JP2006231119A - Waste heat recovery device for wet oxidation decomposition equipment of organic waste - Google Patents

Waste heat recovery device for wet oxidation decomposition equipment of organic waste Download PDF

Info

Publication number
JP2006231119A
JP2006231119A JP2005045814A JP2005045814A JP2006231119A JP 2006231119 A JP2006231119 A JP 2006231119A JP 2005045814 A JP2005045814 A JP 2005045814A JP 2005045814 A JP2005045814 A JP 2005045814A JP 2006231119 A JP2006231119 A JP 2006231119A
Authority
JP
Japan
Prior art keywords
organic waste
oxidative decomposition
heat
heat medium
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005045814A
Other languages
Japanese (ja)
Inventor
Koji Yamazaki
幸治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005045814A priority Critical patent/JP2006231119A/en
Publication of JP2006231119A publication Critical patent/JP2006231119A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovery device for wet oxidation decomposition equipment of organic waste capable of recovering a heat of product from an oxidation decomposition furnace for wet oxidation decomposition equipment, cooling the product up to a desirable post-cooling temperature, heating liquid organic waste supplied to the oxidation decomposition furnace up to a desirable prescribed supply temperature with the recovery heat and, at the same time, preventing scale production due to carbonization etc. in a supply line of the liquid organic waste. <P>SOLUTION: The waste heat recovery device for wet oxidation decomposition equipment having the oxidation decomposition furnace by which the liquid organic waste is subjected to wet oxidation decomposition in a subcritical state is provided with: a cooler which cools the product discharged from the oxidation decomposition furnace up to the prescribed post-cooling temperature through thermal exchange with heat medium; a preheater which raises the temperature of the liquid organic waste supplied to the oxidation decomposition furnace up to the prescribed supply temperature through thermal exchange with the heat medium; a heat medium circuit through which the heat medium is circulated between the cooler and the preheater; and a cooler which is inserted into the heat medium circuit and cools the heat medium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機廃棄物を亜臨界状態において酸化分解し低コスト、短時間で、環境に負荷を与えることなく無害に処理する湿式酸化分解処理装置に関し、特にその廃熱を回収する廃熱回収装置に関する。   The present invention relates to a wet oxidative decomposition apparatus that oxidizes and decomposes organic waste in a subcritical state and processes harmlessly in a low cost and in a short time without giving a load to the environment, and in particular, waste heat recovery for recovering the waste heat. Relates to the device.

従来、一般に食品工業廃水等、動植物由来の有機物、バイオマス有機物としての有機廃棄物は、農地還元(畑地散布)、濃縮・乾燥の後に家畜飼料化、メタン発酵によるエネルギー回収、海洋投棄などにより処理される場合があったが、それらは環境の二次汚染、処理コスト等の問題や、投棄禁止措置等により、近年、新たな処理方法、処理装置が求められている。   Conventionally, organic waste derived from animals and plants, such as food industry wastewater, and organic waste as biomass organic matter have been treated by returning to farmland (spreading upland), concentrating and drying, converting to livestock feed, recovering energy through methane fermentation, dumping into the ocean, etc. However, in recent years, new processing methods and processing apparatuses have been demanded due to problems such as environmental secondary contamination, processing costs, and disposal prohibition measures.

そこで、例えば、特開2003−290738公報(特許文献1)に示されるような有機廃棄物及び有機廃水の処理システムが提案されており、再利用も行うものとしている。その記載されている概要を、図2の構成概要図に基づき以下説明する。   Therefore, for example, a treatment system for organic waste and organic waste water as disclosed in Japanese Patent Application Laid-Open No. 2003-290738 (Patent Document 1) has been proposed, and reuse is also performed. The outline of the description will be described below with reference to the schematic diagram of FIG.

図2において、101は破砕機であり、高速で回転し、有機廃棄物を裁断するカッター(刃)と、攪拌機を備えている。104は筒状の密閉式高圧容器からなる分解炉であり、外殻には、電気ヒーターを利用した加熱手段が設けられている。105は分解炉104と同様の筒状の密閉式高圧容器からなり、チタニア及びアルミナに、ルテニウム、パラジウムなどの貴金属を担持した触媒、または白金、ゼオライトのような触媒が充填されている触媒炉である。   In FIG. 2, reference numeral 101 denotes a crusher, which includes a cutter (blade) that rotates at high speed and cuts organic waste, and a stirrer. Reference numeral 104 denotes a cracking furnace composed of a cylindrical hermetic high-pressure vessel, and the outer shell is provided with a heating means using an electric heater. 105 is a cylindrical closed high-pressure vessel similar to the cracking furnace 104, and is a catalyst furnace in which titania and alumina are loaded with a noble metal such as ruthenium or palladium, or a catalyst such as platinum or zeolite. is there.

108は、炭酸ガスを選択的に吸着するゼオライトを封入した吸着塔等から構成される炭酸ガス濃縮装置である。109は、触媒(ルテニウム触媒)を封入した反応管、ヒーター等から構成される炭酸ガス還元装置である。110は、金属イオン成分(陽イオン成分)と無機栄養塩類(陰イオン成分)を除去あるいはその濃度を低減するためのゼオライトが封入された吸着塔などから構成される不純物吸着装置である。111は、ポリアミド重合膜とポリスルホンの膜からなるフィルタ(逆浸透膜)を備える高度浄水装置である。114は、メタンガスを燃料に発電する発電装置である。115は、水耕栽培により野菜や果樹などを生産する植物工場的な植物栽培装置等である。分解炉104、触媒炉105、炭酸ガス還元装置108はヒートポンプなどからなる廃熱回収システムに接続されており、回収された熱は熱交換器103において再利用される。   Reference numeral 108 denotes a carbon dioxide concentrator comprising an adsorption tower or the like enclosing zeolite that selectively adsorbs carbon dioxide. Reference numeral 109 denotes a carbon dioxide gas reduction device including a reaction tube, a heater and the like in which a catalyst (ruthenium catalyst) is enclosed. Reference numeral 110 denotes an impurity adsorption apparatus including an adsorption tower in which zeolite for removing metal ion components (cation components) and inorganic nutrient salts (anion components) or reducing the concentration thereof is enclosed. 111 is an advanced water purifier equipped with a filter (reverse osmosis membrane) comprising a polyamide polymer membrane and a polysulfone membrane. Reference numeral 114 denotes a power generation device that generates methane gas as fuel. Reference numeral 115 denotes a plant cultivating apparatus or the like that produces vegetables, fruit trees, etc. by hydroponics. The cracking furnace 104, the catalyst furnace 105, and the carbon dioxide gas reduction device 108 are connected to a waste heat recovery system including a heat pump and the recovered heat is reused in the heat exchanger 103.

なお、システムは、この他にも高圧圧送ポンプ102や、空気添加装置106、背圧バルブ107、気液分離装置113などを備える。   The system further includes a high-pressure pump 102, an air addition device 106, a back pressure valve 107, a gas-liquid separation device 113, and the like.

このようにして構成されたシステムによって、有機廃棄物及び有機廃水を処理し、再利用する主な工程は概略以下のように提案されている。   The main steps of treating and reusing organic waste and organic wastewater by the system configured as described above have been proposed as follows.

(1)破砕工程:
有機廃棄物及び有機廃水は、破砕機101に投入され、カッターで裁断され攪拌機で混合されたのちスラリー状にされ、高圧圧送ポンプ102を用いてバルブ112経由、熱交換器103に送り込まれ、熱交換器103によって予熱されたのち、分解炉104に送り込まれる。
(1) Crushing process:
Organic waste and organic waste water are put into a crusher 101, cut with a cutter, mixed with a stirrer, then turned into a slurry, and sent to a heat exchanger 103 via a valve 112 using a high-pressure pump 102. After being preheated by the exchanger 103, it is sent to the cracking furnace 104.

(2)酸化分解工程:
送り込まれたスラリー状物質は、分解炉104で酸化効率を高めるために空気添加装置106(あるいは酸素供給装置)により所定量の空気(酸素でもよい)が添加されるとともに、高温(250〜300℃)に加熱され、含有する有機物が酸化分解されて、炭酸ガスと分解できなかった少量の有機物とを含有する水溶液とからなる中間生成物に変換される。そして、炭酸ガスと分解できなかった少量の有機物を含む水溶液は、互いに交じり合った混合溶液として、高圧圧送ポンプ102の圧力により連続的に触媒炉105に送られる。なお、分解炉104で生じた廃熱は熱交換器103により回収される。
(2) Oxidative decomposition process:
In order to increase the oxidation efficiency in the cracking furnace 104, a predetermined amount of air (may be oxygen) is added to the slurry-like substance sent in by the decomposition furnace 104, and a high temperature (250 to 300 ° C.) is added. ), And the contained organic matter is oxidatively decomposed to be converted into an intermediate product comprising carbon dioxide and an aqueous solution containing a small amount of organic matter that could not be decomposed. The aqueous solution containing carbon dioxide and a small amount of organic matter that could not be decomposed is continuously sent to the catalyst furnace 105 as a mixed solution mixed with each other by the pressure of the high-pressure pump 102. Note that the waste heat generated in the cracking furnace 104 is recovered by the heat exchanger 103.

(3)無機化工程:
触媒炉105に流入した混合水溶液に含まれる有機物は、空気添加装置106(あるいは酸素供給装置)を用いて触媒に循環接触されてさらに酸化分解され、混合溶液は水、炭酸ガス、窒素ガス等に分解されて完全に無機化される。そして、無機化された水溶液は、熱交換器103を経て背圧バルブ107で降圧されて気液分離器113に導入され、水溶液と炭酸ガスに分離され、それぞれ、不純物吸着装置110、炭酸ガス濃縮装置108に送り込まれる。なお、触媒炉105で生じた廃熱は熱交換器103により回収される。背圧バルブ107は、分解炉104、触媒炉105内を所定の高圧に維持するものである。
(3) Mineralization process:
The organic matter contained in the mixed aqueous solution flowing into the catalyst furnace 105 is circulated and contacted with the catalyst using the air addition device 106 (or oxygen supply device) and further oxidatively decomposed, and the mixed solution is converted into water, carbon dioxide gas, nitrogen gas or the like. It is decomposed and completely mineralized. The mineralized aqueous solution is reduced in pressure by the back pressure valve 107 through the heat exchanger 103 and introduced into the gas-liquid separator 113 to be separated into the aqueous solution and carbon dioxide gas. Sent to the device 108. Note that the waste heat generated in the catalyst furnace 105 is recovered by the heat exchanger 103. The back pressure valve 107 is used to maintain the cracking furnace 104 and the catalyst furnace 105 at a predetermined high pressure.

(4)浄水工程:
無機化された水溶液は、不純物吸着装置110によって、陰電荷に帯電したゼオライトによって金属成分(陽イオン)が一定量除去されるとともに、陽電荷に帯電したゼオライトによって無機栄養塩類(陰イオン)が一定量取り除かれ、浄水として高度浄水装置111に送り込まれる。
(4) Water purification process:
In the mineralized aqueous solution, a certain amount of metal components (cations) are removed by the negatively charged zeolite by the impurity adsorption device 110, and inorganic nutrient salts (anions) are fixed by the positively charged zeolite. The amount is removed and sent to the advanced water purifier 111 as purified water.

(5)再利用工程:
気液分離装置113で水溶液と分離された炭酸ガスは、炭酸ガス濃縮装置108による吸着と分離によって分離濃縮され、炭酸ガス還元装置109に送り込まれて水素ガスを加えられたのち、還元されてメタンガスと水に転換される。そして、メタンガスは燃料として発電装置114に送り込まれる。また、発電装置114から生じた炭酸ガスは、植物工場の植物栽培装置115に送り込まれ、光合成によって植物の成長に利用される。植物栽培装置115では不純物吸着装置110で回収した無機栄養塩類も肥料として再利用できる。
(5) Reuse process:
The carbon dioxide gas separated from the aqueous solution by the gas-liquid separation device 113 is separated and concentrated by adsorption and separation by the carbon dioxide gas concentration device 108, sent to the carbon dioxide gas reduction device 109, added with hydrogen gas, and then reduced to methane gas. And converted to water. The methane gas is sent to the power generation device 114 as fuel. In addition, carbon dioxide gas generated from the power generation device 114 is sent to the plant cultivation device 115 of the plant factory, and is used for plant growth by photosynthesis. In the plant cultivation apparatus 115, the inorganic nutrients recovered by the impurity adsorption apparatus 110 can be reused as fertilizer.

図2に示すように、有機廃棄物及び有機廃水の処理システムの基本的な考え方の例は従来示されているが、高温高圧における湿式酸化分解処理、特に亜臨界水の酸化特性、溶解特性が高いことを積極的に利用するために、有機廃水またはスラリー状にされた有機廃棄物(以下「液状有機廃棄物」という)を亜臨界状態で湿式酸化分解処理を行おうとすれば、例えば図2の分解炉104と触媒炉105のような酸化分解反応炉内を所期の亜臨界条件の高温と高圧(例えば、略310℃、14MPa)に維持する必要がある。高圧は、有機廃棄物を送り込む高圧ポンプ(例えば、図2の高圧圧送ポンプ102)と圧力調整装置(例えば、図2の背圧バルブ107)の設定で得られる。高温を得るためには、反応処理開始時には酸化分解反応炉をその外殻に設置されたヒーターで反応開始温度(例えば、180℃)に加熱し、処理運転状態においては、酸化分解処理は発熱反応であるため、反応生成物の有する熱を回収し酸化分解反応炉へ供給される前の液状有機廃棄物を熱交換器(例えば、図2の熱交換器103)で反応開始温度(例えば、180℃)まで予熱することが行われる。   As shown in FIG. 2, an example of a basic concept of a treatment system for organic waste and organic wastewater has been shown conventionally, but wet oxidation decomposition treatment at high temperature and high pressure, in particular, oxidation characteristics and dissolution characteristics of subcritical water. In order to actively utilize the high price, if an organic wastewater or a slurried organic waste (hereinafter referred to as “liquid organic waste”) is subjected to a wet oxidative decomposition process in a subcritical state, for example, FIG. It is necessary to maintain the inside of the oxidation decomposition reaction furnace such as the decomposition furnace 104 and the catalyst furnace 105 at a high temperature and high pressure (for example, approximately 310 ° C. and 14 MPa) under the desired subcritical conditions. The high pressure is obtained by setting a high pressure pump (for example, the high pressure pump 102 in FIG. 2) and a pressure regulator (for example, the back pressure valve 107 in FIG. 2) for feeding organic waste. In order to obtain a high temperature, the oxidation decomposition reactor is heated to the reaction start temperature (for example, 180 ° C.) with a heater installed in the outer shell at the start of the reaction treatment. Therefore, the heat of the reaction product is recovered and the liquid organic waste before being supplied to the oxidative decomposition reactor is converted into a reaction start temperature (for example, 180 by a heat exchanger (for example, the heat exchanger 103 in FIG. 2)). Preheating is performed up to ° C).

図3に、有機廃棄物の湿式酸化分解処理装置における廃熱回収装置としての予熱器の従来例Aを示す。図3において、1は湿式酸化分解処理装置の酸化分解処理炉であり、酸化分解処理炉1は、略310℃、14MPaの亜臨界条件で湿式酸化分解処理を行う高圧密閉容器で形成され、液状有機廃棄物aが供給されるとともに、適宜な酸素供給装置2からの高圧の酸素Oが供給され(空気供給装置から酸化作用に十分な酸素量となる空気を高圧下で供給する場合もある)、亜臨界状態の高温、高圧下で、固形有機物は可溶化されるとともに有機物は完全に酸化分解されて、無機化した炭酸ガスCO、窒素ガスN、水HOを主成分とし、残余の酸素Oを含む生成物bとして取り出される。 FIG. 3 shows a conventional example A of a preheater as a waste heat recovery apparatus in a wet oxidative decomposition apparatus for organic waste. In FIG. 3, reference numeral 1 denotes an oxidative decomposition treatment furnace of a wet oxidative decomposition treatment apparatus. The oxidative decomposition treatment furnace 1 is formed of a high-pressure sealed container that performs wet oxidative decomposition treatment under subcritical conditions of approximately 310 ° C. and 14 MPa, and is liquid with organic waste a is supplied, there is also a case of supplying oxygen O 2 in the high pressure is supplied (air to be sufficient amount of oxygen to the oxidizing action from the air supply device under high pressure from a suitable oxygen supply unit 2 ), Solid organic matter is solubilized under high temperature and high pressure in a subcritical state, and the organic matter is completely oxidatively decomposed, and contains inorganic carbon dioxide CO 2 , nitrogen gas N 2 , and water H 2 O as main components. Is taken off as product b with residual oxygen O 2 .

本従来例において酸化分解処理炉1は、上流側に反応塔1a、下流側に触媒塔1bを直列に接続した構成としている。反応塔1aは、処理対象である液状有機廃棄物aと、高圧の酸素Oが供給され亜臨界状態で湿式酸化分解処理を行い固形有機物を可溶化し約70%の有機物を分解する。触媒塔1bは同様亜臨界状態で触媒酸化による湿式酸化分解処理を行うもので、有機廃棄物の亜臨界状態での湿式酸化分解と無機化に、材質、触媒作用ともにより適したルテニウム、パラジウムなどによる触媒が充填されており、高圧の酸素Oが供給され、触媒に接触させることにより、触媒塔1b内での触媒を伴う酸化分解反応よって、酢酸イオン等の中間生成物を含む残り約30%の有機物を略完全に酸化分解して無機化し、また中間生成物に含まれる硝酸イオン、亜硝酸イオン等も低分子にまで完全に酸化分解し、炭酸ガスCO、窒素ガスN、水HO、残余の酸素Oを主成分とする環境に無害な生成物bとする(空気を供給した場合は、空気を構成する他の気体も含まれる)。 In this conventional example, the oxidative decomposition treatment furnace 1 has a configuration in which a reaction tower 1a is connected upstream and a catalyst tower 1b is connected in series downstream. The reaction tower 1a is supplied with liquid organic waste a to be treated and high-pressure oxygen O 2 and performs wet oxidative decomposition treatment in a subcritical state to solubilize solid organic matter and decompose about 70% of organic matter. Similarly, the catalytic tower 1b performs wet oxidative decomposition treatment by catalytic oxidation in the subcritical state, and is suitable for wet oxidative decomposition and mineralization in the subcritical state of organic waste, depending on the material and catalytic action, etc. The catalyst is charged with high pressure oxygen O 2, and is brought into contact with the catalyst, whereby the remaining about 30 containing intermediate products such as acetate ions are obtained by the oxidative decomposition reaction involving the catalyst in the catalyst tower 1b. % Organic matter is almost completely oxidatively decomposed and mineralized, and nitrate ions, nitrite ions, etc. contained in intermediate products are also completely oxidized and decomposed to low molecules, so that carbon dioxide CO 2 , nitrogen gas N 2 , water The product b is harmless to the environment mainly composed of H 2 O and residual oxygen O 2 (when air is supplied, other gases constituting the air are also included).

また、酸化分解処理炉1を構成する反応塔1a、触媒塔1bはともに、外殻に図示しない電気式、熱油式等のヒーターを備えており、酸化分解処理のスタートアップ時に酸化分解処理炉1を早急に亜臨界状態の湿式酸化分解反応が可能な状態とする。   Further, both the reaction tower 1a and the catalyst tower 1b constituting the oxidative decomposition treatment furnace 1 are provided with a heater such as an electric type or a hot oil type not shown in the outer shell, and the oxidative decomposition treatment furnace 1 at the start-up of the oxidative decomposition process. As soon as possible, a sub-critical wet oxidative decomposition reaction is possible.

本従来例において予熱器は、酸化分解処理炉1を出た生成物bから熱を回収すると同時に、酸化分解処理炉1へ供給される液状有機廃棄物aを加熱する熱交換器3で構成され廃熱回収装置として機能する。なお、生成物bは熱交換後さらにその下流側で図示しない圧力調整装置で降圧される。圧力調整装置はまた、その上流側を所期の高圧(略14MPa)に保持するものである。   In this conventional example, the preheater is composed of a heat exchanger 3 that heats the liquid organic waste a supplied to the oxidative decomposition treatment furnace 1 at the same time as recovering heat from the product b exiting the oxidative decomposition treatment furnace 1. Functions as a waste heat recovery device. In addition, the product b is pressure-reduced by the pressure regulator which is not shown in the downstream after heat exchange. The pressure adjusting device also holds the upstream side at a desired high pressure (approximately 14 MPa).

図3に示す例で説明すると、酸化分解処理炉1における亜臨界反応の所期の温度、圧力が略310℃、14MPaとした場合、熱交換器3に入る液状有機廃棄物aは予め図示しない高圧ポンプにより略14MPaに昇圧され、温度は常温(例えば30℃)であり、熱交換器3で加熱されて略180℃、14MPaとする。酸化分解処理炉1では酸化分解反応の反応熱によって亜臨界状態の略310℃に昇温し、無機物に分解した生成物bは略310℃で熱交換器3に入り前述のように液状有機廃棄物aに熱回収されて熱交換器3の出口では常温に近い冷却後温度まで冷却することが企図される。そしてさらに圧力調整装置で大気圧に降圧される。   In the example shown in FIG. 3, when the intended temperature and pressure of the subcritical reaction in the oxidative decomposition treatment furnace 1 are about 310 ° C. and 14 MPa, the liquid organic waste a entering the heat exchanger 3 is not shown in advance. The pressure is increased to approximately 14 MPa by a high-pressure pump, the temperature is room temperature (for example, 30 ° C.), and the temperature is heated by the heat exchanger 3 to approximately 180 ° C. and 14 MPa. In the oxidative decomposition treatment furnace 1, the temperature is raised to about 310 ° C. in a subcritical state by the reaction heat of the oxidative decomposition reaction, and the product b decomposed into inorganic substances enters the heat exchanger 3 at about 310 ° C. and is liquid organic waste as described above. It is contemplated that heat is recovered in the object a and cooled to a post-cooling temperature close to room temperature at the outlet of the heat exchanger 3. Further, the pressure is reduced to atmospheric pressure by a pressure adjusting device.

しかしながら、この例のように生成物bと液状有機廃棄物aとで直接熱交換をする熱交換器3を用いた場合、有機廃棄物の酸化分解反応の発熱量が高いため、酸化分解処理炉1酸化分解処理炉1で180℃の液状有機廃棄物aが310℃の生成物bに昇温するが、熱交換器3で液状有機廃棄物aを常温から180℃へ昇温させても、310℃の生成物bは熱交換器3出口の冷却後温度toが常温(好ましくは40℃程度)まで冷却されず、下流側の取り扱い上の問題があった。   However, when the heat exchanger 3 that directly exchanges heat between the product b and the liquid organic waste a as in this example is used, the heat generation amount of the oxidative decomposition reaction of the organic waste is high. In the oxidative decomposition furnace 1, the liquid organic waste a at 180 ° C. is heated to the product b at 310 ° C. Even if the liquid organic waste a is heated from room temperature to 180 ° C. in the heat exchanger 3, The product b at 310 ° C. has not been cooled to a normal temperature (preferably about 40 ° C.) after cooling at the outlet of the heat exchanger 3, and there has been a problem in handling on the downstream side.

一方、熱交換器3出口の生成物bの冷却後温度tが40℃程度となるように熱交換器3を設定すれば、熱交換器3出口の液状有機廃棄物aの温度が例えば210℃以上にまで上昇し熱交換器3内でスケールが発生して連続運転に支障が出る恐れがあることが判明した。 On the other hand, if the heat exchanger 3 is set so that the temperature t 0 after cooling of the product b at the outlet of the heat exchanger 3 is about 40 ° C., the temperature of the liquid organic waste a at the outlet of the heat exchanger 3 is 210, for example. It has been found that there is a possibility that the temperature will rise to above ℃ and scale will be generated in the heat exchanger 3, which may hinder continuous operation.

すなわち、本発明者達の研究の結果、高圧(略14MPa)の液状有機廃棄物aを加熱したとき略210℃までは吸熱のみであるが、略210℃を超えると分解が始まり、酸素Oが十分供給されている場合は不十分ではあるが酸化分解が生じ、さらに高温の略310℃で好ましい亜臨界状態の酸化分解反応が得られる。しかし、略210℃を越して酸素Oが不十分な場合、有機物の炭化が生じることを発見した。 That is, as a result of the study by the present inventors, when the high-pressure (approximately 14 MPa) liquid organic waste a is heated, only endotherm is obtained up to about 210 ° C., but decomposition exceeds about 210 ° C., and oxygen O 2 Is not sufficient, but oxidative decomposition occurs, and a preferable subcritical oxidative decomposition reaction is obtained at a high temperature of about 310 ° C. However, it has been discovered that when oxygen O 2 is insufficient above about 210 ° C., organic carbonization occurs.

したがって、熱交換器3内で液状有機廃棄物aが略210℃を越す状態となると、熱交換器3内では酸素Oが供給されないので熱交換器3の液状有機廃棄物a側に微粒上の炭化物が発生してスケールとして充満し、熱交換不全だけでなく液状有機廃棄物aの流通閉塞の恐れも生じるものであった。 Accordingly, when the liquid organic waste a exceeds about 210 ° C. in the heat exchanger 3, oxygen O 2 is not supplied in the heat exchanger 3, so that fine particles are formed on the liquid organic waste a side of the heat exchanger 3. As a result, not only the heat exchange failure but also the liquid organic waste a could be blocked.

一方、図4に示す従来例Bのような、有機廃棄物の湿式酸化分解処理装置における予熱器の例がある。図4において、1は酸化分解処理炉であり、図3で前述の酸化分解処理炉1と、構成、作用ともに同様であるので説明を省略する。   On the other hand, there is an example of a preheater in a wet oxidative decomposition apparatus for organic waste, such as Conventional Example B shown in FIG. In FIG. 4, reference numeral 1 denotes an oxidative decomposition treatment furnace, which is the same as the above-described oxidative decomposition treatment furnace 1 in FIG.

本従来例において予熱器4は、液状有機廃棄物aの酸化分解処理炉1への供給ライン5に単独で設けられ、図3に示す例に従えば、常温(略30℃)、14MPaの液状有機廃棄物aは予熱器4で反応開始温度略180℃の供給温度に昇温され酸化分解処理炉1に送り込まれる。液状有機廃棄物aの加熱(予熱)は、電熱、蒸気等適宜な手段で行われる。   In this conventional example, the preheater 4 is provided alone in the supply line 5 to the oxidative decomposition treatment furnace 1 of the liquid organic waste a, and according to the example shown in FIG. 3, it is liquid at room temperature (approximately 30 ° C.) and 14 MPa. The organic waste a is heated to a supply temperature of about 180 ° C. by the preheater 4 and sent to the oxidative decomposition treatment furnace 1. The heating (preheating) of the liquid organic waste a is performed by an appropriate means such as electric heating or steam.

液状有機廃棄物aは酸化分解処理炉1で酸化分解反応を受けて無機物に分解し、反応熱により略310℃に昇温した生成物bとして排出される。排出ライン6には冷却器7が設けられ、生成物bを常温に近い好ましい冷却後温度t(例えば40℃)に冷却する。冷却は冷却器7にクーラー8を接続して、水冷、または空冷で行う。クーラー8はクーリングタワー、ラジエータ等で構成される。 The liquid organic waste a undergoes an oxidative decomposition reaction in the oxidative decomposition treatment furnace 1 to be decomposed into inorganic substances, and is discharged as a product b that has been heated to about 310 ° C. by reaction heat. The discharge line 6 is provided with a cooler 7 to cool the product b to a preferable post-cooling temperature t 0 (for example, 40 ° C.) close to normal temperature. Cooling is performed by connecting a cooler 8 to the cooler 7 and cooling with water or air. The cooler 8 includes a cooling tower, a radiator, and the like.

本従来例の場合は、予熱器4と冷却器7は別個に設けられそれぞれの設定、制御を行えるので、予熱器4出口において好ましい供給温度(例えば反応開始温度の略180℃)を設定することが容易であり、前述の従来例Aにおけるような液状有機廃棄物aの予熱温度が上昇して炭化等のスケールの問題が発生することは回避できる。また、冷却器7において略310℃、14MPaの生成物bを好ましい冷却後温度t(例えば40℃)に冷却するように設定することが可能である。従って、従来例Aで判明したような問題は回避できる。 In the case of this conventional example, since the preheater 4 and the cooler 7 are separately provided and can be set and controlled, a preferable supply temperature (for example, approximately 180 ° C. of the reaction start temperature) is set at the outlet of the preheater 4. Therefore, it is possible to avoid the occurrence of a scale problem such as carbonization due to an increase in the preheating temperature of the liquid organic waste a as in the above-mentioned conventional example A. Moreover, it is possible to set so that the product b of about 310 ° C. and 14 MPa may be cooled to a preferable post-cooling temperature t 0 (for example, 40 ° C.) in the cooler 7. Therefore, the problem found in the conventional example A can be avoided.

しかし、予熱と、冷却を個別に行うので加熱源、冷却源を備える必要があり、特に反応開始温度までの液状有機廃棄物aの予熱を別途の熱源で行うので液状有機廃棄物aへの熱回収がなされず、仮に別途の熱回収先を設けても、装置が複雑化し、エネルギー効率が低下し、熱回収装置としての機能を発揮するものとはなし難い。また、冷却器7は略310℃の生成物bを略40℃の常温まで冷却しようとした場合、水冷、空冷ともに冷却容量が大きく装置が大型化せざるを得ない、という問題があった。   However, since preheating and cooling are performed separately, it is necessary to provide a heating source and a cooling source. In particular, since the liquid organic waste a is preheated up to the reaction start temperature with a separate heat source, the heat to the liquid organic waste a Even if recovery is not performed and a separate heat recovery destination is provided, the apparatus becomes complicated, energy efficiency is reduced, and it is difficult to achieve a function as a heat recovery apparatus. Further, when the cooler 7 is to cool the product b of about 310 ° C. to a room temperature of about 40 ° C., there is a problem that the cooling capacity is large for both water cooling and air cooling, and the apparatus must be enlarged.

特開2003−290738公報(第3〜5頁、図1)JP 2003-290738 (pages 3 to 5, FIG. 1)

本願発明は、有機廃棄物の湿式酸化分解処理装置において、湿式酸化分解処理装置の酸化分解処理炉からの生成物の熱を回収し好ましい冷却後温度にまで冷却でき、その回収熱で酸化分解処理炉へ供給される液状有機廃棄物を好ましい所定の供給温度まで加熱できるとともに、液状有機廃棄物の供給ラインにおいて炭化等によるスケール発生が防止される、有機廃棄物の湿式酸化分解処理装置の熱回収装置を提供することを課題とするものである。   The invention of the present application is a wet oxidative decomposition treatment apparatus for organic waste, in which the heat of the product from the oxidative decomposition treatment furnace of the wet oxidative decomposition treatment apparatus can be recovered and cooled to a preferable post-cooling temperature. Liquid organic waste supplied to the furnace can be heated to a preferred predetermined supply temperature, and scale generation due to carbonization, etc. in the liquid organic waste supply line is prevented, and heat recovery of the wet oxidative decomposition treatment apparatus for organic waste It is an object to provide an apparatus.

本発明は、上記の課題を解決するためになされ、下記の(1)から(4)の手段を提供するものであり、以下、特許請求の範囲に記載の順に説明する。   The present invention has been made to solve the above-described problems, and provides the following means (1) to (4), which will be described below in the order of the claims.

(1)その第1の手段として、液状有機廃棄物を亜臨界状態で湿式酸化分解処理する酸化分解処理炉を備えた湿式酸化分解処理装置の廃熱回収装置において、前記酸化分解処理炉から排出される生成物を熱媒との熱交換によって所定の冷却後温度に冷却する冷却器と、前記酸化分解処理炉へ供給される前記液状有機廃棄物を前記熱媒との熱交換によって所定の供給温度に昇温する予熱器と、前記冷却器と前記予熱器の間に前記熱媒を循環させる熱媒回路と、同熱媒回路に介装され前記熱媒を冷却するクーラーとを備えてなることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を提供する。   (1) As a first means, in a waste heat recovery apparatus of a wet oxidative decomposition treatment apparatus provided with an oxidative decomposition treatment furnace that performs wet oxidative decomposition treatment of liquid organic waste in a subcritical state, the liquid organic waste is discharged from the oxidative decomposition treatment furnace. A cooler that cools the product to be cooled to a predetermined temperature after heat exchange with the heat medium, and a predetermined supply by heat exchange with the heat medium for the liquid organic waste supplied to the oxidation decomposition treatment furnace. A preheater that raises the temperature, a heat medium circuit that circulates the heat medium between the cooler and the preheater, and a cooler that is interposed in the heat medium circuit and cools the heat medium. The present invention provides a waste heat recovery apparatus for a wet oxidative decomposition treatment apparatus for organic waste.

(2)第2の手段としては、第1の手段の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置において、前記所定の供給温度は210℃を超えないことを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を提供する。   (2) As the second means, in the waste heat recovery apparatus of the wet oxidative decomposition apparatus for organic waste of the first means, the predetermined supply temperature does not exceed 210 ° C. The waste heat recovery device of the wet oxidative decomposition treatment apparatus of

(3)また、第3の手段として、第1の手段または第2の手段の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置において、前記亜臨界状態は略310℃、14MPaであることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を提供する。   (3) Further, as a third means, in the waste heat recovery apparatus of the wet oxidative decomposition apparatus for organic waste of the first means or the second means, the subcritical state is about 310 ° C. and 14 MPa. A waste heat recovery apparatus for a wet oxidative decomposition treatment apparatus for organic waste is provided.

(4)第4の手段として、第1の手段ないし第3の手段のいずれかの有機廃棄物の湿式酸化分解処理装置の廃熱回収装置において、前記クーラーは、前記熱媒が前記冷却器から前記予熱器へ向かう流れの前記熱媒回路と、同熱媒が同予熱器から同冷却器へ向かう流れの同熱媒回路とにそれぞれ備えられてなることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を提供する。   (4) As a fourth means, in the waste heat recovery apparatus of the wet oxidative decomposition apparatus for organic waste according to any one of the first means to the third means, the cooler is configured so that the heat medium is supplied from the cooler. The wet oxidation of organic waste, characterized in that the heating medium circuit in the flow toward the preheater and the heating medium circuit in the flow from the preheater to the cooler are provided respectively. A waste heat recovery apparatus for a decomposition processing apparatus is provided.

(1)特許請求の範囲に記載の請求項1の発明によれば、有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を上記第1の手段のように構成したので、酸化分解処理炉からの生成物の所定の冷却後温度を得るとともに熱回収ができ、その回収熱によって、酸化分解処理炉に供給される液状有機廃棄物の温度を反応開始に十分な供給温度に予熱ができ、熱媒回路においてクーラーで冷却された熱は、処理対象の液状有機廃棄物の予熱のために熱回収した残りの余熱であり、エネルギーロスを大幅に低減できるものとなる。また、クーラーからのさらなる熱回収を加えることも可能である。   (1) According to the invention of claim 1, the waste heat recovery apparatus of the wet waste oxidative decomposition apparatus for organic waste is configured as the first means, so that the oxidative decomposition treatment furnace Heat can be recovered while obtaining a predetermined post-cooling temperature of the product from, and by the recovered heat, the temperature of the liquid organic waste supplied to the oxidative decomposition treatment furnace can be preheated to a supply temperature sufficient to start the reaction, The heat cooled by the cooler in the heat medium circuit is the remaining residual heat recovered for preheating the liquid organic waste to be treated, and energy loss can be greatly reduced. It is also possible to add further heat recovery from the cooler.

(2)請求項2の発明によれば、有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を上記第2の手段のように構成したので、請求項1の発明の作用効果に加え、酸化分解処理炉に供給される液状有機廃棄物の温度を反応開始に十分な高温で、且つ有機廃棄物の湿式酸化分解処理装置の熱回収装置における炭化によるスケール発生問題を回避できる温度に抑えた予熱ができるものとなる。   (2) According to the invention of claim 2, since the waste heat recovery device of the wet oxidative decomposition treatment apparatus for organic waste is configured as the second means, in addition to the function and effect of the invention of claim 1, The temperature of the liquid organic waste supplied to the oxidative decomposition furnace is kept high enough to start the reaction, and to a temperature that can avoid the problem of scale generation due to carbonization in the heat recovery device of the wet oxidative decomposition apparatus for organic waste. It can be preheated.

(3)請求項3の発明によれば、有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を上記第3の手段のように構成したので、請求項1または請求項2の発明の作用効果に加え、略310℃、14MPaの亜臨界状態では、亜臨界水の酸化特性、溶解特性が高い性質が十分に利用でき、より好ましい酸化分解反応が得られる。   (3) According to the invention of claim 3, since the waste heat recovery device of the wet oxidative decomposition apparatus for organic waste is configured as the third means, the operation of the invention of claim 1 or claim 2 is achieved. In addition to the effect, in the subcritical state at approximately 310 ° C. and 14 MPa, the property of high oxidation and dissolution properties of subcritical water can be fully utilized, and a more preferable oxidative decomposition reaction can be obtained.

(4)請求項4の発明によれば、有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を上記第4の手段のように構成したので、請求項1ないし請求項3のいずれかの発明の作用効果に加え、熱媒の温度条件、冷却器の冷却条件、予熱器の予熱条件を容易に設定できるものとなる。   (4) According to the invention of claim 4, the waste heat recovery device of the wet oxidative decomposition apparatus for organic waste is configured as the fourth means, and therefore any one of claims 1 to 3. In addition to the effects of the invention, the temperature condition of the heat medium, the cooling condition of the cooler, and the preheating condition of the preheater can be easily set.

本発明を実施するための最良の形態として、以下に実施例1を説明する。   Example 1 will be described below as the best mode for carrying out the present invention.

図1に基づいて本発明の実施例1に係る有機廃棄物の湿式酸化分解処理装置の廃熱回収装置を説明する。図1は本実施例の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置の主要部構成概要図である。   Based on FIG. 1, a waste heat recovery apparatus of an organic waste wet oxidative decomposition treatment apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram of a main part configuration of a waste heat recovery apparatus of a wet oxidative decomposition apparatus for organic waste according to the present embodiment.

図1において、1は湿式酸化分解処理装置の酸化分解処理炉であり、酸化分解処理炉1は、略310℃、14MPaの亜臨界条件で湿式酸化分解処理を行う高圧密閉容器で形成され、有機廃液やスラリー化した有機廃棄物等の液状有機廃棄物aが供給されるとともに、酸素供給装置2からの高圧の酸素Oが供給され、亜臨界状態の高温、高圧下で、固形有機物は可溶化されるとともに有機物は完全に酸化分解されて、無機化した炭酸ガスCO、窒素ガスN、水HOを主成分とし、残余の酸素Oを含む生成物bとして取り出される。亜臨界状態の湿式酸化分解処理は亜臨界水の酸化特性、溶解特性が高い性質を積極的に利用するためのものであり、略310℃、14MPaの亜臨界状態ではその性質を十分に利用でき、より好ましい酸化分解反応が得られる。 In FIG. 1, reference numeral 1 denotes an oxidative decomposition treatment furnace of a wet oxidative decomposition treatment apparatus. The oxidative decomposition treatment furnace 1 is formed of a high-pressure sealed container that performs wet oxidative decomposition treatment under subcritical conditions of approximately 310 ° C. and 14 MPa. Liquid organic waste a such as waste liquid or slurried organic waste is supplied, and high-pressure oxygen O 2 from the oxygen supply device 2 is supplied, and solid organic matter is acceptable under high temperature and high pressure in a subcritical state. While being solubilized, the organic matter is completely oxidized and decomposed and taken out as a product b containing inorganic carbon dioxide CO 2 , nitrogen gas N 2 , and water H 2 O as main components and the remaining oxygen O 2 . The wet oxidative decomposition treatment in the subcritical state is intended to positively utilize the properties with high oxidation and dissolution properties of subcritical water. The properties can be fully utilized in the subcritical state at approximately 310 ° C. and 14 MPa. More preferable oxidative decomposition reaction can be obtained.

なお、酸素供給装置2に代えて空気供給装置を設け、酸化作用に十分な酸素量となる空気を高圧下で供給してもよいが、本実施例においては、以下、酸素を供給する構成で説明する。空気を供給する場合は、生成物b中には空気を構成する他の気体が含まれる。   Note that an air supply device may be provided instead of the oxygen supply device 2 to supply air having an oxygen amount sufficient for the oxidizing action under high pressure. However, in the present embodiment, hereinafter, oxygen is supplied. explain. In the case of supplying air, the product b contains other gas constituting the air.

本実施例の酸化分解処理炉1は、上述の従来例Aで説明した酸化分解処理炉1と同様に構成、作用を有するものであるので、同じ部分には同じ符号を付して説明を省略する。なお、本実施例においても酸化分解処理炉1は、上流側に反応塔1a、下流側に触媒塔1bを直列に接続した構成としているが、酸化分解処理炉1の構成はそれに限定されず、他の構成であってもよい。   The oxidative decomposition treatment furnace 1 of the present embodiment has the same configuration and action as the oxidative decomposition treatment furnace 1 described in the above-described conventional example A, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted. To do. In this embodiment, the oxidative decomposition treatment furnace 1 has a structure in which the reaction tower 1a is connected upstream and the catalyst tower 1b is connected in series downstream, but the structure of the oxidative decomposition treatment furnace 1 is not limited thereto. Other configurations may be used.

本実施例において予熱器10は、酸化分解処理炉1への液状有機廃棄物aの供給ライン5に単独で設けられ、冷却器11は酸化分解処理炉1からの生成物bの排出ライン6に単独に設けられる。   In this embodiment, the preheater 10 is provided alone in the supply line 5 of the liquid organic waste a to the oxidation decomposition treatment furnace 1, and the cooler 11 is provided in the discharge line 6 of the product b from the oxidation decomposition treatment furnace 1. It is provided alone.

一方、熱媒cが予熱器10から冷却器11を通り、クーラー12を経て予熱器10に循環する熱媒回路13が設けられている。なお、後述のようにクーラーは図示の冷却器11から予熱器10へ向かう流れの熱媒回路13aに介装されたクーラー12でなく、予熱器10から冷却器11へ向かう流れの熱媒回路13bに介装されたクーラー12′としてもよく、熱媒回路13の両回路13a、13bにともにクーラー12、12′を備えてもよい。また、ここで熱媒回路13は熱媒cを循環させるための熱媒循環ポンプ等を含めたものであるが、それら熱媒循環ポンプ等は図示省略している。熱媒cは、略310℃以上に及ぶ温度域に合わせた沸点の高いもの、例えばグリコールと水の混合物等が用いられる。   On the other hand, a heat medium circuit 13 is provided in which the heat medium c passes from the preheater 10 through the cooler 11 and circulates through the cooler 12 to the preheater 10. As will be described later, the cooler is not the cooler 12 interposed in the illustrated heat medium circuit 13a from the cooler 11 to the preheater 10, but the heat medium circuit 13b in the flow from the preheater 10 to the cooler 11. The cooler 12 'may be provided in both the circuits 13a and 13b of the heat medium circuit 13, and the coolers 12 and 12' may be provided. Here, the heat medium circuit 13 includes a heat medium circulation pump for circulating the heat medium c and the like, but the heat medium circulation pump and the like are not shown. As the heat medium c, one having a high boiling point in accordance with a temperature range of approximately 310 ° C. or higher, for example, a mixture of glycol and water is used.

本実施例は、図2に示した従来例の、熱交換器103、分解炉104、触媒炉105、空気添加装置106に対応する範囲の、本発明の構成を示すものであるが、本発明において図2のシステムのように、さらに周辺の処理装置、再生利用装置を加えることは適宜なされてよく、図1に図示の構成のみに限定されるものではない。   This embodiment shows the configuration of the present invention in a range corresponding to the heat exchanger 103, the cracking furnace 104, the catalyst furnace 105, and the air addition device 106 of the conventional example shown in FIG. However, as in the system of FIG. 2, the addition of peripheral processing devices and playback devices may be made as appropriate, and is not limited to the configuration shown in FIG.

上記のような本実施例の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置においては、以下のように熱回収が行われる。   In the waste heat recovery apparatus of the wet oxidative decomposition apparatus for organic waste according to the present embodiment as described above, heat recovery is performed as follows.

液状有機廃棄物aは酸化分解処理炉1で酸化分解反応を受けて無機物に分解し、反応熱により略310℃に昇温した生成物bとして排出される。排出ライン6には冷却器11が設けられ、生成物bは冷却器11において熱媒回路13の熱媒cと熱交換によって冷却され、常温に近い好ましい所定の冷却後温度t(例えば40℃)に冷却される。 The liquid organic waste a undergoes an oxidative decomposition reaction in the oxidative decomposition treatment furnace 1 to be decomposed into inorganic substances, and is discharged as a product b that has been heated to about 310 ° C. by reaction heat. The discharge line 6 is provided with a cooler 11, and the product b is cooled in the cooler 11 by heat exchange with the heat medium c of the heat medium circuit 13, and a preferable predetermined post-cooling temperature t 0 close to room temperature (for example, 40 ° C.). ).

一方熱媒cは冷却器11において温度tからtに昇温するが、略310℃の生成物bを常温近くの冷却後温度tに冷却して熱媒温度tは310℃近くとなるので、そのまま冷媒回路13aを循環させて直接予熱器10に導入し液状有機廃棄物aと熱交換すると、上記従来例Aの熱交換器3におけると同様の有機廃棄物の湿式酸化分解処理装置の熱回収装置特有の炭化物等のスケールの問題を発生する恐れがある。 On the other hand, the heating medium c is heated from the temperature t 2 to t 3 in the cooler 11, but the product b at about 310 ° C. is cooled to a temperature t 0 after cooling near room temperature, and the heating medium temperature t 3 is near 310 ° C. Therefore, when the refrigerant circuit 13a is circulated as it is and directly introduced into the preheater 10 to exchange heat with the liquid organic waste a, the wet oxidative decomposition treatment of the organic waste is the same as in the heat exchanger 3 of the conventional example A. There is a possibility that scale problems such as carbides peculiar to the heat recovery apparatus of the apparatus may occur.

そこで冷媒回路13aにクーラー12を設け、供給ライン5の液状有機廃棄物aを略常温(例えば30℃)から供給温度、好ましくは略180℃に加熱するのに好ましく且つ炭化等の問題を回避できる熱媒温度t(例えば、略200℃)まで、熱媒cを冷却する。クーラー12での冷却は、水冷、空冷等適宜の手段によってもよい。 Therefore, a cooler 12 is provided in the refrigerant circuit 13a, which is preferable for heating the liquid organic waste a in the supply line 5 from a substantially normal temperature (for example, 30 ° C.) to a supply temperature, preferably approximately 180 ° C., and avoids problems such as carbonization. The heat medium c is cooled to the heat medium temperature t 1 (for example, approximately 200 ° C.). Cooling in the cooler 12 may be performed by appropriate means such as water cooling or air cooling.

熱媒温度tの熱媒cは、予熱器10で熱交換によって液状有機廃棄物aを略常温(例えば30℃)から所定の供給温度、好ましくは反応開始温度略180℃まで加熱し、熱媒温度tまで冷却される。供給温度は、少なくとも上記炭化問題を回避できるように210℃を超えないように設定する。しかるのち熱媒cは熱媒回路13bを循環して冷却器11に導入され、前述のように酸化分解処理炉1からの生成物bの冷却を行う。 The heat medium c having the heat medium temperature t 1 heats the liquid organic waste a from a normal temperature (for example, 30 ° C.) to a predetermined supply temperature, preferably a reaction start temperature of about 180 ° C. by heat exchange in the preheater 10. It is cooled to medium temperature t 2. The supply temperature is set so as not to exceed 210 ° C. so that at least the above carbonization problem can be avoided. Thereafter, the heat medium c circulates through the heat medium circuit 13b and is introduced into the cooler 11, and cools the product b from the oxidative decomposition treatment furnace 1 as described above.

ここで熱媒温度tの熱媒cによっては冷却器11において生成物bを所定の冷却後温度tにまで冷却するのが困難な場合は、熱媒回路13bにもクーラー12′を設けて熱媒cを上記生成物bの所定の冷却後温度tが得られる熱媒温度t′まで冷却した後、冷却器11に循環させるようにする。クーラー12′の冷却も、水冷、空冷等適宜の手段によってもよい。熱媒回路13aと熱媒回路13bとに、クーラー12、12′を備えれば熱媒cの温度条件、冷却器11の冷却条件、予熱器10の予熱条件を容易に設定できるものとなる。 Here, when it is difficult to cool the product b to the predetermined temperature t 0 after cooling in the cooler 11 depending on the heat medium c having the heat medium temperature t 2, the cooler 12 ′ is also provided in the heat medium circuit 13 b. Then, the heat medium c is cooled to the heat medium temperature t 2 ′ at which a predetermined post-cooling temperature t 0 of the product b is obtained, and then circulated through the cooler 11. Cooling of the cooler 12 'may be performed by appropriate means such as water cooling or air cooling. If the heat medium circuit 13a and the heat medium circuit 13b are provided with the coolers 12 and 12 ', the temperature condition of the heat medium c, the cooling condition of the cooler 11, and the preheating condition of the preheater 10 can be easily set.

したがって、本実施例の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置によれば、排出ライン6においては、酸化分解処理炉1からの生成物bの所定の冷却後温度toが得られるものとして熱回収ができ、その回収熱によって、供給ライン5においては、酸化分解処理炉1に供給される液状有機廃棄物aの温度を反応開始に十分な高温で且つ有機廃棄物の湿式酸化分解処理装置の熱回収装置特有の問題である炭化によるスケール発生を回避できる温度(すくなくとも210℃を超えず、好ましくは略180℃)に抑えた予熱ができるものとなる。   Therefore, according to the waste heat recovery apparatus of the wet waste oxidative decomposition apparatus of the present embodiment, a predetermined post-cooling temperature to of the product b from the oxidative decomposition furnace 1 can be obtained in the discharge line 6. Heat can be recovered as a product, and by the recovered heat, the temperature of the liquid organic waste a supplied to the oxidative decomposition treatment furnace 1 is high enough to start the reaction in the supply line 5 and wet oxidative decomposition of the organic waste. Preheating can be performed at a temperature at which scale generation due to carbonization, which is a problem specific to the heat recovery apparatus of the processing apparatus, can be avoided (at least not exceed 210 ° C., preferably approximately 180 ° C.).

また、熱媒回路13においてクーラー12(12′)で冷却された熱は、有機廃棄物の湿式酸化分解処理装置において処理対象となる液状有機廃棄物aの予熱のために完全に熱回収した残りの余熱であり、エネルギーロスを大幅に低減できるものとなる。また、クーラー12(12′)からのさらなる熱回収を加えることも可能である。   In addition, the heat cooled by the cooler 12 (12 ') in the heat medium circuit 13 is the remaining heat recovered completely for preheating the liquid organic waste a to be treated in the wet oxidative decomposition apparatus for organic waste. The energy loss can be greatly reduced. It is also possible to add further heat recovery from the cooler 12 (12 ').

なお、本実施例のクーラー12、12′の配置、温度、熱バランス等はあくまでも一例であって、排出ライン6においては酸化分解処理炉1からの生成物bを所定の冷却後温度tまで冷却して熱回収し、その回収熱によって、供給ライン5において酸化分解処理炉1に供給される液状有機廃棄物aの温度を反応開始に十分な高温で且つ炭化によるスケール発生を回避できる温度(すくなくとも210℃を超えず、好ましくは略180℃)に抑えた予熱ができるように設定すればよく、それらの設定は、前後温度条件、反応条件、冷却器と予熱器の熱交換量の設定、処理流量、冷媒流量等によって適宜選択され設定されてよい。 The arrangement of the cooler 12, 12 'of the present embodiment, the temperature, the heat balance and the like are merely examples, to a temperature t 0 after a predetermined cooling the product b from the oxidative decomposition treatment furnace 1 at the discharge line 6 The temperature of the liquid organic waste a supplied to the oxidative decomposition treatment furnace 1 in the supply line 5 is high enough to start the reaction and the scale generation due to carbonization can be avoided by cooling and recovering the heat. What is necessary is just to set it so that the preheating can be suppressed to at least 210 ° C., preferably about 180 ° C., and these settings include the setting of the temperature conditions before and after, the reaction conditions, the heat exchange amount between the cooler and the preheater, It may be appropriately selected and set depending on the processing flow rate, the refrigerant flow rate, and the like.

以上、本発明を図示の実施例について説明したが、本発明は上記の実施例に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。例えば、上述のように、酸素供給装置2からの酸素に代えて、空気を供給するように構成してもよい。   Although the present invention has been described with reference to the illustrated embodiments, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications may be made to the specific structure within the scope of the present invention. . For example, as described above, air may be supplied instead of oxygen from the oxygen supply device 2.

本発明の一実施例に係る有機廃棄物の湿式酸化分解処理装置の廃熱回収装置の主要部構成概要図である。It is a principal part structure schematic diagram of the waste heat recovery apparatus of the wet oxidation decomposition processing apparatus of the organic waste which concerns on one Example of this invention. 従来の有機廃棄物及び有機廃水の処理システムの構成概要図である。It is a structure schematic diagram of the processing system of the conventional organic waste and organic wastewater. 有機廃棄物の湿式酸化分解処理装置の廃熱回収装置の従来例Aを示す構成概要図である。It is a structure schematic diagram which shows the prior art example A of the waste heat recovery apparatus of the wet oxidation decomposition processing apparatus of organic waste. 有機廃棄物の湿式酸化分解処理装置の廃熱回収装置の従来例Bを示す構成概要図である。It is a structure schematic diagram which shows the prior art example B of the waste heat recovery apparatus of the wet oxidation decomposition processing apparatus of organic waste.

符号の説明Explanation of symbols

1 酸化分解処理炉
2 酸素供給装置
5 供給ライン
6 排出ライン
10 予熱器
11 冷却器
12、12′ クーラー
13、13a、13b 熱媒回路
a 液状有機廃棄物
b 生成物
c 熱媒
DESCRIPTION OF SYMBOLS 1 Oxidation cracking furnace 2 Oxygen supply apparatus 5 Supply line 6 Discharge line 10 Preheater 11 Cooler 12, 12 'Cooler 13, 13a, 13b Heat transfer circuit a Liquid organic waste b Product c Heat transfer medium

Claims (4)

液状有機廃棄物を亜臨界状態で湿式酸化分解処理する酸化分解処理炉を備えた湿式酸化分解処理装置の廃熱回収装置において、前記酸化分解処理炉から排出される生成物を熱媒との熱交換によって所定の冷却後温度に冷却する冷却器と、前記酸化分解処理炉へ供給される前記液状有機廃棄物を前記熱媒との熱交換によって所定の供給温度に昇温する予熱器と、前記冷却器と前記予熱器の間に前記熱媒を循環させる熱媒回路と、同熱媒回路に介装され前記熱媒を冷却するクーラーとを備えてなることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置。   In a waste heat recovery apparatus of a wet oxidative decomposition treatment apparatus equipped with an oxidative decomposition treatment furnace that performs wet oxidative decomposition treatment of liquid organic waste in a subcritical state, the product discharged from the oxidative decomposition treatment furnace is heated with a heat medium. A cooler for cooling to a predetermined post-cooling temperature by exchange, a preheater for raising the temperature of the liquid organic waste to be supplied to the oxidative decomposition treatment furnace to a predetermined supply temperature by heat exchange with the heat medium, and A wet type organic waste comprising: a heat medium circuit for circulating the heat medium between a cooler and the preheater; and a cooler interposed in the heat medium circuit for cooling the heat medium. Waste heat recovery equipment for oxidative decomposition treatment equipment. 請求項1に記載の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置において、前記所定の供給温度は210℃を超えないことを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置。   The waste heat of the wet oxidative decomposition treatment apparatus for organic waste according to claim 1, wherein the predetermined supply temperature does not exceed 210 ° C. Recovery device. 請求項1または請求項2に記載の有機廃棄物の湿式酸化分解処理装置の廃熱回収装置において、前記亜臨界状態は略310℃、14MPaであることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置。   The waste heat recovery apparatus of the organic waste wet oxidative decomposition treatment apparatus according to claim 1 or 2, wherein the subcritical state is approximately 310 ° C and 14MPa. Waste heat recovery equipment for processing equipment. 請求項1ないし請求項3のいずれかに記載の有機廃棄物の湿式酸化分解処理装置において、前記クーラーは、前記熱媒が前記冷却器から前記予熱器へ向かう流れの前記熱媒回路と、同熱媒が同予熱器から同冷却器へ向かう流れの同熱媒回路とにそれぞれ備えられてなることを特徴とする有機廃棄物の湿式酸化分解処理装置の廃熱回収装置。   The wet oxidative decomposition apparatus for organic waste according to any one of claims 1 to 3, wherein the cooler is the same as the heat medium circuit in which the heat medium flows from the cooler to the preheater. A waste heat recovery apparatus for a wet oxidative decomposition treatment apparatus for organic waste, wherein the heat medium is provided in each of the heat medium circuits flowing from the preheater to the cooler.
JP2005045814A 2005-02-22 2005-02-22 Waste heat recovery device for wet oxidation decomposition equipment of organic waste Withdrawn JP2006231119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045814A JP2006231119A (en) 2005-02-22 2005-02-22 Waste heat recovery device for wet oxidation decomposition equipment of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045814A JP2006231119A (en) 2005-02-22 2005-02-22 Waste heat recovery device for wet oxidation decomposition equipment of organic waste

Publications (1)

Publication Number Publication Date
JP2006231119A true JP2006231119A (en) 2006-09-07

Family

ID=37039348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045814A Withdrawn JP2006231119A (en) 2005-02-22 2005-02-22 Waste heat recovery device for wet oxidation decomposition equipment of organic waste

Country Status (1)

Country Link
JP (1) JP2006231119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226363A (en) * 2008-03-25 2009-10-08 Shibuya Machinery Co Ltd Oxidative decomposition apparatus for liquid organic waste
US9526936B2 (en) 2012-11-20 2016-12-27 Osaka City University Method for hydrothermal oxidation treatment for organic halogen compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226363A (en) * 2008-03-25 2009-10-08 Shibuya Machinery Co Ltd Oxidative decomposition apparatus for liquid organic waste
US9526936B2 (en) 2012-11-20 2016-12-27 Osaka City University Method for hydrothermal oxidation treatment for organic halogen compound

Similar Documents

Publication Publication Date Title
EP1198424B1 (en) A method of and arrangement for continuous hydrolysis of organic material
US10370276B2 (en) Near-zero-release treatment system and method for high concentrated organic wastewater
CN103601282A (en) Method for treating refractory wastewater by virtue of supercritical water oxidation technology
JPH0377691A (en) Treatment of waste water
KR100477050B1 (en) Method for separation organic waste
CN111246937B (en) Gas generating apparatus and gas generating method
JP2006231119A (en) Waste heat recovery device for wet oxidation decomposition equipment of organic waste
JP2006239539A (en) Wet oxidative decomposition apparatus for organic waste
JP2006239541A (en) Wet type oxidative decomposition treatment apparatus and method of washing its catalyst
JP2006231120A (en) Oxidative decomposition apparatus and method for solid organic substance-containing organic waste liquid
JP2010024294A (en) Biological desulfurization apparatus and biological desulfurization method
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP2014188405A (en) Apparatus and method for separating carbon dioxide
JP2000033355A (en) Treatment of organic waste using high-temperature and high-pressure steam
WO2020241654A1 (en) Method of recovering carbon dioxide gas and other gases
CN101622211A (en) The manufacture method of the fertilizer in cake treatment apparatus, dregs of fat treatment process and dregs of fat source
JP2006239540A (en) Pressure keeping apparatus and pressure controlling method of liquid to be treated in continuous wet-oxidation treatment of organic waste
JP2006231118A (en) Wet oxidation decomposition treatment apparatus for chicken droppings
CN205367998U (en) Salt -containing wastewater treatment system
JP5099950B2 (en) Wastewater treatment method
CN108211778B (en) Catalytic oxidation system and method for VOCs waste gas treatment
JP2012206122A (en) Method for treating waste water
JP3686778B2 (en) Operation method of supercritical water reactor
JP6877661B1 (en) Water treatment system and water treatment method
CN204866827U (en) Organic waste&#39;s processing system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513