on the downstream side of the impeller is also subjected to an excessive load due to vibration. Since there is little fear, even if a bearing having excellent wear resistance is provided on the downstream side, sufficient operation is possible. And since the sliding member of a bearing is one type, the kind of components required for maintenance management can be decreased.

以下、本発明の第1実施例を図1ないし図3を参照して説明する。図1は、本発明の立軸ポンプの構造の第1実施例の縦断面図である。図2は、羽根車より上流側に配設される軸受の縦断面図である。図3は、羽根車より下流側に配設される軸受の縦断面図である。図1において、図6と同じまたは均等な部材には同じ符号を付けて重複する説明を省略する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a first embodiment of the structure of a vertical pump according to the present invention. FIG. 2 is a longitudinal sectional view of a bearing disposed on the upstream side of the impeller. FIG. 3 is a longitudinal sectional view of a bearing disposed downstream of the impeller. In FIG. 1, the same or equivalent members as in FIG.

図1に示す第1実施例の立軸ポンプ10において、図6に示す従来例と大きく相違するところは、軸保護管48と注水ポンプ49および排水管51が省かれたことと、ポンプ軸40が羽根車41より上流側まで延長されて軸受1で回転自在に支承されたことにある。よって、ポンプ軸40は、羽根車41の上流側に配設された軸受1と、羽根車41より下流側に配設された軸受2、3により回転自在に支承される。そして、図2に示すごとく、羽根車41の上流側の軸受1の軸受箱4内に配設されてポンプ軸40の軸スリーブ6に摺接する摺動部材5は、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで形成されて4列に嵌装される。しかも、軸受箱4の下部は蓋7で閉塞されていて軸受箱4内に水が溜まるように形成される。なお、第1実施例のごとく、蓋7が設けられることが望ましいが、必ずしも蓋7が設けられなくても良い。また、図3に示すごとく、羽根車41の下流側の軸受2、3に配設されてポンプ軸40の軸スリーブ9に摺接する摺動部材8は、熱可塑性樹脂であるポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成される。   In the vertical shaft pump 10 of the first embodiment shown in FIG. 1, the main difference from the conventional example shown in FIG. 6 is that the shaft protection pipe 48, the water injection pump 49 and the drain pipe 51 are omitted, and the pump shaft 40 is It extends to the upstream side from the impeller 41 and is rotatably supported by the bearing 1. Therefore, the pump shaft 40 is rotatably supported by the bearing 1 disposed on the upstream side of the impeller 41 and the bearings 2 and 3 disposed on the downstream side of the impeller 41. As shown in FIG. 2, the sliding member 5 disposed in the bearing box 4 of the bearing 1 on the upstream side of the impeller 41 and in sliding contact with the shaft sleeve 6 of the pump shaft 40 is composed of an aramid fiber and polytetrafluoroethylene. -It is formed of a ring-shaped square knitting packing made of graphite compound fibers and is fitted in four rows. In addition, the lower portion of the bearing box 4 is closed by the lid 7 so that water is accumulated in the bearing box 4. Although it is desirable to provide the lid 7 as in the first embodiment, the lid 7 is not necessarily provided. Further, as shown in FIG. 3, the sliding member 8 disposed on the bearings 2 and 3 on the downstream side of the impeller 41 and in sliding contact with the shaft sleeve 9 of the pump shaft 40 is made of polyether ether ketone which is a thermoplastic resin. It is formed of a composite material made of carbon fiber.

かかる構成の立軸ポンプ10で、出水時に、ポンプ軸40に連結された駆動装置(図示せず)が運転されて揚水運転が行われ、吸込水槽30の水位が高水位から次第に低下し、水位がある程度の水深となるレベルAに達すると、開かれた吸気弁53と吸気管42および吸気孔52を介して、空気が吸込管36内に吸い込まれるようになり、通常の揚水運転から気水混合運転に移行する。さらに、水位が吸気孔52が穿設されたレベルBまで低下すると、吸込管36内は空気で満たされて真空破壊がなされ、羽根車41より上流側の水が完全に落水し、気水混合運転から気中運転に移行する。そして、羽根車41の回転による落水規制作用により、ポンプケーシング35および揚水管34内の水が保持されるエアロック運転となる。さらに、ポンプケーシング35および揚水管34内の水が徐々に落水し、ポンプケーシング35および揚水管34内の水が完全に落水すると完全な気中運転となる。そして、吸込水槽30の水位が再び上昇して、羽根車41の入口レベルCまで達すると揚水が再開されて、揚水運転に再び移行する。   With the vertical shaft pump 10 configured as described above, a drive device (not shown) connected to the pump shaft 40 is operated at the time of water discharge to perform a pumping operation, the water level of the suction tank 30 gradually decreases from the high water level, and the water level is reduced. When the level A reaches a certain water depth, air is sucked into the suction pipe 36 through the opened intake valve 53, the intake pipe 42, and the intake hole 52. Transition to driving. Further, when the water level is lowered to the level B where the intake holes 52 are formed, the suction pipe 36 is filled with air and the vacuum is broken, and the water upstream of the impeller 41 is completely dropped, and the air-water mixing is performed. Shift from driving to air driving. Then, the water lock operation in which the water in the pump casing 35 and the pumping pipe 34 is held by the falling water regulating action by the rotation of the impeller 41 is performed. Furthermore, when the water in the pump casing 35 and the pumping pipe 34 is gradually dropped, and the water in the pump casing 35 and the pumping pipe 34 is completely dropped, a complete air operation is performed. Then, when the water level in the suction water tank 30 rises again and reaches the inlet level C of the impeller 41, the pumping is resumed and the pumping operation is resumed.

このような先行待機運転において、揚水運転がなされている間は、ポンプ流路内の流水によりいずれの軸受1、2、3も潤滑がなされる。そして、エアロック運転となる間は、軸受1は流水に潤滑されない無注水状態であるが、軸受2、3はポンプケーシング35および揚水管34内に保持される流水で潤滑される。そこで、羽根車41より上流側に配設される軸受1は、下流側に配設される軸受2、3よりも無注水状態での運転時間が長くなる可能性が高い。また、エアロック運転ではポンプ軸40に発生し易い振動により軸受2、3に過大な荷重負荷が加わる虞が高い。さらに、ポンプケーシング35および揚水管34内の水が完全に落水されて完全な気中運転となると、軸受1、2、3のいずれもが流水によって潤滑されない無注水状態となる。   In such a preliminary standby operation, while the pumping operation is being performed, any of the bearings 1, 2, and 3 is lubricated by running water in the pump flow path. During the airlock operation, the bearing 1 is in a non-water-injected state that is not lubricated by running water, but the bearings 2 and 3 are lubricated by running water held in the pump casing 35 and the pumping pipe 34. Therefore, the bearing 1 disposed on the upstream side of the impeller 41 is likely to have a longer operation time in the non-water-filled state than the bearings 2 and 3 disposed on the downstream side. Further, in the air lock operation, there is a high possibility that an excessive load is applied to the bearings 2 and 3 due to vibration that is likely to occur in the pump shaft 40. Furthermore, when the water in the pump casing 35 and the pumping pipe 34 is completely dropped and the air operation is complete, all of the bearings 1, 2, and 3 are in a non-poured state where they are not lubricated by running water.

発明者らは、かかる軸受1、2、3の使用状態に適した摺動部材5、8、8としての素材を見出すべく、多くの実験を行った。その結果、まず羽根車41より上流側に配設されて無注水状態での気中運転時が長くなる確率が高い軸受1の摺動部材5として、摩擦熱による軸受温度の異常上昇および異常摩耗に十分に耐え得る素材としてのアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンを見出した。一例として、メルケル社が市販する商品名「アロヘム2」を用いて実験を行った。実験は、気中運転を1時間行い、その後揚水運転を20分行い、さらにエアロック運転を8分行い、再度気中運転に移行するパターンで、連続して9時間の実験を行った。その結果、軸受温度の異常上昇や異常な摩耗損傷が見られず、十分な能力を有することが確認された。また、発明者らは、摺動部材5として、同じ素材のアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンであるメルケル社が市販する商品名「アロヘムS」を用いても実験を行った。「アロヘム2」と同様に十分な結果が得られた。そこで、羽根車42より上流側に配設される軸受1の摺動部材5として、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンを用いることができるとの結論を得た。また、羽根車42より下流側に配設されてエアロック運転による過大な荷重負荷が加わる虞が高い軸受2、3の摺動部材8、8として、耐荷重性に優れた素材としての熱可塑性樹脂であるポリエーテルエーテルケトンと炭素繊維からなる複合材料を見出した。一例として、グリーン,ツィード アンド カンパニージャパン株式会社が市販する商品名「WR−525」を用いて実験を行った。実験は、65mm径のポンプ軸40を1500/minで回転させるとともに軸受に面圧1MPaの負荷を与えて、清水中で連続50時間の運転実験を行った。その結果、摺動部材8の摺接面に何ら異常が発生せず、エアロック運転の振動に対して十分な能力を有することが確認された。   The inventors have conducted many experiments in order to find a material as the sliding members 5, 8, 8 suitable for the use state of the bearings 1, 2, 3. As a result, first, the sliding member 5 of the bearing 1 which is disposed upstream of the impeller 41 and has a high probability of being in the air-operated state without water injection has a high probability of abnormal increase in bearing temperature and abnormal wear due to frictional heat. The present inventors have found a ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber as a material that can sufficiently withstand. As an example, an experiment was conducted using a trade name “Alohem 2” marketed by Merkel. The experiment was conducted for 9 hours in a pattern in which the air operation was performed for 1 hour, the pumping operation was then performed for 20 minutes, the air lock operation was further performed for 8 minutes, and the operation was shifted to the air operation again. As a result, it was confirmed that there was no abnormal increase in bearing temperature and abnormal wear damage, and that the bearing had sufficient capacity. In addition, the inventors use, as the sliding member 5, a trade name “Alohem S” marketed by Merkel, which is a ring-shaped square knitting packing made of the same material aramid fiber and polytetrafluoroethylene-graphite compound fiber. Even an experiment was conducted. Similar to “Alohem 2”, sufficient results were obtained. Therefore, it is concluded that a ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber can be used as the sliding member 5 of the bearing 1 disposed on the upstream side of the impeller 42. Obtained. Further, as the sliding members 8 and 8 of the bearings 2 and 3 which are disposed on the downstream side of the impeller 42 and are highly likely to be subjected to an excessive load load due to the air lock operation, thermoplasticity as a material having excellent load resistance. The present inventors have found a composite material composed of a polyetheretherketone resin and carbon fiber. As an example, an experiment was conducted using a trade name “WR-525” marketed by Green, Tweed and Company Japan Co., Ltd. In the experiment, the pump shaft 40 having a diameter of 65 mm was rotated at 1500 / min and a load with a surface pressure of 1 MPa was applied to the bearing, and an operation experiment for 50 hours in clean water was performed. As a result, it was confirmed that no abnormality occurred on the sliding contact surface of the sliding member 8 and that the sliding member 8 had a sufficient capability against vibrations in the air lock operation.

以上の実験結果に基づき、軸受1の摺動部材5をアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで形成し、軸受2、3の摺動部材8、8は、熱可塑性樹脂であるポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成して、実機を製造し、性能の確認実験を行ったところ、発明者らの予想通り、先行待機運転に好適な無注水の立軸ポンプ10としての性能が確認できた。   Based on the above experimental results, the sliding member 5 of the bearing 1 is formed of a ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber, and the sliding members 8 and 8 of the bearings 2 and 3 are As a result of experiments conducted by the inventors, the actual machine was manufactured by using a composite material composed of polyether ether ketone, which is a thermoplastic resin, and carbon fiber. The performance as the vertical pump 10 for water injection could be confirmed.

次に、本発明の第2実施例を図4を参照して説明する。図4は、本発明の立軸ポンプにおいて、羽根車より下流側に配設される第2実施例の軸受の縦断面図である。図4において、軸受12は摺動部材11がポリエーテルエーテルケトンと炭素繊維からなる複合材料(一例として、商品名「WR−525」)で形成され、この軸受12の上流側と下流側に密接して軸受14、15が配設され、これらの軸受14、15の摺動部材13、13がアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキン(一例として商品名「アロヘムS」)で形成され、軸受12、14、15で一体的に軸受が構成される。かかる複合的な軸受の構造は、砂やシルト等の摩耗成分を多く含む液体に対する無注水運転の適するようにしたものである。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view of a bearing of a second embodiment disposed downstream from the impeller in the vertical shaft pump of the present invention. In FIG. 4, the bearing 12 is formed of a composite material (for example, trade name “WR-525”) in which the sliding member 11 is made of polyetheretherketone and carbon fiber, and closely contacts the upstream side and the downstream side of the bearing 12. The bearings 14 and 15 are arranged, and the sliding members 13 and 13 of the bearings 14 and 15 are ring-shaped square knitted packings (for example, trade name “,” as an example, made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. Alohem S "), and the bearings 12, 14, and 15 form an integral bearing. Such a composite bearing structure is suitable for non-poured water operation with respect to a liquid containing a large amount of wear components such as sand and silt.

発明者らが、第1実施例における羽根車41よりも下流側に配設される軸受2、3の摺動部材8、8をポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成したものに対して、摩耗成分として粒径0.2mm以下の珪砂を清水に投入して固形物濃度2000ppmに調整したスラリー液を用いて耐久実験を行ったところ、65時間の運転で摺動部材8、8は465μmほど摩耗してしまった。発明者らは、かかる摩耗は、ポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成した摺動部材8、8の摺接面に、摩耗成分が侵入したためと考えた。そこで、発明者らは、図4に示すごとく、摺動部材8、8の摺接面に摩耗成分が侵入しないようにすべく、ポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成した摺動部材11を有する軸受12の上流側と下流側に密接してポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで形成した摺動部材13、13を有する軸受14、15をそれぞれに配設する構造を案出した。軸受14、15の摺動部材13、13により、軸受12の摺動部材11の摺接面に摩耗成分が侵入するのを阻止させるようにしたものである。かかる複合的な構造の軸受に対して、上記実験と同様に耐久実験を行ったところ、500時間の運転でも、ポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成した摺動部材11は、僅かに230μmの摩耗量に過ぎなかった。   The inventors have formed the sliding members 8 and 8 of the bearings 2 and 3 disposed on the downstream side of the impeller 41 in the first embodiment with a composite material made of polyetheretherketone and carbon fiber. On the other hand, when a durability test was performed using a slurry liquid in which silica sand having a particle diameter of 0.2 mm or less as an abrasion component was added to fresh water and adjusted to a solid concentration of 2000 ppm, the sliding members 8 and 8 were operated for 65 hours. Was worn about 465 μm. The inventors considered that such wear was due to the wear component entering the sliding contact surfaces of the sliding members 8 and 8 formed of a composite material composed of polyetheretherketone and carbon fiber. Therefore, as shown in FIG. 4, the inventors have made a sliding formed of a composite material composed of polyetheretherketone and carbon fiber so that the wear component does not enter the sliding contact surfaces of the sliding members 8 and 8. Bearings 14 and 15 having sliding members 13 and 13 formed of ring-shaped square braid packings made of polytetrafluoroethylene-graphite compound fibers are in close contact with the upstream side and the downstream side of bearing 12 having member 11 respectively. The structure to arrange was devised. The sliding members 13 and 13 of the bearings 14 and 15 prevent the wear component from entering the sliding contact surface of the sliding member 11 of the bearing 12. When a durability experiment was conducted on the bearing having such a composite structure in the same manner as the above experiment, the sliding member 11 formed of a composite material composed of polyetheretherketone and carbon fiber was slightly found even after 500 hours of operation. The amount of wear was only 230 μm.

以上のスラリー液による耐久実験の結果に基づき、羽根車41より下流側に配設される軸受として、摺動部材11がポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成された軸受12と、この軸受12の上流側と下流側に密接して摺動部材13、13がアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで形成された軸受14、15で一体的に複合的な軸受が構成されることで、砂やシルト等の摩耗成分が多量に含まれる液体に対する無注水運転が可能である。なお、図4に示す構造にあっては、軸受12の上下両側に密接して軸受14、15が配設されているが、ポリエーテルエーテルケトンと炭素繊維からなる複合材料で形成された摺動部材11と、この摺動部材11の上流側と下流側に密接してまたは近接してアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで形成された摺動部材13,13が配設される構造であればよく、また摺動部材11、13、13を配設する軸受箱が一体であっても良い。なお、上下両側にそれぞれに配設した摺動部材13、13により、中央の摺動部材11の摺接面に摩耗成分が侵入するのを阻止するものであり、摺動部材13、13の摺接面を経ずに摺動部材13、13と摺動部材11との隙間から直接的に摺動部材11の摺接面に摩耗成分が侵入しないような構造とすることは勿論である。   Based on the results of the durability test with the slurry liquid described above, as a bearing disposed on the downstream side of the impeller 41, the sliding member 11 is a bearing 12 formed of a composite material composed of polyetheretherketone and carbon fiber, The sliding members 13, 13 are in close contact with the upstream side and the downstream side of the bearing 12 and are integrally formed by bearings 14, 15 formed of ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. By constructing a composite bearing, it is possible to perform a water-free operation with respect to a liquid containing a large amount of wear components such as sand and silt. In the structure shown in FIG. 4, the bearings 14 and 15 are disposed in close contact with the upper and lower sides of the bearing 12, but the sliding formed of a composite material composed of polyetheretherketone and carbon fiber. A member 11 and a sliding member 13 formed of a ring-shaped square knitting packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber in close proximity or close to the upstream side and downstream side of the sliding member 11. , 13 may be used, and the bearing box in which the sliding members 11, 13, 13 are disposed may be integrated. The sliding members 13, 13 provided on the upper and lower sides respectively prevent wear components from entering the sliding contact surface of the central sliding member 11. The sliding members 13, 13 Of course, the structure is such that the wear component does not enter the sliding contact surface of the sliding member 11 directly from the gap between the sliding members 13, 13 and the sliding member 11 without passing through the contact surface.

さらに、本発明の第3実施例を図5を参照して説明する。図5は、本発明の立軸ポンプにおいて、羽根車より下流側に配設される第3実施例の軸受の縦断面図である。図5において、軸受16は摺動部材17がアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキン(一例として商品名「アロヘム2」または「アロヘムS」)で形成されて構成される。そこで、羽根車41の上流側と下流側で、ポンプ軸40は摺動部材5、17がともにアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンからなる軸受1、16が用いられることとなる。これは、先行待機運転におけるエアロック運転時間が短くなるような構造的改良がなされた立軸ポンプにあっては、エアロック運転により発生するポンプ軸40が振動する時間が短縮され、それだけ軸受16に加わる荷重が軽減されることから、ポリエーテルエーテルケトンと炭素繊維からなる複合材料を下流側の軸受の摺動部材として用いることを省略して立軸ポンプを構成している。羽根車41に対して上流側と下流側の軸受1、16の摺動部材5、17が共通となり、摺動部材5、17の種類が1種類で足り、保守管理に必要な部品の種類を少なくすることができる。なお、エアロック運転時間が短くなるような構造的改良は、例えば羽根車41の直上の位置で、揚水管34またはポンプケーシング35に、ポンプ性能が影響を受けない範囲の透孔を穿設し、この透孔を通じて揚水管34およびポンプケーシング35内に保持された水が落水されるようにすれば良い。   Furthermore, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a longitudinal sectional view of a bearing according to a third embodiment disposed downstream of the impeller in the vertical shaft pump of the present invention. In FIG. 5, the bearing 16 has a sliding member 17 formed of a ring-shaped square knitted packing made of aramid fibers and polytetrafluoroethylene-graphite compound fibers (for example, trade names “Alohem 2” or “Alohem S”). Composed. Therefore, on the upstream side and the downstream side of the impeller 41, the pump shaft 40 has bearings 1, 16 made of ring-shaped square knitted packings in which the sliding members 5, 17 are both made of aramid fibers and polytetrafluoroethylene-graphite compound fibers. Will be used. This is because, in a vertical shaft pump that has been structurally improved so that the air lock operation time in the preceding standby operation is shortened, the time for the pump shaft 40 generated by the air lock operation to vibrate is shortened. Since the applied load is reduced, the vertical shaft pump is configured by omitting the use of a composite material made of polyetheretherketone and carbon fiber as a sliding member for the downstream bearing. The sliding members 5 and 17 of the upstream and downstream bearings 1 and 16 are common to the impeller 41, and only one type of the sliding members 5 and 17 is sufficient, and the types of parts required for maintenance management are sufficient. Can be reduced. The structural improvement that shortens the airlock operation time is, for example, by forming a through hole in the pumping pipe 34 or the pump casing 35 in a range that does not affect the pump performance at a position directly above the impeller 41. The water held in the pumping pipe 34 and the pump casing 35 may be dropped through this through hole.

本発明の立軸ポンプの構造の第1実施例の縦断面図である。It is a longitudinal cross-sectional view of 1st Example of the structure of the vertical shaft pump of this invention. 羽根車より上流側に配設される軸受の縦断面図である。It is a longitudinal cross-sectional view of the bearing arrange | positioned upstream from an impeller. 羽根車より下流側に配設される軸受の縦断面図である。It is a longitudinal cross-sectional view of the bearing arrange | positioned downstream from an impeller. 本発明の立軸ポンプにおいて、羽根車より下流側に配設される第2実施例の軸受の縦断面図である。In the vertical shaft pump of this invention, it is a longitudinal cross-sectional view of the bearing of 2nd Example arrange | positioned downstream from an impeller. 本発明の立軸ポンプにおいて、羽根車より下流側に配設される第3実施例の軸受の縦断面図である。In the vertical shaft pump of this invention, it is a longitudinal cross-sectional view of the bearing of 3rd Example arrange | positioned downstream from an impeller. 従来の先行待機型立軸ポンプの構造の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the structure of the prior | preceding stand-by type vertical shaft pump.

符号の説明Explanation of symbols

1、2、3、12、14、15、16、46、47 軸受
4 軸受箱
5、8、13、17 摺動部材
6、9 軸スリーブ
7 蓋
10、32 立軸ポンプ
30 吸込水槽
31 ポンプ設置床
33 吐出エルボ
34 揚水管
35 ポンプケーシング
36 吸込管
37 短管
38 吐出弁
39 吐出管
40 ポンプ軸
41 羽根車
42 吸気管
48 軸保護管
49 注水ポンプ
50 内ケーシング
51 排水管
52 吸気孔
53 吸気弁
1, 2, 3, 12, 14, 15, 16, 46, 47 Bearing 4 Bearing box 5, 8, 13, 17 Sliding member 6, 9 Shaft sleeve 7 Lid 10, 32 Vertical shaft pump 30 Suction water tank 31 Pump installation floor 33 discharge elbow 34 pumping pipe 35 pump casing 36 suction pipe 37 short pipe 38 discharge valve 39 discharge pipe 40 pump shaft 41 impeller 42 intake pipe 48 shaft protection pipe 49 water injection pump 50 inner casing 51 drain pipe 52 intake hole 53 intake valve

Claims (3)

ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側に配設される軸受の摺動部材を形成し、ポリエーテルエーテルケトンと炭素繊維の複合材料で、前記下流側に配設される軸受の摺動部材を形成して構成したことを特徴とする立軸ポンプ。 The pump shaft is supported by bearings on the upstream side and downstream side of the impeller in the pump flow path, and is a ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. A vertical shaft pump comprising: a sliding member for a bearing, and a bearing sliding member disposed downstream of the composite material of polyetheretherketone and carbon fiber. ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側に配設される軸受の摺動部材を形成し、ポリエーテルエーテルケトンと炭素繊維の複合材料およびその上流側と下流側に密接または近接して配設したアラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンとで、前記下流側に配設される軸受の摺動部材を形成して構成したことを特徴とする立軸ポンプ。 The pump shaft is supported by bearings on the upstream side and downstream side of the impeller in the pump flow path, and is a ring-shaped square knitted packing made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. A ring composed of a polyether ether ketone and carbon fiber composite material and an aramid fiber and a polytetrafluoroethylene-graphite compound fiber disposed in close proximity or close to the upstream side and downstream side thereof A vertical shaft pump characterized in that a sliding member of a bearing disposed on the downstream side is formed with a square knitted packing. ポンプ流路内の羽根車の上流側と下流側でポンプ軸を軸受により支承し、アラミド繊維とポリテトラフルオロエチレン−グラファイトコンパウンド繊維からなるリング状の角編みパッキンで、前記上流側および前記下流側に配設されるそれぞれの軸受の摺動部材を形成して構成したことを特徴とする立軸ポンプ。 The pump shaft is supported by bearings on the upstream side and downstream side of the impeller in the pump flow path, and the upstream side and the downstream side are ring-shaped square knitted packings made of aramid fiber and polytetrafluoroethylene-graphite compound fiber. A vertical shaft pump comprising a sliding member for each of the bearings disposed in the shaft.
JP2005046552A 2005-02-23 2005-02-23 Vertical shaft pump Active JP4704066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046552A JP4704066B2 (en) 2005-02-23 2005-02-23 Vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046552A JP4704066B2 (en) 2005-02-23 2005-02-23 Vertical shaft pump

Publications (2)

Publication Number Publication Date
JP2006233786A true JP2006233786A (en) 2006-09-07
JP4704066B2 JP4704066B2 (en) 2011-06-15

Family

ID=37041736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046552A Active JP4704066B2 (en) 2005-02-23 2005-02-23 Vertical shaft pump

Country Status (1)

Country Link
JP (1) JP4704066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171241A1 (en) * 2015-04-24 2016-10-27 株式会社荏原製作所 Sliding bearing device and pump provided with same
JP2019015194A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269621A (en) * 1985-09-24 1987-03-30 Anelva Corp Plasma processor
JPH05133379A (en) * 1991-11-07 1993-05-28 Hitachi Ltd Vertical pump
JPH0693283A (en) * 1992-07-30 1994-04-05 Oiles Ind Co Ltd Double-layered sliding member
JP2000130390A (en) * 1998-10-28 2000-05-12 Ebara Corp Vertical shaft pump device
JP2001165151A (en) * 1999-12-08 2001-06-19 Nippon Kagaku Yakin Co Ltd Bearing
JP2002174227A (en) * 2000-12-05 2002-06-21 Starlite Co Ltd Submerged bearing material
JP2002194380A (en) * 2000-12-27 2002-07-10 Daido Metal Co Ltd Multilayer sliding member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021533Y2 (en) * 1985-10-22 1990-01-16
BR9400435A (en) * 1994-02-04 1995-10-17 Manegro Comercio Ltda Composite tape for manufacturing braided gaskets and braided gasket forming process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269621A (en) * 1985-09-24 1987-03-30 Anelva Corp Plasma processor
JPH05133379A (en) * 1991-11-07 1993-05-28 Hitachi Ltd Vertical pump
JPH0693283A (en) * 1992-07-30 1994-04-05 Oiles Ind Co Ltd Double-layered sliding member
JP2000130390A (en) * 1998-10-28 2000-05-12 Ebara Corp Vertical shaft pump device
JP2001165151A (en) * 1999-12-08 2001-06-19 Nippon Kagaku Yakin Co Ltd Bearing
JP2002174227A (en) * 2000-12-05 2002-06-21 Starlite Co Ltd Submerged bearing material
JP2002194380A (en) * 2000-12-27 2002-07-10 Daido Metal Co Ltd Multilayer sliding member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171241A1 (en) * 2015-04-24 2016-10-27 株式会社荏原製作所 Sliding bearing device and pump provided with same
JP2016205545A (en) * 2015-04-24 2016-12-08 株式会社荏原製作所 Slide bearing device and pump including the same
JP2019015194A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump

Also Published As

Publication number Publication date
JP4704066B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP6603382B2 (en) Vertical shaft pump
JP4704066B2 (en) Vertical shaft pump
JP7051542B2 (en) Horizontal axis pump device
JP6411902B2 (en) Vertical shaft pump
JP6966388B2 (en) pump
JP6745876B2 (en) Vertical pump
JP5703102B2 (en) Submersible bearing device and horizontal shaft pump
CN201013651Y (en) Processing pump containing oil-contaminated water
JP2017166590A (en) Bearing assembly and rotating machine
JP7383557B2 (en) pump
WO2016009977A1 (en) Vertical shaft pump
JP5567418B2 (en) Underwater rotating equipment
JP6683553B2 (en) Pump equipment
JP7158256B2 (en) Vertical shaft pump
JP2022169190A (en) Submerged bearing structure, vertical shaft pump, pump system, and lubricating liquid supply method
JP6936061B2 (en) Vertical pump
JP7122287B2 (en) Pump system, how to clean the pump system
JP6936060B2 (en) Vertical pump
JP4646104B2 (en) Double suction type horizontal shaft pump with non-water-filled shaft seal device
JP6749393B2 (en) Vertical pump
JP2022169194A (en) Vertical shaft pump and prior standby operation method of the same
JP2021055656A (en) Intermediate casing and submerged pump provided with the same
JP2018066285A (en) Abscissa axis double suction volute pump
JP2024013003A (en) Pump facility and control device
JP2006348960A (en) Method for assembling shaft watertight device for hydraulic machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250