JP2006228860A - Organic field effect transistor and its fabrication process - Google Patents

Organic field effect transistor and its fabrication process Download PDF

Info

Publication number
JP2006228860A
JP2006228860A JP2005038843A JP2005038843A JP2006228860A JP 2006228860 A JP2006228860 A JP 2006228860A JP 2005038843 A JP2005038843 A JP 2005038843A JP 2005038843 A JP2005038843 A JP 2005038843A JP 2006228860 A JP2006228860 A JP 2006228860A
Authority
JP
Japan
Prior art keywords
semiconductor material
organic
organic semiconductor
effect transistor
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038843A
Other languages
Japanese (ja)
Inventor
Kuniko Kimura
邦子 木村
Kei Kobayashi
圭 小林
Takafumi Yamada
啓文 山田
Yoshitoshi Horiuchi
俊寿 堀内
Kenji Ishida
謙司 石田
Kazumi Matsushige
和美 松重
Yukiko Mori
ゆき子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO INSTRUMENTS KK
Kyoto University NUC
Original Assignee
KYOTO INSTRUMENTS KK
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO INSTRUMENTS KK, Kyoto University NUC filed Critical KYOTO INSTRUMENTS KK
Priority to JP2005038843A priority Critical patent/JP2006228860A/en
Publication of JP2006228860A publication Critical patent/JP2006228860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for fabricating a low power consumption organic field effect transistor (organic FET) in which a channel layer composed of an organic semiconductor has high electric conductivity and thereby switching characteristics are improved. <P>SOLUTION: In at least a part of channel region at least between a source electrode 13 and a drain electrode 14 on the surface of an insulation layer 12, and an organic semiconductor layer 15 formed on the source electrode 13 and the drain electrode 14, a member 21 having a sharp tip profile is touched to apply a force in parallel with that surface (Fig. (d)) thus orienting microcrystal composing the organic semiconductor layer 15 in a direction corresponding to the direction of the force in that region. Since electric conductivity increases in the channel region where the microcrystal is oriented, switching characteristics of the organic FET are enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機電界効果型トランジスタ(Field Effect Transistor:FET)素子及びその製造方法に関し、特に、有機FETのチャネル領域を構成する分子又は微結晶又は微粒子(以下、「分子等」とする)の配向に特徴を有する有機FET素子及びその製造方法に関する。ここで、「チャネル領域」とは、ソース電極とドレイン電極の間にあり、ゲート電圧が印加されることにより電荷が誘起され、ソース−ドレイン間に電圧が印加されることによりその電荷が移動する領域を意味する。   The present invention relates to an organic field effect transistor (FET) element and a method for manufacturing the same, and in particular, a molecule, a microcrystal, or a fine particle (hereinafter referred to as “molecule etc.”) constituting a channel region of an organic FET. The present invention relates to an organic FET element characterized by orientation and a method for manufacturing the same. Here, the “channel region” is located between the source electrode and the drain electrode, and when the gate voltage is applied, charge is induced, and when the voltage is applied between the source and drain, the charge moves. Means an area.

FETのチャネル領域に有機半導体を用いた有機FETは既に実用化されている。有機FETは、無機半導体を用いたFETと比較して、スピンコート法やインクジェット法等により安価に製造することが可能であるうえ、フレキシブルであり大面積化が容易である、という利点を有する。   Organic FETs using organic semiconductors in the channel region of FETs have already been put into practical use. Compared with an FET using an inorganic semiconductor, an organic FET can be manufactured at a low cost by a spin coating method, an inkjet method, or the like, and has an advantage that it is flexible and can easily be increased in area.

FETでは、ゲート電圧VGの印加により、ソース電極とドレイン電極を接続するチャネル領域のゲート電極付近に電荷が誘起され、ソース−ドレイン間に電圧VSDを印加することによりこの電荷が移動してソース−ドレイン間電流ISDが流れる。ゲート電圧VGが印加されない時にはゲート電極付近に電荷が誘起されないため、ソース−ドレイン間電流ISDはほとんど流れない。即ち、ゲート電圧VGのON/OFFによりソース−ドレイン間電流ISDのON/OFFが制御される。 In FET, by applying a gate voltage V G, the charge in the vicinity of the gate electrode in the channel region connecting the source and drain electrodes is induced, the source - the charges by applying the voltage V SD between the drain moves Source-drain current ISD flows. Since the gate voltage V G is not induced charges in the vicinity of the gate electrode when not applied, the source - current I SD hardly flows between the drain. That is, the source by ON / OFF of the gate voltage V G - drain current I SD of ON / OFF is controlled.

ここで、チャネル領域を構成する材料の電気伝導度を大きくすることにより、ソース−ドレイン間電流ISDをより大きくすることができ、スイッチング特性を向上させることができる。しかし、有機半導体の電気伝導度は一般に無機半導体よりも小さい。そこで、有機FETの性能を高めるために、チャネル領域を構成する有機半導体の電気伝導度を大きくすることが望まれている。 Here, by increasing the electrical conductivity of the material forming the channel region, the source-drain current ISD can be further increased, and the switching characteristics can be improved. However, the electrical conductivity of organic semiconductors is generally smaller than that of inorganic semiconductors. Therefore, in order to improve the performance of the organic FET, it is desired to increase the electrical conductivity of the organic semiconductor constituting the channel region.

特許文献1には、有機半導体の前駆体に光を照射することによりチャネル領域を形成することが記載されている。この文献では、この方法により作製されるチャネル領域は従来の有機半導体と同程度又はそれよりも大きい電気伝導度を有する、とされている。しかし、この方法によれば有機半導体の材料が適切な前駆体が存在するものに限定されてしまう。   Patent Document 1 describes that a channel region is formed by irradiating an organic semiconductor precursor with light. In this document, the channel region produced by this method is said to have an electrical conductivity comparable to or higher than that of a conventional organic semiconductor. However, according to this method, the material of the organic semiconductor is limited to that having an appropriate precursor.

一方、本願発明者は、有機FETに限らず、有機物から成る薄膜の構造を制御することについて検討を行ってきた。特許文献2には、製膜途中又は製膜後の膜全体又は膜内の任意の領域にAFMの探針等(これに限定されない)の鋭利な先端形状を有する部材を用いて力を加えることにより、膜の内部構造を制御することが記載されている。この文献によれば、膜面上でAFM探針を走査してその走査方向に力学的な力を与えることにより、その力を受けた領域内の分子等が所定の方向に配向する。この方法によれば、領域内の分子等を任意の方向に配向させることができる。   On the other hand, the inventor of the present application has studied not only the organic FET but also the control of the structure of a thin film made of an organic material. In Patent Document 2, a force is applied to the entire film during film formation or after film formation or to any region in the film using a member having a sharp tip shape such as (but not limited to) an AFM probe. To control the internal structure of the membrane. According to this document, by scanning the AFM probe on the film surface and applying a mechanical force in the scanning direction, the molecules in the region receiving the force are oriented in a predetermined direction. According to this method, molecules in the region can be oriented in an arbitrary direction.

特開2004-266157号公報([0008]〜[0009], [0025]〜[0038])JP 2004-266157 A ([0008] to [0009], [0025] to [0038]) 国際公開WO2004/026459号公報(第15頁26行目〜第17頁17行目、図2〜図6)International Publication No. WO2004 / 026459 (Page 15, Line 26 to Page 17, Line 17, Figures 2 to 6)

本発明が解決しようとする課題は、有機半導体から成るチャネル領域の電気伝導度が大きく、それにより低いソース−ドレイン間電圧VSDで動作することが可能な高性能の有機FET及びその製造方法を提供することである。 An object of the present invention is to provide a large electric conductivity of the channel region made of an organic semiconductor, whereby low source - the High-Performance to operate at drain voltage V SD between the organic FET and a manufacturing method thereof Is to provide.

上記課題を解決するために成された本発明に係る有機FET製造方法は、ソース電極とドレイン電極の間のチャネル領域を含む領域に、絶縁層によってゲート電極と隔てられた有機半導体材料から成る有機半導体材料層が形成された有機電界効果型トランジスタを製造する方法であって、
前記領域に有機半導体材料層を形成する有機半導体材料層形成工程と、
鋭利な先端形状を有する部材を用いて有機半導体材料層の表面に平行な方向の力を加えることにより、少なくとも前記チャネル領域の一部において前記有機半導体材料層の分子又は微結晶又は微粒子の配向方向を所定の方向に変化させる配向工程と、
を有することを特徴とする。
In order to solve the above problems, an organic FET manufacturing method according to the present invention includes an organic semiconductor material made of an organic semiconductor material separated from a gate electrode by an insulating layer in a region including a channel region between a source electrode and a drain electrode. A method of manufacturing an organic field effect transistor having a semiconductor material layer formed thereon,
An organic semiconductor material layer forming step of forming an organic semiconductor material layer in the region;
By applying a force in a direction parallel to the surface of the organic semiconductor material layer using a member having a sharp tip shape, the orientation direction of the molecules, microcrystals or fine particles of the organic semiconductor material layer at least in a part of the channel region Orienting step to change in a predetermined direction,
It is characterized by having.

なお、本願においては、ソース電極、ドレイン電極及びチャネル層と絶縁層及びゲート電極の相対的な位置関係を表すために、便宜上、「絶縁層上」、「有機半導体材料層上」等の表現を用いるが、各電極及び各層の相対的な位置関係が変わらなければ、素子自体の向きは問わない。   Note that in this application, in order to represent the relative positional relationship between the source electrode, the drain electrode, and the channel layer, and the insulating layer and the gate electrode, for convenience, expressions such as “on the insulating layer” and “on the organic semiconductor material layer” are used. Although it is used, the orientation of the element itself does not matter as long as the relative positional relationship between each electrode and each layer does not change.

本発明に係る有機FET製造方法においては、前記分子等がその向きにより電気伝導度に異方性を有するものであることがより望ましい。ソース電極とドレイン電極を結ぶ方向と、前記分子等の電気伝導度の大きい方向とが成す角度を制御して配向させることにより、ソース−ドレイン間電流を制御することができ、スイッチング特性や消費電力などのFET特性を高精度に制御することができる。   In the organic FET manufacturing method according to the present invention, it is more desirable that the molecules and the like have anisotropy in electrical conductivity depending on their orientation. By controlling and orienting the angle formed by the direction connecting the source electrode and the drain electrode and the direction in which the electrical conductivity of the molecule or the like is large, the source-drain current can be controlled, and switching characteristics and power consumption can be controlled. FET characteristics such as can be controlled with high accuracy.

分子等を配向させる際には、前記領域、即ち分子等の配向方向を所定の方向に変化させる領域の温度を制御し、或いは該領域に所定の方向の電界及び/又は磁界を印加してもよい。   When orienting molecules or the like, the temperature of the region, that is, the region that changes the orientation direction of molecules or the like to a predetermined direction may be controlled, or an electric field and / or magnetic field in a predetermined direction may be applied to the region. Good.

発明の実施の形態及び効果Embodiments and effects of the invention

本発明の有機FET製造方法においては、まず、ゲート電極の表面に形成された絶縁層上に、有機半導体材料から成る層を形成する。ソース電極及びドレイン電極は、有機半導体材料層を形成した後、あるいは有機半導体材料層に対して下記の操作を行った後に形成してもよいし、有機半導体材料層を形成する前に絶縁層上に形成してもよい。後者の方が電極の作製が容易であるうえ、電極作製時の熱等により有機半導体材料層を劣化させることがない。有機半導体材料層は、ソース電極とドレイン電極の間のチャネル領域を含む領域に形成すればよい。本発明の有機FET製造方法では少なくとも前記チャネル領域の一部に対して以下の操作を行う。以下では、この操作を行う領域を「操作領域」と呼ぶ。   In the organic FET manufacturing method of the present invention, first, a layer made of an organic semiconductor material is formed on the insulating layer formed on the surface of the gate electrode. The source electrode and the drain electrode may be formed after forming the organic semiconductor material layer, or after performing the following operation on the organic semiconductor material layer, or on the insulating layer before forming the organic semiconductor material layer. You may form in. In the latter case, the electrode is easier to manufacture, and the organic semiconductor material layer is not deteriorated by heat or the like during the electrode preparation. The organic semiconductor material layer may be formed in a region including a channel region between the source electrode and the drain electrode. In the organic FET manufacturing method of the present invention, the following operation is performed on at least a part of the channel region. Hereinafter, an area in which this operation is performed is referred to as an “operation area”.

操作領域の表面に、鋭利な先端形状を有する部材を用いて該表面に平行な方向の力を加える。これにより、この領域において、有機半導体材料層を構成する分子等が、部材が加えた力の方向に応じた方向に配向する。このようにして本発明に係る有機FETのチャネル領域は作製される。本発明によれば、配向させた領域においても平坦且つ平滑な有機半導体材料層を得ることができる。例えば、本発明の方法により加工される有機半導体材料層の加工領域の平均粗さ(Ra)を100nm以下とすることは容易であり、50nm以下、さらには20nm以下とすることができる。なお、本発明に係る有機FETの製造方法は、これら有機半導体材料層、絶縁層及び各電極以外の各種構成要素を有する有機FETに対しても同様に適用することができる。例えば、チャネル領域の上に保護層を形成したFETに対しても適用することができる。   A force in a direction parallel to the surface is applied to the surface of the operation region using a member having a sharp tip shape. Thereby, in this area | region, the molecule | numerator etc. which comprise an organic-semiconductor material layer orientate in the direction according to the direction of the force which the member applied. In this way, the channel region of the organic FET according to the present invention is manufactured. According to the present invention, a flat and smooth organic semiconductor material layer can be obtained even in an oriented region. For example, the average roughness (Ra) of the processed region of the organic semiconductor material layer processed by the method of the present invention can be easily set to 100 nm or less, and can be set to 50 nm or less, and further 20 nm or less. In addition, the manufacturing method of the organic FET which concerns on this invention is applicable similarly also to organic FET which has various components other than these organic-semiconductor material layers, an insulating layer, and each electrode. For example, it can be applied to an FET in which a protective layer is formed on the channel region.

鋭利な先端形状を有する部材には、原子間力顕微鏡(AFM)の探針と同様の部材を用いることができる。   As the member having a sharp tip shape, a member similar to the probe of an atomic force microscope (AFM) can be used.

操作領域の表面に平行な方向の力を加える方法としては、例えば、上記部材を定常的または間欠的にこの表面に接触させた状態で、該部材を表面に平行な方向に微小距離だけ移動または振動させることが挙げられる。ここで、「定常的に接触させた状態」とは、部材と上記表面の間の距離又は接触圧が一定になるように制御された状態を指す。また、「間欠的に接触させた状態」とは、両者の間の距離または接触圧が周期的又は非周期的に変化するように制御された状態を指す。また、先端位置が静止していても、表面に平行な力を上記部材に対して加えた時に該部材が弾性変形すれば、表面にこの方向の力を加えることができる。あるいは、上記部材に対して、表面に平行方向に振動する超音波振動を伝播させるなどの手段によっても上記の力を加えることが可能である。さらに、表面に平行な力として力学的な力以外の力、例えば、電磁気的な力を用いることも可能である。   As a method of applying a force in a direction parallel to the surface of the operation region, for example, in a state where the member is in contact with the surface regularly or intermittently, the member is moved in a direction parallel to the surface by a minute distance or It is mentioned to vibrate. Here, the “steady contact state” refers to a state in which the distance between the member and the surface or the contact pressure is controlled to be constant. In addition, the “state in which contact is intermittently” refers to a state in which the distance between them or the contact pressure is controlled to change periodically or aperiodically. Even if the tip position is stationary, if a force parallel to the surface is applied to the member and the member is elastically deformed, a force in this direction can be applied to the surface. Alternatively, the above force can be applied to the member by means such as propagating ultrasonic vibration that vibrates in a direction parallel to the surface. Furthermore, a force other than a mechanical force, for example, an electromagnetic force, can be used as the force parallel to the surface.

分子等を配向させる方向は、目的に応じて設定する。例えば、チャネル領域の電気伝導度を大きくしたい場合には、分子等の電気伝導度の大きい方向がソース電極とドレイン電極を結ぶ方向と略平行になるように分子等を配向させることにより、その目的を達することができる。分子が鎖状である場合には、多くの場合、主鎖の方向がソース電極とドレイン電極を結ぶ方向と略平行になるようにすることにより、ソース−ドレイン間の電気伝導度を大きくすることができる。但し、主鎖方向と電気伝導度の関係はこれに限定されない。
このような配向性を有する有機FETは、従来のものよりもソース−ドレイン間電流ISDをより大きくすることができ、スイッチング特性を向上させることができる。また、ソース−ドレイン間電圧を下げて使用することも可能であり、素子の耐久特性の向上にもつながる。また、分子等の配向方向とソース−ドレイン電極間を結ぶ直線とが成す角度を制御することにより、スイッチング特性を高精細に制御できる。
The direction in which molecules and the like are oriented is set according to the purpose. For example, when it is desired to increase the electrical conductivity of the channel region, the purpose is to align the molecules so that the direction of large electrical conductivity of the molecules is substantially parallel to the direction connecting the source electrode and the drain electrode. Can be reached. When the molecule is a chain, in many cases, the electric conductivity between the source and the drain is increased by making the direction of the main chain substantially parallel to the direction connecting the source electrode and the drain electrode. Can do. However, the relationship between the main chain direction and the electrical conductivity is not limited to this.
The organic FET having such orientation, rather than the conventional source - can the drain current I SD to larger, thereby improving the switching characteristics. In addition, it can be used with the source-drain voltage lowered, which leads to improvement of the durability characteristics of the device. Further, the switching characteristics can be controlled with high definition by controlling the angle formed by the alignment direction of molecules and the straight line connecting the source-drain electrodes.

上記部材を用いた操作を行う際に有機半導体の温度を制御することにより、分子等がより配向し易くなったり、配向方向を制御したりすることができる場合がある。その場合、上記操作の際に有機半導体材料層の温度を制御してもよい。この温度制御は、有機半導体材料層全体を加熱又は冷却するものであってもよいし、上記部材を加熱又は冷却することにより有機半導体材料層を局所的に加熱又は冷却するものであってもよい。   In some cases, by controlling the temperature of the organic semiconductor when performing an operation using the above-described member, molecules and the like can be more easily oriented, and the orientation direction can be controlled. In that case, you may control the temperature of an organic-semiconductor material layer in the case of the said operation. This temperature control may heat or cool the whole organic semiconductor material layer, or may heat or cool the organic semiconductor material layer locally by heating or cooling the member. .

有機半導体材料が電気双極子を有する場合には、有機半導体材料層に電界が印加されると、分子等は分極を該電界に平行にするように該電界から力を受ける。そのため、上記部材を用いた操作を行う際に、分子等を配向させようとする方向に応じた方向に電界を印加することにより、分子等を更に高い割合で配向させることができる。同様に、有機半導体材料が磁性を有する場合には、上記部材を用いた操作を行う際に、分子等を配向させようとする方向に応じた方向に磁界を印加することにより、分子等を更に高い割合で配向させることができる。   When the organic semiconductor material has an electric dipole, when an electric field is applied to the organic semiconductor material layer, molecules and the like receive a force from the electric field so that the polarization is parallel to the electric field. Therefore, when an operation using the above-described member is performed, the molecules and the like can be aligned at a higher rate by applying an electric field in a direction corresponding to the direction in which the molecules and the like are to be aligned. Similarly, when the organic semiconductor material has magnetism, when an operation using the above-described member is performed, a molecule is further applied by applying a magnetic field in a direction corresponding to the direction in which the molecules are oriented. It can be oriented at a high rate.

複数個の部材を同時に用いて有機半導体材料の表面に平行な方向の力を加えてもよい。これにより、生産効率を向上させることができる。   A force in a direction parallel to the surface of the organic semiconductor material may be applied using a plurality of members simultaneously. Thereby, production efficiency can be improved.

上記方法により有機半導体材料層を所定の方向に配向させた後に、更にその上に同じ有機半導体材料を積層させてもよい。この場合、材料によっては第2の有機半導体材料層は第1の有機半導体材料層の配向方向に倣って同じ方向に配向することがある。その場合には、より確実に分子等を配向させることができるようになる。また、第2の有機半導体材料層にも第1の有機半導体材料層と同様の加工を施すことにより同様の効果を得ることができる。   After the organic semiconductor material layer is oriented in a predetermined direction by the above method, the same organic semiconductor material may be further laminated thereon. In this case, depending on the material, the second organic semiconductor material layer may be oriented in the same direction following the orientation direction of the first organic semiconductor material layer. In that case, molecules and the like can be more reliably oriented. Moreover, the same effect can be acquired also by giving the 2nd organic-semiconductor material layer the process similar to a 1st organic-semiconductor material layer.

本発明の製造方法は、現在有機FETのチャネル領域に用いられている有機半導体材料のほとんどに適用することができる。そのような有機半導体材料には、例えば、ポリチオフェン誘導体、ポリフェニレンビニレン誘導体、ポリフェニレン誘導体、ポリフルオレン誘導体、ポリアニリン誘導体等のポリマーや、オリゴチオフェン誘導体、チオフェン/フェニレンオリゴ共重合体、アントラセン誘導体、ペンタセン誘導体等のモノマーやオリゴマー等がある。   The manufacturing method of the present invention can be applied to most organic semiconductor materials currently used in the channel region of organic FETs. Examples of such organic semiconductor materials include polymers such as polythiophene derivatives, polyphenylene vinylene derivatives, polyphenylene derivatives, polyfluorene derivatives, polyaniline derivatives, oligothiophene derivatives, thiophene / phenylene oligo copolymers, anthracene derivatives, pentacene derivatives, etc. Monomers and oligomers.

上記配向処理は必ずしも有機半導体材料層の全体に対して行う必要はなく、その一部の領域のみに行ってもよい。例えば、ソース−ドレイン間の有効なチャネル領域のみに上記配向処理を施すことにより、その部分のみにおいて分子等が所定の方向に配向した有機FETを得ることができる。更にはチャネル領域の一部分のみの分子等を配向させることも可能である。また、その配向処理を行う領域の大きさ(幅)を調節することもできる。これにより、ソース−ドレイン間の電圧VSD−電流ISD特性を高精度に制御することができる。 The alignment treatment is not necessarily performed on the entire organic semiconductor material layer, and may be performed only on a part of the region. For example, by performing the above alignment treatment only on the effective channel region between the source and the drain, it is possible to obtain an organic FET in which molecules and the like are aligned in a predetermined direction only at that portion. Furthermore, it is possible to orient the molecules only in a part of the channel region. In addition, the size (width) of the region where the alignment treatment is performed can be adjusted. As a result, the source-drain voltage V SD -current I SD characteristics can be controlled with high accuracy.

本発明に係る有機FETは、次のような多層構造を成すものであってもよい。すなわち、ソース電極とドレイン電極の間のチャネル領域を含む領域に、ゲート電極、第1絶縁層、有機半導体材料から成る有機半導体材料層及び第2絶縁層から構成されるチャネル積層体が複数積層され、少なくとも1層の、少なくとも前記チャネル領域の一部において前記有機半導体材料層の分子等が所定の方向に配向しているものである。このような構造を有する有機電界効果型トランジスタは、チャネル領域を含む有機半導体材料層が1層のみである場合よりもソース−ドレイン間電流ISDを大きくすることができる。 The organic FET according to the present invention may have the following multilayer structure. That is, a plurality of channel stacks each including a gate electrode, a first insulating layer, an organic semiconductor material layer made of an organic semiconductor material, and a second insulating layer are stacked in a region including a channel region between the source electrode and the drain electrode. The molecules of the organic semiconductor material layer are oriented in a predetermined direction in at least one layer of at least a part of the channel region. The organic field effect transistor having such a structure can increase the source-drain current I SD as compared with the case where the organic semiconductor material layer including the channel region is only one layer.

(発明の効果)
本発明に係る製造方法を用いることにより、有機FETのチャネル領域の有機半導体を構成する分子等を所定の方向に配向させ、チャネル領域の電気伝導度を大きくすることができる。それにより、ノイズ等に強い、スイッチング特性の良好な有機FETを製造することができる。また、低いソース−ドレイン間電圧VSDで動作させることも可能であり、素子の耐久性向上にもつながる。
(The invention's effect)
By using the manufacturing method according to the present invention, molecules constituting the organic semiconductor in the channel region of the organic FET can be oriented in a predetermined direction, and the electrical conductivity of the channel region can be increased. As a result, an organic FET that is resistant to noise and has good switching characteristics can be manufactured. It is also possible to operate with a low source-drain voltage VSD , which leads to improved durability of the device.

また、本発明に係る有機FET製造方法は、現在有機FETのチャネル領域に用いられている有機半導体材料をほとんどそのまま用いることができるため、従来の有機FETに必要とされる特性を犠牲にすることなく、更に本発明による効果を得ることができる。   In addition, the organic FET manufacturing method according to the present invention can use the organic semiconductor material that is currently used in the channel region of the organic FET almost as it is, and sacrifices the characteristics required for the conventional organic FET. Further, the effects of the present invention can be obtained.

本発明に係る有機FET及びその製造方法の実施例を、図1〜図8を用いて説明する。
図1は、有機FETの製造方法の一例を示す断面図である。まず、導電性材料から成るゲート電極11の上に、その上面を酸化させる等の方法により、絶縁層12を形成する(a)。ゲート電極11の材料には、例えば高濃度ドープされたSiを用いることができ、その場合には絶縁層12はSiO2により形成される。次に、絶縁層12の上に、Au等の金属を蒸着させる等の方法により、ソース電極13及びドレイン電極14を形成する(b)。そして、絶縁層12、ソース電極13及びドレイン電極14を覆うように、両電極間を含む領域に有機半導体材料層15を形成する(c)。有機半導体材料層15には前述の材料を用いることができる。また、有機半導体材料層15はスピンコート法、蒸着法、インクジェット法等、従来の有機FETの製造において用いられる方法により作製することができる。
Examples of the organic FET and the method for manufacturing the same according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view illustrating an example of a method for manufacturing an organic FET. First, the insulating layer 12 is formed on the gate electrode 11 made of a conductive material by a method such as oxidizing the upper surface (a). The material of the gate electrode 11, for example, heavily doped Si can be used, in which case an isolating layer 12 is SiO 2. Next, the source electrode 13 and the drain electrode 14 are formed on the insulating layer 12 by a method such as vapor deposition of a metal such as Au (b). Then, an organic semiconductor material layer 15 is formed in a region including between both electrodes so as to cover the insulating layer 12, the source electrode 13, and the drain electrode (c). The materials described above can be used for the organic semiconductor material layer 15. The organic semiconductor material layer 15 can be produced by a method used in the production of a conventional organic FET, such as a spin coating method, a vapor deposition method, an ink jet method, or the like.

上記方法で形成した有機半導体材料層15の内部では、一般に分子等はランダムな方向を向いている。本実施例では、このような状態となっている有機半導体材料層15の表面に、鋭利な先端形状を有する部材21を接触させ、ソース電極13−ドレイン電極14間のチャネル領域の一部を含む領域において該表面に平行に移動させる(図1(d))ことにより、この表面に平行な方向の力を加える。部材21にはAFMの探針と同様のものを用いることができる。   In the organic semiconductor material layer 15 formed by the above method, molecules and the like are generally in a random direction. In the present embodiment, a member 21 having a sharp tip shape is brought into contact with the surface of the organic semiconductor material layer 15 in such a state, and a part of the channel region between the source electrode 13 and the drain electrode 14 is included. By moving the region parallel to the surface (FIG. 1 (d)), a force in a direction parallel to the surface is applied. The member 21 can be the same as the AFM probe.

これにより、部材21により力が加えられた領域においてその材料と部材21の移動方向、即ち加えた力の方向に分子等が配向する(図1(e))。例えば、有機半導体材料層15が剛直鎖を有する高分子で構成されている場合には、部材21により力が加えられた方向に分子が配向する場合が多い。有機半導体材料層15が当初アモルファスである場合には、この処理を行うことにより、図2に示すように、その部分において配向した分子鎖15aから成る微結晶15bが所定方向に配向した構造が得られる。また、有機半導体材料層15が低分子、高分子又はオリゴマーが配向して形成された多数の微結晶で構成され、これらの微結晶が有機半導体材料層15の面内において互いにランダムな方向を向いている場合や、さらには有機半導体材料層15が電気伝導率に異方性を有する多数の微粒子で構成され、しかもこれらの微粒子が有機半導体材料層15の面内において互いにランダムな方向を向いている場合には、部材21を用いて上記の力を加えることにより、微結晶又は微粒子が回転し、その結果、微結晶又は微粒子を所定の方向に配向させ、そのスイッチング特性を向上させることができる。   As a result, in the region where the force is applied by the member 21, molecules and the like are oriented in the moving direction of the material and the member 21, that is, in the direction of the applied force (FIG. 1 (e)). For example, when the organic semiconductor material layer 15 is composed of a polymer having a rigid straight chain, the molecules are often oriented in the direction in which a force is applied by the member 21. When the organic semiconductor material layer 15 is initially amorphous, by performing this treatment, as shown in FIG. 2, a structure is obtained in which microcrystals 15b composed of molecular chains 15a oriented in the portion are oriented in a predetermined direction. It is done. The organic semiconductor material layer 15 is composed of a large number of microcrystals formed by orientation of low molecules, polymers, or oligomers, and these microcrystals face each other in a random direction within the plane of the organic semiconductor material layer 15. In addition, the organic semiconductor material layer 15 is composed of a large number of fine particles having anisotropy in electrical conductivity, and these fine particles are oriented in a random direction within the plane of the organic semiconductor material layer 15. In this case, by applying the above-described force using the member 21, the microcrystals or microparticles are rotated, and as a result, the microcrystals or microparticles are oriented in a predetermined direction, and the switching characteristics can be improved. .

こうして、ソース電極13−ドレイン電極14間のチャネル領域の少なくとも一部の領域が所定の方向に配向した有機半導体材料層16を有する有機FET素子10が完成する。なお、有機半導体材料層15の材料の違いにより、図2に示す以外の向きに配向する場合もある。この有機半導体材料層16中のチャネル領域における分子等の配向方向を、前記のようにソース−ドレイン間の電気伝導率が最大となるような方向に設定することにより、従来よりも消費電力の低い、スイッチング特性の良好な有機FET素子を製造することができる。   Thus, the organic FET element 10 having the organic semiconductor material layer 16 in which at least a part of the channel region between the source electrode 13 and the drain electrode 14 is oriented in a predetermined direction is completed. Depending on the material of the organic semiconductor material layer 15, it may be oriented in a direction other than that shown in FIG. 2. By setting the orientation direction of molecules and the like in the channel region in the organic semiconductor material layer 16 in such a direction that the electric conductivity between the source and the drain is maximized as described above, the power consumption is lower than in the prior art. An organic FET element with good switching characteristics can be manufactured.

図1(d)の工程において上記操作を行う際、図3に示すように有機半導体材料層15の温度を制御することにより、分子を配向しやすくしたり、分子の配向方向を制御したりすることができる場合がある。加熱方法は、図3(a)に示すように有機FETの構成要素及び部材21の全体を加熱する方法でもよいし、(b)に示すようにヒータ22で部材21を加熱することにより、加工領域の近傍のみを加熱する方法でもよい。   When performing the above operation in the step of FIG. 1 (d), the temperature of the organic semiconductor material layer 15 is controlled as shown in FIG. 3 to facilitate the orientation of molecules and the orientation direction of the molecules. There are cases where it is possible. The heating method may be a method of heating the components of the organic FET and the entire member 21 as shown in FIG. 3 (a), or processing by heating the member 21 with the heater 22 as shown in (b). A method of heating only the vicinity of the region may be used.

図1(d)の工程において有機半導体材料層15に電界を印加しつつ部材21による操作を行う例を図4に示す。部材21の前後(部材21の移動方向23を基準とする)に1対の電極24a及び24bを設け、両電極の間に直流電圧を印加する。これにより、部材21の移動方向23と同じ向きの電界を生成する。有機半導体材料層15が電気分極を有する場合には、この状態で部材21を有機半導体材料層15の表面に接触させて該表面に平行に移動させることにより、部材21による力と電界による力の双方により、分子の配向方向を制御することができる。   FIG. 4 shows an example in which the operation by the member 21 is performed while applying an electric field to the organic semiconductor material layer 15 in the step of FIG. A pair of electrodes 24a and 24b are provided before and after the member 21 (based on the moving direction 23 of the member 21), and a DC voltage is applied between the electrodes. Thereby, an electric field having the same direction as the moving direction 23 of the member 21 is generated. In the case where the organic semiconductor material layer 15 has electric polarization, the member 21 is brought into contact with the surface of the organic semiconductor material layer 15 in this state and moved in parallel to the surface. By both, the orientation direction of the molecule can be controlled.

図5に示すように、部材21を複数個同時に有機半導体材料層上で移動させることにより、部材1個で行う場合よりも有機半導体材料層15内の分子を配向させるのに要する時間を短くすることができ、有機FETの生産効率を向上させることができる。   As shown in FIG. 5, by moving a plurality of members 21 on the organic semiconductor material layer at the same time, the time required to orient the molecules in the organic semiconductor material layer 15 is shortened compared with the case where a single member is used. Can improve the production efficiency of organic FETs.

図6に、チャネル領域の加工例を2種類示す。図6(a)は断面図であり、図6(b-1)はソース−ドレイン間の全部を加工した例、(b-2)はその一部のみを加工した例の平面図である。ゲート電極11、絶縁層12、ソース電極13及びドレイン電極14の構成は通常の有機FETと同様である。いずれも、分子等の配向方向はソース電極13とドレイン電極14を結ぶ方向に一致している。(b-1)の構成では、ソース−ドレイン間の電気伝導度を最大限にすることができる一方、(b-2)の構成では、その加工領域の幅を調節することにより、種々の特性を有する有機FETを作製することができる。   FIG. 6 shows two types of processing examples of the channel region. 6A is a cross-sectional view, FIG. 6B-1 is a plan view of an example in which the entire source-drain region is processed, and FIG. 6B-2 is a plan view of an example in which only a part thereof is processed. The configuration of the gate electrode 11, the insulating layer 12, the source electrode 13, and the drain electrode 14 is the same as that of a normal organic FET. In either case, the orientation direction of molecules and the like coincides with the direction connecting the source electrode 13 and the drain electrode 14. In the configuration of (b-1), the electrical conductivity between the source and the drain can be maximized, while in the configuration of (b-2), various characteristics can be obtained by adjusting the width of the processing region. It is possible to produce an organic FET having

以下に、有機半導体材料としてポリフェニレンビニレン誘導体であるMEH-PPV(Poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylenevinylene))を用いた場合の本発明の効果を示す。膜厚300nmのSiO2膜付きの高濃度ドープSi基板上に、Au蒸着によりソース電極及びドレイン電極を形成した。ソース−ドレイン間距離(チャネル長)は10μm、電極幅(チャネル幅)は20μmとした。また、上記基板の裏面の酸化膜を除去した後、ゲート電極を形成した。次に、MEH-PPVの0.5wt%クロルベンゼン溶液を上記基板上にスピンコートした後、室温真空下で2時間乾燥させ、膜厚50nmの薄膜を形成し、有機FET素子(「素子A」と呼ぶ)を作製した。次に、室温でAFM探針を上記基板のソース−ドレイン間の領域内のMEH-PPV膜表面に接触させながら移動させることにより力を印加してMEH-PPV分子を探針の移動方向に配向させた。ここで、探針の移動方向は両電極を結ぶ直線に平行な方向とした。上記の配向加工をソース−ドレイン間の領域全体に行った有機FET素子を「素子B」と呼ぶ。本発明の配向加工を行った素子Bと配向加工を行わなかった素子Aの特性を評価した結果、素子Aに比べて素子Bはゲート電圧印加時のソース−ドレイン間電流が大幅に増加し、スイッチング特性が向上した。 The effects of the present invention when MEH-PPV (Poly (2-methoxy, 5- (2′-ethylhexyloxy) -1,4-phenylenevinylene)), which is a polyphenylene vinylene derivative, is used as the organic semiconductor material will be described below. A source electrode and a drain electrode were formed by Au evaporation on a highly doped Si substrate with a 300 nm thick SiO 2 film. The source-drain distance (channel length) was 10 μm, and the electrode width (channel width) was 20 μm. Further, after removing the oxide film on the back surface of the substrate, a gate electrode was formed. Next, a 0.5 wt% chlorobenzene solution of MEH-PPV was spin-coated on the substrate, and then dried at room temperature under vacuum for 2 hours to form a thin film having a thickness of 50 nm, and an organic FET element (“Element A”) Called). Next, force is applied by moving the AFM probe in contact with the surface of the MEH-PPV film in the region between the source and drain of the substrate at room temperature to orient the MEH-PPV molecules in the direction of movement of the probe. I let you. Here, the moving direction of the probe was parallel to the straight line connecting both electrodes. An organic FET element obtained by performing the above-described orientation processing on the entire region between the source and the drain is referred to as “element B”. As a result of evaluating the characteristics of the element B subjected to the alignment process of the present invention and the element A not subjected to the alignment process, as compared with the element A, the current between the source and the drain when the gate voltage is applied to the element B is significantly increased. Improved switching characteristics.

図7に、チャネル積層体が複数積層した有機FETの一実施例の断面図を示す。1つのチャネル積層体37aは、ゲート電極33a、第1絶縁層34a、有機半導体材料層35a及び第2絶縁体層36aが順に積層されて成る。このようなチャネル積層体37a、37b、…が、ソース電極31とドレイン電極32の間に複数積層されている。ここで、有機半導体材料層35a、35b…のうち少なくとも1つは、少なくともチャネル領域の一部を含む領域において分子等が所定の方向、例えばソース電極31とドレイン電極32を結ぶ直線に平行な方向に配向している。これにより、ソース−ドレイン間電流ISDを大きくすることができる。そして、複数の有機半導体材料層のチャネル領域を上記のように配向させることにより、ソース−ドレイン間電流ISDを更に大きくすることができる。この場合、各ゲート電極は同一電位にしてもよく、また、異なる電位にしてもよい。 FIG. 7 shows a cross-sectional view of an embodiment of an organic FET in which a plurality of channel stacks are stacked. One channel stack 37a is formed by sequentially stacking a gate electrode 33a, a first insulating layer 34a, an organic semiconductor material layer 35a, and a second insulator layer 36a. A plurality of such channel stacks 37 a, 37 b,... Are stacked between the source electrode 31 and the drain electrode 32. Here, at least one of the organic semiconductor material layers 35a, 35b,... Is a direction in which molecules or the like are parallel to a predetermined direction, for example, a straight line connecting the source electrode 31 and the drain electrode 32 in a region including at least a part of the channel region. Oriented. Thereby, the source-drain current ISD can be increased. Then, by orienting the channel regions of the plurality of organic semiconductor material layers as described above, the source-drain current ISD can be further increased. In this case, the gate electrodes may have the same potential or different potentials.

図8に、MEH-PPV膜に前記処理を行う前後の膜表面のAFM像を示す。ここで、部材の移動時の膜の温度は30℃に設定し、電界や磁界は印加しなかった。部材の移動方向は、矢印41の通りである。これらのAFM像を比較すると、処理前(a)には膜は分子がランダムな方向を向いたアモルファス状態であったのに対し、処理後(b)は分子が同じ方向(探針により力を加えた方向)に配向したものに変化していることがわかる。図8(a)、(b)に示される表面の平均表面粗さRaはそれぞれ2.61nm及び4.85nm、最大高低差Rzはそれぞれ26.8nm及び42.8nmであった。このように、本発明の技術を用いることにより、表面が非常に平坦且つ平滑な分子配向膜を実現できることがわかる。   FIG. 8 shows AFM images of the film surface before and after performing the treatment on the MEH-PPV film. Here, the temperature of the film during the movement of the member was set to 30 ° C., and no electric or magnetic field was applied. The direction of movement of the member is as indicated by arrow 41. Comparing these AFM images, before treatment (a), the film was in an amorphous state with molecules oriented in random directions, but after treatment (b), the molecules were in the same direction (force was applied by the probe). It can be seen that the orientation is changed in the added direction). The average surface roughness Ra of the surface shown in FIGS. 8A and 8B was 2.61 nm and 4.85 nm, respectively, and the maximum height difference Rz was 26.8 nm and 42.8 nm, respectively. Thus, it can be seen that a molecular alignment film having a very flat and smooth surface can be realized by using the technique of the present invention.

本発明に係る有機FET製造方法の一実施例を示す断面図。Sectional drawing which shows one Example of the organic FET manufacturing method which concerns on this invention. 有機半導体材料層15内の微結晶の配向の一例を示す平面図。FIG. 6 is a plan view showing an example of orientation of microcrystals in the organic semiconductor material layer 15. 有機半導体材料層15の加熱方法の一例を示す断面図。Sectional drawing which shows an example of the heating method of the organic-semiconductor material layer 15. FIG. 有機半導体材料層15への電界印加方法の一例を示す断面図。Sectional drawing which shows an example of the electric field application method to the organic-semiconductor material layer. 部材21を複数個用いる場合を示す斜視図。The perspective view which shows the case where two or more members 21 are used. チャネル領域内の少なくとも一部の領域の分子等を配向させた有機FET素子の例を示す断面図及び上面図。Sectional drawing and top view which show the example of the organic FET element which orientated the molecule | numerator etc. of the at least one part area | region in a channel area | region. チャネル積層体が複数積層した有機FETの一実施例を示す断面図。Sectional drawing which shows one Example of organic FET with which the channel laminated body laminated | stacked two or more. 部材で処理を行う前(a)及び後(b)のMEH-PPV膜のAFM像。The AFM image of the MEH-PPV film before (a) and after (b) processing with a member.

符号の説明Explanation of symbols

10…有機FET
11、33a…ゲート電極
12…絶縁層
13、31…ソース電極
14、32…ドレイン電極
15…有機半導体材料層
15a…分子鎖
15b…微結晶
16、35a…少なくとも一部の領域の分子等が配向した有機半導体材料層
21…部材
22…ヒータ
23…移動方向
24a、24b…電極
34a…第1絶縁層
36a…第2絶縁層
37a…チャネル積層体

10 ... Organic FET
DESCRIPTION OF SYMBOLS 11, 33a ... Gate electrode 12 ... Insulating layer 13, 31 ... Source electrode 14, 32 ... Drain electrode 15 ... Organic-semiconductor material layer 15a ... Molecular chain 15b ... Microcrystal 16, 35a ... The molecule | numerator etc. of at least one part area | region orientate Organic semiconductor material layer 21 ... member 22 ... heater 23 ... moving direction 24a, 24b ... electrode 34a ... first insulating layer 36a ... second insulating layer 37a ... channel laminate

Claims (13)

ソース電極とドレイン電極の間に、絶縁層によってゲート電極と隔てられた有機半導体材料から成る有機半導体材料層が形成された有機電界効果型トランジスタを製造する方法であって、
前記有機半導体材料層を形成する有機半導体材料層形成工程と、
鋭利な先端形状を有する部材を用いて有機半導体材料層の表面に平行な方向の力を加えることにより、少なくともチャネル領域の一部において前記有機半導体材料層の分子又は微結晶又は微粒子の配向方向を所定の方向に変化させる配向工程と、
を有することを特徴とする有機電界効果型トランジスタ製造方法。
A method of manufacturing an organic field effect transistor in which an organic semiconductor material layer made of an organic semiconductor material separated from a gate electrode by an insulating layer is formed between a source electrode and a drain electrode,
An organic semiconductor material layer forming step of forming the organic semiconductor material layer;
By applying a force in a direction parallel to the surface of the organic semiconductor material layer using a member having a sharp tip shape, the orientation direction of molecules, microcrystals or fine particles of the organic semiconductor material layer is at least in a part of the channel region. An alignment step of changing in a predetermined direction;
An organic field effect transistor manufacturing method characterized by comprising:
前記分子又は微結晶又は微粒子がその向きにより電気伝導度に異方性を有するものであることを特徴とする請求項1に記載の有機電界効果型トランジスタ製造方法。   2. The method for producing an organic field effect transistor according to claim 1, wherein the molecule, crystallite, or fine particle has anisotropy in electrical conductivity depending on its direction. 分子又は微結晶又は微粒子を、電気伝導度の大きい方向がソース電極とドレイン電極を結ぶ方向と略平行になるように配向させることを特徴とする請求項1又は2に記載の有機電界効果型トランジスタ製造方法。   3. The organic field effect transistor according to claim 1, wherein the molecules, the microcrystals, or the fine particles are oriented so that the direction in which the electric conductivity is large is substantially parallel to the direction connecting the source electrode and the drain electrode. Production method. 前記配向工程において、前記領域の温度を制御することを特徴とする請求項1〜3のいずれかに記載の有機電界効果型トランジスタ製造方法。   The organic field effect transistor manufacturing method according to claim 1, wherein the temperature of the region is controlled in the alignment step. 前記配向工程において、前記領域に所定の方向の電界を印加することを特徴とする請求項1〜4のいずれかに記載の有機電界効果型トランジスタ製造方法。   The organic field effect transistor manufacturing method according to claim 1, wherein an electric field in a predetermined direction is applied to the region in the alignment step. 前記配向工程において、前記領域に所定の方向の磁界を印加することを特徴とする請求項1〜5のいずれかに記載の有機電界効果型トランジスタ製造方法。   6. The organic field effect transistor manufacturing method according to claim 1, wherein a magnetic field in a predetermined direction is applied to the region in the alignment step. 前記有機半導体材料層の前記領域を所定の方向に配向させた後、更にその上に有機半導体材料を積層することを特徴とする請求項1〜6のいずれかに記載の有機電界効果型トランジスタ製造方法。   The organic field effect transistor manufacturing method according to claim 1, wherein the organic semiconductor material layer is further laminated on the organic semiconductor material layer after the region of the organic semiconductor material layer is oriented in a predetermined direction. Method. 前記部材を同時に複数個用いて分子又は微結晶又は微粒子を所定の方向に配向させることを特徴とする請求項1〜7のいずれかに記載の有機電界効果型トランジスタ製造方法。   The method for producing an organic field effect transistor according to any one of claims 1 to 7, wherein a plurality of the members are used simultaneously to align molecules, crystallites or fine particles in a predetermined direction. 請求項1〜8のいずれかの方法により製造された、分子又は微結晶又は微粒子が所定の方向に配向した有機半導体から成るチャネル領域を有することを特徴とする有機電界効果型トランジスタ。   An organic field effect transistor comprising a channel region made of an organic semiconductor in which molecules, microcrystals, or fine particles are oriented in a predetermined direction, which is manufactured by the method according to claim 1. ソース電極とドレイン電極の間のチャネル領域を含む領域に、絶縁層によってゲート電極と隔てられた有機半導体材料から成る有機半導体材料層が形成された有機電界効果型トランジスタであって、
少なくとも前記チャネル領域の一部において前記有機半導体材料層の分子又は微結晶又は微粒子が所定の方向に配向していることを特徴とする有機電界効果型トランジスタ。
An organic field effect transistor in which an organic semiconductor material layer made of an organic semiconductor material separated from a gate electrode by an insulating layer is formed in a region including a channel region between a source electrode and a drain electrode,
An organic field effect transistor characterized in that molecules, microcrystals or fine particles of the organic semiconductor material layer are oriented in a predetermined direction in at least a part of the channel region.
ソース電極とドレイン電極の間のチャネル領域を含む領域に、ゲート電極、第1絶縁層、有機半導体材料から成る有機半導体材料層及び第2絶縁層から構成されるチャネル積層体が複数積層されて成る有機電界効果型トランジスタであって、
少なくとも1層の、少なくとも前記チャネル領域の一部において前記有機半導体材料層の分子又は微結晶又は微粒子が所定の方向に配向していることを特徴とする有機電界効果型トランジスタ。
In a region including the channel region between the source electrode and the drain electrode, a plurality of channel stacks each including a gate electrode, a first insulating layer, an organic semiconductor material layer made of an organic semiconductor material, and a second insulating layer are stacked. An organic field effect transistor,
An organic field effect transistor characterized in that molecules, microcrystals, or fine particles of the organic semiconductor material layer are oriented in a predetermined direction in at least one layer of at least a part of the channel region.
前記分子又は微結晶又は微粒子がその向きにより電気伝導度に異方性を有するものであることを特徴とする請求項9〜11のいずれかに記載の有機電界効果型トランジスタ。   The organic field effect transistor according to any one of claims 9 to 11, wherein the molecule, the microcrystal, or the fine particle has anisotropy in electrical conductivity depending on its direction. 分子又は微結晶又は微粒子を、電気伝導度の大きい方向がソース電極とドレイン電極を結ぶ方向と略平行な方向に配向させたことを特徴とする請求項12に記載の有機電界効果型トランジスタ。

13. The organic field effect transistor according to claim 12, wherein molecules, microcrystals or fine particles are oriented in a direction in which the direction of high electrical conductivity is substantially parallel to the direction connecting the source electrode and the drain electrode.

JP2005038843A 2005-02-16 2005-02-16 Organic field effect transistor and its fabrication process Pending JP2006228860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038843A JP2006228860A (en) 2005-02-16 2005-02-16 Organic field effect transistor and its fabrication process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038843A JP2006228860A (en) 2005-02-16 2005-02-16 Organic field effect transistor and its fabrication process

Publications (1)

Publication Number Publication Date
JP2006228860A true JP2006228860A (en) 2006-08-31

Family

ID=36989978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038843A Pending JP2006228860A (en) 2005-02-16 2005-02-16 Organic field effect transistor and its fabrication process

Country Status (1)

Country Link
JP (1) JP2006228860A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031158A1 (en) * 2001-10-08 2003-04-17 Consiglio Nazionale Delle Ricerche Fabrication method at micrometer- and nanometer- scales for generation and control of anisotropy of structural, electrical, optical and optoelectronic properties of thin films of conjugated materials
WO2004026459A1 (en) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. Thin film and method for manufacturing same
JP2004349319A (en) * 2003-05-20 2004-12-09 Canon Inc Field effect organic transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031158A1 (en) * 2001-10-08 2003-04-17 Consiglio Nazionale Delle Ricerche Fabrication method at micrometer- and nanometer- scales for generation and control of anisotropy of structural, electrical, optical and optoelectronic properties of thin films of conjugated materials
WO2004026459A1 (en) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. Thin film and method for manufacturing same
JP2004349319A (en) * 2003-05-20 2004-12-09 Canon Inc Field effect organic transistor

Similar Documents

Publication Publication Date Title
US7485576B2 (en) Method of forming conductive pattern, thin film transistor, and method of manufacturing the same
JP4247377B2 (en) Thin film transistor and manufacturing method thereof
JP5232772B2 (en) Structure and manufacture of self-aligned high-performance organic FETs
US7652339B2 (en) Ambipolar transistor design
TWI374545B (en) Manufacturing method of thin film transistor and thin film transistor, and display
Liu et al. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric
WO2005091376A1 (en) Organic vertical transistor and process for fabricating same
JP4730275B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
KR101451301B1 (en) Preparing method of patterned template-assisted self-assembly organic thin film electron device and the patterned template-assisted self-assembly organic thin film electron device thereby
KR100984182B1 (en) Non-volatile memory device, and method of fabricating the same
JP4433746B2 (en) Organic field effect transistor and manufacturing method thereof
JP5326100B2 (en) Organic thin film transistor and manufacturing method thereof.
JP4729843B2 (en) Thin film transistor manufacturing method
WO2007119442A1 (en) Organic transistor improved in charge mobility and its manufacturing method
US20150295193A1 (en) Semiconductor device using paper as a substrate and method of manufacturing the same
TWI305684B (en) Organic semiconductor device and method of fabricating the same
JP2006228860A (en) Organic field effect transistor and its fabrication process
WO2007129643A1 (en) Field effect transistor using organic semiconductor material and method for manufacturing the same
JP5098159B2 (en) Thin film transistor manufacturing method
JP2006228931A (en) Organic thin film transistor and its manufacturing method
KR102126526B1 (en) Organic semiconductor device using nano structure and method for comprising the same
JP5429848B2 (en) Organic field effect transistor
JP2008010676A (en) Organic thin film transistor
JP2011096704A (en) Thin-film transistor
KR101940305B1 (en) Vertical-type, field effect transistor based on ionic dielectric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111