JP2006229130A - Method of estimating and managing lifetime of power unit - Google Patents

Method of estimating and managing lifetime of power unit Download PDF

Info

Publication number
JP2006229130A
JP2006229130A JP2005043996A JP2005043996A JP2006229130A JP 2006229130 A JP2006229130 A JP 2006229130A JP 2005043996 A JP2005043996 A JP 2005043996A JP 2005043996 A JP2005043996 A JP 2005043996A JP 2006229130 A JP2006229130 A JP 2006229130A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
power supply
temperature
supply device
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005043996A
Other languages
Japanese (ja)
Inventor
Osamu Shirakawa
修 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005043996A priority Critical patent/JP2006229130A/en
Publication of JP2006229130A publication Critical patent/JP2006229130A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of accurately estimating an optimal lifetime, longer than a maker recommended lifetime, of an electrolytic capacitor in a power unit. <P>SOLUTION: In step S2, a peak temperature on the surface of the electrolytic capacitor is specified, and a cordless memory type small-sized temperature measure (temperature memory button) is directly attached to the peak temperature part to start measuring a surface temperature. If the thermometry is performed for a predetermined time, the small-sized temperature measure is taken out and work is shifted to "optimal lifetime estimation due to Arrhenius' lifetime computation" of step S4. Measured temperature data are fetched into a computer and substituted to an Arrhenius' lifetime computation formula to calculate the optimal lifetime. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種電気設備に使用される電源装置の最適寿命を推定する方法および電源装置の長寿命化対策を検討するための寿命管理方法に関する。   The present invention relates to a method for estimating an optimum life of a power supply device used in various electric facilities and a life management method for examining measures for extending the life of the power supply device.

各種の制御盤(配電盤など)には、電力変換装置などの電源装置が配備される。この電源装置に使用される電解コンデンサは、例えばAC100Vの入力電源電圧をDC24Vの出力電源電圧に平滑する。通常において、電源装置の寿命は、電解コンデンサの寿命に大きく依存する。アルミ電解コンデンサの場合、有底のケース内に電解液を封入して、ケースの開口をパッキン(ゴム弾性体)で封口している。この電解コンデンサにおいては、周囲温度により電解液が気化してガス圧が上昇し、パッキンの中を拡散してガス抜け等価直列抵抗が増加するため、発熱量が大きくなりガスアップを促進させ、静電容量が低下する。電解液の拡散は、周囲温度に大きく依存し、電解コンデンサの電気的特性の経時変化と周囲温度との関係は、アレニウスの化学反応速度論に近似する。このことから電解コンデンサの寿命を、次式(1)のアレニウスの寿命計算式で推定するようにしている(例えば、特許文献1参照)。

Figure 2006229130
なお、式(1)において、Lは寿命時間(H)、Lsは規定寿命(H)、Kは定数、Tは使用時の環境温度である使用温度(℃)、Tsは使用時の環境温度の最高値である規定寿命温度(℃)である。定数Kは、通過リップル電流による発熱分に関連する寿命の補正係数である。
特開平08−322141号公報(第0003段) Various control panels (such as switchboards) are provided with power supply devices such as power conversion devices. The electrolytic capacitor used in this power supply device smoothes, for example, an AC 100V input power supply voltage to a DC24V output power supply voltage. Normally, the life of the power supply device greatly depends on the life of the electrolytic capacitor. In the case of an aluminum electrolytic capacitor, an electrolytic solution is sealed in a bottomed case, and the opening of the case is sealed with a packing (rubber elastic body). In this electrolytic capacitor, the electrolyte solution is vaporized by the ambient temperature, the gas pressure rises, diffuses in the packing and increases the gas escape equivalent series resistance. The capacity decreases. The diffusion of the electrolyte greatly depends on the ambient temperature, and the relationship between the change over time in the electrical characteristics of the electrolytic capacitor and the ambient temperature approximates the Arrhenius chemical reaction kinetics. From this, the lifetime of the electrolytic capacitor is estimated by the Arrhenius lifetime calculation formula of the following formula (1) (see, for example, Patent Document 1).
Figure 2006229130
In equation (1), L is the life time (H), Ls is the specified life (H), K is a constant, T is the operating temperature (° C.) which is the environmental temperature during use, and Ts is the environmental temperature during use. It is the specified life temperature (° C) which is the maximum value of. The constant K is a life correction coefficient related to the amount of heat generated by the passing ripple current.
Japanese Patent Laid-Open No. 08-322141 (stage 0003)

電解コンデンサを備えた電源装置の使用環境、稼働状況は様々であり、電源装置の寿命推定値も様々である。電解コンデンサの推定寿命を上記式(1)で求めているが、使用温度Tはどのよう部位の温度を計測するか、どのような方法で計測するかで、使用温度Tの計測値が変わり、寿命推定値が変動する。一般の電源装置は、放熱板に組み込まれており、電源装置内が非絶縁部位で密集しているために、電解コンデンサの実温度を計測することが事実上困難である。そこで、電源装置の寿命推定は、電源装置のメーカー推奨に頼っているのが現状である。   There are various usage environments and operating conditions of the power supply device including the electrolytic capacitor, and there are also various life estimation values of the power supply device. The estimated lifetime of the electrolytic capacitor is obtained by the above formula (1). The measured value of the use temperature T changes depending on how the temperature of the use temperature T is measured and how it is measured. Life expectancy varies. Since a general power supply device is incorporated in a heat sink and the inside of the power supply device is densely packed in a non-insulated part, it is practically difficult to measure the actual temperature of the electrolytic capacitor. Therefore, in the current situation, the life estimation of the power supply device depends on the manufacturer's recommendation of the power supply device.

しかし、メーカー推奨の推定寿命は、安全面から(実際の最適寿命より)短命であるのが実情である。例えば、24V電源装置のアルミ電解コンデンサのメーカー推奨の推定寿命は7〜8年で、この推定寿命7〜8年を目安に電解コンデンサを新品と取り替え、電源装置の冷却装置などの保守点検、修繕を行うようにしている。このようなメーカー推奨の寿命推定は、ユーザー側にとっては寿命管理が容易になり便利であるが、早め早めに繰り返し行われる部品交換がユーザー側に大きな経済的負担を強いることになる。   However, the estimated life expectancy recommended by the manufacturer is actually short-lived (than the actual optimum life) for safety reasons. For example, the manufacturer's recommended life expectancy for aluminum electrolytic capacitors for 24V power supply equipment is 7-8 years. Replace the electrolytic capacitors with new ones based on this estimated life of 7-8 years, and perform maintenance, inspection and repair of cooling equipment for power supply equipment. Like to do. Such a manufacturer-suggested life estimation is convenient and convenient for the user because it is easy to manage the life, but parts replacement that is repeated early and early places a great economic burden on the user.

本発明は、斯かる実情に鑑みてなされたもので、電源装置における電解コンデンサのメーカー推奨寿命より長命となる最適寿命を精度良く推定する方法と、この寿命推定方法を利用して長寿命化を検討するに好適な寿命管理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a method for accurately estimating an optimum life that is longer than the manufacturer's recommended life of an electrolytic capacitor in a power supply device, and a life extension using this life estimation method. It is an object to provide a life management method suitable for study.

本発明は上記目的を達成するため、入力電源電圧を平滑する電解コンデンサを有する電源装置の電解コンデンサ表面温度を、電解コンデンサに直付けしたコードレスメモリー式小型温度測定器で測定し、この小型温度測定器でメモリーした温度測定データをアレニウスの寿命計算式に代入して、電解コンデンサの最適となる寿命を推定することを特徴とする。   In order to achieve the above object, the present invention measures the surface temperature of an electrolytic capacitor of a power supply apparatus having an electrolytic capacitor for smoothing an input power supply voltage with a cordless memory type small temperature measuring device directly attached to the electrolytic capacitor. This is characterized by substituting the temperature measurement data memorized in the vessel into the Arrhenius lifetime calculation formula to estimate the optimum lifetime of the electrolytic capacitor.

また、本発明は、上記電解コンデンサ表面の最高温度部を表面温度計で特定する工程と、特定した電解コンデンサの最高温度部の表面温度をコードレスメモリー式小型温度測定器で測定する工程と、小型温度測定器を電源装置から取り出してメモリーされた温度測定データをコンピュータでデータ処理して電解コンデンサの最適となる寿命を算出する工程とで、電解コンデンサの最適寿命を推定することができる。   The present invention also includes a step of specifying the highest temperature portion of the surface of the electrolytic capacitor with a surface thermometer, a step of measuring the surface temperature of the highest temperature portion of the specified electrolytic capacitor with a cordless memory type small temperature measuring instrument, The optimum life of the electrolytic capacitor can be estimated by the process of taking out the temperature measuring device from the power supply device and processing the stored temperature measurement data by a computer to calculate the optimum life of the electrolytic capacitor.

ここで、電源装置は、AC100VをDC24Vに平滑するアルミ電解コンデンサを備えた24V電源装置などであり、各種の制御盤に冷却装置と共に配備される。コードレスメモリー式小型温度測定器は、温度メモリーボタンの名称で市販されている小型温度測定器が適用できる。温度メモリーボタンは、1円硬貨より一回り大きな円形薄型ボタン形状を成し、電源装置の電解コンデンサ表面に直付けすることができる。制御盤に配備された電源装置にコードレスの温度メモリーボタンを取り付けるため、制御盤の扉を閉じた状態で温度測定ができ、盤内の短絡事故の心配がない。電源装置の電解コンデンサ表面に温度メモリーボタンを直付けすることで、電解コンデンサの実温度が精度良く計測される。この場合、電解コンデンサ表面の最高温度部を表面温度計で特定して、この最高温度部の温度を温度メモリーボタンで計測して、電解コンデンサの実温度とすることが、電解コンデンサの寿命を安定かつ正確に推定する上で望ましい。   Here, the power supply device is a 24V power supply device provided with an aluminum electrolytic capacitor that smoothes AC100V to DC24V, and is provided together with a cooling device on various control panels. As the cordless memory type small temperature measuring device, a small temperature measuring device marketed under the name of the temperature memory button can be applied. The temperature memory button has a circular thin button shape that is slightly larger than a one-yen coin, and can be directly attached to the surface of the electrolytic capacitor of the power supply device. A cordless temperature memory button is attached to the power supply unit installed in the control panel, so the temperature can be measured with the control panel door closed, and there is no risk of a short circuit accident in the panel. By attaching a temperature memory button directly to the surface of the electrolytic capacitor of the power supply, the actual temperature of the electrolytic capacitor can be accurately measured. In this case, it is possible to identify the maximum temperature part of the electrolytic capacitor surface with a surface thermometer, measure the temperature of this maximum temperature part with the temperature memory button, and make the actual temperature of the electrolytic capacitor stable the life of the electrolytic capacitor It is desirable for accurate estimation.

温度メモリーボタンを電源装置から取り出し、コンピュータで温度メモリーボタンにメモリーされた温度測定データを読み込み、読み込んだデータをアレニウスの寿命計算式に代入することで、電解コンデンサの最適となる寿命が推定できる。推定できる最適寿命は、電解コンデンサ表面温度の直接的な実測値に基づくことから、メーカー推奨の寿命より確実に長命であり、電解コンデンサの長寿命化対策に有効利用できる。   By taking out the temperature memory button from the power supply, reading the temperature measurement data stored in the temperature memory button with a computer, and substituting the read data into the Arrhenius life formula, the optimum life of the electrolytic capacitor can be estimated. Since the optimum lifetime that can be estimated is based on the directly measured value of the surface temperature of the electrolytic capacitor, the lifetime is surely longer than the manufacturer's recommended lifetime, and can be effectively used as a measure for extending the lifetime of the electrolytic capacitor.

また、本発明においては、入力電源電圧を平滑する電解コンデンサを有し、冷却装置で冷却される電源装置における電解コンデンサの表面温度を、電解コンデンサに直付けしたコードレスメモリー式小型温度測定器で測定することで、電源装置の負荷温度試験および負荷電流測定試験を行い、その試験結果から冷却装置の冷却効果を判断して、電源装置の長寿命化対策を検討することができる。   In the present invention, the surface temperature of the electrolytic capacitor in the power supply device cooled by the cooling device is measured with a small cordless memory type temperature measuring device directly attached to the electrolytic capacitor. Thus, a load temperature test and a load current measurement test of the power supply device can be performed, and the cooling effect of the cooling device can be determined from the test results, and measures for extending the life of the power supply device can be studied.

電源装置における電解コンデンサの寿命は、周囲温度に大きく依存し、アレニウスの寿命計算式によると、周囲温度が10℃増減変動することで推定寿命が半減或いは倍増する。そのため、電源装置を備えた制御盤には、電源装置を常時に冷却する冷却装置が配備される。この冷却装置は、制御盤の盤内温度を調整するもので、盤外の空気取入れ口のフィルタの詰まりや、冷却ファンの性能低下などの要因で冷却効果が変動して、電解コンデンサの寿命に影響を及ぼす。この冷却装置の冷却効果の良し悪しを、電解コンデンサの実温測定値と、電源装置の負荷温度試験および負荷電流測定試験の結果から判断すれば、如何にすれば電解コンデンサの寿命を延ばすことができるかが分かり、電源装置の長寿命化を図ることができる。   The life of the electrolytic capacitor in the power supply device greatly depends on the ambient temperature. According to the Arrhenius lifetime calculation formula, the estimated lifetime is halved or doubled when the ambient temperature fluctuates by 10 ° C. Therefore, a cooling device that constantly cools the power supply device is provided in the control panel including the power supply device. This cooling device adjusts the internal temperature of the control panel, and the cooling effect fluctuates due to factors such as clogging of the filter at the air intake outside the panel and deterioration of the cooling fan performance. affect. If the cooling effect of this cooling device is judged from the actual temperature measurement value of the electrolytic capacitor and the results of the load temperature test and load current measurement test of the power supply device, how can the life of the electrolytic capacitor be extended? It can be seen that this can be done, and the life of the power supply device can be extended.

本発明によれば、電源装置の寿命を決める電解コンデンサの表面温度をコードレスメモリー式小型温度測定器で測定し、測定した温度データをコンピュータでアレニウスの寿命計算式に代入することで、電解コンデンサの最適となる寿命を推定するようにしたので、推定寿命がメーカー推奨寿命より確実に長く、かつ、より高い正確性をもって推定できる。そのため、電源装置の寿命に伴う部品交換の周期延長が図れ、電源装置のユーザー側の経済的負担が軽減されるという優れた効果を奏し得る。   According to the present invention, the surface temperature of the electrolytic capacitor that determines the life of the power supply device is measured with a small cordless memory type temperature measuring device, and the measured temperature data is substituted into the Arrhenius life calculation formula by a computer. Since the optimum lifetime is estimated, the estimated lifetime is surely longer than the manufacturer's recommended lifetime and can be estimated with higher accuracy. For this reason, it is possible to extend the period of parts replacement along with the life of the power supply device, and to achieve an excellent effect that the economic burden on the user side of the power supply device is reduced.

また、冷却装置による電解コンデンサの冷却効果を、電解コンデンサの実温測定値と電源装置の負荷温度試験および負荷電流測定試験の結果から判断すれば、如何にすれば電解コンデンサの寿命を延ばすことができるかが分かり、適切でより経済的な電源装置の長寿命化を実行することができる。   Moreover, if the cooling effect of the electrolytic capacitor by the cooling device is judged from the actual measured temperature value of the electrolytic capacitor and the results of the load temperature test and load current measurement test of the power supply device, how can the life of the electrolytic capacitor be extended? It can be seen that it is possible to extend the life of an appropriate and more economical power supply.

以下、本発明の実施の形態を図1〜図3を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明方法を説明するためのフロー図である。図2は、寿命推定の実施対象である制御盤1の概要を示す。制御盤1は、縦長箱形の本体2を備える。本体2の前面下部にフィルタ3が設置され、フィルタ3を通して外気が冷却風として本体2内に導入される。本体2の裏面上部に冷却ファン4が設置される。本体2の内部の最上段に電源装置10が配備され、その下段に制御モジュール12、12と入出力カード13が配置され、これらモジュールの周辺に冷却装置30が配備される。冷却装置30は、フィルタ3、冷却ファン4、5などで構成され、電源装置10および制御モジュール12、12を適温に冷却する。   FIG. 1 is a flowchart for explaining the method of the present invention. FIG. 2 shows an overview of the control panel 1 that is the target of life estimation. The control panel 1 includes a vertically long box-shaped main body 2. A filter 3 is installed at the lower front of the main body 2, and outside air is introduced into the main body 2 as cooling air through the filter 3. A cooling fan 4 is installed on the upper back of the main body 2. The power supply device 10 is arranged at the uppermost stage inside the main body 2, the control modules 12 and 12 and the input / output card 13 are arranged at the lower stage, and the cooling device 30 is arranged around these modules. The cooling device 30 includes a filter 3, cooling fans 4, 5 and the like, and cools the power supply device 10 and the control modules 12 and 12 to an appropriate temperature.

電源装置10は、放熱板に変圧器や電解コンデンサなどの部品を組み付けたブロック体で、例えば上部に電解コンデンサ11を配備する。電源装置10の寿命は電解コンデンサ11の寿命で決められる。電源装置10が24V電源装置の場合、メーカー推奨の電解コンデンサ寿命は約7年である。この電解コンデンサ11の本発明方法による寿命推定は、図1の上段にある最適寿命推定フローF1のように行う。   The power supply device 10 is a block body in which components such as a transformer and an electrolytic capacitor are assembled on a heat sink, and for example, an electrolytic capacitor 11 is provided in an upper portion. The life of the power supply device 10 is determined by the life of the electrolytic capacitor 11. When the power supply device 10 is a 24V power supply device, the life of the electrolytic capacitor recommended by the manufacturer is about 7 years. The life estimation of the electrolytic capacitor 11 according to the method of the present invention is performed as shown in the optimum life estimation flow F1 in the upper part of FIG.

最適寿命推定は、フローF1のステップS1に示すように電源装置10を含む制御盤1の修繕到達時期において開始する(スタート)。この開始に先立ち、ステップS2で制御盤1の扉を開き、電源装置10の電源を開放する。電源装置10を取り外して、試験室にて電解コンデンサ11を露呈させ、電源装置10に仮設電源を供給する。次に表面温度計(図示せず)により、電源装置10の内部に複数個ある電解コンデンサ11の表面温度の高いものを特定(2〜3個特定)する。特定された電解コンデンサ11の最高温度部に、図2の概略図で示すようにコードレスメモリー式小型温度測定器20を強力な両面テープなどで直付けする。電源装置10を制御盤1に取り付け、電源を復旧し制御盤1の扉を閉じれば、ステップ3の実機温度試験の準備が整う。小型温度測定器20による実測の開始と停止は予めコンピュータで、小型温度測定器20に設定しておくことで可能となる。この温度測定が所定時間行われると、制御盤1の扉を開き、電源装置10から小型温度測定器20を取り出して、ステップS4の「アレニウスの寿命計算による最適寿命推定」の作業に移行する。   The optimum life estimation starts at the repair arrival time of the control panel 1 including the power supply device 10 (start) as shown in step S1 of the flow F1. Prior to this start, the door of the control panel 1 is opened in step S2, and the power supply of the power supply apparatus 10 is opened. The power supply device 10 is removed, the electrolytic capacitor 11 is exposed in the test room, and temporary power is supplied to the power supply device 10. Next, a surface thermometer (not shown) identifies a plurality of electrolytic capacitors 11 having a high surface temperature inside the power supply device 10 (2 to 3 are identified). As shown in the schematic diagram of FIG. 2, a cordless memory type small temperature measuring device 20 is directly attached to the specified maximum temperature portion of the electrolytic capacitor 11 with a strong double-sided tape or the like. If the power supply device 10 is attached to the control panel 1, the power is restored, and the door of the control panel 1 is closed, the preparation for the actual temperature test in Step 3 is completed. The actual measurement by the small temperature measuring device 20 can be started and stopped by setting the small temperature measuring device 20 in advance with a computer. When this temperature measurement is performed for a predetermined time, the door of the control panel 1 is opened, the small temperature measuring device 20 is taken out from the power supply device 10, and the process proceeds to the operation of “optimum life estimation by Arrhenius life calculation” in step S4.

小型温度測定器20がメモリーした温度測定データの最高値が52℃であった場合、この温度は電解コンデンサ11の表面の最高温度であり、コンデンサ実働時の実測値として使用できる。この52℃の温度データをコンピュータに取り込み、前述した(1)式のアレニウスの寿命計算式の使用温度Tに代入すると、算出される最適寿命は9.0年である。したがって、メーカー推奨の修繕周期としての寿命7年が2年延長されることになる。これは電解コンデンサ11の温度測定を、限りなく実測値に近似させて測定した結果であり、7年で修繕あるいは部品交換していたものが2年延期でき、ユーザーの経済的負担が大幅に軽減できる。   When the maximum value of the temperature measurement data stored in the small temperature measuring device 20 is 52 ° C., this temperature is the maximum temperature of the surface of the electrolytic capacitor 11 and can be used as an actual measurement value when the capacitor is actually operated. When the temperature data of 52 ° C. is taken into a computer and substituted into the use temperature T of the above-mentioned Arrhenius life calculation formula (1), the calculated optimum life is 9.0 years. Therefore, the lifetime of 7 years as the repair period recommended by the manufacturer is extended by 2 years. This is the result of measuring the temperature of the electrolytic capacitor 11 as close as possible to the actual measured value, and what was repaired or replaced in 7 years can be postponed for 2 years, greatly reducing the user's economic burden. it can.

以上の最適寿命推定の作業において、電解コンデンサ11の表面温度をコードレスメモリー式小型温度測定器20で計測することが、次の点で有利である。すなわち、表面温度計や小型測温抵抗体による温度測定も可能であるが、これらは準備品が必要でコスト高になる。その点、温度メモリーボタンで知られるコードレスメモリー式小型温度測定器20は、単品がそのまま使用できて総合的にコスト安である。また、小型温度測定器20はコードレスゆえに電源装置内部短絡の心配なくして使用でき、制御盤1の扉を閉じて実働する電解コンデンサ11の実温度が測定できる。   In the above work for estimating the optimum life, it is advantageous to measure the surface temperature of the electrolytic capacitor 11 with the cordless memory type small temperature measuring device 20 in the following points. That is, temperature measurement using a surface thermometer or a small resistance thermometer is also possible, but these require preparations and are expensive. On the other hand, the cordless memory type small temperature measuring device 20 known as a temperature memory button can be used as it is, and is generally low in cost. Further, since the small temperature measuring device 20 is cordless, it can be used without worrying about a short circuit inside the power supply device, and the actual temperature of the electrolytic capacitor 11 that is actually operated by closing the door of the control panel 1 can be measured.

本発明方法で推定される電解コンデンサ11の最適寿命は、図1下段の長寿命化検討フローF2に基づいて長命化を図るための検討ができる。この長命化は、図2の制御盤1においては冷却装置30の冷却効果を判断することで行う。   The optimum life of the electrolytic capacitor 11 estimated by the method of the present invention can be studied for extending the life based on the life extension study flow F2 in the lower part of FIG. This life extension is performed by determining the cooling effect of the cooling device 30 in the control panel 1 of FIG.

図1のステップS5の負荷温度試験は、電源装置10の電源を開放後、電源装置10を取り外して、試験室にて模擬負荷(図示せず)を接続する。この試験により、電源装置10の負荷に対する温度試験値が得られる。次に制御盤1に電源装置10を取り付け、電流計にて実機負荷電流を測定する。この実機負荷電流値とステップS3で得られた電解コンデンサ11の最高温度により、実機負荷電流に対する電解コンデンサ11の温度が明確になる。このデータを電源装置10の負荷温度試験値と比較すれば、電源装置10の冷却効果が判断できる。得られたデータにより図1のステップS6の冷却効果を判断する。例えば、負荷温度試験値+10℃以内であれば、冷却効果「良」と判断する。   In the load temperature test in step S5 of FIG. 1, after the power supply 10 is opened, the power supply 10 is removed and a simulated load (not shown) is connected in the test room. By this test, a temperature test value for the load of the power supply device 10 is obtained. Next, the power supply device 10 is attached to the control panel 1, and the actual load current is measured with an ammeter. The actual load current value and the maximum temperature of the electrolytic capacitor 11 obtained in step S3 clarify the temperature of the electrolytic capacitor 11 with respect to the actual load current. If this data is compared with the load temperature test value of the power supply device 10, the cooling effect of the power supply device 10 can be determined. The cooling effect of step S6 in FIG. 1 is determined from the obtained data. For example, if the load temperature test value is within + 10 ° C., it is determined that the cooling effect is “good”.

図1のステップS6で冷却効果が悪く、寿命に影響する「否」と判断された場合、ステップS8の冷却対策の検討を行う。まず、図3の楕円内記載に示すように、コンデンサの温度が上昇する原因を特定する必要がある。「負荷が高い」、「空調設定温度が高い」、「冷却ファンの性能低下」、「フィルタの詰まり」の要因を調査し検証する。   If it is determined in step S6 of FIG. 1 that the cooling effect is poor and the “life” is affected, the cooling measures in step S8 are examined. First, as shown in the description in the ellipse of FIG. 3, it is necessary to specify the cause of the rise in the capacitor temperature. Investigate and verify the causes of "high load", "high air conditioning set temperature", "cooling fan performance degradation", and "filter clogging".

「負荷が高い」検証、図1のステップS5の負荷温度試験と実機負荷電流測定値により電源装置10が過負荷状態となっていないか検証する。   It is verified whether or not the power supply device 10 is in an overload state by the “load is high” verification, the load temperature test in step S5 of FIG. 1 and the actual load current measurement value.

「空調設定温度が高い」検証、制御盤1が設置される室内の空調温度と電解コンデンサ11の温度との関係を調査する。空調の温度セット変化により、電解コンデンサ11の温度が低下するか検証する。   The verification that “the air conditioning set temperature is high” and the relationship between the air conditioning temperature in the room where the control panel 1 is installed and the temperature of the electrolytic capacitor 11 are investigated. It is verified whether or not the temperature of the electrolytic capacitor 11 is lowered due to the temperature set change of the air conditioning.

「冷却ファンの性能低下」検証、制御盤1の内部温度分布および電解コンデンサ11の温度と冷却ファンの性能との関係を調査する。温度分布の測定は、電解コンデンサ11の温度測定に使用した小型温度測定器20により測定する。冷却ファンの性能向上およびファン追加により、電解コンデンサ11の温度が低下するか検証する。   “Cooling fan performance degradation” verification, the internal temperature distribution of the control panel 1 and the relationship between the temperature of the electrolytic capacitor 11 and the performance of the cooling fan are investigated. The temperature distribution is measured by the small temperature measuring instrument 20 used for measuring the temperature of the electrolytic capacitor 11. It is verified whether or not the temperature of the electrolytic capacitor 11 is lowered by improving the performance of the cooling fan and adding the fan.

「フィルタの詰まり」検証、制御盤1の前面にあるフィルタ3の影響による電解コンデンサ11の温度との関係を調査する。フィルタの性能回復および仕様変更により、電解コンデンサ11の温度が低下するか検証する。 The “filter clogging” verification and the relationship with the temperature of the electrolytic capacitor 11 due to the influence of the filter 3 on the front surface of the control panel 1 are investigated. It is verified whether the temperature of the electrolytic capacitor 11 decreases due to the performance recovery of the filter and the specification change.

上記、4つの検証結果を基に、図1の「冷却対策検討および修繕コスト判定」のステップS8に移行する。検証結果から有効な冷却効果対策を選択し、冷却装置30の修繕コストが電源装置修繕費用より安価であれば「可」と判定してステップS3に戻り、「否」と判定すればステップS7に戻る。   Based on the above four verification results, the process proceeds to step S8 of “Cooling countermeasure review and repair cost determination” in FIG. An effective cooling effect measure is selected from the verification result. If the repair cost of the cooling device 30 is lower than the power device repair cost, it is determined as “Yes” and the process returns to Step S3. If it is determined as “No”, the process returns to Step S7. Return.

ステップS7で「電解コンデンサの長寿命化を検討」をする。従来からの推定寿命である7〜8年の間に、電解コンデンサの開発技術は進歩しており、高性能・長寿命化された電解コンデンサが多数開発される。数世代前の電解コンデンサから高性能・長寿命化された電解コンデンサに置き換えられないか検討する。ここで、電解コンデンサの性能向上対策が電源装置修繕費用より安価であると判断すれば、「可」と判定してステップS9に移行して「長寿命化の工事」を実施する。ステップS7で「否」と判定すると、ステップS10に移行して「最適寿命周期で工事実施」を実施する。   In step S7, “consider extending the life of electrolytic capacitors” is performed. During the period of 7 to 8 years, which is the estimated lifetime from the past, the development technology of electrolytic capacitors has progressed, and many electrolytic capacitors with high performance and long life have been developed. Consider whether it is possible to replace electrolytic capacitors from several generations before with high performance and long life electrolytic capacitors. Here, if it is determined that the performance improvement measure for the electrolytic capacitor is cheaper than the repair cost of the power supply device, it is determined as “possible”, the process proceeds to step S9, and “life extension work” is performed. If it is determined as “No” in step S7, the process proceeds to step S10, and “Construction with optimum life cycle” is performed.

なお、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明を説明するための寿命推定フロー図である。It is a lifetime estimation flowchart for demonstrating this invention. 電源装置を有する制御盤の概要を示す正面図である。It is a front view which shows the outline | summary of the control panel which has a power supply device. 電解コンデンサの寿命劣化要因例を示す図である。It is a figure which shows the example of a lifetime deterioration factor of an electrolytic capacitor.

符号の説明Explanation of symbols

1 制御盤
3 フィルタ
4 冷却ファン
10 電源装置
11 電解コンデンサ
12 制御モジュール
13 入出力カード
20 コードレスメモリー式小型温度測定器、温度メモリーボタン
30 冷却装置
DESCRIPTION OF SYMBOLS 1 Control board 3 Filter 4 Cooling fan 10 Power supply device 11 Electrolytic capacitor 12 Control module 13 Input / output card 20 Cordless memory type small temperature measuring instrument, temperature memory button 30 Cooling device

Claims (3)

入力電源電圧を平滑する電解コンデンサを有する電源装置の前記電解コンデンサの表面温度を、当該電解コンデンサに直付けしたコードレスメモリー式小型温度測定器で測定し、当該小型温度測定器でメモリーした温度測定データをアレニウスの寿命計算式に代入して、前記電解コンデンサの最適寿命を推定することを特徴とする電源装置の寿命推定方法。   The surface temperature of the electrolytic capacitor of a power supply device having an electrolytic capacitor for smoothing the input power supply voltage is measured with a cordless memory type small temperature measuring device directly attached to the electrolytic capacitor, and the temperature measurement data stored in the small temperature measuring device Is substituted into the Arrhenius lifetime calculation formula to estimate the optimum lifetime of the electrolytic capacitor. 入力電源電圧を平滑する電解コンデンサを有する電源装置の前記電解コンデンサ表面の最高温度部を表面温度計で特定する工程と、前記電解コンデンサの最高温度部の表面温度をコードレスメモリー式小型温度測定器で測定する工程と、前記小型温度測定器を前記電源装置から取り出してメモリーされた温度測定データをコンピュータでデータ処理して電解コンデンサの最適寿命を算出する工程と、を含むことを特徴とする請求項1に記載の電源装置の寿命推定方法。   The step of specifying the maximum temperature portion of the electrolytic capacitor surface of the power supply device having an electrolytic capacitor for smoothing the input power supply voltage with a surface thermometer, and the surface temperature of the maximum temperature portion of the electrolytic capacitor with a cordless memory type small temperature measuring device The method includes: a step of measuring; and a step of calculating the optimum lifetime of the electrolytic capacitor by processing the temperature measurement data stored in the memory by taking out the small temperature measuring device from the power supply device by a computer. The life estimation method of the power supply device according to 1. 入力電源電圧を平滑する電解コンデンサを有し、冷却装置で冷却される電源装置における前記電解コンデンサの表面温度を、当該電解コンデンサに直付けしたコードレスメモリー式小型温度測定器で測定することで電源装置の負荷温度試験および負荷電流測定試験を行い、その試験結果から前記冷却装置の冷却効果を判断して、電源装置の長寿命化対策を検討することを特徴とする電源装置の寿命管理方法。   A power supply device having an electrolytic capacitor for smoothing an input power supply voltage, and measuring a surface temperature of the electrolytic capacitor in a power supply device cooled by a cooling device with a cordless memory type small temperature measuring device directly attached to the electrolytic capacitor A power supply device life management method, comprising: performing a load temperature test and a load current measurement test, determining a cooling effect of the cooling device from the test results, and examining measures for extending the life of the power supply device.
JP2005043996A 2005-02-21 2005-02-21 Method of estimating and managing lifetime of power unit Withdrawn JP2006229130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043996A JP2006229130A (en) 2005-02-21 2005-02-21 Method of estimating and managing lifetime of power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043996A JP2006229130A (en) 2005-02-21 2005-02-21 Method of estimating and managing lifetime of power unit

Publications (1)

Publication Number Publication Date
JP2006229130A true JP2006229130A (en) 2006-08-31

Family

ID=36990192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043996A Withdrawn JP2006229130A (en) 2005-02-21 2005-02-21 Method of estimating and managing lifetime of power unit

Country Status (1)

Country Link
JP (1) JP2006229130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397593B2 (en) 2012-06-05 2016-07-19 Mitsubishi Electric Corporation Motor control device
AT518194A1 (en) * 2016-01-29 2017-08-15 Bernecker + Rainer Industrie-Elektronik Ges M B H Method and device for determining the temperature of a DC link capacitor
CN110780201A (en) * 2019-12-02 2020-02-11 苏州易来科得科技有限公司 Method for determining highest tolerance temperature of battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397593B2 (en) 2012-06-05 2016-07-19 Mitsubishi Electric Corporation Motor control device
AT518194A1 (en) * 2016-01-29 2017-08-15 Bernecker + Rainer Industrie-Elektronik Ges M B H Method and device for determining the temperature of a DC link capacitor
US10416028B2 (en) 2016-01-29 2019-09-17 B&R Industrial Automation GmbH Temperature of a link capacitor
AT518194B1 (en) * 2016-01-29 2020-10-15 B & R Ind Automation Gmbh Method and device for determining the temperature of an intermediate circuit capacitor
CN110780201A (en) * 2019-12-02 2020-02-11 苏州易来科得科技有限公司 Method for determining highest tolerance temperature of battery

Similar Documents

Publication Publication Date Title
Rumpf et al. Experimental investigation of parametric cell-to-cell variation and correlation based on 1100 commercial lithium-ion cells
CN109921111B (en) Method and system for estimating internal temperature of lithium ion battery
US10866285B2 (en) Efficient battery tester
JP2014505863A (en) System and method for detecting battery capacity
JP7112252B2 (en) A method for estimating the current and state of charge of a battery pack or cell without directly sensing the current under operating conditions
CN103868610A (en) Temperature correction method, device and equipment
CN108663650B (en) Electric energy meter on-site calibration device and method
JP2018170144A (en) Battery temperature estimation device and method, and battery state estimation device
CN109059988B (en) Reliability evaluation method and device for photoelectric detection instrument
Sadabadi et al. Design and calibration of a semi-empirical model for capturing dominant aging mechanisms of a PbA battery
JP2006229130A (en) Method of estimating and managing lifetime of power unit
US8217679B2 (en) Method and system for determining power measurement inside a field programmable gate array without external components
Mohsin et al. A new lead-acid battery state-of-health evaluation method using electrochemical impedance spectroscopy for second life in rural electrification systems
US20230417839A1 (en) Information processing apparatus, information processing method, information processing system, and non-transitory computer readable medium
CN104241722B (en) battery pack thermistor test method
JP2013221944A (en) Measurement device and measurement method for power consumption
JP7299749B2 (en) Solar power generation output prediction device, solar power generation output prediction method, and program
Soltanbayev et al. Automated dry-type transformer aging evaluation: A simulation study
JP2008082887A (en) Method and device for detecting open circuit voltage
JP6362445B2 (en) Inverter and data collection device
CN112671336B (en) Method and device for detecting abnormal working temperature of photovoltaic module and computer equipment
JP5772464B2 (en) Life estimation apparatus, life estimation method and program
CN115468671A (en) Method, device, equipment and medium for estimating chip junction temperature of power semiconductor device
Al-Badri et al. Evaluation of measurement uncertainty in induction machines efficiency estimation
CN113191410A (en) Method, system and storage medium for predicting service life of linear power supply

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513