JP2006231191A - Production method of conductive member, and conductive member - Google Patents

Production method of conductive member, and conductive member Download PDF

Info

Publication number
JP2006231191A
JP2006231191A JP2005049001A JP2005049001A JP2006231191A JP 2006231191 A JP2006231191 A JP 2006231191A JP 2005049001 A JP2005049001 A JP 2005049001A JP 2005049001 A JP2005049001 A JP 2005049001A JP 2006231191 A JP2006231191 A JP 2006231191A
Authority
JP
Japan
Prior art keywords
liquid
coating liquid
coating
specific gravity
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049001A
Other languages
Japanese (ja)
Other versions
JP4728011B2 (en
Inventor
Toshihiro Otaka
利博 大高
Hisanari Sawada
弥斉 澤田
Hideta Araki
秀太 荒木
Atsushi Ikeda
敦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2005049001A priority Critical patent/JP4728011B2/en
Publication of JP2006231191A publication Critical patent/JP2006231191A/en
Application granted granted Critical
Publication of JP4728011B2 publication Critical patent/JP4728011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of a conductive member for forming a coating layer free of film thickness unevenness for a long period of time even if a coating liquid containing particles and resins having high adhesiveness is used and a conductive member manufactured by the method. <P>SOLUTION: The production method of the conductive member having a conductive support 2a and an elastic layer 2b and coating layer 2c-2e formed on the outer periphery thereof comprising at least a process of forming the coating layer by applying the coating liquid on the outer peripheral surface of the elastic layer, and a process of holding the liquid specific gravity constant, wherein the maximum surface roughness (Rmax) in an area coming into contact with the coating liquid of an instrument for measuring the liquid specific gravity in the process of holding the liquid specific gravity constant is ≤1 μm, and the conductive member manufactured by the method are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置における帯電、現像、転写、クリーニング及び除電等に用いられる導電性部材、該導電性部材の製造方法に関する。   The present invention relates to a conductive member used for charging, development, transfer, cleaning, static elimination, and the like in an image forming apparatus employing an electrophotographic system such as a printer, a facsimile machine, and a copying machine, and a method for manufacturing the conductive member.

従来、電子写真プロセスにおける帯電プロセスは、金属ワイヤーに高電圧(直流電圧6〜8kV)を印加して発生するコロナシャワーにより被帯電体である電子写真感光体面を所定の極性・電位に一様帯電させるコロナ帯電器が広く利用されていた。しかし、高圧電源を必要とする、比較的多量のオゾンが発生する等の問題があった。   Conventionally, the charging process in the electrophotographic process is to uniformly charge the surface of the electrophotographic photosensitive member to a predetermined polarity and potential by a corona shower generated by applying a high voltage (DC voltage 6 to 8 kV) to a metal wire. Corona chargers to be used were widely used. However, there are problems such as requiring a high voltage power source and generating a relatively large amount of ozone.

これに対して導電性部材を感光体に接触させながら電圧を印加して、感光体表面を帯電させる接触帯電方式が実用化されている。これは、感光体に、ローラ型、ブレード型、ブラシ型及び磁気ブラシ型等の電荷供給部材としての導電性部材(帯電部材)を接触させ、この接触帯電部材に所定の帯電バイアスを印加して感光体面を所定の極性・電位に一様帯電させるものである。   On the other hand, a contact charging method in which a voltage is applied while a conductive member is in contact with the photosensitive member to charge the surface of the photosensitive member has been put into practical use. This is because a conductive member (charging member) as a charge supply member such as a roller type, a blade type, a brush type or a magnetic brush type is brought into contact with the photosensitive member, and a predetermined charging bias is applied to the contact charging member. The photosensitive member surface is uniformly charged to a predetermined polarity and potential.

この帯電方式は、電源の低電圧化とオゾンの発生量が少ないという利点を有している。この中でも特に接触帯電部材として導電性ローラを用いたローラ帯電方式が、帯電の安定性という点から好ましく用いられている。しかしながら、帯電の均一性に関してはコロナ帯電器と比較してやや不利であった。   This charging method has the advantages of lowering the voltage of the power source and reducing the amount of ozone generated. Among these, a roller charging method using a conductive roller as a contact charging member is particularly preferably used from the viewpoint of charging stability. However, the uniformity of charging is slightly disadvantageous compared to the corona charger.

従来、帯電均一性を改善するために、所望の被帯電体表面電位Vdに相当する直流電圧に帯電開始電圧(Vth)の2倍以上のピーク間電圧を持つ交流電圧成分(AC電圧成分)を重畳した電圧(脈流電圧;時間と共に電圧値が周期的に変化する電圧)を接触帯電部材に印加する「AC帯電方式」が用いられる(例えば、特許文献1)。   Conventionally, in order to improve charging uniformity, an AC voltage component (AC voltage component) having a peak-to-peak voltage more than twice the charging start voltage (Vth) is added to a DC voltage corresponding to a desired surface potential Vd to be charged. An “AC charging method” is used in which a superimposed voltage (pulsating voltage; a voltage whose voltage value periodically changes with time) is applied to the contact charging member (for example, Patent Document 1).

これは、DC電圧にAC電圧(脈流電圧)を重畳させることで、感光体表面の帯電ムラを生じることなく均一で安定した一様帯電が得られるようにする電位の均し効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央である電位Vdに収束し、環境等の外乱には影響されることはなく、接触帯電方式として優れた方法である。   The purpose of this is to equalize the potential so that uniform and stable uniform charging can be obtained without causing uneven charging on the surface of the photoreceptor by superimposing an AC voltage (pulsating voltage) on the DC voltage. Thus, the potential of the member to be charged converges to the potential Vd that is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment, and is an excellent method as a contact charging method.

しかしながら、直流電圧印加時における放電開始電圧(Vth)の2倍以上のピーク間電圧である高圧の交流電圧を重畳させるため、直流電源とは別に交流電源が必要となり、装置自体のコストアップを招く。更には、交流電流を多量に消費することにより、帯電ローラ及び感光体の耐久性が低下し易いという課題があった。   However, in order to superimpose a high-voltage AC voltage that is a peak-to-peak voltage that is twice or more the discharge start voltage (Vth) when a DC voltage is applied, an AC power supply is required in addition to the DC power supply, which increases the cost of the device itself. . Furthermore, there is a problem that the durability of the charging roller and the photosensitive member is liable to be reduced by consuming a large amount of alternating current.

これらの課題は、帯電ローラに直流電圧のみを印加して帯電を行うことにより解消されるものの、帯電ローラに直流電圧のみを印加すると、帯電部材の被覆層表面の僅かな膜厚ムラによって発生したローラ表面の汚れ(外添剤等)付着ムラがAC帯電方式に比べ、画像不良として現れ易い傾向にある。   These problems can be solved by applying only a DC voltage to the charging roller and charging, but when only the DC voltage is applied to the charging roller, it occurs due to slight film thickness unevenness on the surface of the coating layer of the charging member. As compared with the AC charging system, uneven adhesion of dirt (external additives, etc.) on the roller surface tends to appear as an image defect.

上記の汚れ付着ムラは、膜厚ムラによって微小な硬度ムラが生じ、感光体との当接圧が不均一になるため発生するものと考えられている。   It is considered that the above-mentioned unevenness in dirt adhesion occurs because minute unevenness in hardness occurs due to unevenness in film thickness and the contact pressure with the photosensitive member becomes non-uniform.

一般的な被覆層の形成方法としては、均一な被覆層を形成するのに優れているディップコート法が主に用いられ、数μm〜数十μmの膜が形成されることが多い。この被覆層により、帯電ムラを防止する効果があるが、塗工液を用いて被覆層を形成するため、塗工液の濃度や温度及び基材の表面温度、更には塗工工程の環境温度を十分に管理しないと膜厚ムラが生じ易くなってしまう。   As a general method for forming a coating layer, a dip coating method, which is excellent for forming a uniform coating layer, is mainly used, and a film of several μm to several tens of μm is often formed. Although this coating layer has the effect of preventing uneven charging, since the coating layer is formed using a coating solution, the concentration and temperature of the coating solution, the surface temperature of the substrate, and the environmental temperature of the coating process If the thickness is not sufficiently controlled, film thickness unevenness is likely to occur.

これに対して、塗工液の液温度及び液比重を一定管理することで、導電性部材表面の塗工ムラによる硬度ムラを小さくすることが可能であることが、これまでの検討により明らかになっている。しかしながら、塗工液として付着性の高い粒子や樹脂を含有した塗工液を用いた場合、比重を測定する装置の塗工液と接触する部位の表面に、粒子や樹脂が付着し、測定した液比重と実際の液比重との間にズレが生じ、精密な比重管理による膜厚の管理が不可能となる課題があった。   On the other hand, it is clear from the examination so far that it is possible to reduce the hardness unevenness due to uneven coating on the surface of the conductive member by controlling the liquid temperature and liquid specific gravity of the coating liquid constant. It has become. However, when a coating liquid containing highly adherent particles or resin was used as the coating liquid, the particle or resin adhered to the surface of the part that was in contact with the coating liquid of the device for measuring the specific gravity, and measured. There is a problem that a deviation occurs between the liquid specific gravity and the actual liquid specific gravity, making it impossible to control the film thickness by precise specific gravity management.

以上の様に付着性の高い粒子や樹脂を含有した塗工液を用いた場合は、必ずしもこの方法が適切とはいえなかった。
特開昭63−149669号公報(2頁)
As described above, this method is not necessarily appropriate when a coating liquid containing particles or resin having high adhesion is used.
JP 63-149669 (page 2)

以上のように電子写真技術においては近年の市場の高画質化の要求により、上記の様な膜厚ムラによって発生した抵抗ムラでさえも帯電不良となって画像上に色濃度ムラとして現れてしまう。これらの要求を満足するために解決すべき重要な課題となっており、更なるレベルアップが必要であった。   As described above, in the electrophotographic technology, due to the recent demand for higher image quality in the market, even the uneven resistance caused by the uneven film thickness as described above becomes poorly charged and appears as uneven color density on the image. . It has become an important issue to be solved in order to satisfy these requirements, and further level up is necessary.

本発明の目的は、上記課題に鑑みてなされたものであって、導電性部材の被覆層を塗工液を塗布して形成する際、付着性の高い粒子や樹脂を含有した塗工液を用いても長期に亘り膜厚ムラの無い被覆層を形成する導電性部材の製造方法及び該方法により製造された導電性部材を提供することである。   The object of the present invention has been made in view of the above problems, and when a coating layer of a conductive member is formed by applying a coating liquid, a coating liquid containing particles or resin with high adhesion is formed. Even if it uses, it is providing the manufacturing method of the electroconductive member which forms a coating layer without a film thickness nonuniformity over a long term, and the electroconductive member manufactured by this method.

本発明に従って、導電性支持体と、その外周に形成された弾性層及び被覆層を有してなる導電性部材の製造方法であって、該弾性層の外周面上に塗工液を塗布し該被覆層を形成する工程と、該塗工液の液比重を一定に保持する工程と、を少なくとも有し、該液比重を一定に保持する工程における液比重を測定する装置の塗布液に接触する部位の最大表面粗さ(Rmax)が1μm以下であることを特徴とする導電性部材の製造方法が提供される。   In accordance with the present invention, there is provided a method for producing a conductive member comprising a conductive support and an elastic layer and a coating layer formed on the outer periphery thereof, wherein a coating liquid is applied onto the outer peripheral surface of the elastic layer. It has at least a step of forming the coating layer and a step of keeping the liquid specific gravity of the coating liquid constant, and is in contact with the coating liquid of the apparatus for measuring the liquid specific gravity in the step of keeping the liquid specific gravity constant The method for producing a conductive member is characterized in that the maximum surface roughness (Rmax) of the portion to be formed is 1 μm or less.

また、本発明に従って、上記導電性部材の製造方法により製造されたことを特徴とする導電性部材が提供される。   According to the present invention, there is provided a conductive member manufactured by the above-described method for manufacturing a conductive member.

以上のように、本発明によれば、弾性層の外周面上に塗工液を塗布し被覆層を形成する際、塗布液に接触する部位の最大表面粗さ(Rmax)が1μm以下である比重を測定する装置により比重を一定に管理することで、付着性の高い粒子や樹脂を含有した塗工液を用いた際にも、膜厚ムラの無い被覆層を形成した導電性部材の製造方法及び該方法により製造された導電性部材を提供することが可能となった。   As described above, according to the present invention, when the coating liquid is applied to the outer peripheral surface of the elastic layer to form the coating layer, the maximum surface roughness (Rmax) of the portion in contact with the coating liquid is 1 μm or less. Manufacture of conductive members with a coating layer that has no film thickness unevenness even when using coating liquids containing highly adherent particles and resin by controlling the specific gravity constant with a device that measures specific gravity It has become possible to provide a method and a conductive member manufactured by the method.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

なお、以下では、ローラ形状の帯電部材の表面被覆層の形成に関して詳述するが、帯電部材以外の、現像剤担持部材、転写部材、クリーニング部材及び除電部材等の被接触物を電気的にコントロールする導電性部材において、被覆層を形成する場合も、同様の考え方が適用されうる。また、更には、従来技術で上述したAC帯電よりも使用可能条件が厳しいと考えられるDC帯電の帯電ローラに対して、適合するものであり、AC帯電への使用可能性が高いのはいうまでも無い。   In the following, the formation of the surface coating layer of the roller-shaped charging member will be described in detail. However, in addition to the charging member, the objects to be contacted such as the developer carrying member, the transfer member, the cleaning member, and the charge removing member are electrically controlled. The same concept can be applied to the case where the covering layer is formed in the conductive member. Furthermore, it is suitable for a DC charging roller that is considered to be stricter than the AC charging described above in the prior art, and it can be used for AC charging. There is no.

(1)塗工液の管理
ローラを垂直状態で塗工液中に浸漬するディップ法で導電性部材の表面被覆層を形成する際、膜厚ムラの無い被覆層を得るために、塗工液の処方設計が重要となってくる。例えば、溶剤の選択や固形分濃度の適正化、レベリング剤添加等が挙げられる。しかし、表面被覆層が形成し易い塗工液を作製しても、塗工液の管理を十分に行わなければ、均一な表面被覆層を連続して形成することは出来ない。
(1) Management of coating liquid When forming a surface coating layer of a conductive member by a dipping method in which a roller is immersed in the coating liquid in a vertical state, the coating liquid is used in order to obtain a coating layer with no film thickness unevenness. The prescription design is important. For example, selection of a solvent, optimization of solid content concentration, addition of a leveling agent and the like can be mentioned. However, even if a coating liquid in which a surface coating layer can be easily formed is produced, a uniform surface coating layer cannot be continuously formed unless the coating liquid is sufficiently managed.

一般に塗工液の管理は、液温を一定に保った上で液粘度を管理する手法がその大半を占め、公知の方法となっている。その理由としては、ディップ法で膜を形成する場合、膜厚は塗工液の粘度が支配的に形成されるからである。しかし、粘度で塗工液を管理しようとすると、僅かな構造粘性を持つような塗工液の場合、粘度計と液体の剪断速度とローラを塗工している際のローラと塗工液の剪断速度に違いが発生してしまうため、粘度計の値の変化に対応した形で表面被覆層の膜厚が変化しない場合が屡々発生することがある。   In general, for the management of the coating liquid, a method of managing the liquid viscosity while keeping the liquid temperature constant occupies most of the method, and is a known method. The reason for this is that when the film is formed by the dipping method, the viscosity of the coating solution is predominantly formed in the film thickness. However, when trying to control the coating liquid by viscosity, in the case of a coating liquid having a slight structural viscosity, the shear rate of the viscometer and the liquid, and the roller and coating liquid when the roller is applied Since a difference occurs in the shear rate, a case where the film thickness of the surface coating layer does not change in a form corresponding to a change in the value of the viscometer often occurs.

一方で、我々が鋭意検討した結果、液体の比重と膜厚は高い相関性を持つことが分かった。そのため本発明の方法で液管理を行えば、連続して安定した品質の表面被覆層が形成出来るのである。また、塗工液を比重管理すれば、粘度管理で発生する剪断速度の違いによる値の変化等も発生せず、塗工液循環機内の塗工液流量等を変化させても比重としては全く変化がなく、塗工液濃度を一定に管理することが容易にできる。   On the other hand, as a result of our extensive studies, it was found that the specific gravity of the liquid and the film thickness are highly correlated. Therefore, if liquid management is performed by the method of the present invention, a surface coating layer having a continuously stable quality can be formed. In addition, if the specific gravity of the coating liquid is managed, there will be no change in value due to the difference in shear rate that occurs in viscosity management, and even if the flow rate of the coating liquid in the coating liquid circulator is changed, the specific gravity is not at all. There is no change, and the coating solution concentration can be easily managed to be constant.

更に、高い構造粘性を持つ塗工液は、液経時や液保存状態により構造粘性が変化することが多い。実際には、塗工液を粘度管理した場合、塗工液循環機中で塗工液を循環し、液粘度を一定にするため、溶剤で希釈して液粘度を一定に合わせるが、構造粘性が経時変化するような塗工液では、経時で希望粘度を外れてしまうことが屡々発生する。この時、塗工液の固形分濃度としては低過ぎたり、高過ぎたりといった形になっているが、固形分濃度が高い場合には希釈溶剤での希釈により塗工出来る固形分濃度の塗工液に戻すことは容易に出来るが、固形分濃度が低いときは、濃縮するのは極めて困難であり、濃縮が可能であったとしてもかなりの時間を要することとなる。以上の様に塗工液に構造粘性があり、更に液の保存状態や経時で構造粘性が変化するような塗工液では、液温度を一定に保ち、粘度をコントロールしても経時により液粘度は目標値を外れてしまい、同様に固形分濃度も大きく外れてしまう。ここで本発明の方法を適用した場合、塗工液温度を一定に保った上で比重を管理すれば、固形分濃度は一定に出来る。構造粘性の経時変化や保存状態違いでの変化に対しては、構造粘性が安定するまで塗工液を保存熟成あるいは、塗工液循環機中に塗工液を入れ循環熟成すれば塗工液は使用可能となり、本発明の方法で塗工液を管理すれば、連続して安定した品質の表面被覆層が形成出来る。   Furthermore, the coating viscosity having a high structural viscosity often changes in the structural viscosity depending on the liquid aging and storage conditions. Actually, when the viscosity of the coating liquid is controlled, the coating liquid is circulated in the coating liquid circulator and the liquid viscosity is kept constant. In coating liquids that change over time, the desired viscosity often deviates over time. At this time, the solid content concentration of the coating liquid is too low or too high, but if the solid content concentration is high, the solid content concentration can be applied by dilution with a diluent solvent. Although it can be easily returned to the liquid, when the solid concentration is low, it is extremely difficult to concentrate, and even if it can be concentrated, a considerable time is required. As described above, the coating liquid has a structural viscosity, and the liquid viscosity changes over time even when the liquid temperature is kept constant and the viscosity is controlled. Deviates from the target value, and the solid content concentration also deviates greatly. Here, when the method of the present invention is applied, the solid concentration can be made constant by managing the specific gravity while keeping the coating solution temperature constant. For changes in structural viscosity over time and changes in storage conditions, store the coating liquid until the structural viscosity is stable, or ripen by putting the coating liquid in the coating liquid circulator and aging the coating liquid. If the coating solution is managed by the method of the present invention, a surface coating layer having a stable quality can be formed continuously.

塗工液循環機中に設ける比重計の測定方式としては、塗工液を循環状態で比重を連続して精度良く計測できるものが好ましい。例えば、音叉式比重計や超音波比重計等があるが、精密な比重管理を行うためには音叉式比重計が、特に好ましい。ボーメ式比重計は、比重を精度良く測定できるが、液比重を一定に保つために希釈液を添加する装置への測定値の出力が不可能なため、液比重を一定に管理する工程に用いる比重計としては好ましくない。   As a measuring method of the hydrometer provided in the coating liquid circulator, a method capable of measuring the specific gravity continuously and accurately in a circulating state of the coating liquid is preferable. For example, there are a tuning fork hydrometer and an ultrasonic hydrometer, but a tuning fork hydrometer is particularly preferable in order to perform precise specific gravity management. The Baume hydrometer can measure the specific gravity with high accuracy, but it cannot output the measured value to the device to which the diluent is added in order to keep the liquid specific gravity constant. It is not preferable as a hydrometer.

上記の手法により、塗工液の比重管理を行うが、近年、LBPの高速化・高画質化に伴い、様々な特性を付与するために、種々の機能性粒子及び樹脂を含有した塗工液を用いる際に、付着性の高い粒子や樹脂が存在することにより、従来の比重計では、塗工液と接触する部位に塗工液中の粒子や樹脂が付着し、正確な液比重の測定が行えない。これに対して、比重計の塗工液と接触する部位の最大表面粗さ(Rmax)を1μm以下にすることにより、付着性の高い粒子や樹脂を含有した塗工液を用いた際にも、比重計表面への塗工液成分の付着がなく、液比重を正確に測定することが可能となる。比重計表面の最大表面粗さ(Rmax)を1μm以下にするための手法として、バフ研磨、化学研磨及び電解研磨(浸漬電解研磨、電解複合研磨)等の研磨加工処理を用いることが好ましいが、表面粗さを均一に制御するために、電解複合研磨処理を用いることが特に好ましい。   Although the specific gravity of the coating liquid is managed by the above-described method, in recent years, the coating liquid containing various functional particles and resins has been used to give various characteristics as the speed of LBP increases and the image quality increases. Because of the presence of highly adherent particles and resins when using a conventional hydrometer, the particles and resin in the coating liquid adhere to the part that comes in contact with the coating liquid, and accurate liquid specific gravity is measured. Cannot be done. On the other hand, when the maximum surface roughness (Rmax) of the part in contact with the coating liquid of the hydrometer is 1 μm or less, even when a coating liquid containing particles or resin with high adhesion is used. The coating liquid component does not adhere to the surface of the hydrometer, and the liquid specific gravity can be accurately measured. As a method for setting the maximum surface roughness (Rmax) of the hydrometer surface to 1 μm or less, it is preferable to use a polishing process such as buffing, chemical polishing and electrolytic polishing (immersion electrolytic polishing, electrolytic composite polishing). In order to uniformly control the surface roughness, it is particularly preferable to use an electrolytic composite polishing treatment.

従来の技術においては、塗工液の液温を25〜35℃の範囲内の所定温度で、ほぼ一定に管理する方法があるが、溶剤系塗工液の場合、塗工液の温度を塗工工程の環境温度より高くすると希釈溶剤の蒸発が速くなり、塗工液の管理がしづらくなるばかりか、ディップ漕液面での固形分濃度の不均一化が起こり、結果として液面での膜張り等が発生し塗工ムラが出来る。そこで本発明では、塗工液の液温度を25℃以下で所定温度に対して、±2℃の範囲内で一定温度に保ち、好ましくは±0.5℃の範囲内で管理することである。このように精度良く塗工液温度を一定に保つことで、塗工液の比重を管理し易くするばかりか、ディッピング後のウエット膜からの溶剤の蒸発速度も一定になり、塗工ムラの出来難いものとなる。また、塗工液の液温が20℃を下回ると、塗工液の粘度が上昇し、ウエット膜厚が厚くなり、膜厚制御が難しくなるばかりか、塗工液が置かれる環境温度との差によっては、結露が生じ、塗工液中に水分が混入してしまい塗工ムラ発生の原因となりかねない。しかしながら、20℃以下であっても、上記懸念事項に対する方策、例えば、適正な除湿手段等を施しておけば問題を回避できることは言うまでもない。   In the prior art, there is a method in which the liquid temperature of the coating liquid is controlled to be almost constant at a predetermined temperature within a range of 25 to 35 ° C. However, in the case of a solvent-based coating liquid, the temperature of the coating liquid is applied. If the temperature is higher than the environmental temperature of the construction process, the evaporation of the diluting solvent will be accelerated, and it will be difficult to manage the coating liquid, and the solid content concentration will become uneven on the dip liquid surface, resulting in Filming or the like occurs and uneven coating occurs. Therefore, in the present invention, the liquid temperature of the coating liquid is maintained at a constant temperature within a range of ± 2 ° C., preferably within a range of ± 0.5 ° C. with respect to a predetermined temperature at 25 ° C. or less. . By keeping the coating solution temperature constant with high accuracy in this way, not only makes it easy to control the specific gravity of the coating solution, but also the evaporation rate of the solvent from the wet film after dipping becomes constant, resulting in uneven coating. It will be difficult. Moreover, when the liquid temperature of the coating liquid is lower than 20 ° C., the viscosity of the coating liquid increases, the wet film thickness becomes thick, and the film thickness control becomes difficult, and the environmental temperature at which the coating liquid is placed is Depending on the difference, condensation may occur and moisture may be mixed into the coating solution, which may cause uneven coating. However, it goes without saying that even if the temperature is 20 ° C. or lower, the problem can be avoided by taking measures against the above-mentioned concerns, for example, by taking appropriate dehumidifying means.

塗工液循環機中に設ける塗工液温度を一定に保つ装置としては、塗工液タンク或いはディップ液漕の外壁の側面或いは下部に、温調循環水や温調機を取り付け、液温センサーで塗工液温度を監視出来るものであれば特に限定されるものではないが、加温、冷却能力が高くかつ精度良くコントロールできるものでなければならず、また液温度モニターも塗工液を循環状態で精度良く計測できるものでなければならない。   As a device that keeps the temperature of the coating liquid provided in the coating liquid circulation machine constant, circulating temperature water or temperature controller is attached to the side or lower part of the outer wall of the coating liquid tank or dip liquid tank, and the liquid temperature sensor It is not particularly limited as long as it can monitor the temperature of the coating liquid, but it must have high heating and cooling capabilities and can be controlled with high precision. The liquid temperature monitor also circulates the coating liquid. It must be able to measure accurately in the state.

液温度の管理で述べたように、塗工液温度に対して差がない方が好ましい。本発明では塗工液の液温度を25℃以下で所定温度に対して、±2℃の範囲内で一定温度に保ち管理するため、塗工工程が置かれる環境温度についても同じ範囲内での温度管理が相応しい。例えば、塗工液温度が20〜25℃の範囲内で一定値で管理するため、環境温度も20〜25℃の範囲内で出来るだけ塗工液の一定値に近い方が好ましく、更には塗工液温度±1.0℃の範囲内で管理すること好ましい。塗工工程の環境として、湿度も塗工して出来た表面被覆層の品質に影響があるため、塗工工程が置かれる環境の湿度は、相対湿度60%RH以下が好ましい。   As described in the liquid temperature control, it is preferable that there is no difference with respect to the coating liquid temperature. In the present invention, since the liquid temperature of the coating liquid is maintained at a constant temperature within a range of ± 2 ° C. with respect to a predetermined temperature at 25 ° C. or less, the environmental temperature in which the coating process is placed is also within the same range. Temperature control is appropriate. For example, since the coating liquid temperature is controlled at a constant value within a range of 20 to 25 ° C., the ambient temperature is preferably as close as possible to the constant value of the coating liquid within the range of 20 to 25 ° C. It is preferable to manage within the range of the working fluid temperature ± 1.0 ° C. As the environment of the coating process, since humidity also affects the quality of the surface coating layer formed by coating, the humidity of the environment in which the coating process is placed is preferably 60% RH or less relative humidity.

塗工液の比重管理については、塗工液の液温度を25℃以下で所定温度に対して、±2℃の範囲内の一定温度で、好ましくは一定値±0.5℃に保った状態で、一定比重±0.003で管理する。仮に液温度が一定値に管理された状態で、塗工液の比重が一定値+0.003を上回った場合は、液の固形分濃度が高過ぎて、出来た表面被覆層の膜厚は厚いものとなる。また逆に、一定値−0.003を下回った場合は、膜厚が薄くなる。このような場合、塗工液循環機系中に設置した比重をモニターする機構により測定された数値を用いて換算した塗工液に使われている希釈溶剤を添加あるいは蒸発させ比重を一定にする操作を行う。塗工液の固形分濃度管理を比重で行うと極めて精度良く管理が行える。比重の有効数値としては小数点以下3桁まで用いて塗工液を管理することが好ましい。   Regarding the specific gravity control of the coating liquid, the liquid temperature of the coating liquid is 25 ° C. or less, with a predetermined temperature within a range of ± 2 ° C., preferably a constant value ± 0.5 ° C. Then, it is managed at a constant specific gravity of ± 0.003. If the specific temperature of the coating liquid exceeds a certain value +0.003 while the liquid temperature is controlled to a constant value, the solid concentration of the liquid is too high and the resulting surface coating layer is thick. It will be a thing. Conversely, when the value is below a certain value −0.003, the film thickness becomes thin. In such a case, the specific gravity is made constant by adding or evaporating the diluted solvent used in the coating liquid converted using the numerical values measured by the specific gravity monitoring mechanism installed in the coating liquid circulation system. Perform the operation. If the solid content concentration of the coating liquid is controlled with specific gravity, it can be managed with extremely high accuracy. As an effective numerical value of specific gravity, it is preferable to manage the coating liquid using up to 3 digits after the decimal point.

塗工液の液比重を一定に保つため、希釈液を添加するが、塗工液に2種類以上の溶剤を用いている場合は、全溶剤に対し、10質量%未満の溶剤を除く溶剤の質量比率で希釈溶剤を作製し、必要に応じて塗工液に添加する。添加方法としては、種々のポンプが使えるが、高精度流量が確保できるものが好ましい。時間当たりの溶剤の添加流量は、溶剤の揮発速度即ち塗工液循環装置の大きさや塗工ディップ漕液面積により異なるが、出来るだけ瞬間流量に差が小さいような無脈動ポンプ等が好ましい。   In order to keep the specific gravity of the coating liquid constant, a diluting liquid is added. When two or more kinds of solvents are used in the coating liquid, the solvent excluding the solvent of less than 10% by mass with respect to the total solvent. A dilution solvent is prepared at a mass ratio, and added to the coating solution as necessary. As the addition method, various pumps can be used, but those that can ensure a high-accuracy flow rate are preferable. The addition flow rate of the solvent per hour varies depending on the volatilization rate of the solvent, that is, the size of the coating liquid circulation device and the coating dip liquid-salt area, but a non-pulsation pump or the like whose difference in instantaneous flow rate is as small as possible is preferable.

また、希釈液を添加する場所としては、出来るだけ均一な塗工液がディップ液漕にある方が好ましいため、希釈液の添加場所は、塗工液の循環経路で考えた場合、ディップ液漕よりオーバーフローした塗工液に添加した方が有利となる。即ち、塗工液に希釈液が添加されてからディップ液漕に塗工液が到達するまで、一定の時間を要するため、より均一な塗工液がディップ液漕に供給されるからである。しかし、塗工液に対し希釈液を添加する際、溶剤ショックにより、添加してある顔料粒子の凝集等が心配されるため、塗工液に希釈溶剤を添加する場所は、出来るだけ塗工液の流体速度が大きく瞬時に希釈液が塗工液に混合される場所が必要となってくる。このように、希釈液を添加する場所は循環系内において、ディップ液漕よりオーバーフローする部分から塗工液タンクの間で塗工液の流体速度が出来るだけ大きい部分に希釈液を添加することが、塗工液を均一に保つためには好ましい。   In addition, as the place where the diluent is added, it is preferable that the coating liquid as uniform as possible is in the dip liquid tank. Therefore, the place where the diluent is added is determined based on the circulation path of the coating liquid. It is more advantageous to add to the overflowing coating solution. That is, since a certain time is required until the coating liquid reaches the dip liquid tank after the dilution liquid is added to the coating liquid, a more uniform coating liquid is supplied to the dip liquid tank. However, when adding the diluent to the coating solution, there is a concern about aggregation of pigment particles added due to solvent shock, so the place where the diluent solvent is added to the coating solution is as much as possible. It is necessary to provide a place where the fluid velocity is large and the diluent is instantaneously mixed with the coating solution. In this way, the place where the diluent is added may be added to the portion of the circulation system where the fluid velocity of the coating solution is as large as possible between the portion overflowing from the dip solution tank and the coating solution tank. In order to keep the coating solution uniform, it is preferable.

(2)導電性部材
例えば、導電性部材は図1に示すようにローラ形状であり、導電性支持体2aと被覆層として、その外周に一体に形成された弾性層2bから構成されている。
(2) Conductive Member For example, the conductive member has a roller shape as shown in FIG. 1, and includes a conductive support 2a and an elastic layer 2b integrally formed on the outer periphery thereof as a covering layer.

本発明の導電性部材の他の構成を図2に示す。図2に示すように導電性部材は、被覆層が弾性層2bと表面層2cからなる2層であってもよいし、弾性層2b及び抵抗層2dと表面層2cからなる3層、及び抵抗層2dと表面層2cの間に第2の抵抗層2eを設けた4層以上を導電性支持体2aの上に形成した構成としてもよい。   Another configuration of the conductive member of the present invention is shown in FIG. As shown in FIG. 2, the conductive member may be a two-layer coating layer composed of an elastic layer 2b and a surface layer 2c, a three-layer layer composed of an elastic layer 2b, a resistance layer 2d and a surface layer 2c, and a resistance layer. It is good also as a structure which formed four or more layers which provided the 2nd resistance layer 2e between the layer 2d and the surface layer 2c on the electroconductive support body 2a.

本発明に用いられる導電性支持体2aは、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施しても構わないが、導電性を損なわないことが必要である。   As the conductive support 2a used in the present invention, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel can be used. Furthermore, these metal surfaces may be plated for the purpose of providing rust prevention and scratch resistance, but it is necessary not to impair the conductivity.

弾性層2bの導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等の電子伝導機構を有する導電剤、アルカリ金属塩や四級アンモニウム塩等のイオン伝導機構を有する導電剤を適宜添加することにより1010Ω・cm未満に調整されるのが好ましい。弾性層2bの具体的な弾性材料としては、例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等も挙げられる。 The conductivity of the elastic layer 2b has a conductive agent having an electron conduction mechanism such as carbon black, graphite and a conductive metal oxide in an elastic material such as rubber, and an ion conduction mechanism such as an alkali metal salt or a quaternary ammonium salt. It is preferable to adjust to less than 10 10 Ω · cm by appropriately adding a conductive agent. Specific elastic materials for the elastic layer 2b include, for example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicone rubber, urethane rubber, epichlorohydrin rubber, isoprene rubber (IR), butadiene rubber (BR). ), Synthetic rubbers such as nitrile butadiene rubber (NBR) and chloroprene rubber (CR), as well as polyamide resins, polyurethane resins and silicone resins.

直流電圧のみを印加して、被帯電体の帯電処理を行う帯電部材においては、帯電均一性を達成するために、特に中抵抗の極性ゴム(例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等)やポリウレタン樹脂を弾性材料として用いるのが好ましい。これらの極性ゴムやポリウレタン樹脂は、ゴムや樹脂中の水分や不純物がキャリアとなり、僅かではあるが導電性をもつと考えられ、これらの導電機構はイオン伝導であると考えられる。但し、これらの極性ゴムやポリウレタン樹脂に導電剤を全く添加しないで弾性層を作製し、得られた帯電部材は低温低湿環境(L/L)において、抵抗値が高くなり1010Ω・cm以上となってしまうものもあるため帯電部材に高電圧を印加しなければならなくなる。 In a charging member that applies a direct current voltage only to charge an object to be charged, in order to achieve charging uniformity, particularly a moderate resistance polar rubber (for example, epichlorohydrin rubber, NBR, CR, urethane rubber, etc.) It is preferable to use polyurethane resin as an elastic material. These polar rubbers and polyurethane resins are considered to have a slight conductivity due to moisture and impurities in the rubber and resin as carriers, and these conduction mechanisms are considered to be ionic conduction. However, an elastic layer is prepared without adding a conductive agent to these polar rubbers and polyurethane resins, and the obtained charging member has a high resistance value in a low temperature and low humidity environment (L / L) and is not less than 10 10 Ω · cm. Therefore, a high voltage must be applied to the charging member.

そこで、L/L環境で帯電部材の抵抗値が1010Ω・cm未満になるように、前述した電子導電機構を有する導電剤やイオン導電機構を有する導電剤を適宜添加して調整するのが好ましい。イオン導電機構を有する導電剤の方が、抵抗調整がし易く製法上好ましい。しかしながら、イオン導電機構を有する導電剤は抵抗値を低くする効果が小さく、特にL/L環境でその効果が小さい。そのため、イオン導電機構を有する導電剤の添加と併せて電子導電機構を有する導電剤を補助的に添加して抵抗調整を行ってもよい。また、弾性層2bはこれらの弾性材料を発泡成型した発泡体であってもよい。 Accordingly, the conductive agent having the electronic conduction mechanism and the conductive agent having the ionic conduction mechanism described above are appropriately added and adjusted so that the resistance value of the charging member in the L / L environment is less than 10 10 Ω · cm. preferable. A conductive agent having an ionic conduction mechanism is preferable in terms of production because resistance adjustment is easy. However, the conductive agent having an ionic conduction mechanism has a small effect of lowering the resistance value, and particularly in the L / L environment. Therefore, the resistance adjustment may be performed by supplementarily adding a conductive agent having an electronic conductive mechanism in addition to the addition of a conductive agent having an ionic conductive mechanism. The elastic layer 2b may be a foam obtained by foaming these elastic materials.

抵抗層2d(e)は、弾性層に接した位置に形成されるため弾性層中に含有される軟化油や可塑剤等の帯電部材表面へのブリードアウトを防止する目的で設けたり、帯電部材全体の電気抵抗を調整する目的で設ける。   Since the resistance layer 2d (e) is formed at a position in contact with the elastic layer, the resistance layer 2d (e) is provided for the purpose of preventing bleed-out to the surface of the charging member such as softening oil or plasticizer contained in the elastic layer. Provided for the purpose of adjusting the overall electrical resistance.

被覆層が複数層(抵抗層、表面層)であるときに、抵抗層2d(e)を構成する材料としては、例えば、エピクロルヒドリンゴム、NBR、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー及び塩素化ポリエチレン系熱可塑性エラストマー等を挙げることができる。これらの材料は、単独又は2種類以上を混合してもよく、共重合体であってもよい。   When the coating layer is a plurality of layers (resistance layer, surface layer), examples of the material constituting the resistance layer 2d (e) include epichlorohydrin rubber, NBR, fluororesin, polyamide resin, acrylic resin, polyurethane resin, and silicone. Resin, butyral resin, polyolefin-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, fluororubber-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, polybutadiene-based thermoplastic elastomer, ethylene acetate Examples thereof include vinyl-based thermoplastic elastomers, polyvinyl chloride-based thermoplastic elastomers, and chlorinated polyethylene-based thermoplastic elastomers. These materials may be used alone or in combination of two or more, and may be a copolymer.

抵抗層2d(e)は、導電性もしくは半導電性を有している必要がある。導電性・半導電性の発現のためには、各種電子伝導機構を有する導電剤(導電性カーボン、グラファイト、導電性金属酸化物、銅、アルミニウム、ニッケル及び鉄粉等)或いはイオン導電剤(アルカリ金属塩及びアンモニウム塩)を適宜用いることができる。この場合、所望の電気抵抗を得るためには、前記各種導電剤を2種以上併用してもよい。抵抗層2d(e)には、表面処理された無機微粒子及び導電剤を含有することが特に好ましく、表面層が抵抗層を兼ねる場合には、表面処理された無機微粒子及び導電剤であることが好ましい。   The resistance layer 2d (e) needs to have conductivity or semiconductivity. In order to develop conductivity and semiconductivity, conductive agents having various electron conduction mechanisms (conductive carbon, graphite, conductive metal oxides, copper, aluminum, nickel, iron powder, etc.) or ionic conductive agents (alkaline) Metal salts and ammonium salts) can be used as appropriate. In this case, in order to obtain a desired electric resistance, two or more kinds of the various conductive agents may be used in combination. The resistance layer 2d (e) particularly preferably contains surface-treated inorganic fine particles and a conductive agent, and when the surface layer also serves as the resistance layer, the surface-treated inorganic fine particles and the conductive agent may be used. preferable.

また、被覆層が複数層(抵抗層、表面層)であるときの表面層2cは、帯電部材の表面を構成し、被帯電体である感光体と接触するため感光体を汚染してしまう材料構成であってはならない。   Further, the surface layer 2c when the coating layer is a plurality of layers (resistance layer, surface layer) constitutes the surface of the charging member, and is a material that contaminates the photoreceptor because it contacts the photoreceptor to be charged. It must not be a configuration.

表面層2cの結着樹脂材料としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等が挙げられ、特にはフッ素樹脂、アクリル樹脂、シリコーン樹脂及びフッ素、アクリル又はシリコーンで変性したウレタン樹脂等の滑り性や離型性に優れたものが好ましい。   As the binder resin material for the surface layer 2c, fluorine resin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC), and olefin-ethylene-butylene-olefin Examples thereof include a copolymer (CEBC), and in particular, a resin excellent in slipping property and releasability such as a fluororesin, an acrylic resin, a silicone resin and a urethane resin modified with fluorine, acrylic or silicone is preferable.

これらの結着樹脂に静摩擦係数を小さくする目的で、グラファイト、雲母、二硫化モリブテン及びフッ素樹脂粉末等の固体潤滑剤、或いはフッ素系界面活性剤、ワックス又はシリコーンオイル等を添加してもよい。   For the purpose of reducing the static friction coefficient to these binder resins, solid lubricants such as graphite, mica, molybdenum disulfide and fluororesin powder, or fluorosurfactants, wax or silicone oil may be added.

表面層2cには、各種導電剤(導電性カーボン、グラファイト、銅、アルミニウム、ニッケル、鉄粉及び金属酸化物である導電性酸化錫や導電性酸化チタン等)を適宜用いる。本発明においては、所望の電気抵抗を得るためには、前記各種導電剤を2種以上併用してもよい。導電剤の粒径は平均粒径で1.0μm以下であることが好ましい。平均粒径が1.0μmを超えると感光ドラム上にピンホールが存在した場合、ピンホールリークが発生し易くなるため好ましくない。また、導電剤粒子の比重が重い場合は、平均粒径が1.0μmを超えると塗料分散安定性が悪くなり、塗料中で沈降し易いので好ましくない。   For the surface layer 2c, various conductive agents (conductive carbon, graphite, copper, aluminum, nickel, iron powder, conductive tin oxide that is a metal oxide, conductive titanium oxide, or the like) are appropriately used. In the present invention, in order to obtain a desired electric resistance, two or more kinds of the various conductive agents may be used in combination. The average particle size of the conductive agent is preferably 1.0 μm or less. If the average particle size exceeds 1.0 μm, pinhole leakage is likely to occur when pinholes exist on the photosensitive drum, which is not preferable. In addition, when the specific gravity of the conductive agent particles is heavy, if the average particle diameter exceeds 1.0 μm, the dispersion stability of the paint is deteriorated, and it is not preferable because it tends to settle in the paint.

また、導電剤と結着樹脂の割合は、質量比で0.1:1.0〜2.0:1.0であることが好ましい。導電剤が0.1に満たないと導電剤を含有させたことによる効果を得難くなり、2.0を超えると表面層の機械的強度が低下し、層が脆くなったり、硬度が上がって柔軟性が無くなり易い。   Moreover, it is preferable that the ratio of a electrically conductive agent and binder resin is 0.1: 1.0-2.0: 1.0 by mass ratio. If the conductive agent is less than 0.1, it is difficult to obtain the effect due to the inclusion of the conductive agent, and if it exceeds 2.0, the mechanical strength of the surface layer decreases, the layer becomes brittle, and the hardness increases. It is easy to lose flexibility.

被覆層に含有される無機微粒子としては、絶縁性無機微粒子が好ましく、例えば、酸化物、複酸化物、金属酸化物、金属、炭素、炭素化合物、フラーレン、ホウ素化合物、炭化物、窒化物、セラミックス及びカルコゲン化合物が挙げられる。本発明においては、前記各種無機微粒子を2種以上併用してもよい。また、体積抵抗率が1×1010Ω・cm以上の絶縁性無機微粒子を用いることが好ましい。 As the inorganic fine particles contained in the coating layer, insulating inorganic fine particles are preferable. For example, oxides, double oxides, metal oxides, metals, carbon, carbon compounds, fullerenes, boron compounds, carbides, nitrides, ceramics, and the like Examples include chalcogen compounds. In the present invention, two or more kinds of the various inorganic fine particles may be used in combination. Insulating inorganic fine particles having a volume resistivity of 1 × 10 10 Ω · cm or more are preferably used.

導電剤の表面は、チタンカップリング剤或いはアルコキシシランカップリング剤等のカップリング剤及びフルオロアルキルアルコキシシランカップリング剤等のカップリング剤(珪素、チタン、アルミニウム及びジルコニウム等の中心金属は特に選ばない)、又はオイル、ワニス、有機化合物等で処理されていてもよい。   As for the surface of the conductive agent, a coupling agent such as a titanium coupling agent or an alkoxysilane coupling agent and a coupling agent such as a fluoroalkylalkoxysilane coupling agent (a center metal such as silicon, titanium, aluminum and zirconium is not particularly selected. ), Or may be treated with oil, varnish, organic compound or the like.

(表面層の塗工について)
表面層2cの作製方法としては、前記した各材料を有機溶剤中に添加し塗工液を作製する。塗工液を液循環機に入れ、本発明の方法で塗工液を管理する。ディッピング法で作製した表面層2cの厚みは10〜30μmである。
(About surface layer coating)
As a method for producing the surface layer 2c, the aforementioned materials are added to an organic solvent to produce a coating solution. The coating liquid is put into a liquid circulator and the coating liquid is managed by the method of the present invention. The thickness of the surface layer 2c produced by the dipping method is 10 to 30 μm.

本発明に用いることのできる有機溶剤としては、メチルイソブチルケトン、メチルエチルケトン、アセトン及びシクロヘキサノンのケトン類、キシレンやトルエン等の芳香族類、n−酢酸ブチルや酢酸エチル等のエステル類、テトラヒドロフラン、エチルセロソルブ及びテトラヒドロピラン等のエーテル類が挙げられるが、特にこれに限定されるものではない。   Examples of organic solvents that can be used in the present invention include methyl isobutyl ketone, methyl ethyl ketone, acetone and cyclohexanone ketones, aromatics such as xylene and toluene, esters such as n-butyl acetate and ethyl acetate, tetrahydrofuran, and ethyl cellosolve. And ethers such as tetrahydropyran, but are not particularly limited thereto.

塗工液の作製において粉砕工程を加える場合は、ボールミル、サンドミル又は振動ミル等を用いる。   When a pulverization step is added in the production of the coating liquid, a ball mill, a sand mill, a vibration mill or the like is used.

次に、上記のような塗工方法で作製したウエット状態の表面層2cを乾燥機に移す。乾燥機は、導電性部材を静置するバッチ式、導電性部材を乾燥機中を通過させる連続式等を採用することができる。   Next, the wet surface layer 2c produced by the coating method as described above is transferred to a dryer. As the dryer, a batch type in which the conductive member is allowed to stand, a continuous type in which the conductive member is passed through the dryer, or the like can be adopted.

以下に、具体的な実施例を用いて本発明を更に詳細に説明する。なお、実施例中の「部」は質量部を示す。   Hereinafter, the present invention will be described in more detail using specific examples. In addition, "part" in an Example shows a mass part.

(実施例1)
下記の要領で本発明の導電性部材を作製した。
・エピクロルヒドリンゴム 100質量部
・四級アンモニウム塩 2質量部
・炭酸カルシウム 45質量部
・酸化亜鉛 5質量部
・脂肪酸 5質量部
以上の材料を60℃に調整した密閉型ミキサーにて10分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーDM(ジベンゾチアジルスルフィド)1質量部及びノクセラーTS(テトラメチルチウラムモノスルフィド)0.5質量部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成型機にて成型し、加熱蒸気加硫した後、外径φ8.5mmになるように研磨処理して弾性層を得た。ローラ長は228mmとした。
Example 1
The conductive member of the present invention was produced in the following manner.
-Epichlorohydrin rubber 100 parts by mass-Quaternary ammonium salt 2 parts by mass-Calcium carbonate 45 parts by mass-Zinc oxide 5 parts by mass-Fatty acid 5 parts by mass or more kneaded for 10 minutes in a closed mixer adjusted to 60 ° C, A raw material compound was prepared. To this compound, 100 parts by mass of epichlorohydrin rubber as raw material, 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of noxeller DM (dibenzothiazyl sulfide) as a vulcanization accelerator, and noxeller TS (tetramethylthiuram monosulfide) 0.5 parts by mass was added and kneaded for 10 minutes in a two-roll mill cooled to 20 ° C. The obtained compound is molded by an extrusion molding machine so as to form a roller around a φ6 mm stainless steel support, heated and steam vulcanized, and then polished to an outer diameter of φ8.5 mm. Got. The roller length was 228 mm.

続いて、以下に示す材料、
・アクリルポリオール溶液(ダイセル化学社製、PLACCEL DC2016)
100質量部
・イソシアネートA(IPDI)(デグサ社製、VESTANAT B1370)
22質量部
・イソシアネートB(HDI)(旭化成ケミカルズ社製、DURANATE TPA−B80E) 33質量部
・導電性粒子(戸田工業社製、CS−Bk100Y) 56質量部
・酸化チタン(テイカ社製、SMT−150IB) 18質量部
・PMMA粒子(積水化成品工業社製、MAX−12) 21質量部
・変性ジメチルシリコーンオイル(東レ・ダウコーニング・シリコーン社製、SH28PA) 1.7質量部
・メチルイソブチルケトン 400質量部
をミキサーを用いて攪拌し混合溶液を作製した。次いで、その混合溶液を循環式のビーズミル分散機を用いて分散処理(処理速度600ml/min)を行い、ディッピング用塗工液を作製し、液温21.0℃で比重0.927に調整した後、塗工液用循環機に塗工液を入れた。
Subsequently, the following materials,
Acrylic polyol solution (Daicel Chemical Industries, PLACEL DC2016)
100 parts by mass / isocyanate A (IPDI) (Degussa, VESTANAT B1370)
22 parts by mass / isocyanate B (HDI) (Asahi Kasei Chemicals, DURANATE TPA-B80E) 33 parts by mass / conductive particles (CS-Bk100Y, manufactured by Toda Kogyo Co., Ltd.) 150 IB) 18 parts by mass / PMMA particles (manufactured by Sekisui Plastics Co., Ltd., MAX-12) 21 parts by mass / modified dimethyl silicone oil (manufactured by Dow Corning Silicone, SH28PA) 1.7 parts by mass / methyl isobutyl ketone 400 A mass part was stirred using a mixer to prepare a mixed solution. Subsequently, the mixed solution was subjected to a dispersion treatment (treatment speed: 600 ml / min) using a circulation type bead mill disperser to prepare a dipping coating solution, which was adjusted to a specific gravity of 0.927 at a liquid temperature of 21.0 ° C. Thereafter, the coating solution was put into a coating solution circulator.

配管中に図4に示す音叉振動式比重計(電解複合研磨処理により最大表面粗さRmax:1.0μm)を取り付けた塗工液用循環機に入れた塗工液の液温度をディップ漕及び液タンクの周囲に付けた温調機で21.0℃に調節した。その時の液比重は0.927であり、液温度21.0±1.0℃、液比重0.927±0.003を必要に応じて希釈溶剤を添加又は蒸発させ維持した。その際の液比重を、図5に示すボーメ式比重計でも測定を行ったところ、0.927であり振動式比重計と同じ値であった。   The liquid temperature of the coating liquid placed in the coating liquid circulator in which the tuning fork vibration type hydrometer shown in FIG. 4 (maximum surface roughness Rmax: 1.0 μm by electrolytic composite polishing treatment) is installed in the pipe is set to dip 漕 and The temperature was adjusted to 21.0 ° C. with a temperature controller attached around the liquid tank. The liquid specific gravity at that time was 0.927, and the liquid temperature was 21.0 ± 1.0 ° C., and the liquid specific gravity was 0.927 ± 0.003 by adding or evaporating a diluting solvent as needed. The liquid specific gravity at that time was also measured with a Baume type hydrometer as shown in FIG. 5, and was 0.927, which was the same value as that of the vibration type hydrometer.

次に、塗工用パレットに等間隔に弾性層8本を吊り下げてディッピングを行った。このディッピング処理を30回行い弾性層240本について被覆層を形成した。また、ディッピング開始から終了まで約6時間を要したが、液温度及び液比重は上記の設定値を維持した。ボーメ式比重計で測定した値も設定値と同じ値であった。   Next, dipping was performed by hanging eight elastic layers at equal intervals on the coating pallet. This dipping process was performed 30 times to form a coating layer for 240 elastic layers. Moreover, although it took about 6 hours from the start to the end of dipping, the liquid temperature and liquid specific gravity maintained the above set values. The value measured with the Baume hydrometer was also the same as the set value.

同様の工程を7日間行ったが、液温度及び液比重は上記の設定値を維持した。結果を表1に示す。   The same process was performed for 7 days, but the liquid temperature and liquid specific gravity maintained the above set values. The results are shown in Table 1.

作製したローラの表面層を切断し、断面を電子顕微鏡にて観察し、膜厚を周方向に対して10点測定し、平均を膜厚とした。結果を表1に示す。   The surface layer of the produced roller was cut, the cross section was observed with an electron microscope, the film thickness was measured at 10 points in the circumferential direction, and the average was taken as the film thickness. The results are shown in Table 1.

また、図3に示す電子写真方式の画像形成装置に上記で得られたローラを帯電ローラとして取り付けて、N/N環境(温度23℃/湿度55%RH)下において、印字率4%のA4画像連続10000枚の画像出しを行い、500枚ごとにハーフトーン画像をプリントし、帯電ローラの抵抗上昇に起因した画像不良の発生について、目視にて画像評価を行った。結果を表1に示す。但し、電子写真感光体の暗部電位Vdが画像出し耐久試験初期に、−400V付近となるように印字電圧(直流電圧のみ)を設定して画像出し耐久試験を行った。   Further, the above-obtained roller is attached as a charging roller to the electrophotographic image forming apparatus shown in FIG. 3, and in an N / N environment (temperature 23 ° C./humidity 55% RH), A4 having a printing rate of 4%. Images of 10,000 consecutive images were printed, halftone images were printed every 500 sheets, and image evaluation was visually performed for the occurrence of image defects due to the increase in resistance of the charging roller. The results are shown in Table 1. However, at the beginning of the image printing durability test, the printing voltage (DC voltage only) was set so that the dark portion potential Vd of the electrophotographic photosensitive member was around -400 V, and the image printing durability test was performed.

表中のAは得られた画像が非常に良好、Bは良い、Cはハーフトーン画像にやや濃度ムラあり、Dはハーフトーン画像に濃度ムラ、濃度のガサツキがあることを示す。   A in the table indicates that the obtained image is very good, B is good, C indicates that the halftone image has slightly uneven density, and D indicates that the halftone image has uneven density and unevenness in density.

(実施例2)
実施例1において塗工液用循環機の配管中に電解複合研磨処理により最大表面粗さ(Rmax)が0.1μmの音叉振動式比重計を導入した以外は、実施例1と同様にして導電性部材を作製した。この導電性部材について実施例1と同様の評価を行い、その結果を表1に示す。
(Example 2)
In Example 1, except that a tuning fork vibration type hydrometer having a maximum surface roughness (Rmax) of 0.1 μm was introduced into the piping of the coating liquid circulator by electrolytic composite polishing, the same as in Example 1. A sex member was prepared. Evaluation similar to Example 1 was performed about this electroconductive member, and the result is shown in Table 1.

(比較例1)
実施例1において塗工液用循環機の配管中に最大表面粗さ(Rmax)が2.0μmの音叉振動式比重計を導入した以外は、実施例1と同様にして導電性部材を作製した。この導電性部材について実施例1と同様の評価を行い、その結果を表1に示す。
(Comparative Example 1)
A conductive member was produced in the same manner as in Example 1, except that a tuning fork vibration type hydrometer having a maximum surface roughness (Rmax) of 2.0 μm was introduced into the piping of the coating liquid circulator in Example 1. . Evaluation similar to Example 1 was performed about this electroconductive member, and the result is shown in Table 1.

(比較例2)
実施例1において塗工液用循環機の配管中に最大表面粗さ(Rmax)が10.0μmの音叉振動式比重計を導入した以外は、実施例1と同様にして導電性部材を作製した。この導電性部材について実施例1と同様の評価を行い、その結果を表1に示す。
(Comparative Example 2)
A conductive member was produced in the same manner as in Example 1 except that a tuning fork vibration type hydrometer having a maximum surface roughness (Rmax) of 10.0 μm was introduced into the piping of the coating liquid circulator in Example 1. . Evaluation similar to Example 1 was performed about this electroconductive member, and the result is shown in Table 1.

Figure 2006231191
Figure 2006231191

実施例1、2は、音叉式比重計表面への塗料の付着によるボーメ式比重計との測定値のズレもなく、液比重を一定に管理することで、繰り返し塗工及び長期循環を行っても、膜厚が一定で、耐久画像も良好な導電性部材が得られた。   In Examples 1 and 2, there is no deviation of the measured value from the Baume hydrometer due to the adhesion of the paint to the tuning fork hydrometer, and the liquid specific gravity is kept constant, so that repeated coating and long-term circulation are performed. In addition, a conductive member having a constant film thickness and a good durability image was obtained.

比較例1、2は、音叉式比重計表面への塗料の付着によりボーメ式比重計との測定値のズレが生じ、音叉式比重計の測定値を一定に管理しても、繰り返し塗工及び長期循環により、膜厚が変化し、部材の耐久評価による画像も良好なものは得られなかった。   In Comparative Examples 1 and 2, a deviation of the measured value from the Baume hydrometer occurs due to adhesion of the paint on the surface of the tuning fork hydrometer, and even if the measured value of the tuning fork hydrometer is kept constant, The film thickness changed due to the long-term circulation, and an image obtained by evaluating the durability of the member could not be obtained.

本発明の導電性部材の概略断面図である。It is a schematic sectional drawing of the electroconductive member of this invention. 本発明の別の導電性部材の概略断面図である。It is a schematic sectional drawing of another electroconductive member of this invention. 本発明の導電性部材を帯電部材として具備する画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus including a conductive member of the present invention as a charging member. 本発明で用いた液比重計測装置の概略構成図である。It is a schematic block diagram of the liquid specific gravity measuring apparatus used by this invention. ボーメ式比重計の概略構成図である。It is a schematic block diagram of a Baume type hydrometer.

符号の説明Explanation of symbols

1 像担持体(電子写真感光体)
2 帯電部材(帯電ローラ)
2a 導電性支持体
2b 弾性層
2c 表面層
2d 抵抗層
2e 抵抗層
3 露光手段
4 現像手段
5 転写手段(転写ローラ)
6 クリーニング手段
S1,S2,S3 バイアス印加電源
P 転写材
H1 外部出力装置
H2 比重計測部
B1 比重読み取り用目盛
1 Image carrier (electrophotographic photoreceptor)
2 Charging member (charging roller)
2a conductive support 2b elastic layer 2c surface layer 2d resistance layer 2e resistance layer 3 exposure means 4 developing means 5 transfer means (transfer roller)
6 Cleaning means S1, S2, S3 Bias applied power supply P Transfer material H1 External output device H2 Specific gravity measuring unit B1 Specific gravity reading scale

Claims (8)

導電性支持体と、その外周に形成された弾性層及び被覆層を有してなる導電性部材の製造方法であって、
該弾性層の外周面上に塗工液を塗布し該被覆層を形成する工程と、該塗工液の液比重を一定に保持する工程と、を少なくとも有し、
該液比重を一定に保持する工程における液比重を測定する装置の塗布液に接触する部位の最大表面粗さ(Rmax)が1μm以下であることを特徴とする導電性部材の製造方法。
A method for producing a conductive member having a conductive support and an elastic layer and a coating layer formed on the outer periphery thereof,
At least a step of applying a coating liquid on the outer peripheral surface of the elastic layer to form the coating layer, and a step of keeping the liquid specific gravity of the coating liquid constant;
A method for producing a conductive member, characterized in that the maximum surface roughness (Rmax) of a portion in contact with the coating liquid of an apparatus for measuring liquid specific gravity in the step of keeping the liquid specific gravity constant is 1 μm or less.
前記液比重を測定する装置の塗布液に接触する部位が電解複合研磨処理されている請求項1に記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 1, wherein a portion in contact with the coating liquid of the device for measuring the liquid specific gravity is subjected to electrolytic composite polishing treatment. 前記該塗工液の液比重を一定に保持する工程において、該塗工液の液比重を設定比重±0.003の範囲内で管理する請求項1又は2に記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 1 or 2, wherein in the step of keeping the liquid specific gravity of the coating liquid constant, the liquid specific gravity of the coating liquid is managed within a range of set specific gravity ± 0.003. . 前記塗工液の液比重を設定比重±0.003の範囲内で管理する工程で用いる手段が、前記塗工液循環機系中に設置した比重をモニターする機構により測定された数値を用いて換算した該塗工液の希釈液を添加する又は蒸発させる請求項1〜3のいずれかに記載の導電性部材の製造方法。   The means used in the process of managing the liquid specific gravity of the coating liquid within the range of the set specific gravity ± 0.003 is a numerical value measured by a mechanism for monitoring the specific gravity installed in the coating liquid circulator system. The manufacturing method of the electroconductive member in any one of Claims 1-3 which add or evaporate the diluted liquid of this coating liquid converted. 前記塗工液に希釈液を添加する又は蒸発させる手段において、添加又は蒸発される場所が、ディップ液漕より塗工液がオーバーフローする部分から塗工液タンクの間に設置されている請求項1〜4のいずれかに記載の導電性部材の製造方法。   2. The means for adding or evaporating the diluent to the coating liquid is installed between the coating liquid tank and the place where the coating liquid overflows from the dip liquid tank. The manufacturing method of the electroconductive member in any one of -4. 前記塗工液が溶剤系塗工液である請求項1〜5のいずれかに記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 1, wherein the coating liquid is a solvent-based coating liquid. 前記溶剤塗工液が平均粒径1μm以下の粒子を含有する塗工液である請求項1〜6のいずれかに記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 1, wherein the solvent coating solution is a coating solution containing particles having an average particle size of 1 μm or less. 請求項1〜7のいずれかに記載の導電性部材の製造方法により製造されたことを特徴とする導電性部材。   A conductive member manufactured by the method for manufacturing a conductive member according to claim 1.
JP2005049001A 2005-02-24 2005-02-24 Method for manufacturing conductive member Active JP4728011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049001A JP4728011B2 (en) 2005-02-24 2005-02-24 Method for manufacturing conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049001A JP4728011B2 (en) 2005-02-24 2005-02-24 Method for manufacturing conductive member

Publications (2)

Publication Number Publication Date
JP2006231191A true JP2006231191A (en) 2006-09-07
JP4728011B2 JP4728011B2 (en) 2011-07-20

Family

ID=37039420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049001A Active JP4728011B2 (en) 2005-02-24 2005-02-24 Method for manufacturing conductive member

Country Status (1)

Country Link
JP (1) JP4728011B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027815A (en) * 1999-07-14 2001-01-30 Sharp Corp Production of electrophotographic photoreceptor
JP2004004785A (en) * 2002-04-19 2004-01-08 Canon Inc Conductive member, electrophotographic device using same, and process cartridge
JP2004313990A (en) * 2003-04-18 2004-11-11 Canon Chemicals Inc Conductive member and manufacture method therefor
JP2005000825A (en) * 2003-06-12 2005-01-06 Canon Inc Method for manufacturing conductive member
JP2005131597A (en) * 2003-10-31 2005-05-26 Canon Inc Conductive member and manufacturing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027815A (en) * 1999-07-14 2001-01-30 Sharp Corp Production of electrophotographic photoreceptor
JP2004004785A (en) * 2002-04-19 2004-01-08 Canon Inc Conductive member, electrophotographic device using same, and process cartridge
JP2004313990A (en) * 2003-04-18 2004-11-11 Canon Chemicals Inc Conductive member and manufacture method therefor
JP2005000825A (en) * 2003-06-12 2005-01-06 Canon Inc Method for manufacturing conductive member
JP2005131597A (en) * 2003-10-31 2005-05-26 Canon Inc Conductive member and manufacturing method for the same

Also Published As

Publication number Publication date
JP4728011B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5504713B2 (en) Conductive roll, charging device, process cartridge, and image forming apparatus
CN112513746B (en) Charging roller
JP2007065469A (en) Charging member
JP2007101864A (en) Charging component and electrophotographic system
JP4728011B2 (en) Method for manufacturing conductive member
JP2007292298A (en) Method for producing charging member
JP2006267397A (en) Manufacturing method for conductive member and conductive member
JP4737961B2 (en) Immersion coating method for rollers for electrophotographic apparatus
JP4509957B2 (en) Coating apparatus and coating method
JP2005131597A (en) Conductive member and manufacturing method for the same
JP2003207967A (en) Roller for electrophotography and image forming apparatus
JP2008055283A (en) Manufacturing method of electrically conductive member and its manufacturing apparatus
US11921437B2 (en) Charging member and electrophotographic imaging apparatuses employing the same
JP2004358418A (en) Electroconductive member and method of producing electroconductive member
JP5836734B2 (en) Conductive member and manufacturing method thereof
JP2005000825A (en) Method for manufacturing conductive member
JP2007293107A (en) Conductive roller
JP2004358350A (en) Masking tube, method for manufacturing electroconductive member by using the same and electroconductive member
JP2006234899A (en) Manufacturing method for conductive member and roller for electrophotographic device
JP4289928B2 (en) Method for manufacturing conductive member
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP4727244B2 (en) Method for manufacturing conductive member
JP2004004146A (en) Conductive member, processing cartridge, and image forming apparatus
JP2005296776A (en) Charging roller manufacturing method
JP2008051962A (en) Charging roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Ref document number: 4728011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350