JP2006233047A - Zinc oxide solid solution for blue phosphor, method for producing the same, blue phosphor and method for producing the same - Google Patents

Zinc oxide solid solution for blue phosphor, method for producing the same, blue phosphor and method for producing the same Download PDF

Info

Publication number
JP2006233047A
JP2006233047A JP2005050456A JP2005050456A JP2006233047A JP 2006233047 A JP2006233047 A JP 2006233047A JP 2005050456 A JP2005050456 A JP 2005050456A JP 2005050456 A JP2005050456 A JP 2005050456A JP 2006233047 A JP2006233047 A JP 2006233047A
Authority
JP
Japan
Prior art keywords
solid solution
zinc oxide
blue phosphor
producing
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005050456A
Other languages
Japanese (ja)
Other versions
JP4670079B2 (en
Inventor
Koji Inoue
幸司 井上
Masashi Shoyama
昌志 庄山
Masaki Murayama
正樹 村山
Yasuyoshi Torii
保良 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Prefecture
Original Assignee
Mie Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Prefecture filed Critical Mie Prefecture
Priority to JP2005050456A priority Critical patent/JP4670079B2/en
Publication of JP2006233047A publication Critical patent/JP2006233047A/en
Application granted granted Critical
Publication of JP4670079B2 publication Critical patent/JP4670079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide solid solution for a blue phosphor comprising a large amount of magnesium forming a solid solution in zinc oxide, to provide a method for producing the solid solution, to provide a blue phosphor stable to ultraviolet light, an electric field and electron beams and having excellent blue light emission characteristics and to provide a method for producing the blue phosphor. <P>SOLUTION: The zinc oxide solid solution comprises Zn, Mg and O and is represented by the general formula: Zn<SB>1-x</SB>Mg<SB>x</SB>O (wherein, x satisfies 0.05≤x≤0.25). In the blue phosphor, the zinc oxide solid solution is deficient in oxygen and the blue phosphor has the light emission peak in 450-490 nm wavelength region. The method for producing the zinc oxide solid solution comprises a co-precipitation step of mixing a mixed aqueous solution containing the Zn and Mg in a dissolved state at (0.95/0.05) to (0.75/0.25) molar ratio (Zn/Mg) thereof with an organic acid component (e.g. ammonium oxalate) and co-precipitating an organic acid complex salt and a thermal decomposition step of thermally decomposing the resultant organic acid complex salt at 450-1,000°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、青色系蛍光体用酸化亜鉛系固溶体及びその製造方法並びに青色系蛍光体及びその製造方法に関する。更に詳しくは、酸化亜鉛にマグネシウムが多量に固溶した青色系蛍光体用酸化亜鉛系固溶体及びその製造方法、並びに紫外線、電界及び電子線に対して安定であり、優れた青色発光特性を有する青色系蛍光体及びその製造方法に関する。
本発明は、蛍光表示管や電界放射型ディスプレイなどの蛍光体を用いた表示装置分野等において幅広く利用できる。
The present invention relates to a zinc oxide solid solution for a blue phosphor and a method for producing the same, and a blue phosphor and a method for producing the same. More specifically, a zinc oxide solid solution for blue phosphors in which a large amount of magnesium is dissolved in zinc oxide, a method for producing the same, and a blue color which is stable against ultraviolet rays, electric fields and electron beams and has excellent blue light emission characteristics. The present invention relates to a phosphor and a method for producing the same.
The present invention can be widely used in the field of display devices using phosphors such as fluorescent display tubes and field emission displays.

従来、青色系の蛍光体としては、ZnS:Agなどの硫化物が使われていた。しかし、硫化物には毒性があり、更には真空中では高温で熱分解してしまうので、蛍光体としての安定性に欠ける難点があった。
そのため、色の3原色(赤、緑、青)の内、赤色系や緑色系の発光を示す酸化物系蛍光体がこれまでに多数見い出されてきたが、波長の短い青色系の発光を示す酸化物系蛍光体としては、スピネル型酸化物であるZnGaのみしか知られていない。
しかしながら、上記ZnGaにおいては、Gaが原料として極めて高価であり、発光輝度も低いという難点があるため、安価で、且つ発光効率が高く、更には環境に優しい酸化物系の青色系蛍光体の開発が望まれている。また、このような蛍光体としては更に、微細な粒子であり、粒径が揃っており、組成の均一性が高く、不純物の混入や機械的な歪みがないことが強く要望されている。
Conventionally, sulfides such as ZnS: Ag have been used as blue phosphors. However, sulfides are toxic and further thermally decomposed at high temperatures in a vacuum, so that there is a difficulty in lacking stability as a phosphor.
For this reason, among the three primary colors (red, green, and blue), many oxide phosphors exhibiting red or green light emission have been found so far, but they exhibit blue light emission with a short wavelength. As the oxide phosphor, only ZnGa 2 O 4 which is a spinel oxide is known.
However, the above ZnGa 2 O 4 has the disadvantages that Ga is extremely expensive as a raw material and has low light emission luminance, so it is inexpensive, has high light emission efficiency, and is environmentally friendly oxide-based blue fluorescent light. Body development is desired. Further, such a phosphor is strongly demanded to have fine particles, uniform particle size, high composition uniformity, and no contamination of impurities or mechanical distortion.

また、上記緑色の蛍光体としては、従来より、酸化物系蛍光体の1種である自己付活型ZnO蛍光体(ZnO:Zn)が、真空中或いは水素還元雰囲気での熱処理によって、ZnO結晶中に生成する酸素欠陥が発光中心となり、緑色系の発光を示し且つ導電性も示すことから、蛍光表示管用蛍光体等として使用されている。
ZnO:Znの緑色発光は自由キャリアと束縛キャリアの再結合によると云われている。その発光機構は長い間にわたって議論され、酸素欠陥が発光中心として働くことは確かであるが、詳細にはまだ確定していない。有力な説の1つとして、「ZnO格子中の酸素欠陥は伝導帯から比較的深い位置にドナー準位を形成し、ドナー準位の束縛キャリア(非局在電子)と価電子帯に存する束縛キャリア(正孔)との再結合によって緑色発光を起こす」ことが挙げられる。
As the green phosphor, a self-activated ZnO phosphor (ZnO: Zn), which is a kind of oxide-based phosphor, has been conventionally used in a vacuum or in a hydrogen reduction atmosphere by heat treatment in a ZnO crystal. The oxygen defect generated inside becomes the emission center, exhibits green emission, and also exhibits conductivity, and is therefore used as a phosphor for fluorescent display tubes.
It is said that the green light emission of ZnO: Zn is due to recombination of free carriers and bound carriers. The luminescence mechanism has been discussed for a long time, and it is certain that oxygen vacancies act as luminescence centers, but the details have not yet been determined. One of the most promising theories is: “Oxygen defects in the ZnO lattice form donor levels at a relatively deep position from the conduction band, and the bound carriers in the donor level (delocalized electrons) and the valence band. “Green light emission occurs due to recombination with carriers (holes)”.

蛍光を示す半導体などでは、粒子を極端に小さくすると、発光波長は赤、緑、青と短くなる現象が知られている。これはナノサイズ量子効果によって半導体のバンドギャップが大きくなり、伝導帯に励起された自由電子が価電子帯の正孔と再結合する際の発光エネルギーが大きくなるからである。いわゆる、エキシトン発光である。
上記ZnOはGaNやZnSと同様の結晶構造を持ち、酸化物としては共有結合性が極めて強く、ワイドバンドギャップ半導体としての特殊な例である。
ナノサイズ量子効果により半導体のバンドギャップを大きくするという点では、ZnOに対しても原理的に適用でき、ZnO:Znの青色発光への可能性は十分にあるが、数nm以下のZnOナノ粒子を作製することは一般には難しく、複雑なプロセスを要し、製造コストは非常に高くなる。また、ナノ粒子粉体は、反応活性が高くて嵩ばることから、蛍光体粉体として工業的には取り扱いづらくなることが予測される。
In semiconductors and the like that exhibit fluorescence, it is known that when particles are made extremely small, the emission wavelength is shortened to red, green, and blue. This is because the band gap of the semiconductor increases due to the nano-size quantum effect, and the emission energy when free electrons excited in the conduction band recombine with holes in the valence band increases. This is so-called exciton emission.
ZnO has a crystal structure similar to that of GaN and ZnS, has extremely strong covalent bonding as an oxide, and is a special example as a wide band gap semiconductor.
In terms of increasing the band gap of the semiconductor by the nano-size quantum effect, it can be applied in principle to ZnO, and there is a possibility of blue emission of ZnO: Zn, but ZnO nanoparticles of several nm or less In general, it is difficult to manufacture, requires a complicated process, and the manufacturing cost is very high. Moreover, since nanoparticle powder has a high reaction activity and is bulky, it is expected that it will be difficult to handle as a phosphor powder industrially.

以上のように、青色系の発光を示すZnO:Znの報告は未だされていない。本発明は上記実情に鑑みてなされたものであり、青色系蛍光体用酸化亜鉛系固溶体及びその製造方法、並びに紫外線、電界及び電子線に対して安定であり、優れた青色発光特性を有する青色系蛍光体及びその製造方法を提供することを目的とする。   As described above, ZnO: Zn showing blue light emission has not been reported yet. The present invention has been made in view of the above circumstances, and is a zinc oxide solid solution for blue phosphors and a method for producing the same, and is stable against ultraviolet rays, electric fields, and electron beams, and has excellent blue emission characteristics. An object of the present invention is to provide a phosphor and a method for producing the same.

本発明者は、MgOのバンドギャップが約8.0eVと、ZnOの3.37eVに比べてかなり大きいので、ZnOへのMgの固溶がZnOのバンドギャップを大きくすることが期待され、発光中心となる酸素欠陥のドナー準位が伝導帯からのエネルギーレベルが変化しなければ、価電子帯の励起正孔とドナー準位の束縛電子との再結合による発光ピークを青色側の短波長側にシフトさせることができることに注目した。
また、ZnOへのMgの固溶限界は、通常の固相反応では約2モル%(Zn0.98Mg0.02O)と極めて低く、固溶量が少ないことが報告されている。この理由は、ZnO(六方晶のウルツ鉱型)とMgO(立方晶の塩化ナトリウム型)の結晶系が異なる点が挙げられる。更には、Mgを固溶させるためには、通常の固相反応では1200℃以上の加熱処理が必要であるが、ZnOは高温下で蒸発しやすいため、均一な組成のZnO型固溶体が得られず、そのことが少ない固溶量としている。
本発明者は、特定の原料を用い、例えば、1000℃以下といったZnOが蒸発しない低い加熱温度で処理し、ZnOへのMgの固溶量を高くできることを見出した。そして、このようにMgを多量に固溶させることにより、酸化亜鉛の示す緑色発光を青色発光へ連続的にシフトさせることができ、特に450〜490nmの波長領域において、優れた青色発光特性を有する酸化亜鉛系固溶体が得られることを見出し、本発明を完成するに至った。
The present inventor expects that the band gap of MgO is about 8.0 eV, which is considerably larger than 3.37 eV of ZnO, so that the solid solution of Mg in ZnO is expected to increase the band gap of ZnO. If the energy level from the conduction band does not change, the emission peak due to recombination of the excited hole in the valence band and the bound electron in the donor level is shifted to the short wavelength side on the blue side. Noted that it can be shifted.
Further, it has been reported that the solid solution limit of Mg in ZnO is extremely low at about 2 mol% (Zn 0.98 Mg 0.02 O) in a normal solid phase reaction, and the amount of solid solution is small. This is because the crystal systems of ZnO (hexagonal wurtzite type) and MgO (cubic sodium chloride type) are different. Furthermore, in order to dissolve Mg in a solid solution, heat treatment at 1200 ° C. or higher is necessary in a normal solid phase reaction. However, since ZnO easily evaporates at a high temperature, a ZnO type solid solution having a uniform composition can be obtained. However, this is a small solid solution amount.
The inventor has found that the amount of Mg dissolved in ZnO can be increased by processing at a low heating temperature at which ZnO does not evaporate, such as 1000 ° C. or less, using a specific raw material. And, by dissolving Mg in a large amount in this way, the green light emission indicated by zinc oxide can be continuously shifted to blue light emission, and has excellent blue light emission characteristics particularly in the wavelength region of 450 to 490 nm. The inventors have found that a zinc oxide-based solid solution can be obtained, and have completed the present invention.

本発明は、以下に示す通りである。
1.ZnとMgとOとを含むことを特徴とする青色系蛍光体用酸化亜鉛系固溶体(以下、単に「酸化亜鉛系固溶体」ともいう。)。尚、本発明において、「青色系」とは、450〜490nmの波長領域における発光を意味する。
2.本酸化亜鉛系固溶体を、一般式Zn1−xMgOで表した場合に、xが0.05≦x≦0.25を満たす上記1記載の酸化亜鉛系固溶体。
3.本酸化亜鉛系固溶体を、一般式Zn1−xMgOで表した場合に、xが0.07≦x≦0.25を満たす上記1記載の酸化亜鉛系固溶体。
4.上記1乃至3のいずれかに記載の酸化亜鉛系固溶体が酸素欠陥していることを特徴とする青色系蛍光体。
5.450〜490nmの波長領域に発光ピークを有する上記4記載の青色系蛍光体。
6.450〜480nmの波長領域に発光ピークを有する上記4記載の青色系蛍光体。
7.Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、を備えることを特徴とする酸化亜鉛系固溶体の製造方法。
8.上記混合水溶液における上記Znと上記Mgのモル比(Zn/Mg)が、0.95/0.05〜0.75/0.25である上記7記載の酸化亜鉛系固溶体の製造方法。
9.上記混合水溶液における上記Znと上記Mgのモル比(Zn/Mg)が、0.93/0.07〜0.75/0.25である上記7記載の酸化亜鉛系固溶体の製造方法。
10.上記熱分解工程における熱分解温度が、450〜1000℃である上記7乃至9のいずれかに記載の酸化亜鉛系固溶体の製造方法。
11.Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、得られた熱分解物を還元雰囲気下において加熱処理する加熱処理工程と、を備えることを特徴とする青色系蛍光体の製造方法。
12.上記加熱処理工程における熱処理温度が、800〜1100℃である上記11記載の青色系蛍光体の製造方法。
The present invention is as follows.
1. A zinc oxide-based solid solution for blue phosphors containing Zn, Mg, and O (hereinafter also simply referred to as “zinc oxide-based solid solution”). In the present invention, “blue” means light emission in the wavelength region of 450 to 490 nm.
2. 2. The zinc oxide solid solution according to 1 above, wherein x satisfies 0.05 ≦ x ≦ 0.25 when the zinc oxide solid solution is represented by a general formula Zn 1-x Mg x O.
3. 2. The zinc oxide solid solution according to 1 above, wherein x satisfies 0.07 ≦ x ≦ 0.25 when the zinc oxide solid solution is represented by a general formula Zn 1-x Mg x O.
4). A blue phosphor according to any one of 1 to 3 above, wherein the zinc oxide solid solution is oxygen-deficient.
5. The blue phosphor according to the above 4, having an emission peak in a wavelength region of 450 to 490 nm.
6. The blue phosphor according to 4 above, having an emission peak in a wavelength region of 450 to 480 nm.
7). A coprecipitation step for coprecipitation of an organic acid double salt by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component; and a thermal decomposition step for thermally decomposing the obtained organic acid double salt The manufacturing method of the zinc oxide type solid solution characterized by the above-mentioned.
8). 8. The method for producing a zinc oxide solid solution according to 7 above, wherein a molar ratio (Zn / Mg) between the Zn and the Mg in the mixed aqueous solution is 0.95 / 0.05 to 0.75 / 0.25.
9. 8. The method for producing a zinc oxide solid solution according to 7 above, wherein a molar ratio (Zn / Mg) between the Zn and the Mg in the mixed aqueous solution is 0.93 / 0.07 to 0.75 / 0.25.
10. 10. The method for producing a zinc oxide solid solution according to any one of 7 to 9, wherein the thermal decomposition temperature in the thermal decomposition step is 450 to 1000 ° C.
11. A coprecipitation step for coprecipitation of an organic acid double salt by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component; and a thermal decomposition step for thermally decomposing the obtained organic acid double salt And a heat treatment step of heat-treating the obtained thermal decomposition product in a reducing atmosphere.
12 The method for producing a blue phosphor according to the above 11, wherein the heat treatment temperature in the heat treatment step is 800 to 1100 ° C.

本発明の青色系蛍光体用酸化亜鉛系固溶体は、青色系の発光を示す青色系蛍光体として好適であり、蛍光表示管や電界放射型ディスプレイの蛍光体分野に幅広く用いることができる。
また、上記酸化亜鉛系固溶体を、一般式Zn1−xMgOで表した場合に、xが特定の範囲である場合には、十分な青色系の色の発光を示す青色系蛍光体を得ることができる。
本発明の青色系蛍光体は、上記酸化亜鉛系固溶体が酸素欠陥していることにより、青色系の波長領域において発光ピークを示し、紫外線、電界及び電子線に対して安定であり、蛍光表示管や電界放射型ディスプレイの蛍光体として好適に用いることができる。
また、特定の波長領域に発光ピークを有する場合には、十分な青色系の発光を示す。
本発明の酸化亜鉛系固溶体の製造方法によれば、有機酸複塩という1つの化合物として沈殿させ、その乾燥物を熱分解しているため、合成温度が低く、粒子組成の均一性、高純度性、狭い粒子径分布の点でも極めて優れた粉体特性を有する固溶体が得られる。また、不純物の混入が避けられない機械的粉砕プロセスを用いる必要がなく、熱分解温度に応じて粒子径をコントロールすることもできる。
また、ZnとMgのモル比(Zn/Mg)が特定の範囲である場合には、十分な青色系の発光を示す青色系蛍光体を得ることができる。
更に、熱分解工程における熱分解温度が、450〜1000℃である場合には、酸化亜鉛系固溶体の単相を容易に得ることができる。
本発明の青色系蛍光体の製造方法によれば、青色系蛍光体を容易に得ることができる。更には、安価に青色系蛍光体を得ることができる。
また、加熱処理工程における熱処理温度が、800〜1100℃である場合には、青色系の色の発光に好適な酸素欠陥を効率良く形成することができる。
The zinc oxide solid solution for blue phosphors of the present invention is suitable as a blue phosphor exhibiting blue light emission and can be widely used in the phosphor field of fluorescent display tubes and field emission displays.
Further, when the zinc oxide solid solution is represented by the general formula Zn 1-x Mg x O, when x is in a specific range, a blue phosphor exhibiting sufficient blue light emission is obtained. Obtainable.
The blue phosphor of the present invention exhibits an emission peak in the blue wavelength region due to the oxygen defect of the zinc oxide solid solution, and is stable to ultraviolet rays, electric fields, and electron beams. And can be suitably used as a phosphor of a field emission display.
In addition, when a light emission peak is present in a specific wavelength region, sufficient blue light emission is exhibited.
According to the method for producing a zinc oxide solid solution of the present invention, since it is precipitated as one compound called an organic acid double salt and the dried product is thermally decomposed, the synthesis temperature is low, the particle composition is uniform, and the purity is high. In addition, a solid solution having extremely excellent powder characteristics can be obtained in terms of the properties and narrow particle size distribution. In addition, it is not necessary to use a mechanical pulverization process in which mixing of impurities is inevitable, and the particle size can be controlled according to the thermal decomposition temperature.
Further, when the molar ratio of Zn to Mg (Zn / Mg) is in a specific range, a blue phosphor exhibiting sufficient blue light emission can be obtained.
Furthermore, when the thermal decomposition temperature in a thermal decomposition process is 450-1000 degreeC, the single phase of a zinc oxide type solid solution can be obtained easily.
According to the method for producing a blue phosphor of the present invention, a blue phosphor can be easily obtained. Furthermore, a blue phosphor can be obtained at a low cost.
In addition, when the heat treatment temperature in the heat treatment step is 800 to 1100 ° C., oxygen defects suitable for light emission of a blue color can be efficiently formed.

(1)青色系蛍光体用酸化亜鉛系固溶体
本発明の青色系蛍光体用酸化亜鉛系固溶体は、ZnとMgとOとを含むことを特徴とする。
上記酸化亜鉛系固溶体は、一般式Zn1−xMgOで表した場合に、xが0.05≦x≦0.25を満たすことが好ましく、より好ましくは0.07≦x≦0.25、更に好ましくは0.08≦x≦0.25、特に好ましくは0.09≦x≦0.23、最も好ましくは0.1≦x≦0.2である。上記xが上記の範囲である場合には、450〜490nmの波長領域に発光ピークを有し、安定した発光特性を有する蛍光体とすることができ、特にこの固溶体が酸素欠陥している場合に、この性質が顕著である。
上記酸化亜鉛系固溶体の結晶系は限定されないが、好ましくはマグネシウムが酸化亜鉛に固溶したウルツ鉱型の酸化亜鉛系固溶体とすることができる。
(1) Zinc oxide solid solution for blue phosphor The zinc oxide solid solution for blue phosphor of the present invention contains Zn, Mg, and O.
When the zinc oxide solid solution is represented by the general formula Zn 1-x Mg x O, x preferably satisfies 0.05 ≦ x ≦ 0.25, more preferably 0.07 ≦ x ≦ 0. 25, more preferably 0.08 ≦ x ≦ 0.25, particularly preferably 0.09 ≦ x ≦ 0.23, and most preferably 0.1 ≦ x ≦ 0.2. When x is in the above range, a phosphor having a light emission peak in the wavelength region of 450 to 490 nm and having stable light emission characteristics can be obtained, particularly when this solid solution is oxygen deficient. This property is remarkable.
The crystal system of the zinc oxide solid solution is not limited, but a wurtzite zinc oxide solid solution in which magnesium is dissolved in zinc oxide is preferable.

(2)青色系蛍光体用酸化亜鉛系固溶体の製造方法
本発明の酸化亜鉛系固溶体の製造方法は、Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、を備えることを特徴とする。
(2) Method for Producing Zinc Oxide Solid Solution for Blue Phosphor The method for producing the zinc oxide solid solution of the present invention comprises mixing an aqueous solution containing Zn and Mg in a dissolved state and an organic acid component to mix the organic acid component. It comprises a coprecipitation step for coprecipitation of an acid double salt and a thermal decomposition step for thermal decomposition of the obtained organic acid double salt.

上記「共沈工程」では、Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより、Zn及びMgを含む有機酸複塩が共沈物として得られる。
上記「混合水溶液」は、上記Zn及びMgを溶解状態で含むものであり、例えば、亜鉛化合物の水溶液と、マグネシウム化合物の水溶液を混合することにより調製できる。また、亜鉛化合物及びマグネシウム化合物の混合物を水に溶解させること等により調製することもできる。
上記亜鉛化合物としては、例えば、塩化亜鉛、酢酸亜鉛、炭酸亜鉛、フッ化亜鉛、硝酸亜鉛、ピロリン酸亜鉛、シュウ酸亜鉛、リン酸亜鉛及び硫酸亜鉛等が挙げられる。
上記マグネシウム化合物としては、例えば、塩化マグネシウム、臭化マグネシウム、酢酸マグネシウム、炭酸マグネシウム、フッ化マグネシウム、シュウ酸マグネシウム及び硫酸マグネシウム等が挙げられる。
上記混合水溶液における上記Znと上記Mgのモル比(Zn/Mg)は、好ましくは0.95/0.05〜0.75/0.25、より好ましくは0.93/0.07〜0.75/0.25、更に好ましくは0.92/0.08〜0.75/0.25、特に好ましくは0.91/0.09〜0.77/0.23、最も好ましくは0.9/0.1〜0.8/0.2である。上記モル比が上記の範囲である場合には、得られる酸化亜鉛系固溶体を酸素欠陥させることにより、十分な青色系の発光を示す青色系蛍光体を得ることができるので好ましい。
In the “coprecipitation step”, an organic acid double salt containing Zn and Mg is obtained as a coprecipitate by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component.
The “mixed aqueous solution” contains Zn and Mg in a dissolved state, and can be prepared, for example, by mixing an aqueous solution of a zinc compound and an aqueous solution of a magnesium compound. Moreover, it can also prepare by dissolving the mixture of a zinc compound and a magnesium compound in water.
Examples of the zinc compound include zinc chloride, zinc acetate, zinc carbonate, zinc fluoride, zinc nitrate, zinc pyrophosphate, zinc oxalate, zinc phosphate, and zinc sulfate.
Examples of the magnesium compound include magnesium chloride, magnesium bromide, magnesium acetate, magnesium carbonate, magnesium fluoride, magnesium oxalate, and magnesium sulfate.
The molar ratio (Zn / Mg) between the Zn and the Mg in the mixed aqueous solution is preferably 0.95 / 0.05 to 0.75 / 0.25, more preferably 0.93 / 0.07 to 0.00. 75 / 0.25, more preferably 0.92 / 0.08 to 0.75 / 0.25, particularly preferably 0.91 / 0.09 to 0.77 / 0.23, most preferably 0.9 /0.1 to 0.8 / 0.2. When the molar ratio is within the above range, it is preferable to obtain a blue phosphor exhibiting sufficient blue emission by causing oxygen defects in the obtained zinc oxide solid solution.

上記「有機酸成分」としては、例えば、カルボン酸類、アミノ酸類及びスルホン酸類等が用いられる。これらのなかでも、カルボン酸類が好ましい。
上記カルボン酸類としては、例えば、シュウ酸、酒石酸、クエン酸、乳酸、蟻酸及び酢酸などのカルボン酸、並びに、これらのアンモニウム塩などのカルボン酸塩等が挙げられる。これらのなかでも、シュウ酸、シュウ酸アンモニウム等が好ましい。
上記有機酸成分の配合量は、上記混合水溶液におけるZn及びMgの合計1モルに対して、通常1〜1.3モル、特に1〜1.2モルである。上記有機酸成分の配合量が上記の範囲である場合、有機酸複塩を効率良く得ることができる。尚、これらの有機酸成分はそのまま用いてもよいし、水溶液として用いてもよい。
また、上記共沈工程においては、有機酸複塩を安定して共沈させる等の目的で、アンモニア等のpH調整剤等を用いることができる。
Examples of the “organic acid component” include carboxylic acids, amino acids, sulfonic acids, and the like. Of these, carboxylic acids are preferred.
Examples of the carboxylic acids include carboxylic acids such as oxalic acid, tartaric acid, citric acid, lactic acid, formic acid and acetic acid, and carboxylates such as ammonium salts thereof. Of these, oxalic acid and ammonium oxalate are preferred.
The compounding amount of the organic acid component is usually 1 to 1.3 mol, particularly 1 to 1.2 mol, based on 1 mol of Zn and Mg in the mixed aqueous solution. When the compounding amount of the organic acid component is within the above range, an organic acid double salt can be obtained efficiently. These organic acid components may be used as they are or as an aqueous solution.
In the coprecipitation step, a pH adjusting agent such as ammonia can be used for the purpose of stably coprecipitating the organic acid double salt.

また、上記共沈工程により得られた有機酸複塩(共沈物)は、通常、濾別され、その後、乾燥される。
上記乾燥条件は特に限定されず、例えば、乾燥温度20〜150℃(特に50〜120℃)、乾燥時間1〜48時間(特に1〜24時間)の条件で乾燥される。
Moreover, the organic acid double salt (coprecipitate) obtained by the coprecipitation step is usually filtered and then dried.
The said drying conditions are not specifically limited, For example, it dries on the conditions whose drying temperature is 20-150 degreeC (especially 50-120 degreeC), and drying time 1-48 hours (especially 1-24 hours).

上記「熱分解工程」では、上記有機酸複塩を熱分解することにより、酸化亜鉛系固溶体が得られる。
上記熱分解工程における熱分解温度は、好ましくは450〜1000℃、より好ましくは500〜1000℃、更に好ましくは550〜1000℃、特に好ましくは600〜1000℃である。上記熱分解温度が上記の範囲である場合には、酸化亜鉛系固溶体の単相を容易に得ることができるので好ましい。また、上記の範囲においては、熱分解温度が高くなるほど、得られる固溶体の結晶化度が高くなる傾向にある。
上記熱分解工程における熱分解時間は、通常0.5〜5時間、特に1〜3時間とすることができる。
また、上記熱分解工程における熱分解雰囲気は特に限定されず、例えば、大気雰囲気下等である。
In the “thermal decomposition step”, a zinc oxide solid solution is obtained by thermally decomposing the organic acid double salt.
The thermal decomposition temperature in the thermal decomposition step is preferably 450 to 1000 ° C, more preferably 500 to 1000 ° C, still more preferably 550 to 1000 ° C, and particularly preferably 600 to 1000 ° C. When the thermal decomposition temperature is within the above range, it is preferable because a single phase of the zinc oxide solid solution can be easily obtained. In the above range, the higher the thermal decomposition temperature, the higher the crystallinity of the resulting solid solution.
The pyrolysis time in the pyrolysis step can be usually 0.5 to 5 hours, particularly 1 to 3 hours.
Moreover, the pyrolysis atmosphere in the said pyrolysis process is not specifically limited, For example, it is an atmospheric condition etc.

本発明の酸化亜鉛系固溶体の製造方法によれば、共沈物である有機酸複塩におけるZnとMgは、その組成比に応じて規則的に配置した構造となるため、それを熱分解して得られる固溶体は、粒子径分布が狭く、組成の均一性に優れた微細な粒子とすることができる。   According to the method for producing a zinc oxide solid solution of the present invention, Zn and Mg in the organic acid double salt that is a coprecipitate has a structure that is regularly arranged according to its composition ratio. The obtained solid solution can be made into fine particles having a narrow particle size distribution and excellent composition uniformity.

(3)青色系蛍光体
本発明の青色系蛍光体は、前記青色系蛍光体用酸化亜鉛系固溶体が酸素欠陥していることを特徴とする。
上記青色系蛍光体は、発光ピークを450〜490nmの波長領域に有することが好ましく、より好ましくは450〜480nm、更に好ましくは450〜475nm、特に好ましくは450〜470nmの波長領域に有することが好ましい。上記発光ピークを上記の範囲に有する場合には、十分な青色系の発光を示すので好ましい。尚、この発光ピークは、下記実施例において述べる測定方法により測定できる。
(3) Blue phosphor The blue phosphor of the present invention is characterized in that the zinc oxide solid solution for blue phosphor is oxygen-deficient.
The blue phosphor preferably has an emission peak in a wavelength region of 450 to 490 nm, more preferably 450 to 480 nm, still more preferably 450 to 475 nm, and particularly preferably 450 to 470 nm. . In the case where the emission peak is in the above range, it is preferable because sufficient blue light emission is exhibited. The emission peak can be measured by the measurement method described in the following examples.

上記「酸素欠陥」の形成方法は特に限定されない。また、酸素欠陥量も特に限定されず、各種の処理条件により適宜調整することができる。この酸素欠陥量が多くなるほど、発光輝度を大きくすることができる。   The formation method of the “oxygen defect” is not particularly limited. Further, the amount of oxygen defects is not particularly limited, and can be appropriately adjusted according to various processing conditions. The light emission luminance can be increased as the amount of oxygen defects increases.

また、本発明の青色系蛍光体は、酸化亜鉛系固溶体の結晶中に形成された酸素欠陥を発光中心とし、例えば、低速電子線により励起された場合に、十分な青色系の発光を示すため、電界放射型ディスプレイ、蛍光表示管、ブラウン管、液晶ディスプレイ、プラズマディスプレイ、発光ダイオード及び電界発光デバイス等に用いることができる。特に、本青色系蛍光体は、電界放射型ディスプレイ又は蛍光表示管用の蛍光体とすることができる。   Further, the blue phosphor of the present invention has a sufficient emission of blue light when excited by a low-energy electron beam, for example, with an oxygen defect formed in the crystal of the zinc oxide solid solution as a light emission center. , Field emission displays, fluorescent display tubes, cathode ray tubes, liquid crystal displays, plasma displays, light emitting diodes, electroluminescent devices and the like. In particular, the blue phosphor can be a field emission display or a phosphor for a fluorescent display tube.

(4)青色系蛍光体の製造方法
本発明の青色系蛍光体の製造方法は、Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、得られた熱分解物を還元雰囲気下において加熱処理する加熱処理工程と、を備えることを特徴とする。
尚、上記「共沈工程」及び上記「熱分解工程」においては、前記の各説明をそのまま適用することができる。
(4) Method for Producing Blue Phosphor The method for producing the blue phosphor of the present invention comprises mixing an organic acid double salt by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component. It comprises a coprecipitation step for precipitating, a thermal decomposition step for thermally decomposing the obtained organic acid double salt, and a heat treatment step for heat-treating the obtained thermal decomposition product in a reducing atmosphere.
In the “coprecipitation step” and the “thermal decomposition step”, the above descriptions can be applied as they are.

上記「加熱処理工程」では、得られた熱分解物を還元雰囲気下において加熱処理することにより、青色系蛍光体が得られる。即ち、この加熱処理により、有機酸複塩の熱分解物(酸化亜鉛系固溶体)に酸素欠陥が形成された青色系蛍光体が得られる。
上記加熱処理工程における加熱処理温度は、好ましくは700〜1200℃、より好ましくは750〜1200℃、更に好ましくは800〜1100℃である。上記加熱処理温度が上記の範囲である場合には、酸化亜鉛系固溶体の結晶中に酸素欠陥を十分に形成することができる。
上記加熱処理工程における加熱処理時間は、通常0.5〜10時間、特に3〜10時間、更には5〜10時間とすることができる。
また、上記加熱処理工程は、還元雰囲気下において行われる。例えば、水素雰囲気下、低酸素圧下等において行われる。具体的には、水素ガス100%の水素雰囲気下、窒素ガス又はアルゴンなどの希ガス等の不活性ガスに、水素ガスを1〜99%(特に1〜50%、更には3〜10%)含有させた水素雰囲気下等において行うことができる。
In the “heat treatment step”, a blue phosphor is obtained by heat-treating the obtained thermal decomposition product in a reducing atmosphere. That is, by this heat treatment, a blue phosphor in which oxygen defects are formed in the thermal decomposition product (zinc oxide solid solution) of the organic acid double salt is obtained.
The heat treatment temperature in the heat treatment step is preferably 700 to 1200 ° C, more preferably 750 to 1200 ° C, and still more preferably 800 to 1100 ° C. When the heat treatment temperature is in the above range, oxygen defects can be sufficiently formed in the crystals of the zinc oxide solid solution.
The heat treatment time in the heat treatment step is usually 0.5 to 10 hours, particularly 3 to 10 hours, and further 5 to 10 hours.
The heat treatment process is performed in a reducing atmosphere. For example, it is performed in a hydrogen atmosphere or under a low oxygen pressure. Specifically, hydrogen gas is added to 1 to 99% (especially 1 to 50%, more preferably 3 to 10%) of inert gas such as nitrogen gas or rare gas such as argon in a hydrogen atmosphere of 100% hydrogen gas. It can be carried out under a hydrogen atmosphere contained.

以下、実施例により本発明を具体的に説明する。
[1]酸化亜鉛系固溶体の作製及び結晶相の同定
(1)酸化亜鉛系固溶体の作製
一般式Zn1−xMgOにおいて、x=0.1の酸化亜鉛系固溶体となるように、塩化亜鉛(ZnCl)0.09モル及び塩化マグネシウム(MgCl)0.01モルを含む混合水溶液100mlと、シュウ酸アンモニウム[(NH(COO)]0.115モルを含む水溶液300mlと、を速やかに配合して、中和沈殿により有機酸複塩を共沈させ、更にpH=7になるように若干量のアンモニア水を加えた後、マグネットスターラーを用いて十分に撹拌し、中和反応を完全に進め、共沈物である有機酸複塩を得た。次いで、得られた共沈物を濾別し、乾燥(温度;110℃)した後、大気中にて、500℃、600℃、700℃の各温度×2時間の条件で熱分解工程を行い、平均粒径9μmの粒状の酸化亜鉛系固溶体を作製した。
Hereinafter, the present invention will be described specifically by way of examples.
[1] Preparation of Zinc Oxide Solid Solution and Identification of Crystal Phase (1) Preparation of Zinc Oxide Solid Solution In general formula Zn 1-x Mg x O, chlorination is performed so that x = 0.1 zinc oxide solid solution. 100 ml of a mixed aqueous solution containing 0.09 mol of zinc (ZnCl 2 ) and 0.01 mol of magnesium chloride (MgCl 2 ), 300 ml of an aqueous solution containing 0.115 mol of ammonium oxalate [(NH 4 ) 2 (COO) 2 ], The organic acid double salt was co-precipitated by neutralization precipitation, and after adding a small amount of ammonia water so that the pH was 7, the mixture was sufficiently stirred using a magnetic stirrer. The sum reaction was completely advanced to obtain an organic acid double salt as a coprecipitate. Next, the obtained coprecipitate is filtered off and dried (temperature: 110 ° C.), and then subjected to a pyrolysis step in the atmosphere at temperatures of 500 ° C., 600 ° C., and 700 ° C. for 2 hours. A granular zinc oxide solid solution having an average particle diameter of 9 μm was prepared.

(2)結晶相の同定
上記(1)で得られた酸化亜鉛系固溶体について、粉末X線回折測定(X線回折装置;フィリップス社製、型番「X’Pert−MPD」)を行った。その結果を図1に示す。
図1によれば、ZnO型固溶体に相当するX線回折線以外の結晶相は確認されず、熱分解処理温度の異なる3種の酸化亜鉛系固溶体は、全てウルツ鉱型構造を持つZnO型固溶体であることが確認できた。
また、結晶化度は高くないが、500℃という低温度の熱分解処理においてもZnO型固溶体の単相を生成できることが分かった。更には、この熱分解温度が高いほど、結晶化度が大きくなることが分かった。
(2) Identification of Crystal Phase The zinc oxide solid solution obtained in (1) above was subjected to powder X-ray diffraction measurement (X-ray diffractometer; manufactured by Philips, model number “X′Pert-MPD”). The result is shown in FIG.
According to FIG. 1, no crystal phase other than the X-ray diffraction line corresponding to the ZnO type solid solution is confirmed, and the three types of zinc oxide solid solutions having different pyrolysis temperatures are all ZnO type solid solutions having a wurtzite type structure. It was confirmed that.
Further, it was found that a single phase of a ZnO type solid solution can be generated even in a thermal decomposition treatment at a low temperature of 500 ° C. although the degree of crystallinity is not high. Furthermore, it has been found that the higher the thermal decomposition temperature, the higher the crystallinity.

[2]ZnOに対するMgの固溶の確認
(1)酸化亜鉛系固溶体の作製
上記[1]と同様の方法により、一般式Zn1−xMgOにおいて、x=0、0.03、0.05、0.08、0.1、0.15となるように、6種の酸化亜鉛系固溶体を作製した。尚、熱分解工程は、900℃×2時間の条件に変更して行った。
[2] Confirmation of solid solution of Mg in ZnO (1) Preparation of zinc oxide-based solid solution In the general formula Zn 1-x Mg x O, x = 0, 0.03, 0 by the same method as in [1] above. Six types of zinc oxide solid solutions were prepared so as to be 0.05, 0.08, 0.1, and 0.15. In addition, the thermal decomposition process was changed and performed on the conditions of 900 degreeC x 2 hours.

(2)粉末X線回折測定及びその結果
上記(1)で得られた各酸化亜鉛系固溶体について、粉末X線回折測定(X線回折装置;フィリップス社製、型番「X’Pert−MPD」)を行った。その結果、全てウルツ鉱型構造を持つZnO型固溶体であることが確認できた。その後、格子定数を求め、その結果を図2(a軸)及び図3(c軸)に示した。
図2によれば、a軸においては、ZnOに対するMgの固溶量の変化による格子定数の変化は見られず、c軸においては、Mgの固溶量が増大すると共に、格子定数の減少が確認できたことから、この系は連続的な固溶体となっていることが分かった。
(2) Powder X-ray diffraction measurement and its results About each zinc oxide solid solution obtained in the above (1), powder X-ray diffraction measurement (X-ray diffractometer; manufactured by Philips, model number “X′Pert-MPD”) Went. As a result, it was confirmed that all were ZnO type solid solutions having a wurtzite type structure. Thereafter, the lattice constant was determined, and the results are shown in FIG. 2 (a axis) and FIG. 3 (c axis).
According to FIG. 2, there is no change in the lattice constant due to the change in the solid solution amount of Mg with respect to ZnO on the a-axis, and there is an increase in the solid solution amount of Mg and a decrease in the lattice constant on the c-axis. From the confirmation, it was found that this system was a continuous solid solution.

[3]Mgの固溶によるフォトルミネッセンス特性の変化
(1)青色系蛍光体の作製
上記[1]と同様の方法により、一般式Zn1−xMgOにおいて、x=0、0.08となるように、2種の酸化亜鉛系固溶体を作製した。尚、熱分解工程は、800℃×2時間の条件に変更して行った。
その後、各酸化亜鉛系固溶体に対して、窒素ガスに水素ガスを7%含有させた水素雰囲気下において、900℃×5時間の条件で加熱処理工程を行い、酸化亜鉛系固溶体を酸素欠陥させ、青色系蛍光体を得た。
[3] Change in photoluminescence characteristics due to solid solution of Mg (1) Production of blue phosphor In the general formula Zn 1-x Mg x O, x = 0, 0.08 by the same method as in [1] above. Thus, two types of zinc oxide solid solutions were prepared. In addition, the thermal decomposition process was performed by changing to the conditions of 800 degreeC x 2 hours.
Thereafter, for each zinc oxide solid solution, a heat treatment step is performed under conditions of 900 ° C. × 5 hours in a hydrogen atmosphere containing 7% hydrogen gas in nitrogen gas, and the zinc oxide solid solution is oxygen-deficient, A blue phosphor was obtained.

(2)PLスペクトルの測定
上記(1)で得られた各青色系蛍光体のMg固溶量の変化によるPLスペクトルへの影響を次のようにして調べた。
蛍光分光光度計(株式会社日立製作所製、型番「F−4500」)を用い、上記各蛍光体(Mg固溶量;0モル%、8モル%)を波長320nmで励起した際の、PLスペクトルを測定した。その結果を図4に示す。
(2) Measurement of PL spectrum The influence on the PL spectrum due to the change in the amount of Mg solid solution of each blue phosphor obtained in the above (1) was examined as follows.
Using a fluorescence spectrophotometer (manufactured by Hitachi, Ltd., model number “F-4500”), the PL spectrum when each of the phosphors (Mg solid solution amount: 0 mol%, 8 mol%) was excited at a wavelength of 320 nm. Was measured. The result is shown in FIG.

(3)測定結果
図4によれば、ZnOへのMgの固溶量が0モル%である場合の発光ピークの波長は、497.4nmであったのに対し、Mgの固溶量が8モル%である場合の発光ピークの波長は、478.2nmにシフトしており、Mgを固溶させることで、発光ピークが短波長側にシフトされることが分かった。
(3) Measurement Results According to FIG. 4, the wavelength of the emission peak when the solid solution amount of Mg in ZnO is 0 mol% was 497.4 nm, whereas the solid solution amount of Mg was 8 The wavelength of the emission peak in the case of mol% was shifted to 478.2 nm, and it was found that the emission peak was shifted to the short wavelength side by dissolving Mg.

[4]Mg固溶量と発光ピーク波長との関係
(1)青色系蛍光体の作製
上記[1]と同様の方法により、一般式Zn1−xMgOにおいて、x=0、0.03、0.05、0.08、0.1、0.15となるように、6種の酸化亜鉛系固溶体を作製した。尚、熱分解工程は、800℃×2時間の条件に変更して行った。
その後、各酸化亜鉛系固溶体に対して、窒素ガスに水素ガスを7%含有させた水素雰囲気下において、950℃×5時間の条件で加熱処理工程を行い、酸化亜鉛系固溶体を酸素欠陥させ、青色系蛍光体を得た。
[4] Relationship between Mg solid solution amount and emission peak wavelength (1) Production of blue phosphor In the general formula Zn 1-x Mg x O, x = 0, 0. Six types of zinc oxide solid solutions were prepared so as to be 03, 0.05, 0.08, 0.1, and 0.15. In addition, the thermal decomposition process was performed by changing to the conditions of 800 degreeC x 2 hours.
Thereafter, a heat treatment step is performed on each zinc oxide solid solution under a condition of 950 ° C. × 5 hours in a hydrogen atmosphere containing 7% hydrogen gas in nitrogen gas, and the zinc oxide solid solution is oxygen-deficient, A blue phosphor was obtained.

(2)発光ピーク波長の測定
上記(1)で得られた各青色系蛍光体のMg固溶量の変化による発光ピーク波長への影響を次のようにして調べた。
蛍光分光光度計(株式会社日立製作所製、型番「F−4500」)を用い、上記各蛍光体(Mg固溶量;0モル%、3モル%、5モル%、8モル%、10モル%、15モル%)を波長320nmで励起した際の、PLスペクトルに観測される発光ピーク波長を測定した。その結果を表1及び図5に示す。
(2) Measurement of emission peak wavelength The influence on the emission peak wavelength by the change in the amount of Mg solid solution of each blue phosphor obtained in the above (1) was examined as follows.
Each phosphor (Mg solid solution amount: 0 mol%, 3 mol%, 5 mol%, 8 mol%, 10 mol%) using a fluorescence spectrophotometer (manufactured by Hitachi, Ltd., model number "F-4500") , 15 mol%) was excited at a wavelength of 320 nm, and the emission peak wavelength observed in the PL spectrum was measured. The results are shown in Table 1 and FIG.

Figure 2006233047
Figure 2006233047

(3)測定結果
表1及び図5によれば、ZnOへのMgの固溶量が増大するにつれて、発光ピーク波長が緑色を示す波長(520nm)側から青色を示す波長(460nm)側へとシフトしていることが分かる。特に15モル%のMgが固溶している場合には、発光ピークが約470nmとなっていた。
また、これらのデータを基に、20モル%のMgを固溶させた場合の推定値を求めてみたところ、発光ピークの波長は460.8nm(推定値)になることが分かった。参考までに、この結果を表1及び図5に併記した。
(3) Measurement result According to Table 1 and FIG. 5, as the solid solution amount of Mg in ZnO increases, the emission peak wavelength shifts from the wavelength indicating green (520 nm) to the wavelength indicating blue (460 nm). You can see that there is a shift. In particular, when 15 mol% of Mg was dissolved, the emission peak was about 470 nm.
Moreover, when the estimated value when 20 mol% of Mg was dissolved based on these data was obtained, it was found that the wavelength of the emission peak was 460.8 nm (estimated value). For reference, the results are shown in Table 1 and FIG.

[5]実施例の効果
以上のことから、本発明の製造方法により得られる酸化亜鉛系固溶体は、安定したウルツ鉱型の固溶体であり、Mgを固溶させたZnO型固溶体を酸素欠陥させた際には、優れた発光特性を有する青色系蛍光体が得られることが分かった。
尚、本発明においては、上記の具体的な実施例に示すものに限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。
[5] Effects of Examples As described above, the zinc oxide solid solution obtained by the production method of the present invention is a stable wurtzite type solid solution, and a ZnO type solid solution in which Mg is dissolved is oxygen-deficient. In some cases, it has been found that a blue phosphor having excellent light emission characteristics can be obtained.
In addition, in this invention, it can restrict to what is shown to said specific Example, It can be set as the Example variously changed within the range of this invention according to the objective and the use.

各熱分解温度での酸化亜鉛系固溶体のX線回折測定のチャートによる説明図である。It is explanatory drawing by the chart of the X-ray-diffraction measurement of the zinc oxide type solid solution in each thermal decomposition temperature. 酸化亜鉛系固溶体の格子定数(a軸)の変化を示すグラフである。It is a graph which shows the change of the lattice constant (a axis | shaft) of a zinc oxide type solid solution. 酸化亜鉛系固溶体の格子定数(c軸)の変化を示すグラフである。It is a graph which shows the change of the lattice constant (c-axis) of a zinc oxide type solid solution. Mgの固溶によるPLスペクトルの変化を示す説明図である。It is explanatory drawing which shows the change of PL spectrum by the solid solution of Mg. Mg固溶量の変化による発光ピーク波長の変化を示すグラフである。It is a graph which shows the change of the light emission peak wavelength by the change of Mg solid solution amount.

Claims (12)

ZnとMgとOとを含むことを特徴とする青色系蛍光体用酸化亜鉛系固溶体。   A zinc oxide solid solution for a blue phosphor, which contains Zn, Mg and O. 本青色系蛍光体用酸化亜鉛系固溶体を、一般式Zn1−xMgOで表した場合に、xが0.05≦x≦0.25を満たす請求項1に記載の青色系蛍光体用酸化亜鉛系固溶体。 2. The blue phosphor according to claim 1, wherein x satisfies 0.05 ≦ x ≦ 0.25 when the zinc oxide solid solution for the blue phosphor is represented by a general formula Zn 1-x Mg x O. 3. Zinc oxide solid solution. 本青色系蛍光体用酸化亜鉛系固溶体を、一般式Zn1−xMgOで表した場合に、xが0.07≦x≦0.25を満たす請求項1に記載の青色系蛍光体用酸化亜鉛系固溶体。 2. The blue phosphor according to claim 1, wherein x satisfies 0.07 ≦ x ≦ 0.25 when the zinc oxide solid solution for the blue phosphor is represented by a general formula Zn 1-x Mg x O. 3. Zinc oxide solid solution. 請求項1乃至3のいずれかに記載の青色系蛍光体用酸化亜鉛系固溶体が酸素欠陥していることを特徴とする青色系蛍光体。   A blue phosphor according to any one of claims 1 to 3, wherein the zinc oxide solid solution for a blue phosphor is oxygen-deficient. 450〜490nmの波長領域に発光ピークを有する請求項4に記載の青色系蛍光体。   The blue phosphor according to claim 4, which has an emission peak in a wavelength region of 450 to 490 nm. 450〜480nmの波長領域に発光ピークを有する請求項4に記載の青色系蛍光体。   The blue phosphor according to claim 4, which has an emission peak in a wavelength region of 450 to 480 nm. Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、を備えることを特徴とする青色系蛍光体用酸化亜鉛系固溶体の製造方法。   A coprecipitation step for coprecipitation of an organic acid double salt by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component; and a thermal decomposition step for thermally decomposing the obtained organic acid double salt A method for producing a zinc oxide-based solid solution for a blue-based phosphor. 上記混合水溶液における上記Znと上記Mgのモル比(Zn/Mg)が、0.95/0.05〜0.75/0.25である請求項7に記載の青色系蛍光体用酸化亜鉛系固溶体の製造方法。   The zinc oxide system for blue phosphor according to claim 7, wherein a molar ratio (Zn / Mg) of Zn to Mg in the mixed aqueous solution is 0.95 / 0.05 to 0.75 / 0.25. A method for producing a solid solution. 上記混合水溶液における上記Znと上記Mgのモル比(Zn/Mg)が、0.93/0.07〜0.75/0.25である請求項7に記載の青色系蛍光体用酸化亜鉛系固溶体の製造方法。   The zinc oxide system for blue phosphor according to claim 7, wherein a molar ratio (Zn / Mg) of Zn and Mg in the mixed aqueous solution is 0.93 / 0.07 to 0.75 / 0.25. A method for producing a solid solution. 上記熱分解工程における熱分解温度が、450〜1000℃である請求項7乃至9のいずれかに記載の青色系蛍光体用酸化亜鉛系固溶体の製造方法。   The method for producing a zinc oxide solid solution for a blue phosphor according to any one of claims 7 to 9, wherein a pyrolysis temperature in the pyrolysis step is 450 to 1000 ° C. Zn及びMgを溶解状態で含む混合水溶液と、有機酸成分と、を混合することにより有機酸複塩を共沈させる共沈工程と、得られた有機酸複塩を熱分解する熱分解工程と、得られた熱分解物を還元雰囲気下において加熱処理する加熱処理工程と、を備えることを特徴とする青色系蛍光体の製造方法。   A coprecipitation step for coprecipitation of an organic acid double salt by mixing a mixed aqueous solution containing Zn and Mg in a dissolved state and an organic acid component; and a thermal decomposition step for thermally decomposing the obtained organic acid double salt And a heat treatment step of heat-treating the obtained thermal decomposition product in a reducing atmosphere. 上記加熱処理工程における熱処理温度が、800〜1100℃である請求項11に記載の青色系蛍光体の製造方法。   The method for producing a blue phosphor according to claim 11, wherein the heat treatment temperature in the heat treatment step is 800 to 1100 ° C.
JP2005050456A 2005-02-25 2005-02-25 Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor Expired - Fee Related JP4670079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050456A JP4670079B2 (en) 2005-02-25 2005-02-25 Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050456A JP4670079B2 (en) 2005-02-25 2005-02-25 Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor

Publications (2)

Publication Number Publication Date
JP2006233047A true JP2006233047A (en) 2006-09-07
JP4670079B2 JP4670079B2 (en) 2011-04-13

Family

ID=37041055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050456A Expired - Fee Related JP4670079B2 (en) 2005-02-25 2005-02-25 Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor

Country Status (1)

Country Link
JP (1) JP4670079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143596A1 (en) 2009-06-12 2010-12-16 宇部マテリアルズ株式会社 Method for producing magnesium-containing zinc oxide, magnesium-containing zinc oxide, and apparatus for producing same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394283A (en) * 1977-01-31 1978-08-18 Toshiba Corp Zinc-magnesium oxide fluorescent substance
JPS5684367A (en) * 1979-12-12 1981-07-09 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide lightttransmitting ceramics
JPH0559359A (en) * 1991-08-30 1993-03-09 Futaba Corp Fluorescent display tube using fluorescent substance for slow electron
JP2001107041A (en) * 1999-10-04 2001-04-17 Futaba Corp Phosphor and fluorescent display tube
JP2003500515A (en) * 1999-05-25 2003-01-07 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for producing spherical zinc orthosilicate-based green light-emitting phosphor
JP2004083652A (en) * 2002-08-23 2004-03-18 Kokusai Kiban Zairyo Kenkyusho:Kk Blue light-emitting phosphor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394283A (en) * 1977-01-31 1978-08-18 Toshiba Corp Zinc-magnesium oxide fluorescent substance
JPS5684367A (en) * 1979-12-12 1981-07-09 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide lightttransmitting ceramics
JPH0559359A (en) * 1991-08-30 1993-03-09 Futaba Corp Fluorescent display tube using fluorescent substance for slow electron
JP2003500515A (en) * 1999-05-25 2003-01-07 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for producing spherical zinc orthosilicate-based green light-emitting phosphor
JP2001107041A (en) * 1999-10-04 2001-04-17 Futaba Corp Phosphor and fluorescent display tube
JP2004083652A (en) * 2002-08-23 2004-03-18 Kokusai Kiban Zairyo Kenkyusho:Kk Blue light-emitting phosphor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143596A1 (en) 2009-06-12 2010-12-16 宇部マテリアルズ株式会社 Method for producing magnesium-containing zinc oxide, magnesium-containing zinc oxide, and apparatus for producing same
US8388928B2 (en) 2009-06-12 2013-03-05 Ube Material Industries, Ltd Method for producing magnesium-containing zinc oxide, magnesium-containing zinc oxide, and apparatus for producing same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same
US9809745B2 (en) 2013-06-03 2017-11-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Phosphor and method for producing same

Also Published As

Publication number Publication date
JP4670079B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
JP5041191B2 (en) Method for producing phosphor particles
Kumar et al. Perspective on europium activated fine-grained metal molybdate phosphors for solid state illumination
Sayed et al. Solid state white light emitting systems based on CeF3: RE3+ nanoparticles and their composites with polymers
Zhang et al. PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4: Tb3+ green phosphor
Li et al. Low temperature molten salt synthesis of YAG: Ce spherical powder and its thermally stable luminescent properties after post-annealing treatment
JP2001049250A (en) Phosphor
Chen et al. Novel double perovskite Na1-xEu1+ x/3MgWO6 (0≤ x≤ 0.4) phosphors for white LEDs: sol-gel controlled synthesis, microstructure and luminescence properties
EP1227139B1 (en) Method of producing crystalline phosphor powders at low temperature
Jayasimhadri et al. Conversion of green emission into white light in Gd2O3 nanophosphors
KR20130079191A (en) Yttrium-cerium-aluminum garnet phosphor and light-emitting device
JP4836117B2 (en) Method for producing high-luminance luminescent particles
JP4670079B2 (en) Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor
TWI448535B (en) Eu method for the production of metalloid phosphite phosphors
Motloung et al. The effects of Cd 2+ concentration on the structure, optical and luminescence properties of MgAl 2 O 4: x% Cd 2+(0< x≤ 1.75) Nanophosphor Prepared by Sol–Gel Method
KR101893526B1 (en) Method for manufacturing zirconia phosphor nanoparticle and zirconia phosphor nanoparticle by the same
JP2000080363A (en) Preparation of green light-emitting phosphor
TW201402784A (en) Silicate phosphor and process for manufacturing same
Patil et al. White light generation from single gallium oxide nanoparticles co-doped with rare-earth metals
US8119029B2 (en) Phosphate nano phosphor and method of preparing the same
JP2009161680A (en) Method for preparing highly crystalline fluorescent material
Zhou et al. Ca 3 (P x V 1− x O 4) 2: Eu 3+ nanophosphor synthesis, controlled microstructure, and photoluminescence
KR101244187B1 (en) Method of fabricating YAG : Ce Phosphor powder
US20140175968A1 (en) Yttrium-cerium-aluminum garnet phosphor and light-emitting device
JP2007106832A (en) Method for producing phosphor and the phosphor produced by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100902

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees