JP2006231763A - Multilayer extrusion molding apparatus, method for manufacturing multilayer film and multilayer stretched film - Google Patents

Multilayer extrusion molding apparatus, method for manufacturing multilayer film and multilayer stretched film Download PDF

Info

Publication number
JP2006231763A
JP2006231763A JP2005051119A JP2005051119A JP2006231763A JP 2006231763 A JP2006231763 A JP 2006231763A JP 2005051119 A JP2005051119 A JP 2005051119A JP 2005051119 A JP2005051119 A JP 2005051119A JP 2006231763 A JP2006231763 A JP 2006231763A
Authority
JP
Japan
Prior art keywords
multilayer
multilayer film
thickness
outermost
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005051119A
Other languages
Japanese (ja)
Other versions
JP4591114B2 (en
Inventor
Keiichi Kawada
敬一 川田
Katsuhiro Kurosaki
勝尋 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2005051119A priority Critical patent/JP4591114B2/en
Publication of JP2006231763A publication Critical patent/JP2006231763A/en
Application granted granted Critical
Publication of JP4591114B2 publication Critical patent/JP4591114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92542Energy, power, electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer extrusion molding apparatus of a multilayer film which can eliminate thickness unevenness of an outermost layer member and an inner layer member of a multilayer film of at least three layers by performing fine temperature control of a melting resin. <P>SOLUTION: The thickness of the outermost layer of a multilayer film 2 is roughly adjusted by the moving of choke bars 44 and 46 by the advancing and retreating of choke bar adjusting bolts 48 and 50. The choke bars 44 and 46 are heated and the resin temperature of a melting resin which flows in passages 34 and 38 is changed by controlling the quantity of heat of rod-shaped electric heaters embedded in each of bolts 48 and 50. Thereby, the minute thickness adjustment is performed. A controller 80 controls the voltage of the rod-shaped electric heaters appropriately based on the thickness data sent out from a thickness detection device 70, and sends out a voltage adjustment signal which controls the resin temperature of the melting resin to the rod-shaped electric heaters. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フラットパネルディスプレイなどの光学装置に用いられる多層フィルムを製造するのに適した多層押出成形装置と、該装置を用いた多層フィルムの製造方法と、該方法により製造された多層フィルムを用いた多層延伸フィルムの製造方法とに関する。   The present invention relates to a multilayer extrusion molding apparatus suitable for manufacturing a multilayer film used in an optical apparatus such as a flat panel display, a multilayer film manufacturing method using the apparatus, and a multilayer film manufactured by the method. It is related with the manufacturing method of the used multilayer stretched film.

フラットパネルディスプレイの一例としての液晶ディスプレイには、各種光学フィルムが用いられている。その光学フィルムの一例として、位相差フィルムが挙げられる。このような位相差フィルムとして、固有複屈折値が負の樹脂(例えばビニル芳香族系重合体など)からなる一軸または二軸延伸フィルムが有用であることは知られている(特許文献1参照)。しかしながら、固有複屈折値が負の樹脂からなる未延伸フィルムは、それ自体の強度が不足しているために、単独で延伸すると破断しやすい欠点がある。   Various optical films are used for a liquid crystal display as an example of a flat panel display. An example of the optical film is a retardation film. As such a retardation film, it is known that a uniaxial or biaxially stretched film made of a resin having a negative intrinsic birefringence value (for example, a vinyl aromatic polymer) is useful (see Patent Document 1). . However, an unstretched film made of a resin having a negative intrinsic birefringence value has a drawback that when it is stretched alone, it is easily broken because of its insufficient strength.

そこで、本出願人は、固有複屈折値が負の樹脂からなる未延伸フィルムの両面に、別の樹脂層(最外層)を積層して未延伸積層体(多層フィルム)を形成し、これを延伸する旨を記載した技術を先に提案した(特願2004−84969号)。一対の最外層の間に固有複屈折値が負の樹脂からなる未延伸フィルムを含む未延伸積層体を作製し、これを延伸することで、内層部分(固有複屈折値が負の樹脂からなる未延伸フィルム)を破断させずに延伸することができるが、延伸後のフィルムの内層部分に厚みムラを生じることがあった。内層部分の厚みムラは、各最外層部分の厚みムラに起因することもある。   Therefore, the present applicant forms another unstretched laminate (multilayer film) by laminating another resin layer (outermost layer) on both sides of an unstretched film made of a resin having a negative intrinsic birefringence value. The technique which described that it extends was proposed previously (Japanese Patent Application No. 2004-84969). An unstretched laminate including an unstretched film made of a resin having a negative intrinsic birefringence value between a pair of outermost layers is prepared and stretched to form an inner layer portion (made of a resin having a negative intrinsic birefringence value). The unstretched film) can be stretched without breaking, but thickness unevenness may occur in the inner layer portion of the stretched film. The thickness unevenness of the inner layer portion may be caused by the thickness unevenness of each outermost layer portion.

このように、少なくとも3層の多層フィルムの内層部分の厚みムラを抑える技術については、上述した位相差フィルムなどの光学用途に限らず、包装用フィルム、保護用フィルムなどの分野でも望まれている。   As described above, the technique for suppressing the thickness unevenness of the inner layer portion of at least the three-layered multilayer film is not limited to optical applications such as the above-described retardation film, but is also desired in the fields of packaging films and protective films. .

上述した未延伸積層体(多層フィルム)は、多層押出成形により製造されるが、このための装置として幾つかの提案がなされている。   The unstretched laminate (multilayer film) described above is manufactured by multilayer extrusion, and several proposals have been made as an apparatus for this purpose.

例えば、特許文献2では、多層押出成形装置が開示されている。この装置には、複数の押出機から押し出されてきた性質の異なる複数の溶融樹脂が供給される複数のマニホールドが形成されている。各マニホールドの下流側には、各マニホールドから流れ出た複数の溶融樹脂を複層状に重ね合わせる合流部と、各マニホールド及び合流部をそれぞれ繋ぐ複数の流路が形成されている。合流部の下流側には、合流部で重ね合わされた多層フィルムを外部へ排出するリップ部が形成されている。複数の流路の何れかには、該流路の少なくとも一方の壁面を、該壁面の変形の際に回転の中心となる第1薄肉厚部と、第1薄肉厚部の下流側に設けられた、壁面の変形量を設定する流路間隙調整手段と連結される第2薄肉厚部と、第2薄肉厚部の下流側に設けられた、形成する層の厚みを設定する第3薄肉厚部とからなるフレキシブル構造が形成されていると共に、該流路の壁面とこれに隣接する流路の間に設けられた空間に前記流路間隙調整手段が配置されている。特許文献2の装置では、複数の流路の何れかには、その流路間隙を物理的に調整する機構が設けられているため、該流路内を流れる溶融樹脂の厚みを個別に調整することが可能である。   For example, Patent Document 2 discloses a multilayer extrusion molding apparatus. In this apparatus, a plurality of manifolds are formed to which a plurality of molten resins having different properties extruded from a plurality of extruders are supplied. On the downstream side of each manifold, there are formed a merging portion where a plurality of molten resins flowing out from each manifold are stacked in multiple layers, and a plurality of flow paths connecting the respective manifolds and the merging portion. A lip portion is formed on the downstream side of the merging portion to discharge the multilayer film superimposed at the merging portion to the outside. In any one of the plurality of flow paths, at least one wall surface of the flow path is provided on the downstream side of the first thin-walled portion and the first thin-walled portion that becomes the center of rotation when the wall surface is deformed. In addition, a second thin-walled portion connected to the channel gap adjusting means for setting the deformation amount of the wall surface, and a third thin-walled thickness for setting the thickness of the layer to be formed provided on the downstream side of the second thin-walled portion. And a flow path gap adjusting means is disposed in a space provided between the wall surface of the flow path and the flow path adjacent thereto. In the apparatus of Patent Document 2, since any one of the plurality of flow paths is provided with a mechanism for physically adjusting the flow gap, the thickness of the molten resin flowing in the flow paths is individually adjusted. It is possible.

特許文献2の装置では、上記特定のフレキシブル構造を物理的に移動させて流路間隙を調整するため、溶融樹脂の厚み調整を大まかに行うことはできるが、より細かく行うことはできない。このため厚みムラを生じることがあった。   In the apparatus of Patent Document 2, since the flow path gap is adjusted by physically moving the specific flexible structure, the thickness of the molten resin can be roughly adjusted, but cannot be finely adjusted. For this reason, uneven thickness may occur.

なお、多層押出成形装置ではないが、特許文献3では、単層押出成形装置が開示されている。この装置には、単一の押出機から押し出されてきた溶融樹脂が供給されるマニホールドが形成されている。マニホールドの下流側には流路が接続され、この流路の下流側には溶融樹脂の厚み調整しながら外部へ排出するリップ部が形成されている。リップ部の背部にリップ面に達しない縦スリットを複数形成し、該背部を幅方向に複数のエレメントに分割し、各エレメントの背面に面状ヒーターが取付けられている。面状ヒーターにより、各エレメントに対応するリップ面を独立して、かつ実質的に均一な温度に加熱制御することができる。特許文献3の装置では、面状ヒーターを適切に作動させることにより、流路内を流れる溶融樹脂が加熱されて温度調整されるので、リップ部から排出される樹脂フィルムの厚みムラを減少させることができる。   In addition, although it is not a multilayer extrusion molding apparatus, in patent document 3, the single layer extrusion molding apparatus is disclosed. In this apparatus, a manifold is formed to which molten resin extruded from a single extruder is supplied. A flow path is connected to the downstream side of the manifold, and a lip portion that discharges outside while adjusting the thickness of the molten resin is formed on the downstream side of the flow path. A plurality of vertical slits that do not reach the lip surface are formed on the back of the lip, the back is divided into a plurality of elements in the width direction, and a planar heater is attached to the back of each element. With the surface heater, the lip surface corresponding to each element can be heated and controlled independently and at a substantially uniform temperature. In the apparatus of Patent Document 3, since the molten resin flowing in the flow path is heated and the temperature is adjusted by appropriately operating the planar heater, the thickness unevenness of the resin film discharged from the lip portion is reduced. Can do.

しかしながら、特許文献3の技術をそのままの形で多層押出成形に適用すると、総厚の調整は可能でも、各層を個別に調整することができず、結果的に最外層部分の厚みムラを抑えることができなかった。
特開平2−256023号公報 特開2000−25092号公報 特開平6−87148号公報
However, if the technique of Patent Document 3 is applied to multilayer extrusion as it is, the total thickness can be adjusted, but each layer cannot be adjusted individually, and as a result, the thickness unevenness of the outermost layer portion is suppressed. I could not.
JP-A-2-256603 JP 2000-25092 A JP-A-6-87148

本発明の目的は、溶融樹脂のより細かな温度調整を行うことによって、少なくとも3層の多層フィルムの最外層部分の厚みムラを抑制し、ひいては内層部分の厚みムラを解消することができる多層フィルムの多層押出成形装置と、該装置を用いた多層フィルムの製造方法と、該方法により製造された多層フィルムを用いた多層延伸フィルムの製造方法とを、提供することである。   An object of the present invention is to control the thickness unevenness of the outermost layer portion of the multilayer film of at least three layers by adjusting the temperature of the molten resin more finely, and thereby eliminate the thickness unevenness of the inner layer portion. A multilayer extrusion molding apparatus, a method for producing a multilayer film using the apparatus, and a method for producing a multilayer stretched film using the multilayer film produced by the method.

上記目的を達成するために、本発明によれば、
2つの最外層の間に1つ以上の内層を持つ3層以上の多層フィルムを形成するために用いる、(1)ダイスと、(2)厚み検出手段と、(3)制御手段とを有する多層押出成形装置において、
(1)ダイスは、溶融樹脂が供給される、2つの最外層用マニホールド及び前記2つの最外層用マニホールドの間に所定間隔で設けられた1つ以上の内層用マニホールドと、
前記マニホールドから下流側へ延び、やがては1つに合流する2つの最外層用流路及び1つ以上の内層用流路と、
前記各最外層用流路の幅方向に沿って連続的に設けられた、該流路の間隙を調整する2つのチョークバーと、
前記各最外層用流路の幅方向に相当する前記チョークバーの長手方向に沿って前記チョークバーの流路反対側に所定間隔で連列され、先端部が前記チョークバーに対して軸方向に進退自在に支持された複数のチョークバー調整ボルトと、
前記各最外層用流路内を流れる溶融樹脂の温度を微小調整する最外層用樹脂温度微小調整手段と、
前記各最外層用流路及び前記内層用流路の合流部の下流側に配置されたリップ部とを有し、
前記各マニホールドから前記各流路を通じて流れ出る前記各溶融樹脂を前記合流部で合流させて多層化し、前記リップ部から多層フィルムとして連続的に押し出すことができるものであり、
(2)厚み検出手段は、前記ダイスから押し出された多層フィルムの各最外層の厚みを検出することができるものであり、
(3)制御手段は、前記検出された多層フィルムの各最外層の厚みに応じて、前記各最外層用流路内を流れる溶融樹脂の温度を変化させるよう前記最外層用樹脂温度微小調整手段を制御することができるものである、多層押出成形装置が提供される。
In order to achieve the above object, according to the present invention,
A multilayer having (1) a die, (2) thickness detection means, and (3) control means, which is used to form a multilayer film of three or more layers having one or more inner layers between two outermost layers. In extrusion equipment,
(1) The dice includes two outermost layer manifolds supplied with molten resin, and one or more inner layer manifolds provided at a predetermined interval between the two outermost layer manifolds,
Two outermost flow paths and one or more inner flow paths that extend downstream from the manifold and eventually merge into one;
Two choke bars that are provided continuously along the width direction of each outermost layer flow path and adjust the gap between the flow paths;
Along the longitudinal direction of the choke bar corresponding to the width direction of each outermost layer flow path, the choke bars are arranged at a predetermined interval on the opposite side of the choke bar flow path, and the tip portion is in the axial direction with respect to the choke bar. A plurality of choke bar adjustment bolts supported so as to freely advance and retreat;
A resin temperature micro-adjustment means for finely adjusting the temperature of the molten resin flowing in each of the outermost layer flow paths;
A lip portion disposed on the downstream side of the merging portion of each of the outermost channel and the inner layer channel;
Each molten resin flowing out from each manifold through each flow path is joined at the joining portion to be multilayered, and can be continuously extruded as a multilayer film from the lip portion,
(2) The thickness detection means is capable of detecting the thickness of each outermost layer of the multilayer film extruded from the die,
(3) The control means adjusts the temperature of the outermost layer resin temperature so as to change the temperature of the molten resin flowing in each outermost layer flow path according to the detected thickness of each outermost layer of the multilayer film. There is provided a multilayer extrusion molding apparatus capable of controlling the above.

好ましくは、前記最外層用樹脂温度微小調整手段として、前記各チョークバー調整ボルトに埋め込んである極細の棒状ヒーターを用いる。あるいは、チョークバーに埋め込んだオイル循環による伝(放)熱装置を用いてもよい。   Preferably, as the resin temperature fine adjustment means for the outermost layer, an extremely fine bar heater embedded in each choke bar adjustment bolt is used. Alternatively, a heat transfer (radiation) heat device using oil circulation embedded in a choke bar may be used.

本発明によれば、上記多層押出成形装置を用いて、3層以上の多層フィルムを押出成形する工程を含む多層フィルムの製造方法が提供される。   According to this invention, the manufacturing method of a multilayer film including the process of extruding three or more layers of multilayer films using the said multilayer extrusion molding apparatus is provided.

本発明によれば、上記方法により押出成形された多層フィルムを延伸する工程を含む多層延伸フィルムの製造方法が提供される。   According to this invention, the manufacturing method of a multilayer stretched film including the process of extending | stretching the multilayer film extruded by the said method is provided.

本発明の多層押出成形装置は、溶融樹脂のより細かな温度調整を行うことによって、少なくとも3層の多層フィルムの最外層部分の厚みムラを抑制し、ひいては内層部分の厚みムラを解消することができる。該装置を用いて多層フィルムを製造すると、各最外層部分の厚みムラが小さくなり、得られたフィルムを延伸しても厚みムラが小さいままであり、内層部分にレターデーションムラが出ない。   The multilayer extrusion molding apparatus of the present invention can suppress unevenness in the thickness of the outermost layer portion of the multilayer film of at least three layers by adjusting the temperature of the molten resin more finely, and thus eliminate unevenness in the thickness of the inner layer portion. it can. When a multilayer film is produced using the apparatus, the thickness unevenness of each outermost layer portion is reduced, and even when the obtained film is stretched, the thickness unevenness remains small, and the retardation unevenness does not appear in the inner layer portion.

本発明の多層押出成形装置を用いて製造される多層フィルムは、例えば位相差フィルム、偏光板保護フィルム、視野角補償フィルム、輝度向上フィルム、プラスチックセルなどの各種光学フィルムの原料フィルムとして有用である。   The multilayer film produced using the multilayer extrusion molding apparatus of the present invention is useful as a raw material film for various optical films such as a retardation film, a polarizing plate protective film, a viewing angle compensation film, a brightness enhancement film, and a plastic cell. .

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の装置又は方法によって形成できる多層フィルムの一例を示す断面図、図2は図1の多層フィルムを製造するのに適した本発明の多層押出成形装置の一例を示す側面断面図、図3は図2の正面図(但し、図2よりも縮小してある)、図4はチョークバー及びチョークバー調整ボルト付近の要部を示す概要図、図5はチョークバー調整ボルトの断面図、である。   FIG. 1 is a sectional view showing an example of a multilayer film that can be formed by the apparatus or method of the present invention. FIG. 2 is a side sectional view showing an example of a multilayer extrusion molding apparatus of the present invention suitable for producing the multilayer film of FIG. 3 is a front view of FIG. 2 (however, it is smaller than FIG. 2), FIG. 4 is a schematic view showing the main part in the vicinity of the choke bar and the choke bar adjusting bolt, and FIG. 5 is a cross section of the choke bar adjusting bolt. Figure.

本実施形態では、まず、図1に示す多層フィルム2を例示し、次に、この多層フィルム2を製造する装置20及び方法を説明する。   In this embodiment, first, the multilayer film 2 shown in FIG. 1 is illustrated, and then an apparatus 20 and a method for manufacturing the multilayer film 2 will be described.

多層フィルム
図1に示すように、本実施形態に係る多層フィルム2は、後述する装置を用いた方法により製造されるものであり、内層3が一対の最外層4,5の間に形成された未延伸積層体である。
As shown in FIG. 1, a multilayer film 2 according to this embodiment is manufactured by a method using an apparatus described later, and an inner layer 3 is formed between a pair of outermost layers 4 and 5. It is an unstretched laminate.

内層3及び最外層4,5は、固有複屈折値が正の材料または固有複屈折値が負の材料で構成することができる。   The inner layer 3 and the outermost layers 4 and 5 can be made of a material having a positive intrinsic birefringence value or a material having a negative intrinsic birefringence value.

固有複屈折値が正の材料(以下、単に「正の材料」という場合がある)とは、分子が一軸性の秩序をもって配向したときに、光学的に正の一軸性を示す特性を有する材料、具体的には、分子が一軸性の配向をとって形成された層に光が入射したとき、前記配向方向の光の屈折率が前記配向方向に直交する方向の光の屈折率より大きくなる材料をいう。前記正の材料としては、樹脂、棒状液晶、棒状液晶ポリマーなど種々のものが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。本発明においては、これらの中でも樹脂が好ましい。   A material having a positive intrinsic birefringence value (hereinafter may be simply referred to as “positive material”) is a material having optically uniaxial characteristics when molecules are oriented in a uniaxial order. Specifically, when light is incident on a layer formed with molecules having a uniaxial orientation, the refractive index of light in the orientation direction is larger than the refractive index of light in a direction perpendicular to the orientation direction. Say material. Examples of the positive material include various materials such as a resin, a rod-like liquid crystal, and a rod-like liquid crystal polymer. These may be used individually by 1 type and may use 2 or more types together. In these, resin is preferable among these in this invention.

正の材料としての樹脂には、オレフィン(例えば、エチレン、プロピレン、ノルボルネン、シクロオレフィンなど)、エステル(例えば、エチレンテレフタレート、ブチレンテレフタレートなど)、アリーレンサルファイド(例えば、フェニレンサルファイドなど)、ビニルアルコール、カーボネート、アリレート、セルロースエステル(固有複屈折値が負であるものもある)、エーテルスルホン、スルホン、アリルサルホン、塩化ビニルなどの単量体の1種単独の重合体、あるいは前記単量体の多元(二元、三元等)共重合体などが挙げられる。本発明においては、これらの中でも、オレフィン単量体の重合体が好ましく、オレフィン単量体の重合体の中でも、光透過率特性、耐熱性、寸度安定性、光弾性特性等の観点から、ノルボルネン単量体の重合体が特に好ましい。   Resins as positive materials include olefins (eg, ethylene, propylene, norbornene, cycloolefin, etc.), esters (eg, ethylene terephthalate, butylene terephthalate, etc.), arylene sulfide (eg, phenylene sulfide, etc.), vinyl alcohol, carbonate , Arylates, cellulose esters (some of which have a negative intrinsic birefringence value), a single polymer of monomers such as ether sulfone, sulfone, allyl sulfone, vinyl chloride, etc. Original, ternary, etc.) copolymers. In the present invention, among these, a polymer of an olefin monomer is preferable, and among the polymers of an olefin monomer, from the viewpoints of light transmittance characteristics, heat resistance, dimensional stability, photoelastic characteristics, etc. A polymer of norbornene monomer is particularly preferred.

ノルボルネン単量体の重合体は、ノルボルネン骨格に由来する繰り返し単位を有してなり、その具体例としては、特開昭62−252406号公報、特開昭62−252407号公報、特開平2−133413号公報、特開昭63−145324号公報、特開昭63−264626号公報、特開平1−240517号公報、特公昭57−8815号公報、特開平5−39403号公報、特開平5−43663号公報、特開平5−43834号公報、特開平5−70655号公報、特開平5−279554号公報、特開平6−206985号公報、特開平7−62028号公報、特開平8−176411号公報、特開平9−241484号公報等に記載されたものが好適に利用できるが、これらに限定されるものではない。また、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   The polymer of norbornene monomer has a repeating unit derived from a norbornene skeleton. Specific examples thereof include JP-A-62-252406, JP-A-62-2252407, and JP-A-2- No. 133413, JP-A-63-145324, JP-A-63-264626, JP-A-1-240517, JP-B-57-8815, JP-A-5-39403, JP-A-5-1993 No. 43663, JP-A-5-43834, JP-A-5-70655, JP-A-5-279554, JP-A-6-206985, JP-A-7-62028, JP-A-8-176411 Although what was described in gazette, Unexamined-Japanese-Patent No. 9-241484, etc. can be utilized suitably, it is not limited to these. Moreover, these may be used individually by 1 type and may use 2 or more types together.

固有複屈折値が負の材料(以下、単に「負の材料」という場合がある)」とは、分子が一軸性の秩序をもって配向したときに、光学的に負の一軸性を示す特性を有する材料、具体的には、分子が一軸性の配向をとって形成された層に光が入射したとき、前記配向方向の光の屈折率が前記配向方向に直交する方向の光の屈折率より小さくなる材料をいう。前記負の材料としては、樹脂、ディスコティック液晶、ディスコティック液晶ポリマー等種々のものが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。本発明においては、これらの中でも樹脂が好ましい。   A material having a negative intrinsic birefringence value (hereinafter sometimes simply referred to as “negative material”) has a characteristic of exhibiting optically negative uniaxiality when molecules are oriented in a uniaxial order. When light enters a material, specifically, a layer in which molecules have a uniaxial orientation, the refractive index of light in the orientation direction is smaller than the refractive index of light in the direction perpendicular to the orientation direction. The material which becomes. Examples of the negative material include various materials such as resin, discotic liquid crystal, and discotic liquid crystal polymer. These may be used individually by 1 type and may use 2 or more types together. In these, resin is preferable among these in this invention.

負の材料としての樹脂には、スチレン、スチレン誘導体、アクリロニトリル、メチルメタクリレート、無水マレイン酸、ブタジエン、セルロースエステル(固有複屈折値が正であるものもある)などの単量体の1種単独の重合体、あるいは前記単量体の多元(二元、三元等)共重合体などが挙げられる。本発明においては、これらの中でも、複屈折発現性が高いという観点から、スチレン単量体の重合体; スチレン及び/又はスチレン誘導体と、アクリロニトリル、無水マレイン酸、メチルメタクリレートおよびブタジエンから選ばれる少なくとも1種との多元(二元、三元等)共重合体がより好ましく、耐熱性が高い点で、スチレン及び/又はスチレン誘導体と、無水マレイン酸との多元(二元、三元等)共重合体が特に好ましい。   The resin as the negative material includes a single monomer such as styrene, a styrene derivative, acrylonitrile, methyl methacrylate, maleic anhydride, butadiene, or cellulose ester (some have a positive intrinsic birefringence value). Examples thereof include a polymer, and a multi-component (binary, ternary, etc.) copolymer of the monomers. In the present invention, among these, a polymer of a styrene monomer; at least one selected from styrene and / or a styrene derivative, acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene, from the viewpoint of high birefringence. Multi-component (binary, ternary, etc.) copolymers with seeds are more preferred, and multi-component (binary, ternary, etc.) co-polymerization of styrene and / or styrene derivatives with maleic anhydride in terms of high heat resistance Coalescence is particularly preferred.

内層3及び最外層4,5は、互いに異なる3種の材料で構成してもよいし、最外層4,5を同種の材料にして、内層3だけを異種の材料にしてもよい。本実施形態では、固有複屈折値が正の材料で内層3を構成する場合には、最外層4,5を固有複屈折値が負の材料で構成することが好ましい。これに対し、固有複屈折値が負の材料で内層3を構成する場合には、最外層4,5を固有複屈折値が正の材料で構成することが好ましい。   The inner layer 3 and the outermost layers 4 and 5 may be made of three different materials, or the outermost layers 4 and 5 may be made of the same material and only the inner layer 3 may be made of different materials. In the present embodiment, when the inner layer 3 is made of a material having a positive intrinsic birefringence value, the outermost layers 4 and 5 are preferably made of a material having a negative intrinsic birefringence value. On the other hand, when the inner layer 3 is made of a material having a negative intrinsic birefringence value, the outermost layers 4 and 5 are preferably made of a material having a positive intrinsic birefringence value.

内層3及び最外層4,5は、実質的に無配向なものであってもよいし、配向したものであってもよい。なお、「実質的に無配向」とは、最外層4,5内において直交するx方向とy方向の屈折率nBxとnByの差が小さく、内層3内において直交するx方向とy方向の屈折率をそれぞれnAx、nAy、内層3の厚さをdA、最外層4,5の厚さをdBとしたとき、|(nAx−nAy)dA|+|(nBx−nBy)dB|の値が、|(nAx−nAy)dA|の値の1.1倍以下であることを言う。   The inner layer 3 and the outermost layers 4 and 5 may be substantially non-oriented or may be oriented. Note that “substantially non-oriented” means that the difference between the refractive indexes nBx and nBy in the x and y directions orthogonal in the outermost layers 4 and 5 is small, and the refraction in the x and y directions orthogonal in the inner layer 3 When the ratio is nAx, nAy, the thickness of the inner layer 3 is dA, and the thickness of the outermost layers 4 and 5 is dB, the value of | (nAx−nAy) dA | + | (nBx−nBy) dB | It is 1.1 or less of the value of | (nAx−nAy) dA |.

内層3及び最外層4,5には、必要に応じて、各種添加剤(例えば酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤など)が添加されていてもよい。   Various additives (for example, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, etc.) may be added to the inner layer 3 and the outermost layers 4 and 5 as necessary.

内層3の平均厚さは、10〜200μm程度である。内層3全体の厚さムラは、上記平均厚さに対して、好ましくは±3%以内、より好ましくは±1%以内に制御されている。「厚さムラ」は、内層3の厚さの最大値と最小値の差を、上記平均厚さで除した値である。   The average thickness of the inner layer 3 is about 10 to 200 μm. The thickness unevenness of the entire inner layer 3 is preferably controlled within ± 3%, more preferably within ± 1% with respect to the average thickness. “Thickness unevenness” is a value obtained by dividing the difference between the maximum value and the minimum value of the thickness of the inner layer 3 by the average thickness.

最外層4,5の厚さは、10〜200μm程度である。   The thickness of the outermost layers 4 and 5 is about 10 to 200 μm.

内層3と最外層4,5との間に接着剤層が形成されていてもよい。つまり、多層フィルム2は、最外層4−接着剤層−内層3−接着剤層−最外層5の3種5層構造であってもよい。   An adhesive layer may be formed between the inner layer 3 and the outermost layers 4 and 5. That is, the multilayer film 2 may have a three-kind five-layer structure of outermost layer 4 -adhesive layer-inner layer 3 -adhesive layer-outermost layer 5.

接着剤層としては、内層3及び最外層4,5の双方に対して親和性があるもので構成される。例えば、内層3及び最外層4,5の何れか一方を構成する固有複屈折値が正の樹脂としてノルボルネン単量体の重合体を使用し、内層3及び最外層4,5の何れか他方を構成する固有複屈折値が負の樹脂としてスチレン単量体の重合体(または、スチレン及び/又はスチレン誘導体と、無水マレイン酸との多元(二元、三元等)共重合体)を使用した場合、前記接着層には、オレフィン単量体の重合体及びスチレン単量体の重合体(または、スチレン及び/又はスチレン誘導体と、無水マレイン酸との多元(二元、三元等)共重合体)のいずれかの成分を含有するものを用いる。このようなものとしては、例えば、エチレン−(メタ)アクリル酸エステル共重合体、エチレン系共重合体などが挙げられる。   The adhesive layer is composed of a material having affinity for both the inner layer 3 and the outermost layers 4 and 5. For example, a polymer of norbornene monomer is used as a resin having a positive intrinsic birefringence value that constitutes one of the inner layer 3 and the outermost layers 4 and 5, and the other of the inner layer 3 and the outermost layers 4 and 5 is used as the other. As the resin having a negative intrinsic birefringence value, a polymer of a styrene monomer (or a multi-component (binary, ternary, etc.) copolymer of styrene and / or a styrene derivative and maleic anhydride) was used. In this case, the adhesive layer includes a polymer of an olefin monomer and a polymer of a styrene monomer (or multiple (binary, ternary, etc.) co-polymerization of styrene and / or a styrene derivative and maleic anhydride. The one containing any component of (combined) is used. As such a thing, an ethylene- (meth) acrylic acid ester copolymer, an ethylene-type copolymer, etc. are mentioned, for example.

接着剤層の厚さは、1〜50μm程度である。   The thickness of the adhesive layer is about 1 to 50 μm.

以上の構成の本実施形態の多層フィルム2は、未延伸の積層体であるので、後述するように、これを延伸することで、位相差フィルムなどに適した延伸多層フィルムとすることが可能である。   Since the multilayer film 2 of the present embodiment having the above-described configuration is an unstretched laminate, it can be formed into a stretched multilayer film suitable for a retardation film or the like by stretching it as described later. is there.

多層フィルム2は、後に延伸加工されて、位相差フィルムなどの光学フィルム(延伸多層フィルム)とされる。ここで、内層3の樹脂(A)及び最外層4,5の樹脂(B)のガラス転移温度を、それぞれTg(A)℃、Tg(B)℃とすると、多層フィルム2を共延伸するとき、温度がTg(A)℃付近で延伸すると、内層3の複屈折特性を十分かつ均一に発現させることができる。   The multilayer film 2 is later stretched to obtain an optical film (stretched multilayer film) such as a retardation film. Here, when the glass transition temperatures of the resin (A) of the inner layer 3 and the resin (B) of the outermost layers 4 and 5 are Tg (A) ° C. and Tg (B) ° C., respectively, when the multilayer film 2 is co-stretched When the temperature is stretched in the vicinity of Tg (A) ° C., the birefringence characteristics of the inner layer 3 can be expressed sufficiently and uniformly.

Tg(A)℃付近で多層フィルム2を共延伸する場合、Tg(A)>Tg(B)+20℃の関係を満足するように各樹脂を選択すると、最外層4,5はほとんど配向せず、実質的に無配向の状態となり、且つ、内層3の破断を防止しつつ、安定して延伸することが可能となる。 When the multilayer film 2 is co-stretched around Tg (A) ° C., the outermost layers 4 and 5 are hardly oriented when each resin is selected so as to satisfy the relationship of Tg (A)> Tg (B) + 20 ° C. Thus, the film can be stretched stably while being in a substantially non-oriented state and preventing the inner layer 3 from being broken.

また、Tg(A)℃付近で多層フィルム2を共延伸する場合、Tg(A)とTg(B)の差が±20℃以内である関係を満足するように各樹脂を選択すると、最外層4,5も配向した状態となり、且つ、内層3の破断を防止しつつ、安定して延伸することが可能となる。   When the multilayer film 2 is co-stretched around Tg (A) ° C., if each resin is selected so that the difference between Tg (A) and Tg (B) is within ± 20 ° C., the outermost layer 4 and 5 are also oriented and can be stably stretched while preventing the inner layer 3 from being broken.

多層押出成形装置
図2及び図3に示すように、本発明の一実施形態に係る多層押出成形装置20は、図1に示す多層フィルム2を連続的に押し出す方式の成形用ダイス22と、厚み検出装置70と、制御装置80とを有する。
As shown in multilayer extrusion molding apparatus Figure 2 and Figure 3, multilayer extrusion molding apparatus 20 according to an embodiment of the present invention, the molding die 22 of the method of extruding a multi-layer film 2 shown in FIG. 1 continuously, thickness It has a detection device 70 and a control device 80.

成形用ダイス22は、ダイス本体24を有する。ダイス本体24の構成材料は、本発明では特に限定されないが、?一般的に用いられるダイス鋼やステンレス鋼(SUS)などで構成することができる。ダイス鋼としては、SKD系熱間ダイス鋼(熱伝導率:約30W/m℃)等が使用できる。ステンレス鋼としては、SUS420J2(熱伝導率:約25W/m℃)等が使用できる。ダイス本体24の内部には、複数の押出機(図示省略)から押し出されてきた粘度等の性質の異なる複数の溶融樹脂A,B,Cが供給されるマニホールド26,28,30が形成されている。本実施形態では、マニホールド26,30が最外層用マニホールドに相当し、マニホールド28が内層用マニホールドに相当する。
本実施形態では、溶融樹脂A,Cは、図1に示す多層フィルム2の最外層4,5を構成しうる固有複屈折値が正の樹脂が相当し、溶融樹脂Bは、図1に示す多層フィルム2の内層3を構成しうる固有複屈折値が負の樹脂が相当する場合を例示する。
The molding die 22 has a die body 24. Although the constituent material of the die body 24 is not particularly limited in the present invention, it can be made of generally used die steel, stainless steel (SUS), or the like. As the die steel, SKD hot die steel (thermal conductivity: about 30 W / m ° C.) or the like can be used. As the stainless steel, SUS420J2 (thermal conductivity: about 25 W / m ° C.) or the like can be used. Inside the die body 24, manifolds 26, 28, and 30 are formed to which a plurality of molten resins A, B, and C having different properties such as viscosity that are extruded from a plurality of extruders (not shown) are supplied. Yes. In the present embodiment, the manifolds 26 and 30 correspond to the outermost layer manifold, and the manifold 28 corresponds to the inner layer manifold.
In this embodiment, the molten resins A and C correspond to resins having a positive intrinsic birefringence value that can form the outermost layers 4 and 5 of the multilayer film 2 shown in FIG. 1, and the molten resin B is shown in FIG. The case where the resin with a negative intrinsic birefringence value which can comprise the inner layer 3 of the multilayer film 2 corresponds is illustrated.

マニホールド26,28,30の下流側には、各マニホールド26,28,30から流れ出た複数の溶融樹脂を複層状に重ね合わせる合流部32と、各マニホールド26,28,30及び合流部32を繋ぐ複数の流路34,36,38が形成されている。本実施形態では、流路34,38が最外層用流路に相当し、流路36が内層用流路に相当する。   On the downstream side of the manifolds 26, 28, 30, a joining portion 32 that superimposes a plurality of molten resins flowing out from the manifolds 26, 28, 30 in multiple layers, and the manifolds 26, 28, 30 and the joining portion 32 are connected. A plurality of flow paths 34, 36, and 38 are formed. In the present embodiment, the channels 34 and 38 correspond to the outermost layer channel, and the channel 36 corresponds to the inner layer channel.

合流部32の下流側には、合流部32で重ね合わされた積層体(後に多層フィルム2となる)を外部へ排出するリップ部40と、合流部32及びリップ部40を繋ぐ合流路41が形成されている。   On the downstream side of the merging portion 32, a lip portion 40 that discharges the laminated body (which will later become the multilayer film 2) overlapped at the merging portion 32, and a merging channel 41 that connects the merging portion 32 and the lip portion 40 are formed. Has been.

本実施形態では、リップ部40をセラミックコートしてある。セラミックコートすることで、樹脂の付着等を減少させることができ、ダイラインの低減、厚みムラの低減が期待できる。また、本実施形態では、流路34,36,38及び合流路41の内面をH−Crメッキしてある。H−Crメッキすることで、ダイライン防止のためにリップ部40を研磨する場合、精度良くRを出す(リップ部40を滑らかにする)ことができるとともに、樹脂の付着等を減少させることができ、ひいてはダイラインの低減、厚みムラの低減が期待できる。   In the present embodiment, the lip portion 40 is ceramic coated. By applying ceramic coating, it is possible to reduce adhesion of resin and the like, and reduction of die line and thickness unevenness can be expected. In the present embodiment, the inner surfaces of the flow paths 34, 36, and 38 and the combined flow path 41 are H-Cr plated. By polishing the lip portion 40 to prevent die line by H-Cr plating, it is possible to accurately produce R (smooth the lip portion 40) and reduce resin adhesion and the like. As a result, a reduction in die line and thickness unevenness can be expected.

流路36を除く流路34,38の一部には、流路間隙を調整する縦断面が略台形状のチョークバー44,46が配置されている。チョークバー44,46は、流路34,38の幅方向(図2の紙面方向。以下同じ)の一方端(一方のダイ幅端部)から他方端(他方のダイ幅端部)に渡って連続して延びている。   Choke bars 44 and 46 having a substantially trapezoidal longitudinal section for adjusting the gap between the channels are disposed in a part of the channels 34 and 38 except the channel 36. The choke bars 44 and 46 extend from one end (one die width end) to the other end (the other die width end) in the width direction of the flow paths 34 and 38 (the direction of the paper in FIG. It extends continuously.

チョークバー44,46の流路反対側には、チョークバー44,46の長手方向(図2の紙面方向。以下同じ)に沿って所定間隔で複数のチョークバー調整ボルト48,50が連列されている。各ボルト48,50の先端部は、チョークバー44,46に対して進退自在に支持される。各ボルト48,50を軸方向に進退(押し引き)させることでチョークバー44,46が移動し、流路34,38の間隙が調整され、大まかに、該流路34,38を流れる溶融樹脂の幅方向(図2の紙面方向。以下同じ)の厚み分布の調整がされる。各流路34,38を流れる溶融樹脂の幅方向の厚みを部分的に薄くしたい場合には、その部分に対応するボルト48,50を押すように調整してチョークバー44,46を押し、その部分の間隙量を小さくすればよい。これに対し、部分的に厚くしたい場合には、その部分に対応するボルト48,50を引くように調整してチョークバー44,46を引き、その部分の間隙量を大きくすればよい。この操作を各ボルト48,50ごとに行うことにより、合流部32の直前における流路34,38の間隙量に大まかな分布をつけることができ、ひいては最外層4,5の厚みを流路の幅方向、即ち多層フィルム2の幅方向に渡って均一にすることができる。   A plurality of choke bar adjusting bolts 48 and 50 are arranged at predetermined intervals along the longitudinal direction of the choke bars 44 and 46 (the paper surface direction in FIG. ing. The front ends of the bolts 48 and 50 are supported so as to be movable forward and backward with respect to the choke bars 44 and 46. By moving the bolts 48 and 50 back and forth in the axial direction (pushing and pulling), the choke bars 44 and 46 are moved, the gap between the flow paths 34 and 38 is adjusted, and the molten resin flowing roughly through the flow paths 34 and 38. The thickness distribution in the width direction (the paper surface direction in FIG. 2; the same applies hereinafter) is adjusted. When it is desired to partially reduce the thickness in the width direction of the molten resin flowing through each flow path 34, 38, the choke bars 44, 46 are pushed by adjusting the bolts 48, 50 corresponding to the portions, What is necessary is just to make small the amount of gaps of the part. On the other hand, when it is desired to partially increase the thickness, the choke bars 44 and 46 may be pulled by adjusting the bolts 48 and 50 corresponding to the portions to increase the gap amount of the portions. By performing this operation for each of the bolts 48 and 50, it is possible to give a rough distribution to the gaps between the flow paths 34 and 38 immediately before the merging portion 32. As a result, the thickness of the outermost layers 4 and 5 is set to the flow path. It can be made uniform in the width direction, that is, in the width direction of the multilayer film 2.

各チョークバー調整ボルト48,50の数は特に限定されず、多ければ多いほどチョークバー44,46を部分的に移動できることとなり、結果として、流路34,38の間隙を細かく調整することが可能となる点で好ましい。但し、各ボルト48,50の設置数が多くなり過ぎると、チョークバー44,46に形成されるボルト穴の数が多くなり、ダイス自体の強度不足を招く。従って、本実施形態では、隣接する各ボルト48,50が、好ましくは40〜50mmの間隔W(図4参照)となる数のボルトを配置することが望ましい。   The number of the choke bar adjusting bolts 48 and 50 is not particularly limited, and the larger the number, the more the choke bars 44 and 46 can be partially moved. As a result, the gap between the flow paths 34 and 38 can be finely adjusted. This is preferable. However, if the number of bolts 48 and 50 is excessively increased, the number of bolt holes formed in the choke bars 44 and 46 increases, resulting in insufficient strength of the dies themselves. Therefore, in the present embodiment, it is desirable that the adjacent bolts 48 and 50 are arranged in a number of bolts with a spacing W of 40 to 50 mm (see FIG. 4).

図5に示すように、各ボルト48,50の外径D1は、ボルト強度を保持する観点からは大きいことが望ましいが、各ボルト48,50が螺合されるチョークバー44,46の強度低下を防止する観点からは小さいことが望ましい。本実施形態では、チョークバー44,46の強度低下を抑制せずに各ボルト48,50の強度を保持する観点から、各ボルト48,50の外径D1は、10〜30mmが好ましく、より好ましくは14〜24mmである。   As shown in FIG. 5, the outer diameter D1 of each bolt 48, 50 is preferably large from the viewpoint of maintaining the bolt strength, but the strength of the choke bars 44, 46 to which the bolts 48, 50 are screwed is reduced. From the viewpoint of preventing this, it is desirable that it is small. In the present embodiment, the outer diameter D1 of each bolt 48, 50 is preferably 10 to 30 mm, more preferably from the viewpoint of maintaining the strength of each bolt 48, 50 without suppressing the strength reduction of the choke bars 44, 46. Is 14 to 24 mm.

本実施形態では、各チョークバー調整ボルト48,50には、流路34,38内を流れる溶融樹脂の温度を微小調整する最外層用樹脂温度微小調整手段の一例としての極細の棒状電気ヒーター482,502が埋め込んである。本実施形態では、棒状電気ヒーターの一端がボルト48,50から貫通している。   In the present embodiment, the choke bar adjustment bolts 48 and 50 are provided with ultrathin rod-shaped electric heaters 482 as an example of the outermost layer resin temperature fine adjustment means for finely adjusting the temperature of the molten resin flowing in the flow paths 34 and 38. , 502 are embedded. In this embodiment, one end of the rod-shaped electric heater penetrates from the bolts 48 and 50.

流路34,38を流れる溶融樹脂の幅方向の厚み分布は、チョークバー44,46を進退させることによって流路34,38の間隙を調整することにより行うことはできるが、大まかにしか調整を行うことはできない。本発明では、各ボルト48,50に棒状電気ヒーター482,502を埋め込み、該棒状ヒーター482,502を通電或いは遮電して発熱量をコントロールすることによってチョークバー44,46を加熱し、チョークバー44,46の長手方向に温度分布をもたせ、ひいては流路34,38を流れる溶融樹脂の樹脂温度を微小調整することができ、結果的に厚みムラを抑制することができる。   The thickness distribution in the width direction of the molten resin flowing in the flow paths 34 and 38 can be adjusted by adjusting the gaps between the flow paths 34 and 38 by moving the choke bars 44 and 46 back and forth. Can't do it. In the present invention, rod-shaped electric heaters 482 and 502 are embedded in the respective bolts 48 and 50, and the choke bars 44 and 46 are heated by energizing or interrupting the rod-shaped heaters 482 and 502 to control the amount of heat generated. It is possible to give a temperature distribution in the longitudinal direction of 44 and 46 and to finely adjust the resin temperature of the molten resin flowing through the flow paths 34 and 38, and as a result, thickness unevenness can be suppressed.

棒状電気ヒーター482,502の外径D2は、ボルト48,50の外径D1に対して、好ましくは75%以下、より好ましくは30〜50%とする。D1に対してD2をあまりに小さくすることには技術的に問題がある一方で、D1に対してD2が大きすぎると、各ボルト48,50の強度が低下する。   The outer diameter D2 of the rod-shaped electric heaters 482 and 502 is preferably 75% or less, more preferably 30 to 50% with respect to the outer diameter D1 of the bolts 48 and 50. While it is technically problematic to make D2 too small with respect to D1, if D2 is too large with respect to D1, the strength of each bolt 48, 50 is lowered.

本実施形態では、棒状電気ヒーター482,502は、制御装置80から送出される信号に基づき、チョークバー44,46の長手方向に温度分布をもたせることが可能になっている。チョークバー44,46の長手方向のある部分の温度が変化すると、流路34,38を流れる溶融樹脂の樹脂温度を微小変化して樹脂粘度が変化し、流路34,38を流れる溶融樹脂の流速が変化する。その結果、厚みのコントロールができる。   In the present embodiment, the rod-shaped electric heaters 482 and 502 can have a temperature distribution in the longitudinal direction of the choke bars 44 and 46 based on a signal sent from the control device 80. When the temperature of a portion in the longitudinal direction of the choke bars 44 and 46 changes, the resin temperature of the molten resin flowing through the flow paths 34 and 38 changes slightly to change the resin viscosity, and the molten resin flowing through the flow paths 34 and 38 changes. The flow rate changes. As a result, the thickness can be controlled.

図2及び図3に示すように、リップ部40の近傍には、リップ部40の間隙を調整する複数のリップ調整ボルト42が、リップ部40の幅方向(図2の紙面方向。以下同じ)に沿って所定間隔で設けられている。   2 and 3, in the vicinity of the lip portion 40, a plurality of lip adjustment bolts 42 for adjusting the gap of the lip portion 40 are provided in the width direction of the lip portion 40 (the same as the paper direction in FIG. 2). Are provided at predetermined intervals.

リップ調整ボルト42を軸方向に進退させてリップ部40の間隙を調整することで、合流部32で重ね合わされた積層体の流動抵抗が部分的に変化し、その結果、積層体の流量が部分的に変化して、リップ部40から排出される多層フィルム2全体の厚み調整が行われる。この操作を各ボルト42ごとに行うことにより、リップ部40の直前の間隙量に分布がつけられる。なお、リップ調整ボルト42には電気ヒーターが取り付けてあり、その電気ヒーターを通電或いは遮電することで、リップ調整ボルト42を膨脹及び収縮させ、その結果、リップ部40の間隙を変化させるような構成としてもよい。   By adjusting the gap of the lip portion 40 by moving the lip adjusting bolt 42 in the axial direction, the flow resistance of the laminated body overlapped at the merging portion 32 is partially changed. As a result, the flow rate of the laminated body is partially increased. The thickness of the entire multilayer film 2 discharged from the lip 40 is adjusted. By performing this operation for each bolt 42, a distribution is given to the gap amount immediately before the lip portion 40. Note that an electric heater is attached to the lip adjustment bolt 42. By energizing or interrupting the electric heater, the lip adjustment bolt 42 is expanded and contracted, and as a result, the gap of the lip portion 40 is changed. It is good also as a structure.

本実施形態では、ダイス本体24の内部には、樹脂温度調整手段としての電気ヒーター52,54,56,58が、マニホールド28(内層用マニホールド)及び流路36に沿って延びるように配置されていてもよい。電気ヒーター52,54,56,58は、それぞれ、各マニホールド26,28,30内の溶融樹脂の温度(ひいては樹脂粘度)を制御するためのものである。各電気ヒーター52,54,56,58の形状は特に限定されず、例えば、板状・円柱状等が挙げられる。円柱状の電気ヒーターを用いる場合の該ヒーターの直径は、通常、15〜25mm程度(好ましくは20mm程度)とされる。板状の電気ヒーターを用いる場合、該ヒーターの厚さは、通常、15〜25mm程度とされる。   In the present embodiment, electric heaters 52, 54, 56, 58 as resin temperature adjusting means are arranged inside the die body 24 so as to extend along the manifold 28 (inner layer manifold) and the flow path 36. May be. The electric heaters 52, 54, 56, and 58 are for controlling the temperature (and consequently the resin viscosity) of the molten resin in each of the manifolds 26, 28, and 30, respectively. The shape of each electric heater 52,54,56,58 is not specifically limited, For example, plate shape, a column shape, etc. are mentioned. When a cylindrical electric heater is used, the diameter of the heater is usually about 15 to 25 mm (preferably about 20 mm). When using a plate-shaped electric heater, the thickness of the heater is usually about 15 to 25 mm.

本実施形態では、電気ヒーター52,54,56,58以外にも、ダイス本体24の全体を加熱するためのダイス本体保温用の電気ヒーターを、例えば電気ヒーター52,58の外側に設けてもよい。   In the present embodiment, in addition to the electric heaters 52, 54, 56, and 58, an electric heater for keeping the die main body for heating the entire die main body 24 may be provided outside the electric heaters 52 and 58, for example. .

ダイス本体24のリップ部40の外部には、押し出された多層フィルム2のうち少なくとも最外層4,5の厚みを検出することができる厚み検出装置70が設けてある。厚み検出装置70の構成は特に限定されず、例えば、赤外線厚さ計、X線厚さ計などの多層用市販の厚さ計装置が使用可能である。   A thickness detecting device 70 capable of detecting the thickness of at least the outermost layers 4 and 5 of the extruded multilayer film 2 is provided outside the lip portion 40 of the die body 24. The structure of the thickness detection apparatus 70 is not specifically limited, For example, the commercially available thickness gauge apparatus for multilayers, such as an infrared thickness meter and an X-ray thickness meter, can be used.

厚み検出装置70で検出された多層フィルム2の最外層4,5の厚みデータは、所定の指令信号として制御装置80に送出されるようになっている。   The thickness data of the outermost layers 4 and 5 of the multilayer film 2 detected by the thickness detection device 70 is sent to the control device 80 as a predetermined command signal.

制御装置80では、受信した最外層4,5の厚みデータを保持する手段と、最外層厚みの所望値と測定値とを比較して差を求める手段と、求められた差に比例させて、差の積分値に比例させて、あるいは、差の時間的変化に比例させて、電気ヒーターの電力をコントロールする。そして、制御装置80に厚み検出装置70からの最外層4,5の厚みデータが入力されると、それらのデータを、データα及びデータβと比較し、多層フィルム2の最外層4,5の厚みを所望の値に近づけるために、チョークバー44,46を加熱し、チョークバー44,46の長手方向(図2の紙面方向)に温度分布をもたせ、ひいては流路34,38を流れる溶融樹脂の樹脂温度を微小調整、例えば0.1℃レベルで制御するような電圧調整信号を、各ボルト48,50に埋め込まれた棒状電気ヒーター482,502に対して送出するようになっている。   In the control device 80, the means for holding the received thickness data of the outermost layers 4 and 5, the means for comparing the desired value and the measured value of the outermost layer thickness, and proportional to the obtained difference, The electric power of the electric heater is controlled in proportion to the integral value of the difference or in proportion to the temporal change of the difference. When the thickness data of the outermost layers 4 and 5 from the thickness detection device 70 are input to the control device 80, the data are compared with the data α and data β, and the outermost layers 4 and 5 of the multilayer film 2 are compared. In order to bring the thickness closer to a desired value, the choke bars 44 and 46 are heated to have a temperature distribution in the longitudinal direction of the choke bars 44 and 46 (the paper surface direction in FIG. 2), and consequently the molten resin flowing through the flow paths 34 and 38. A voltage adjustment signal for finely adjusting the resin temperature, for example, at a level of 0.1 ° C., is sent to the rod-shaped electric heaters 482 and 502 embedded in the respective bolts 48 and 50.

電気ヒーターにかかる電圧を高くすると、電気ヒーター温度が上がり、その結果、チョークバー44,46が加熱され、チョークバー44,46の長手方向に温度分布が生じ、流路34,38を流れる溶融樹脂の樹脂温度が高くなる。流路34,38を流れる溶融樹脂の樹脂温度が高くなると、樹脂粘度が低くなって樹脂が流れ易くなり、その結果、樹脂厚が厚くなる。逆に、電気ヒーターにかかる電圧を低くすると、電気ヒーター温度は下がり、最終的には流路34,38を流れる溶融樹脂の樹脂温度が低くなる。流路34,38を流れる溶融樹脂の樹脂温度が低くなると、樹脂粘度が高くなって樹脂が流れ難くなり、その結果、樹脂厚が薄くなる。   When the voltage applied to the electric heater is increased, the temperature of the electric heater rises. As a result, the choke bars 44 and 46 are heated, a temperature distribution is generated in the longitudinal direction of the choke bars 44 and 46, and the molten resin flowing through the flow paths 34 and 38. The resin temperature increases. When the resin temperature of the molten resin flowing through the flow paths 34 and 38 increases, the resin viscosity decreases and the resin easily flows, and as a result, the resin thickness increases. Conversely, when the voltage applied to the electric heater is lowered, the electric heater temperature is lowered, and finally the resin temperature of the molten resin flowing through the flow paths 34 and 38 is lowered. When the resin temperature of the molten resin flowing through the flow paths 34 and 38 becomes low, the resin viscosity becomes high and the resin hardly flows, and as a result, the resin thickness becomes thin.

多層フィルムの製造方法
以上の構成の多層押出成形装置20を用いて、図1に示す多層フィルム2を以下のようにして製造する。
Using the multilayer extrusion molding apparatus 20 having the above configuration, the multilayer film 2 shown in FIG. 1 is manufactured as follows.

まず、3台の溶融押出機(図示省略)からそれぞれ押し出された溶融樹脂を、それぞれのマニホールド26,28,30に供給する。   First, molten resins extruded from three melt extruders (not shown) are supplied to the manifolds 26, 28, and 30.

次に、マニホールド26,28,30に供給された溶融樹脂を、それぞれの流路34,36,38を介して合流部32で合流させ、該合流部32で各溶融樹脂を複層状に重ね合わせ、合流路41を介してリップ部40から外部へと押し出す。この成形においてマニホールド26,28,30で前記流路34,36,38の幅方向(図2の紙面方向)に拡流してシート状の流れを形成する。   Next, the molten resin supplied to the manifolds 26, 28, and 30 is merged at the merging portion 32 through the respective flow paths 34, 36, and 38, and the molten resins are stacked in multiple layers at the merging portion 32. Then, it is pushed out from the lip portion 40 through the joint channel 41. In this molding, the flow is expanded in the width direction (paper surface direction in FIG. 2) of the flow paths 34, 36, 38 by the manifolds 26, 28, 30 to form a sheet-like flow.

リップ部40から押し出された多層フィルム2は、例えば回転する冷却ドラム90上で冷却され、その後、図示省略してある巻取り機に巻き取られる。本実施形態では、図2に示すように、冷却ドラム90以降(巻取り機まで)の位置には厚み検出装置70が配置してある。このため、リップ部40から押し出された多層フィルム2は、厚み検出装置70を通過し、多層フィルム2の最外層4,5の厚みが検出され、ここで検出された厚みデータは、所定の指令信号として制御装置80に送出される。   The multilayer film 2 pushed out from the lip portion 40 is cooled, for example, on a rotating cooling drum 90, and then wound around a winder (not shown). In the present embodiment, as shown in FIG. 2, a thickness detection device 70 is disposed at a position after the cooling drum 90 (up to the winder). For this reason, the multilayer film 2 extruded from the lip portion 40 passes through the thickness detector 70, and the thicknesses of the outermost layers 4 and 5 of the multilayer film 2 are detected. The thickness data detected here is a predetermined command. The signal is sent to the control device 80 as a signal.

制御装置80には、流路34,38を流れる溶融樹脂の樹脂温度−棒状電気ヒーター482,502にかかる電圧の関係データαと、押し出された多層フィルム2の最外層4,5の厚み−棒状電気ヒーター482,502にかかる電圧の関係データβとが、予め入力されているので、厚み検出装置70から送出された厚みデータを、データα及びデータβと比較し、多層フィルム2の最外層4,5の厚みを所望の値に近づけるように、流路34,38を流れる溶融樹脂の樹脂温度を、例えば0.1℃レベルで制御するような電圧調整信号を、各ボルト48,50に埋め込まれた棒状電気ヒーター482,502に対して送出する。   The control device 80 includes the relationship data α of the resin temperature of the molten resin flowing through the flow paths 34 and 38 and the voltage applied to the rod-shaped electric heaters 482 and 502, the thickness of the outermost layers 4 and 5 of the extruded multilayer film 2, and the rod shape. Since the voltage relation data β applied to the electric heaters 482 and 502 is input in advance, the thickness data sent from the thickness detector 70 is compared with the data α and data β, and the outermost layer 4 of the multilayer film 2 is compared. , 5 is embedded in each of the bolts 48 and 50 so as to control the resin temperature of the molten resin flowing through the flow paths 34 and 38 at a level of, for example, 0.1 ° C. so that the thickness of the To the rod-shaped electric heaters 482, 502.

具体的には、送出された厚みデータが、多層フィルム2の所望厚みより高いと判断される場合には、制御装置80は、棒状電気ヒーター482,502に対してかかる電圧量を減少させるような指令信号を送出する。棒状電気ヒーター482,502にかかる電圧が減少すると、流路34,38を流れる溶融樹脂の樹脂温度が低くなり、樹脂粘度が高くなって樹脂が流れ難くなり、その結果、樹脂厚が薄くなる傾向にある。   Specifically, when it is determined that the sent thickness data is higher than the desired thickness of the multilayer film 2, the control device 80 reduces the amount of voltage applied to the rod-shaped electric heaters 482 and 502. Send command signal. When the voltage applied to the rod-shaped electric heaters 482 and 502 decreases, the resin temperature of the molten resin flowing through the flow paths 34 and 38 becomes lower, the resin viscosity becomes higher and the resin does not flow easily, and as a result, the resin thickness tends to be thinner. It is in.

逆に、送出された厚みデータが、多層フィルム2の所望厚みより低いと判断される場合には、制御装置80は、棒状電気ヒーター482,502に対してかかる電圧量を増加させるような指令信号を送出する。棒状電気ヒーター482,502にかかる電圧が増加すると、流路34,38を流れる樹脂温度が高くなり、樹脂粘度が低くなって樹脂が流れ易くなり、その結果、樹脂厚が厚くなる傾向にある。   Conversely, when it is determined that the sent thickness data is lower than the desired thickness of the multilayer film 2, the control device 80 causes the command signal to increase the amount of voltage applied to the rod-shaped electric heaters 482 and 502. Is sent out. When the voltage applied to the rod-shaped electric heaters 482 and 502 increases, the resin temperature flowing through the flow paths 34 and 38 increases, the resin viscosity decreases and the resin easily flows, and as a result, the resin thickness tends to increase.

本実施形態では、以上のようにして、厚み検出装置70を通過する多層フィルム2の最外層4,5の厚みを所望の値におさめるようにフィードバック制御している。   In the present embodiment, as described above, feedback control is performed so that the thicknesses of the outermost layers 4 and 5 of the multilayer film 2 passing through the thickness detection device 70 are set to desired values.

本実施形態では、多層フィルム2の最外層4,5の厚みについて、大まかにはチョークバー機構により流路34,38の間隙量を変化させることによって調整し、微小な厚み調整については、チョークバー調整ボルト48,50に埋め込んである棒状電気ヒーター482,502の発熱量をコントロールすることによって、チョークバー44,46を加熱し、最終的には流路34,38を流れる溶融樹脂の樹脂温度を変化させ、その結果、流路34,38を流れる溶融樹脂の流速を変化させることによって調整する機構を採用する。制御装置80では、厚み検出装置70から送出される厚みデータに基づいて、棒状電気ヒーター482,502の電圧量を適切に制御し、最終的には流路34,38を流れる溶融樹脂の樹脂温度を0.1℃レベルで制御するような電圧調整信号を、棒状電気ヒーター482,502に対して送出する。このため、多層フィルム2の最外層4,5の厚みムラを効率よく抑えることが可能となる。   In the present embodiment, the thicknesses of the outermost layers 4 and 5 of the multilayer film 2 are roughly adjusted by changing the gap amounts of the flow paths 34 and 38 by a choke bar mechanism. By controlling the amount of heat generated by the rod-shaped electric heaters 482 and 502 embedded in the adjusting bolts 48 and 50, the choke bars 44 and 46 are heated, and finally the resin temperature of the molten resin flowing through the flow paths 34 and 38 is adjusted. As a result, a mechanism for adjusting the flow rate by changing the flow rate of the molten resin flowing through the flow paths 34 and 38 is adopted. The control device 80 appropriately controls the voltage amount of the rod-shaped electric heaters 482 and 502 based on the thickness data sent from the thickness detection device 70, and finally the resin temperature of the molten resin flowing through the flow paths 34 and 38. Is sent to the bar-shaped electric heaters 482 and 502 to control the voltage at a level of 0.1 ° C. For this reason, it becomes possible to suppress the thickness nonuniformity of the outermost layers 4 and 5 of the multilayer film 2 efficiently.

光学フィルム
得られた多層フィルム(未延伸積層体)2を延伸することにより、光学フィルム(多層延伸フィルム)を得ることができる。この光学フィルムは位相差フィルムとして有用である。
Optical film (multilayer stretched film) can be obtained by stretching the obtained multilayer film (unstretched laminate) 2. This optical film is useful as a retardation film.

位相差フィルムは、フィルム全面に亘って所望の値で均一なレターデーションを有するフィルムである。位相差フィルムには、使用しようとする光の波長λのλ/2、λ/4などの位相差フィルムがある。   The retardation film is a film having a uniform retardation at a desired value over the entire film surface. Examples of the retardation film include retardation films such as λ / 2 and λ / 4 of the wavelength λ of light to be used.

延伸方法に特に限定はなく、従来公知の方法を適用しうる。具体的には、ロール側の周速の差を利用して縦方向に一軸延伸する方法、テンターを用いて横方向に一軸延伸する方法などの一軸延伸法;同時二軸延伸法、逐次二軸延伸法などの二軸延伸法;特定のテンター延伸機を用いた斜めに延伸する方法;などが挙げられる。延伸温度は、内層3を構成する樹脂のガラス転移温度をTg(A)℃としたときに、Tg(A)−10〜Tg(A)+20℃が好ましい。延伸倍率は、長さ方向に通常1.05〜10倍、好ましくは1.1〜5倍であり、幅方向に通常1.01〜5倍程度である。   There is no particular limitation on the stretching method, and a conventionally known method can be applied. Specifically, a uniaxial stretching method such as a method of uniaxial stretching in the longitudinal direction using the difference in peripheral speed on the roll side, a method of uniaxial stretching in the transverse direction using a tenter; simultaneous biaxial stretching method, sequential biaxial Examples thereof include a biaxial stretching method such as a stretching method; a method of stretching obliquely using a specific tenter stretching machine; and the like. The stretching temperature is preferably Tg (A) -10 to Tg (A) + 20 ° C. when the glass transition temperature of the resin constituting the inner layer 3 is Tg (A) ° C. The draw ratio is usually 1.05 to 10 times, preferably 1.1 to 5 times in the length direction, and usually about 1.01 to 5 times in the width direction.

なお、位相差フィルム以外の光学フィルムとしては、偏光板保護フィルム、視野角補償フィルム、輝度向上フィルム、プラスチックセルなどが挙げられる。   Examples of the optical film other than the retardation film include a polarizing plate protective film, a viewing angle compensation film, a brightness enhancement film, and a plastic cell.

その他の実施形態
以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。
Other Embodiments Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can be implemented in various modes without departing from the scope of the present invention. Of course.

例えば、上述した実施形態では、最外層用樹脂温度微小調整手段として、各チョークバー調整ボルト48,50に埋め込んだ棒状電気ヒーター482,502を例示しているが、本発明ではこれに限定されるものではなく、制御装置80から送出される信号に基づき、流路34,38を流れる溶融樹脂の温度を変化させることが可能な手段であればよい。最外層用樹脂温度微小調整手段として、例えば、チョークバー44,46に埋め込んだオイル循環による伝(放)熱装置を適用してもよい。   For example, in the above-described embodiment, the rod-shaped electric heaters 482 and 502 embedded in the respective choke bar adjustment bolts 48 and 50 are illustrated as the resin temperature fine adjustment means for the outermost layer. However, the present invention is not limited to this. Any means may be used as long as it can change the temperature of the molten resin flowing through the flow paths 34 and 38 based on a signal sent from the control device 80. As the outermost resin temperature fine adjustment means, for example, a heat transfer (release) heat device by oil circulation embedded in the choke bars 44 and 46 may be applied.

また、上述した実施形態では、厚み検出装置70の検出結果のみにより、棒状電気ヒーター482,502にかかる電力をコントロールし、その結果、流路34,38を流れる溶融樹脂の温度を調整しても良いが、流路34,38内に温度センサー(図示省略)を設けた上で、溶融樹脂の温度も考慮して棒状電気ヒーター482,502の電力をコントロールし、流路34,38内の溶融樹脂の温度を調整しても良い。   In the above-described embodiment, the electric power applied to the rod-shaped electric heaters 482 and 502 is controlled only by the detection result of the thickness detection device 70, and as a result, the temperature of the molten resin flowing through the flow paths 34 and 38 is adjusted. Although the temperature sensors (not shown) are provided in the flow paths 34 and 38, the electric power of the rod-shaped electric heaters 482 and 502 is controlled in consideration of the temperature of the molten resin, and the melting in the flow paths 34 and 38 is good. The temperature of the resin may be adjusted.

また、上述した実施形態では、最外層4−内層3−最外層5の2種3層の多層フィルム2を製造する方法を例示したが、最外層4−接着剤層−内層3−接着剤層−最外層5の3種5層、あるいはそれ以上の多層フィルムを製造する場合に適用してもよい。例えば3種5層の多層フィルムを製造するケースでは、まず、内層3の両側に接着剤層を合流させて接着剤層−内層3−接着剤層の積層体とし、その後に、それぞれの接着剤層の表面に最外層4を合流させ、最外層4−接着剤層−内層3−接着剤層−最外層5の積層構造とすればよい。   In the above-described embodiment, the method of producing the multilayer film 2 of two types and three layers of the outermost layer 4 -the inner layer 3 -the outermost layer 5 has been exemplified, but the outermost layer 4 -adhesive layer-inner layer 3 -adhesive layer -You may apply when manufacturing the multilayer film of the 3 types 5 layers of the outermost layer 5, or more. For example, in the case of producing a multilayer film of 3 types and 5 layers, first, an adhesive layer is merged on both sides of the inner layer 3 to form a laminate of adhesive layer-inner layer 3-adhesive layer, and then each adhesive The outermost layer 4 may be joined to the surface of the layer to form a laminated structure of the outermost layer 4 -adhesive layer-inner layer 3 -adhesive layer-outermost layer 5.

あるいは、まず、最外層4と接着剤層を合流させて、最外層4−接着剤層の積層体と、接着剤層−最外層4の積層体とし、その後に、内層3の両側に、各積層体の接着剤層を対向させて合流させ、最外層4−接着剤層−内層3−接着剤層−最外層5の積層構造としてもよい。   Alternatively, first, the outermost layer 4 and the adhesive layer are merged to form an outermost layer 4-adhesive layer laminate and an adhesive layer-outermost layer 4 laminate. It is good also as a laminated structure of the outermost layer 4-adhesive layer-inner layer 3-adhesive layer-outermost layer 5 by making the adhesive layer of a laminated body oppose and merge.

図1は本発明の装置又は方法によって形成できる多層フィルムの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a multilayer film that can be formed by the apparatus or method of the present invention. 図2は図1の多層フィルムを製造するのに適した本発明の多層押出成形装置の一例を示す側面断面図である。FIG. 2 is a side sectional view showing an example of the multilayer extrusion molding apparatus of the present invention suitable for manufacturing the multilayer film of FIG. 図3は図2の正面図(但し、図2よりも縮小してある)である。3 is a front view of FIG. 2 (however, it is smaller than FIG. 2). 図4はチョークバー及びチョークバー調整ボルト付近の要部を示す概要図である。FIG. 4 is a schematic view showing a main part near the choke bar and the choke bar adjusting bolt. 図5はチョークバー調整ボルトの断面図である。FIG. 5 is a sectional view of the choke bar adjusting bolt.

符号の説明Explanation of symbols

2… 多層フィルム(未延伸積層体)
3… 内層
4,5…最外層
20… 多層押出成形装置
22… 成形用ダイス
24… ダイス本体
26,28,30…マニホールド
32… 合流部
34,36,38… 流路
40… リップ部
41… 合流路
42… リップ調整ボルト
44,46… チョークバー
48,50… チョークバー調整ボルト
482,502… 棒状電気ヒーター
52,54,56,58… 電気ヒーター
70… 厚み検出装置
80… 制御装置
2. Multi-layer film (unstretched laminate)
3 ... Inner layer 4, 5 ... Outermost layer 20 ... Multi-layer extrusion molding device 22 ... Molding die 24 ... Die body 26, 28, 30 ... Manifold 32 ... Merge part 34, 36, 38 ... Channel 40 ... Lip part 41 ... Merge Road 42 ... Lip adjustment bolts 44, 46 ... Choke bars 48, 50 ... Choke bar adjustment bolts 482, 502 ... Rod-shaped electric heaters 52, 54, 56, 58 ... Electric heater 70 ... Thickness detection device 80 ... Control device

Claims (4)

2つの最外層の間に1つ以上の内層を持つ3層以上の多層フィルムを形成するために用いる、(1)ダイスと、(2)厚み検出手段と、(3)制御手段とを有する多層押出成形装置において、
(1)ダイスは、溶融樹脂が供給される、2つの最外層用マニホールド及び前記2つの最外層用マニホールドの間に所定間隔で設けられた1つ以上の内層用マニホールドと、
前記マニホールドから下流側へ延び、やがては1つに合流する2つの最外層用流路及び1つ以上の内層用流路と、
前記各最外層用流路の幅方向に沿って連続的に設けられた、該流路の間隙を調整する2つのチョークバーと、
前記各最外層用流路の幅方向に相当する前記チョークバーの長手方向に沿って前記チョークバーの流路反対側に所定間隔で連列され、先端部が前記チョークバーに対して軸方向に進退自在に支持された複数のチョークバー調整ボルトと、
前記各最外層用流路内を流れる溶融樹脂の温度を微小調整する最外層用樹脂温度微小調整手段と、
前記各最外層用流路及び前記内層用流路の合流部の下流側に配置されたリップ部とを有し、
前記各マニホールドから前記各流路を通じて流れ出る前記各溶融樹脂を前記合流部で合流させて多層化し、前記リップ部から多層フィルムとして連続的に押し出すことができるものであり、
(2)厚み検出手段は、前記ダイスから押し出された多層フィルムの各最外層の厚みを検出することができるものであり、
(3)制御手段は、前記検出された多層フィルムの各最外層の厚みに応じて、前記各最外層用流路内を流れる溶融樹脂の温度を変化させるよう前記最外層用樹脂温度微小調整手段を制御することができるものである、多層押出成形装置。
A multilayer having (1) a die, (2) thickness detection means, and (3) control means, which is used to form a multilayer film of three or more layers having one or more inner layers between two outermost layers. In extrusion equipment,
(1) The dice includes two outermost layer manifolds supplied with molten resin, and one or more inner layer manifolds provided at a predetermined interval between the two outermost layer manifolds,
Two outermost flow paths and one or more inner flow paths that extend downstream from the manifold and eventually merge into one;
Two choke bars that are provided continuously along the width direction of each outermost layer flow path and adjust the gap between the flow paths;
Along the longitudinal direction of the choke bar corresponding to the width direction of each outermost layer flow path, the choke bars are arranged at a predetermined interval on the opposite side of the choke bar flow path, and the tip portion is in the axial direction with respect to the choke bar. A plurality of choke bar adjustment bolts supported so as to freely advance and retreat;
A resin temperature micro-adjustment means for finely adjusting the temperature of the molten resin flowing in each of the outermost layer flow paths;
A lip portion disposed on the downstream side of the merging portion of each of the outermost channel and the inner layer channel;
Each molten resin flowing out from each manifold through each flow path is joined at the joining portion to be multilayered, and can be continuously extruded as a multilayer film from the lip portion,
(2) The thickness detection means is capable of detecting the thickness of each outermost layer of the multilayer film extruded from the die,
(3) The control means adjusts the temperature of the outermost layer resin temperature so as to change the temperature of the molten resin flowing in each outermost layer flow path according to the detected thickness of each outermost layer of the multilayer film. Multi-layer extrusion molding apparatus that can control.
前記最外層用樹脂温度微小調整手段が、前記各チョークバー調整ボルトに埋め込んである極細の棒状ヒーターである、請求項1に記載の多層押出成形装置。 The multilayer extrusion molding apparatus according to claim 1, wherein the outermost resin temperature fine adjustment means is a very fine rod heater embedded in each choke bar adjustment bolt. 請求項1または2に記載の多層押出成形装置を用いて、3層以上の多層フィルムを押出成形する工程を含む多層フィルムの製造方法。 The manufacturing method of a multilayer film including the process of extruding a multilayer film of three or more layers using the multilayer extrusion molding apparatus of Claim 1 or 2. 請求項3に記載の方法により押出成形された多層フィルムを延伸する工程を含む多層延伸フィルムの製造方法。
The manufacturing method of a multilayer stretched film including the process of extending | stretching the multilayer film extruded by the method of Claim 3.
JP2005051119A 2005-02-25 2005-02-25 Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method Active JP4591114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051119A JP4591114B2 (en) 2005-02-25 2005-02-25 Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051119A JP4591114B2 (en) 2005-02-25 2005-02-25 Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method

Publications (2)

Publication Number Publication Date
JP2006231763A true JP2006231763A (en) 2006-09-07
JP4591114B2 JP4591114B2 (en) 2010-12-01

Family

ID=37039933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051119A Active JP4591114B2 (en) 2005-02-25 2005-02-25 Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method

Country Status (1)

Country Link
JP (1) JP4591114B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231788A (en) * 2005-02-25 2006-09-07 Toshiba Mach Co Ltd Die for forming film sheet
JP2011126084A (en) * 2009-12-16 2011-06-30 Nippon Zeon Co Ltd Multilayer film, phase difference film and method for producing them
KR101097631B1 (en) 2008-04-16 2011-12-22 도시바 기카이 가부시키가이샤 Dies for forming a sheet and method for forming the same
KR101173101B1 (en) 2010-09-13 2012-08-14 박승기 Forming die for expanded foam board
WO2012117513A1 (en) * 2011-03-01 2012-09-07 株式会社サン・エヌ・ティ Multilayer extrusion molding device
JP2012245761A (en) * 2011-05-31 2012-12-13 Sumitomo Chemical Co Ltd Method of manufacturing laminated sheet
JP2014168886A (en) * 2013-03-04 2014-09-18 Fujifilm Corp Transparent conductive film and touch panel
WO2014142034A1 (en) * 2013-03-14 2014-09-18 日本ゼオン株式会社 Die and method for producing laminate film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168670A (en) * 1974-12-10 1976-06-14 Toshiba Machine Co Ltd
JPS52158774U (en) * 1976-05-28 1977-12-02
JPS54124067A (en) * 1978-03-20 1979-09-26 Mitsubishi Heavy Ind Ltd Extrusion die
JPH05228975A (en) * 1992-02-25 1993-09-07 Toray Ind Inc Co-extrusion equipment
JPH0671729A (en) * 1992-08-26 1994-03-15 Toshiba Mach Co Ltd Method and apparatus for molding sheet and composite automatic flat die to be used therefor
JPH11309770A (en) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd Method and apparatus for multi-layer extrusion molding
JP2000071309A (en) * 1998-09-01 2000-03-07 Teijin Ltd Manufacture of film
JP2000127227A (en) * 1998-10-29 2000-05-09 Teijin Ltd Film extrusion device and manufacture of film
JP2002107542A (en) * 2000-10-03 2002-04-10 Fuji Photo Film Co Ltd Method for producing optical retardation plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168670A (en) * 1974-12-10 1976-06-14 Toshiba Machine Co Ltd
JPS52158774U (en) * 1976-05-28 1977-12-02
JPS54124067A (en) * 1978-03-20 1979-09-26 Mitsubishi Heavy Ind Ltd Extrusion die
JPH05228975A (en) * 1992-02-25 1993-09-07 Toray Ind Inc Co-extrusion equipment
JPH0671729A (en) * 1992-08-26 1994-03-15 Toshiba Mach Co Ltd Method and apparatus for molding sheet and composite automatic flat die to be used therefor
JPH11309770A (en) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd Method and apparatus for multi-layer extrusion molding
JP2000071309A (en) * 1998-09-01 2000-03-07 Teijin Ltd Manufacture of film
JP2000127227A (en) * 1998-10-29 2000-05-09 Teijin Ltd Film extrusion device and manufacture of film
JP2002107542A (en) * 2000-10-03 2002-04-10 Fuji Photo Film Co Ltd Method for producing optical retardation plate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231788A (en) * 2005-02-25 2006-09-07 Toshiba Mach Co Ltd Die for forming film sheet
JP4741857B2 (en) * 2005-02-25 2011-08-10 東芝機械株式会社 Dies for film and sheet molding
KR101097631B1 (en) 2008-04-16 2011-12-22 도시바 기카이 가부시키가이샤 Dies for forming a sheet and method for forming the same
JP2011126084A (en) * 2009-12-16 2011-06-30 Nippon Zeon Co Ltd Multilayer film, phase difference film and method for producing them
KR101173101B1 (en) 2010-09-13 2012-08-14 박승기 Forming die for expanded foam board
WO2012117513A1 (en) * 2011-03-01 2012-09-07 株式会社サン・エヌ・ティ Multilayer extrusion molding device
JP2012245761A (en) * 2011-05-31 2012-12-13 Sumitomo Chemical Co Ltd Method of manufacturing laminated sheet
JP2014168886A (en) * 2013-03-04 2014-09-18 Fujifilm Corp Transparent conductive film and touch panel
US10228782B2 (en) 2013-03-04 2019-03-12 Fujifilm Corporation Transparent conductive film and touch panel
US10684710B2 (en) 2013-03-04 2020-06-16 Fujifilm Corporation Transparent conductive film and touch panel
WO2014142034A1 (en) * 2013-03-14 2014-09-18 日本ゼオン株式会社 Die and method for producing laminate film
KR20150127078A (en) 2013-03-14 2015-11-16 니폰 제온 가부시키가이샤 Die and method for producing laminate film
JPWO2014142034A1 (en) * 2013-03-14 2017-02-16 日本ゼオン株式会社 Die and method for producing multilayer film
TWI620640B (en) * 2013-03-14 2018-04-11 Zeon Corp Mold and method for manufacturing multiple layers of film
KR102258679B1 (en) * 2013-03-14 2021-05-28 니폰 제온 가부시키가이샤 Die and method for producing laminate film

Also Published As

Publication number Publication date
JP4591114B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4591114B2 (en) Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method
JP4581691B2 (en) Multilayer extrusion molding apparatus, multilayer film manufacturing method, and multilayer stretched film manufacturing method
JP2008132699A (en) Manufacturing method of resin sheet with transferred surface shape
JP4830517B2 (en) Method for producing stretched film
WO2007111313A1 (en) Continuous stretched film, process for producing the stretched film, and use of the stretched film
TW201432325A (en) Multilayer retardation film and method for producing same
JP2010201659A (en) Method of manufacturing diagonally oriented film, diagonally oriented film, polarizing plate, and liquid crystal display device
JP6299747B2 (en) Die and method for producing multilayer film
JP7215138B2 (en) Feedblock, method for producing multi-layer extrudates, and apparatus for producing multi-layer extrudates
JP6357838B2 (en) Multilayer film manufacturing method and retardation film manufacturing method
JP2008039808A (en) Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate
JP2003236914A (en) Method for manufacturing thermoplastic resin sheet
JP2002156525A (en) Optical retardation plate and method for manufacturing the same
JP4857700B2 (en) Laminate sheet manufacturing apparatus and method
JP3973755B2 (en) Multilayer extrusion molding method and apparatus
US8968860B2 (en) Apparatus and process for producing laminated sheet
CN101746010B (en) Film, method for manufacturing the same, optical compensation film for liquid crystal display panel, polarization plate and liquid crystal display device
JP3846567B2 (en) Method for producing thermoplastic resin sheet
JP2001287258A (en) Apparatus for manufacturing extrusion molded article and method for continuously manufacturing extrusion molded article
JP3584109B2 (en) Laminated resin sheet extrusion molding method and its mold
TW200950957A (en) Sheet forming die and sheet forming method
JP4543915B2 (en) Resin film
JP2013137394A (en) Method for manufacturing retardation film
JP6273955B2 (en) Optical film manufacturing method and optical film manufacturing apparatus
JP6094283B2 (en) Junction apparatus for optical laminated film production, optical laminated film production apparatus, and method for producing optical laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250