JP2006228454A - Electrode for vacuum valve and its manufacturing method - Google Patents

Electrode for vacuum valve and its manufacturing method Download PDF

Info

Publication number
JP2006228454A
JP2006228454A JP2005037783A JP2005037783A JP2006228454A JP 2006228454 A JP2006228454 A JP 2006228454A JP 2005037783 A JP2005037783 A JP 2005037783A JP 2005037783 A JP2005037783 A JP 2005037783A JP 2006228454 A JP2006228454 A JP 2006228454A
Authority
JP
Japan
Prior art keywords
electrode
conductive member
contact
vacuum valve
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005037783A
Other languages
Japanese (ja)
Inventor
Takefumi Ito
武文 伊藤
Takanori Sone
孝典 曽根
Shinji Sato
伸治 佐藤
Hiromi Koga
博美 古賀
Satoshi Ochi
聡 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005037783A priority Critical patent/JP2006228454A/en
Publication of JP2006228454A publication Critical patent/JP2006228454A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To aim at improvement of breaking performance of an electrode for a vacuum valve loaded on a vacuum circuit breaker an simplification of its manufacturing process. <P>SOLUTION: A fixed electrode and a movable electrode are arranged on the same axis in opposition to each other in a vacuum valve. Each electrode 1 is formed of copper or a copper alloy with a conductivity of 40% IACS or more, and is composed of a conductive member 5 zoned into a plurality of grooves 2 extended from the center in a radius direction and formed in a windmill shape, and a contactor 3 fitted in protrusion toward an opposite side of each electrode at an outer periphery of each zone of the conductive member 5 and formed of a Cu-Cr alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、真空遮断器等に用いられる真空バルブ用電極及びその製造方法に関するものである。   The present invention relates to a vacuum valve electrode used for a vacuum circuit breaker and the like, and a method of manufacturing the same.

真空遮断器等に搭載される真空バルブは、高真空に保たれた絶縁容器内に固定電極と可動電極が同軸上に対向配置されており、可動電極はベローズを介して外部の操作機構部に接続され、軸方向に移動可能な構造になっている。そして、過負荷電流や短絡電流が発生した場合に、両電極を瞬時に開極して回路を遮断するようになっている。   A vacuum valve mounted on a vacuum circuit breaker or the like has a fixed electrode and a movable electrode concentrically opposed to each other in an insulating container maintained at a high vacuum, and the movable electrode is connected to an external operation mechanism section via a bellows. Connected and movable in the axial direction. When an overload current or a short circuit current is generated, both electrodes are instantaneously opened to interrupt the circuit.

真空バルブ用電極は様々な構造のものが提案されているが、その一つとして電極の外周部が突出した接触子からなる風車形電極が知られている。この電極の接触子は混合粉末を加圧成形した後に焼結して作製されている。そして、機械加工によって外周部を突出した形状に加工して接触子を形成していた。また、機械加工によって任意の形状に仕上げた接触子に補強板をろう付けにより接合したものもある(例えば特許文献1参照)。   Various types of vacuum valve electrodes have been proposed, and as one of them, a windmill-type electrode made of a contact whose outer peripheral portion protrudes is known. The contact of this electrode is produced by pressing a mixed powder and then sintering it. And the outer peripheral part was processed into the shape which protruded by machining, and the contactor was formed. In addition, there is a type in which a reinforcing plate is joined by brazing to a contact finished in an arbitrary shape by machining (see, for example, Patent Document 1).

また、接点の裏面にコイル電極を設けて電極の軸方向に磁界を印加する縦磁界形電極でも接触子と電極をろう付けにより接合していた(例えば特許文献2参照)。
その一方で、ろう付け接合に伴う各部材の機械加工工程及び組み立て工程の低減等を図るために放電焼結法で電極とアーク電極支持部材とを一体化した構造を持つ真空バルブも開発されている(例えば特許文献3参照)。
Further, even with a longitudinal magnetic field type electrode in which a coil electrode is provided on the back surface of the contact and a magnetic field is applied in the axial direction of the electrode, the contact and the electrode are joined by brazing (see, for example, Patent Document 2).
On the other hand, a vacuum valve having a structure in which an electrode and an arc electrode support member are integrated by a discharge sintering method has been developed in order to reduce the machining process and assembly process of each member accompanying brazing and joining. (For example, refer to Patent Document 3).

特開2002−334639号公報(段落0012)JP 2002-334639 A (paragraph 0012) 特開平6−139886号公報(段落0013)JP-A-6-139886 (paragraph 0013) 特開平10−340654号公報(段落0028)JP 10-340654 A (paragraph 0028)

外周部が突出した形状を持つ従来の真空バルブ用電極は上記のように構成されているため、真空遮断器に搭載された真空バルブ内で、電極を開極して負荷電流を遮断した時は電極間にアークが発生する。発生直後のアークの動きは停滞しているが、その後、接触子の表面を高速で回転する。アークが停滞すると接触子表面に注入されるエネルギーが大きくなり、そのため接触子表面が溶融して金属蒸気が発生し遮断失敗にいたることが考えられている。   Since the conventional vacuum valve electrode with a protruding outer periphery is configured as described above, when the electrode is opened and the load current is cut off in the vacuum valve mounted on the vacuum circuit breaker An arc is generated between the electrodes. The movement of the arc immediately after the occurrence is stagnant, but then the surface of the contact is rotated at high speed. When the arc is stagnated, it is considered that the energy injected into the contact surface increases, so that the contact surface melts and metal vapor is generated, resulting in a failure to shut off.

接触子表面に注入されるエネルギーの一部は電極内部への熱伝導に消費されると見られ、アークが停滞している期間に電極内部に熱を速やかに伝える必要があった。
そのため、特許文献1では優れた遮断性能を得るために熱伝導特性の高い接触子材料を用いることが必要であった。また、特許文献2に示されるように接触子と電極部材がろう付けにより接合されている場合には、ろう材が接触子と電極部材の間の熱伝導を阻害することとなり、遮断性能向上の妨げになるという問題点があった。
A part of the energy injected into the contact surface is considered to be consumed for the heat conduction to the inside of the electrode, and it was necessary to quickly transfer the heat to the inside of the electrode during the period when the arc is stagnant.
Therefore, in Patent Document 1, it is necessary to use a contact material having high heat conduction characteristics in order to obtain an excellent blocking performance. In addition, as shown in Patent Document 2, when the contact and the electrode member are joined by brazing, the brazing material hinders heat conduction between the contact and the electrode member, thereby improving the breaking performance. There was a problem of hindering.

従来、接触子は原料粉末を加圧成形により圧紛体にした後、焼結法や溶浸法等によって素材とし、機械加工により外周部が突出した形状に仕上げられていた。そのため、素材の無駄が多く不経済で、加工に時間が費やされるという問題点があった。さらに、特許文献1と特許文献2に示されるように、接触子と周辺の部材とがろう付けされており、接触子の製造の加工工程に加えて、ろう付け工程を夫々行うことが必要で、工程が多いことも問題であった。   Conventionally, after a raw material powder is made into a compact by pressure molding, the contactor is made into a raw material by a sintering method, an infiltration method, or the like, and finished in a shape in which an outer peripheral portion protrudes by machining. For this reason, there is a problem that the material is wasted and uneconomical, and time is required for processing. Furthermore, as shown in Patent Document 1 and Patent Document 2, the contact and the peripheral members are brazed, and it is necessary to perform a brazing process in addition to the processing process for manufacturing the contact. There were also problems with many processes.

特許文献3には放電焼結法で電極とアーク電極支持部材とを一体化した構造を持つ真空バルブが開示されているが、平板形状の接触子とアーク電極支持部材とを一体化することしかできなかった。また、ダイスに凹凸をつけて焼結する方法が示されているが、この方法では厚みの違う部分で加圧力に差が生じてしまうため、密度比が不均一となり均質な接触子を得ることが困難であった。   Patent Document 3 discloses a vacuum bulb having a structure in which an electrode and an arc electrode support member are integrated by a discharge sintering method. However, only a flat contact and an arc electrode support member are integrated. could not. In addition, although a method of sintering with undulations on the die is shown, this method causes a difference in applied pressure at different thicknesses, resulting in a non-uniform density ratio and obtaining a homogeneous contact It was difficult.

この発明は、上記のような問題点を解消するためになされたもので、接触子と電極部材との接合を、ろう付け以外の手段によって行なうと共に、アークによる注入エネルギーが導電部材に拡散しやすくなり、接触子の局所的な溶融と蒸発を抑えることができ、これにより遮断性能を向上することが出来ると共に、接触子材の使用量を削減することができる真空バルブ用電極及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. The contactor and the electrode member are joined to each other by means other than brazing, and the arc injection energy is easily diffused into the conductive member. A vacuum valve electrode and a method for manufacturing the same that can suppress local melting and evaporation of the contact, thereby improving the shut-off performance and reducing the amount of contact material used. The purpose is to provide.

この発明に係る真空バルブ用電極は、真空バルブ内で相互に対向し、同軸上に配置された固定電極と可動電極とを有し、上記各電極はCuまたは導電率が40%IACS 以上のCu合金で形成されると共に、中心部から半径方向に延在する溝によって複数の区分に区画され、風車形に形成された導電部材と、上記導電部材の各区分の外周部において、上記両電極の対向側に突出して設けられCu-Cr合金で形成された接触子とから構成されているものである。   An electrode for a vacuum valve according to the present invention has a fixed electrode and a movable electrode that are opposed to each other in a vacuum valve and are coaxially arranged. Each of the electrodes is made of Cu or Cu having a conductivity of 40% IACS or more. A conductive member formed of an alloy and partitioned into a plurality of sections by grooves extending in the radial direction from the center portion, and a conductive member formed in a windmill shape, and an outer peripheral portion of each section of the conductive member. It is comprised from the contactor which protruded in the opposing side and was formed with the Cu-Cr alloy.

この発明に係る真空バルブ用電極は上記のように構成され、必要最小限の接触子を導電部材に接合しているため、熱伝導がよく、アークによる注入エネルギーの一部を熱伝導性に優れる部材へ拡散して優れた遮断性能を得ることができる。また、必要最小限の接触子部材を外周部に設けているため、接触子材料の使用量を削減することができる。   The vacuum valve electrode according to the present invention is configured as described above, and since the minimum necessary contacts are joined to the conductive member, heat conduction is good, and part of the energy injected by the arc is excellent in thermal conductivity. It can diffuse into the member to obtain excellent blocking performance. Moreover, since the minimum necessary contact member is provided in the outer peripheral portion, the amount of contact material used can be reduced.

更に、電極中心部の表面には必要最小限の厚さの耐アーク層を設けているため、導電部材の溶融と蒸発を抑制することができ、且つ電極内部の熱拡散の妨げとならないので安定した遮断性能を得ることができる。   In addition, since the arc-proof layer with the minimum necessary thickness is provided on the surface of the center of the electrode, it is possible to suppress the melting and evaporation of the conductive member, and it is stable because it does not hinder the heat diffusion inside the electrode. Blocking performance can be obtained.

更にまた、この発明の製造方法によれば、外周部が突出した形状の接触子の成形と焼結を行いながら、接触子、導電部材、補強板、耐アーク層を接合するので、従来行われていたろう付け工程を省くことができる。さらに、凸形状又は円柱状内型と円筒状パンチを用いることで、外周部を突出させた形状の焼結体を得ることができ、密度比が均質な接触子を設けることができる結果、電極の加工工程を簡略化することができる。   Furthermore, according to the manufacturing method of the present invention, the contactor, the conductive member, the reinforcing plate, and the arc-resistant layer are joined while forming and sintering the contactor having a protruding outer peripheral portion. The brazing process that has been performed can be omitted. Furthermore, by using a convex or columnar inner mold and a cylindrical punch, a sintered body having a shape in which the outer peripheral portion is protruded can be obtained, and as a result, a contact having a uniform density ratio can be provided. This process can be simplified.

実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による真空バルブ用電極の構成を示す斜視図、図2は、その断面図である。なお、図2では断面構造を分りやすくするために図1に示す溝2と電極棒6の図示を省略している。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a vacuum valve electrode according to Embodiment 1, and FIG. 2 is a cross-sectional view thereof. In FIG. 2, the groove 2 and the electrode rod 6 shown in FIG. 1 are not shown for easy understanding of the cross-sectional structure.

図1において、電極1は、おおむね円板状の導電部材5の上面の外周部に突出するような形で接触子3が設けられ、電極中心部4の接合穴7には電極棒6が挿着されている。接触子3と導電部材5の界面8は接合されている。また、電極1は、中心部から半径方向に延在する溝2によって複数の区分に区画され、風車形に形成されている。   In FIG. 1, an electrode 1 is provided with a contact 3 that protrudes from the outer peripheral portion of the upper surface of a generally disc-shaped conductive member 5, and an electrode rod 6 is inserted into a joint hole 7 in the electrode center portion 4. It is worn. The interface 8 between the contact 3 and the conductive member 5 is joined. The electrode 1 is partitioned into a plurality of sections by a groove 2 extending in the radial direction from the center, and is formed in a windmill shape.

このような構成にすれば、接触子3を必要な外周部分だけに設けることができるので、接触子3の使用量を大幅に削減することができる。また、接触子3の直下に導電部材5を配置しているので熱伝導がよく、その結果、アークの注入エネルギーで発生した熱を電極内部へ拡散して優れた遮断性能を得ることができる。   With such a configuration, the contact 3 can be provided only in the necessary outer peripheral portion, so that the amount of use of the contact 3 can be greatly reduced. In addition, since the conductive member 5 is disposed directly under the contact 3, heat conduction is good, and as a result, heat generated by the arc injection energy can be diffused into the electrode to obtain excellent blocking performance.

接触子3の材料は主に遮断性、耐圧性、耐溶着性に優れたものが望まれ、Cuマトリックス中にCr粒子を分散させたCu−Cr合金が用いられる。耐アーク成分であるCrの含有量は20〜60wt%の範囲とするのが好ましい。その理由は、20wt%未満ではアークによる損傷を受けやすく耐溶着性が低下し、60wt%を超えると加工性や耐熱衝撃性が低下するためである。また、Cu−Cr合金の密度比は高い導電率や熱伝導性を得るために95%以上が好ましい。   The material of the contactor 3 is mainly desired to have excellent barrier properties, pressure resistance, and welding resistance, and a Cu—Cr alloy in which Cr particles are dispersed in a Cu matrix is used. The content of Cr as an arc resistant component is preferably in the range of 20 to 60 wt%. The reason is that if it is less than 20 wt%, it is easy to be damaged by the arc and the welding resistance is lowered, and if it exceeds 60 wt%, the workability and thermal shock resistance are lowered. Further, the density ratio of the Cu—Cr alloy is preferably 95% or more in order to obtain high electrical conductivity and thermal conductivity.

また、Cu−Cr合金の耐圧性や遮断性能を改善するために、Mo、Nb、W、Ta、Fe、Al、Si、Tiの元素を1種以上添加してもよい。また、耐溶着性を確保するために接触子材料中にBi、Te、Se、Sbの低融点成分を添加してもよい。低融点成分の含有量は0.01〜5wt%が好ましい。その理由は、0.01wt%以下では耐溶着性の改善効果を得ることができず、5wt%以上では耐圧性能の低下を招くためである。   In addition, in order to improve the pressure resistance and barrier performance of the Cu—Cr alloy, one or more elements of Mo, Nb, W, Ta, Fe, Al, Si, and Ti may be added. Moreover, in order to ensure welding resistance, you may add the low melting-point component of Bi, Te, Se, and Sb in contact material. The content of the low melting point component is preferably 0.01 to 5 wt%. The reason is that if 0.01 wt% or less, the effect of improving the welding resistance cannot be obtained, and if 5 wt% or more, the pressure resistance performance is lowered.

導電部材5は純Cu又は導電率が40%IACS以上を示すCu合金を用いる。導電率が40%IACS未満だと、熱伝導性が劣るので遮断性能を向上する効果が得られない。
Cu合金は、例えばCu中にAg、Cr、Zr、W、Mo、Nb、Sn、Fe、Si、Niが1種又は2種以上添加されたもの等が挙げられる。
As the conductive member 5, pure Cu or a Cu alloy having a conductivity of 40% IACS or higher is used. If the electrical conductivity is less than 40% IACS, the thermal conductivity is inferior, and the effect of improving the blocking performance cannot be obtained.
Examples of the Cu alloy include those in which one or more of Ag, Cr, Zr, W, Mo, Nb, Sn, Fe, Si, and Ni are added to Cu.

実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図3は、実施の形態2による真空バルブ用電極の断面図を示すもので、実施の形態1による真空バルブ用電極に補強板9を設けたものである。また、図3では、図2と同様に溝2と電極棒6の図示を省略している。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows a cross-sectional view of the vacuum valve electrode according to the second embodiment, in which a reinforcing plate 9 is provided on the vacuum valve electrode according to the first embodiment. 3, the illustration of the groove 2 and the electrode rod 6 is omitted as in FIG.

この電極1は、導電部材5の裏面に導電部材5より高い強度を有する補強板9が設けられ、補強板9と導電部材5の界面10は接合されている。
補強板9は電極1の開閉時に加わる機械的な力に耐える強度を持ち、さらに真空バルブの組み立て工程における温度に耐え、且つ電気的に耐圧性が確保できるステンレス鋼を用いる。なお、ステンレス鋼は風車形電極の磁気の影響を受けない非磁性のオーステナイト系ステンレス鋼(例えばSUS304、SUS316等)が好ましい。
In this electrode 1, a reinforcing plate 9 having higher strength than the conductive member 5 is provided on the back surface of the conductive member 5, and an interface 10 between the reinforcing plate 9 and the conductive member 5 is joined.
The reinforcing plate 9 is made of stainless steel that has a strength that can withstand the mechanical force applied when the electrode 1 is opened and closed, and that can withstand the temperature in the assembly process of the vacuum valve and can ensure electrical pressure resistance. The stainless steel is preferably non-magnetic austenitic stainless steel (for example, SUS304, SUS316, etc.) that is not affected by the magnetism of the windmill electrode.

真空バルブは遮断できる負荷電流が大きいほど電極1の径が大きくなり、それに伴い電極1を開閉するための機械的な力も大きくなるため電極1が変形する問題がある。導電部材5は高い熱伝導性を有するCu又は導電率が40%IACS以上のCu合金を用いる。しかし、真空バルブの組み立て工程でCu及びCu合金の再結晶温度以上となるため機械的強度が低くなる。そのため、上述のように補強板9を設けることにより電極1の強度を補い、開閉時の機械的な力によって生じる電極1の変形を防止することができる。   In the vacuum valve, the larger the load current that can be cut off, the larger the diameter of the electrode 1, and the greater the mechanical force for opening and closing the electrode 1. As the conductive member 5, Cu having high thermal conductivity or a Cu alloy having a conductivity of 40% IACS or more is used. However, the mechanical strength is lowered because the temperature is higher than the recrystallization temperature of Cu and Cu alloy in the assembly process of the vacuum valve. Therefore, by providing the reinforcing plate 9 as described above, the strength of the electrode 1 can be supplemented, and deformation of the electrode 1 caused by mechanical force during opening and closing can be prevented.

実施の形態3.
次に、この発明の実施の形態3を図にもとづいて説明する。図4は、実施の形態3による真空バルブ用電極の断面図を示すもので、実施の形態1による真空バルブ用電極に耐アーク層11を設けたものである。また、図4では、図2、図3と同様に、溝2と電極棒6の図示を省略している。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view of the vacuum valve electrode according to the third embodiment, in which the arc valve layer 11 is provided on the vacuum valve electrode according to the first embodiment. 4, the illustration of the groove 2 and the electrode rod 6 is omitted, as in FIGS.

この電極は、電極中心部4の表面に耐アーク層11を設け、導電部材5と耐アーク層11の界面12は接合されている。
外周部の接触子3が対向電極と接触する電極1は、負荷電流を遮断した時に電極中心部4の表面もアークに晒される。そして、電極1の接触子3と電極中心部4の表面はアークによって溶融し蒸発する。
In this electrode, an arc resistant layer 11 is provided on the surface of the electrode central portion 4, and an interface 12 between the conductive member 5 and the arc resistant layer 11 is joined.
In the electrode 1 in which the outer peripheral contact 3 contacts the counter electrode, the surface of the electrode central portion 4 is also exposed to the arc when the load current is interrupted. The surfaces of the contact 3 and the electrode center 4 of the electrode 1 are melted and evaporated by the arc.

しかし、高速回転するアークは主に接触子3の表面を移動するため、電極中心部4の表面は接触子3の表面に比べてアークによる損傷は少ない。そのため、耐アーク層11の厚さは、電極中心部4の表面の溶融を防止できる範囲で極力薄くすることが好ましい。   However, since the arc rotating at high speed mainly moves on the surface of the contact 3, the surface of the electrode central portion 4 is less damaged by the arc than the surface of the contact 3. Therefore, it is preferable to make the thickness of the arc-resistant layer 11 as thin as possible within a range in which the melting of the surface of the electrode central portion 4 can be prevented.

耐アーク層11はアーク熱による電極中心部4の表面の溶融を防止するために、Cu−Cr、Cu−W、Cu−Mo、Cr、W、Mo、ステンレス鋼のいずれか1つによって形成される。
以上の構成により、電極中心部4の表面の溶融を防止することができ、且つアークによる注入エネルギーを導電部材5へ速やかに拡散させることができ遮断性能が向上する。
The arc-resistant layer 11 is formed of any one of Cu—Cr, Cu—W, Cu—Mo, Cr, W, Mo, and stainless steel in order to prevent melting of the surface of the electrode central portion 4 due to arc heat. The
With the above configuration, melting of the surface of the electrode central portion 4 can be prevented, and energy injected by the arc can be quickly diffused into the conductive member 5 and the interruption performance is improved.

実施の形態4.
次に、この発明の実施の形態4について説明する。表1は実施の形態1〜3によって製作したこの発明の電極の評価結果を示したものである。
評価は各断面構造の風車形電極を真空バルブに組み込み、定格電圧24kV、定格遮断電流25kAで合成遮断試験を行った場合の遮断性能を示している。遮断性能は比較例1の遮断限界電流値を基準にして相対比較したものである。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. Table 1 shows the evaluation results of the electrodes of the present invention manufactured according to the first to third embodiments.
The evaluation shows the breaking performance when a wind turbine electrode of each cross-sectional structure is incorporated in a vacuum valve and a synthetic breaking test is performed at a rated voltage of 24 kV and a rated breaking current of 25 kA. The breaking performance is a relative comparison based on the breaking limit current value of Comparative Example 1.

Figure 2006228454
Figure 2006228454

表1に示すこの発明の実施例1〜9は、いずれも比較例1に比べて遮断性能が向上している。実施例1は導電部材5に導電率100%IACSの無酸素銅を用い、実施例2は導電部材5に導電率40%IACSのCu−2.5Ni−0.6Si合金を用い、断面構造は共に図2に示す耐アーク層や補強板を設けていない場合である。
実施例1は電極の変形と電極中心部4の表面の損傷が若干見られたが、比較例1よりも遮断性能が向上した。
As for Examples 1-9 of this invention shown in Table 1, the interruption | blocking performance is improving compared with the comparative example 1, all. Example 1 uses oxygen-free copper with a conductivity of 100% IACS for the conductive member 5, Example 2 uses a Cu-2.5Ni-0.6Si alloy with a conductivity of 40% IACS for the conductive member 5, and the cross-sectional structure is In both cases, the arc-resistant layer and the reinforcing plate shown in FIG. 2 are not provided.
In Example 1, the electrode was deformed and the surface of the electrode central part 4 was slightly damaged, but the blocking performance was improved as compared with Comparative Example 1.

実施例3は断面構造が図3に示したもので補強板9を設けた場合である。比較例1よりも遮断性能が向上し、電極の変形を防止できた。実施例4〜9は断面構造が図4に示したもので、耐アーク層11と補強板9を設けた場合である。いずれも比較例1よりも遮断性能が向上し、各耐アーク層11は共に電極中心部の損傷を防止することができた。   Example 3 is a case where the cross-sectional structure is shown in FIG. 3 and the reinforcing plate 9 is provided. The blocking performance was improved as compared with Comparative Example 1, and the deformation of the electrode could be prevented. In Examples 4 to 9, the cross-sectional structure is as shown in FIG. 4, and the arc-proof layer 11 and the reinforcing plate 9 are provided. In any case, the interruption performance was improved as compared with Comparative Example 1, and each arc-resistant layer 11 was able to prevent damage to the center of the electrode.

比較例1は従来の構成のもので導電部材5を設けていない場合であり、補強板9と接触子3が直接ろう付けされたものである。比較例2は導電部材5の導電率が30%IACSのCu−2Sn−0.2Ni合金を用いた場合で、遮断性能の向上は認められなかった。
接触子3、導電部材5、耐アーク層11の接合は、アークの注入エネルギーを電極内に拡散する効果からすれば各部材を直接接合する拡散接合が好ましいが、摩擦接合、ろう付け等の熱的な接合でもよい。
Comparative Example 1 has a conventional configuration in which the conductive member 5 is not provided, and the reinforcing plate 9 and the contact 3 are directly brazed. The comparative example 2 is a case where a Cu-2Sn-0.2Ni alloy having a conductivity of the conductive member 5 of 30% IACS was used, and no improvement in the blocking performance was observed.
The contact 3, the conductive member 5, and the arc-resistant layer 11 are preferably joined by diffusion bonding in which each member is directly joined in view of the effect of diffusing arc injection energy into the electrode. Joining may be used.

実施の形態5.
次に、この発明の実施の形態5を図にもとづいて説明する。図7は、図3に示した構成の真空バルブ用電極の製造工程を示す図である。
先ず、図7(a)に示すように、外周を取り囲むダイ13の下側に、貫通穴15を設けた下パンチ14をセットする。そして、貫通穴15と同じ径の穴を設けた補強板9を下パンチ14の上面に配置し、さらにその上面に貫通穴15と同じ径の穴を設けた導電部材5を配置する。
Embodiment 5. FIG.
Next, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a diagram showing a manufacturing process of the vacuum valve electrode having the configuration shown in FIG.
First, as shown in FIG. 7A, the lower punch 14 provided with the through hole 15 is set on the lower side of the die 13 surrounding the outer periphery. Then, the reinforcing plate 9 provided with a hole having the same diameter as the through hole 15 is arranged on the upper surface of the lower punch 14, and the conductive member 5 provided with a hole having the same diameter as the through hole 15 is arranged on the upper surface.

続いて、図7(b)に示すように、凸状内型16の凸部を下パンチ14の貫通穴15に差込み設置する。そして、図7(c)に示すように、ダイ13と凸状内型16の間に接触子用混合粉末17を充填する。続いて、充填された接触子用混合粉末17の上に円筒状の上パンチ18を設置し、さらに円板型19aと19bを円筒状上パンチ18の上部と下パンチ14の下部に、それぞれを挟むように配置し、この状態で、図示しないホットプレス装置又は通電パルス加熱装置内に設置する。   Subsequently, as shown in FIG. 7B, the convex portion of the convex inner mold 16 is inserted into the through hole 15 of the lower punch 14 and installed. Then, as shown in FIG. 7 (c), the contact powder mixture 17 is filled between the die 13 and the convex inner mold 16. Subsequently, a cylindrical upper punch 18 is installed on the filled mixed powder 17 for contactors, and disc molds 19a and 19b are respectively placed on the upper part of the cylindrical upper punch 18 and the lower part of the lower punch 14. It arrange | positions so that it may pinch | interpose, and it installs in the hot press apparatus which is not shown in figure, or an electricity supply pulse heating apparatus in this state.

次に、図7(d)に示すように、円筒状上パンチ18、凸状内型16及び下パンチ14を介して上下から加圧を行いながら、通電パルス加熱又は抵抗加熱により型を加熱して接触子3の成形と焼結、並びに導電部材5、補強板9を熱間接合し、外周部に位置する接触子3が突出した形の焼結体20を得る。次に、焼結体20に仕上げの機械加工を施して風車形状の電極1を得る。   Next, as shown in FIG. 7 (d), the mold is heated by energizing pulse heating or resistance heating while pressing from above and below via the cylindrical upper punch 18, the convex inner mold 16 and the lower punch 14. Then, the contact 3 is molded and sintered, and the conductive member 5 and the reinforcing plate 9 are hot-joined to obtain a sintered body 20 in which the contact 3 positioned on the outer peripheral portion protrudes. Next, the sintered body 20 is subjected to finishing machining to obtain the windmill-shaped electrode 1.

なお、ここで言う熱間接合とは、熱と圧力が加わるもので接触子3、導電部材5、補強板9を直接接合するものである。また、実施の形態5では補強板9を設けた場合について説明したが、図2に示した補強板9を設けない場合は、下パンチ14の上に補強板9を配置せずに実施することになる。   In addition, hot joining said here is what applies a heat | fever and a pressure and joins the contactor 3, the electrically-conductive member 5, and the reinforcement board 9 directly. Further, in the fifth embodiment, the case where the reinforcing plate 9 is provided has been described. However, when the reinforcing plate 9 shown in FIG. become.

次に、具体的な一例について説明する。
所定のカーボン製型の中に補強板9となる直径50mm、内径10mm、厚さ0.5mmのSUS304のステンレス鋼板と、導電部材5となる直径50mm、内径10mm、厚さ5mmの純Cu板を配置した後、直径25mm、凸部の直径10mmの凸状内型16をセットする。
Next, a specific example will be described.
A stainless steel plate of SUS304 having a diameter of 50 mm, an inner diameter of 10 mm, and a thickness of 0.5 mm, and a pure Cu plate having a diameter of 50 mm, an inner diameter of 10 mm, and a thickness of 5 mm, serving as the conductive member 5, are placed in a predetermined carbon mold. After the arrangement, the convex inner mold 16 having a diameter of 25 mm and a convex portion diameter of 10 mm is set.

そして、Crが25wt%、残部がCuとなるように配合した接触子用混合粉末17を所定重量充填したカーボン製型を通電パルス加熱装置にセットする。なお、ステンレス鋼板と純Cu板の表面粗さ(Ra)は0.5μmに仕上げたものを用いた。各部材のRaは0.02〜10μmが好ましい。   Then, a carbon mold filled with a predetermined weight of the mixed powder for contactor 17 blended so that Cr is 25 wt% and the balance is Cu is set in an energization pulse heating device. The surface roughness (Ra) of the stainless steel plate and the pure Cu plate was 0.5 μm. Ra of each member is preferably 0.02 to 10 μm.

次に、装置の炉内を4×10−2torrの真空にした後、加圧力2MPaの圧力をかける。続いて、パルス通電を行い500℃で30分間の加熱を行い脱ガス処理を行なう。
続いて、室温から900℃までを20分で昇温し、900℃に到達した時点から加圧力50MPaで加圧し、保持時間20分で焼結と拡散接合を同時に行う。
加圧と加熱が完了したら冷却し、カーボン型10から焼結体20を取り出す。そして、焼結体20に仕上げ加工を施して図3の断面構造を持つ電極1を得ることができる。
Next, after the inside of the furnace of the apparatus is evacuated to 4 × 10 −2 torr, a pressure of 2 MPa is applied. Subsequently, degassing is performed by applying a pulse current and heating at 500 ° C. for 30 minutes.
Subsequently, the temperature is raised from room temperature to 900 ° C. in 20 minutes. When the temperature reaches 900 ° C., pressurization is performed at a pressure of 50 MPa, and sintering and diffusion bonding are simultaneously performed in a holding time of 20 minutes.
When the pressurization and heating are completed, it is cooled and the sintered body 20 is taken out from the carbon mold 10. Then, the sintered body 20 can be finished to obtain the electrode 1 having the cross-sectional structure of FIG.

以上のように、外周部が突出した形状の接触子3の成形と焼結を行いながら、接触子3、導電部材5、補強板9、耐アーク層11を熱間接合するので、従来行われていたろう付け工程を省くことができる。さらに、外周部が突出した電極の形状に近い焼結体を得ることができるので、加工工程を簡略化することができる。   As described above, the contact 3, the conductive member 5, the reinforcing plate 9, and the arc-resistant layer 11 are hot-bonded while forming and sintering the contact 3 having a shape with a protruding outer peripheral portion. The brazing process that has been performed can be omitted. Furthermore, since a sintered body close to the shape of the electrode protruding from the outer peripheral portion can be obtained, the processing step can be simplified.

実施の形態6.
次に、この発明の実施の形態6を図にもとづいて説明する。図8は、図4に示した構成の真空バルブ用電極の製造方法を示す断面図である。図8(a)に示すように、下パンチ14の上面に補強板9を設置し、その上面に導電部材5を設置する。さらに、導電部材5の上面に耐アーク材製円板11を設置する。なお、耐アーク材製円板11は凸状内型16と同じ直径のものを用いる。
Embodiment 6 FIG.
Next, a sixth embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a cross-sectional view showing a method of manufacturing a vacuum valve electrode having the configuration shown in FIG. As shown in FIG. 8A, the reinforcing plate 9 is installed on the upper surface of the lower punch 14, and the conductive member 5 is installed on the upper surface thereof. Further, an arc resistant material disc 11 is installed on the upper surface of the conductive member 5. Note that the arc resistant material disc 11 has the same diameter as the convex inner mold 16.

その後、図8(b)に示すように、凸状内型16を設置する。その後は、図7(c)と同じ工程で接触子用混合粉末17を充填した後、円筒状上パンチ18を設置して加圧と加熱を行う。これにより、耐アーク層11を設けた焼結体20を得る。焼結体20に仕上げの機械加工を施して図4に示した構成の真空バルブ用電極とすることができる。   Thereafter, as shown in FIG. 8B, the convex inner mold 16 is installed. Thereafter, the contact powder mixture 17 is filled in the same process as in FIG. 7C, and then a cylindrical upper punch 18 is installed to pressurize and heat. Thereby, the sintered compact 20 provided with the arc resistant layer 11 is obtained. The sintered body 20 can be subjected to finishing machining to obtain a vacuum valve electrode having the configuration shown in FIG.

次に、具体的な一例について説明する。
補強板9となる直径50mm、内径10mm、厚さ0.5mmのSUS304のステンレス鋼板を下パンチの上面に設置し、ステンレス鋼板の上面に導電部材5となる直径50mm、内径10mm、厚さ5mmの純Cu板を配置する。さらに純Cu板の上面に直径50mm、内径10mm、厚さ5mmのCu−30Cr板を配置した後、直径25mm、凸部の直径10mmの凸状内型16をセットする。
Next, a specific example will be described.
A stainless steel plate of SUS304 having a diameter of 50 mm, an inner diameter of 10 mm, and a thickness of 0.5 mm serving as the reinforcing plate 9 is placed on the upper surface of the lower punch. A pure Cu plate is arranged. Further, after a Cu-30Cr plate having a diameter of 50 mm, an inner diameter of 10 mm, and a thickness of 5 mm is disposed on the upper surface of the pure Cu plate, the convex inner mold 16 having a diameter of 25 mm and a convex portion diameter of 10 mm is set.

そして、Crが25wt%、残部がCuとなるように配合した接触子用混合粉末17を所定重量充填したカーボン製の型を通電パルス加熱装置にセットする。なお、ステンレス鋼板と純Cu板の表面粗さ(Ra)は0.5μmに仕上げたものを用いた。各部材のRaは0.02〜10μmが好ましい。   Then, a carbon mold filled with a predetermined weight of the mixed powder for contactor 17 blended so that Cr is 25 wt% and the balance is Cu is set in an energizing pulse heating device. The surface roughness (Ra) of the stainless steel plate and the pure Cu plate was 0.5 μm. Ra of each member is preferably 0.02 to 10 μm.

次に、装置の炉内を4×10−2torrの真空にした後、加圧力2MPaの圧力をかける。続いて、パルス通電を行い500℃で30分間の加熱を行い脱ガス処理を行なう。
続いて、室温から900℃までを20分で昇温し、900℃に到達した時点から加圧力50MPaで加圧し、保持時間20分で焼結と拡散接合を同時に行う。加圧と加熱が完了したら、冷却しカーボン型10から焼結体20を取り出す。そして、焼結体20に仕上げ加工を施して図4の断面構造を持つ電極1を得ることができる。
Next, after the inside of the furnace of the apparatus is evacuated to 4 × 10 −2 torr, a pressure of 2 MPa is applied. Subsequently, degassing is performed by applying a pulse current and heating at 500 ° C. for 30 minutes.
Subsequently, the temperature is raised from room temperature to 900 ° C. in 20 minutes. When the temperature reaches 900 ° C., pressurization is performed at a pressure of 50 MPa, and sintering and diffusion bonding are simultaneously performed in a holding time of 20 minutes. When pressurization and heating are completed, the sintered body 20 is taken out of the carbon mold 10 by cooling. Then, the sintered body 20 can be finished to obtain the electrode 1 having the cross-sectional structure of FIG.

実施の形態7.
次に、この発明の実施の形態7を図にもとづいて説明する。図5は、真空バルブ用電極の構成の変形例を示す断面図である。図5は、平らな導電部材5の上に耐アーク層11と接触子3が設けられている場合を示すもので、効果は実施の形態3と同様である。
Embodiment 7 FIG.
Next, a seventh embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view showing a modification of the configuration of the vacuum valve electrode. FIG. 5 shows a case where the arc-proof layer 11 and the contact 3 are provided on the flat conductive member 5, and the effect is the same as that of the third embodiment.

図9は、図5に示した構成の真空バルブ用電極の製造方法を示す断面図である。図9(a)に示すように、補強板9を下パンチ14の上面に設置し、次に片側表面の中央部に所定の深さと直径(中心加圧型16と同じ直径)のザグリを設けた導電部材5を設置する。
そして、ザグリ部分に耐アーク材円板21を配置し、凸状内型16を設置する。
FIG. 9 is a cross-sectional view showing a method of manufacturing the vacuum valve electrode having the configuration shown in FIG. As shown in FIG. 9 (a), the reinforcing plate 9 is installed on the upper surface of the lower punch 14, and then a counterbore having a predetermined depth and diameter (the same diameter as that of the central pressing die 16) is provided at the center of one side surface. Conductive member 5 is installed.
And the arc-proof material disk 21 is arrange | positioned in the counterbore part, and the convex-shaped inner mold | type 16 is installed.

その後は、図7の(c)と(d)に示した工程と同様に接触子用混合粉末17を充填して加圧と加熱を行い、耐アーク層11を設けた焼結体20を得る。そして、焼結体20に仕上げ加工を施して図6の断面構造を持つ電極1を得ることができる。   Thereafter, similarly to the steps shown in FIGS. 7C and 7D, the contact powder mixture 17 is filled and pressurized and heated to obtain the sintered body 20 provided with the arc-proof layer 11. . Then, the sintered body 20 can be finished to obtain the electrode 1 having the cross-sectional structure of FIG.

図10は、耐アーク層用混合粉末を用いて図5に示した構成の真空バルブ用電極を製造する製造方法を示す断面図である。図10(a)に示すように、補強板9を下パンチ14の上面に設置する。次に片側表面の中央部に所定の深さと直径(中心加圧型23と同じ直径)のザグリを設けた導電部材5を設置する。そして、ザグリ部分に耐アーク層用混合粉末22を充填し、円柱状内型23を設置する。   FIG. 10 is a cross-sectional view showing a manufacturing method for manufacturing the vacuum valve electrode having the configuration shown in FIG. 5 using the arc-resistant layer mixed powder. As shown in FIG. 10A, the reinforcing plate 9 is installed on the upper surface of the lower punch 14. Next, the conductive member 5 provided with a counterbore having a predetermined depth and diameter (the same diameter as that of the center pressurizing die 23) is installed at the center of the one side surface. And the counterbore part is filled with the mixed powder 22 for arc-resistant layers, and the cylindrical inner mold | type 23 is installed.

その後は、図7の(c)と(d)に示した工程と同様にダイ13と円柱状内型23の間に接触子用混合粉末17を充填し加圧と加熱を行い、耐アーク層11を設けた焼結体20を得る。そして、仕上げ加工により電極1を得ることができる。   Thereafter, similar to the steps shown in FIGS. 7C and 7D, the mixed powder 17 for contactor is filled between the die 13 and the cylindrical inner mold 23, and pressurization and heating are performed. 11 is obtained. The electrode 1 can be obtained by finishing.

実施の形態8.
次に、この発明の実施の形態8を図にもとづいて説明する。図6は、真空バルブ用電極の構成の変形例を示す断面図で、接触子3が、補強板9まで到達している構成の例を示すものである。図11は、図6に示した構成の真空バルブ用電極の製造方法を示す断面図である。
Embodiment 8 FIG.
Next, an eighth embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a cross-sectional view showing a modified example of the configuration of the vacuum valve electrode, and shows an example of the configuration in which the contact 3 reaches the reinforcing plate 9. FIG. 11 is a cross-sectional view showing a method of manufacturing a vacuum valve electrode having the configuration shown in FIG.

図11(a)に示すように、下パンチ14の上面に補強板9を設置し、その上面に凸状内型16と同じ直径の導電部材5を設置する。さらに、導電部材5の上面に凸状内型16と同じ直径の耐アーク材製円板21を設置した後、凸状内型16を設置する。そして、図7の(c)と(d)に示した工程と同様にダイ13と凸状内型16の間に接触子用混合粉末17を充填した後、円筒状上パンチ18を設置して加圧と加熱を行う。これにより、耐アーク層11と補強板9にまで達する接触子3を設けた焼結体20を得る。そして、焼結体20に仕上げ加工を施して図6の断面構造を持つ電極1を得ることができる。   As shown in FIG. 11A, the reinforcing plate 9 is installed on the upper surface of the lower punch 14, and the conductive member 5 having the same diameter as the convex inner mold 16 is installed on the upper surface. Furthermore, after the arc-resistant material disc 21 having the same diameter as the convex inner mold 16 is installed on the upper surface of the conductive member 5, the convex inner mold 16 is installed. Then, similar to the steps shown in FIGS. 7C and 7D, the contact powder mixture 17 is filled between the die 13 and the convex inner mold 16, and then the cylindrical upper punch 18 is installed. Pressurize and heat. As a result, a sintered body 20 provided with the contact 3 that reaches the arc-resistant layer 11 and the reinforcing plate 9 is obtained. Then, the sintered body 20 can be finished to obtain the electrode 1 having the cross-sectional structure of FIG.

この発明の実施の形態1による真空バルブ用電極の構成を示す斜視図である。It is a perspective view which shows the structure of the electrode for vacuum valves by Embodiment 1 of this invention. 図1に示す真空バルブ用電極の断面図である。It is sectional drawing of the electrode for vacuum valves shown in FIG. この発明の実施の形態2による補強板を設けた真空バルブ用電極の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode for vacuum valves which provided the reinforcement board by Embodiment 2 of this invention. この発明の実施の形態3による耐アーク層を設けた真空バルブ用電極の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode for vacuum valves which provided the arc-proof layer by Embodiment 3 of this invention. この発明の実施の形態7による真空バルブ用電極の構成の変形例を示す断面図である。It is sectional drawing which shows the modification of a structure of the electrode for vacuum valves by Embodiment 7 of this invention. この発明の実施の形態8による真空バルブ用電極の構成の変形例を示す断面図である。It is sectional drawing which shows the modification of the structure of the electrode for vacuum valves by Embodiment 8 of this invention. 図3に示した構成の真空バルブ用電極の製造工程を示す図である。It is a figure which shows the manufacturing process of the electrode for vacuum valves of the structure shown in FIG. 図4に示した構成の真空バルブ用電極の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrode for vacuum valves of the structure shown in FIG. 図5に示した構成の真空バルブ用電極の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrode for vacuum valves of the structure shown in FIG. 図5に示した構成の真空バルブ用電極の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrode for vacuum valves of the structure shown in FIG. 図6に示した構成の真空バルブ用電極の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrode for vacuum valves of the structure shown in FIG.

符号の説明Explanation of symbols

1 電極、 2 溝、 3 接触子、 4 電極中心部、 5 導電部材、 6 電極棒、 7 接合穴、 8 接触子と導電部材との界面、 9 補強板、 10 導電部材と補強板との界面、 11 耐アーク層、 12 導電部材と耐アーク層との界面、
13 ダイ、 14 下パンチ、 15 貫通穴、 16 凸状内型、 17 接触子用混合粉末、 18 円筒状上パンチ、 19a、19b 円板型、 20 焼結体、
21 耐アーク材製円板、 22 耐アーク層用混合粉末、 23 円柱状内型。
1 Electrode, 2 Groove, 3 Contact, 4 Electrode Center, 5 Conductive Member, 6 Electrode Rod, 7 Joint Hole, 8 Interface between Contact and Conductive Member, 9 Reinforcement Plate, 10 Interface between Conductive Member and Reinforcement Plate 11 arc-resistant layer, 12 interface between conductive member and arc-resistant layer,
13 die, 14 lower punch, 15 through hole, 16 convex inner mold, 17 mixed powder for contactor, 18 cylindrical upper punch, 19a, 19b disc type, 20 sintered body,
21 arc-resistant material disk, 22 mixed powder for arc-resistant layer, 23 cylindrical inner mold.

Claims (9)

真空バルブ内で相互に対向し、同軸上に配置された固定電極と可動電極とを有し、上記各電極はCuまたは導電率が40%IACS 以上のCu合金で形成されると共に、中心部から半径方向に延在する溝によって複数の区分に区画され、風車形に形成された導電部材と、上記導電部材の各区分の外周部において、上記両電極の対向側に突出して設けられCu-Cr合金で形成された接触子とから構成されていることを特徴とする真空バルブ用電極。   Each of the electrodes has a fixed electrode and a movable electrode, which are opposed to each other in the vacuum valve and are coaxially arranged. Each of the electrodes is made of Cu or a Cu alloy having a conductivity of 40% IACS or more, and from the center. A conductive member that is partitioned into a plurality of sections by grooves extending in the radial direction and formed in a windmill shape, and a Cu-Cr projecting to the opposite side of the two electrodes at the outer periphery of each section of the conductive member An electrode for a vacuum valve comprising a contact formed of an alloy. 上記導電部材の上記両電極の対向面側表面に耐アーク層を設けたことを特徴とする請求項1記載の真空バルブ用電極。   2. The electrode for a vacuum valve according to claim 1, wherein an arc resistant layer is provided on the surface of the conductive member facing the two electrodes. 上記耐アーク層は、Cu-Cr合金、Cu-W合金、Cu-Mo合金、Mo、W、ステンレス鋼のいずれか1つで構成されていることを特徴とする請求項2記載の真空バルブ用電極。   The vacuum arc layer according to claim 2, wherein the arc-resistant layer is made of any one of a Cu-Cr alloy, a Cu-W alloy, a Cu-Mo alloy, Mo, W, and stainless steel. electrode. 上記導電部材の上記両電極の対向面の裏面に非磁性体で、かつ上記導電部材より高い強度を有する補強板を設けたことを特徴とする請求項1〜請求項3のいずれか1項記載の真空バルブ用電極。   The reinforcing plate which is a nonmagnetic material and has a higher strength than the conductive member is provided on the back surface of the opposing surface of the two electrodes of the conductive member. Electrode for vacuum valve. 上記補強板はステンレス鋼であることを特徴とする請求項4記載の真空バルブ用電極。   5. The vacuum valve electrode according to claim 4, wherein the reinforcing plate is stainless steel. 外周を取り囲むダイと、その中央部下側に配設された下パンチとを有し、上記下パンチの上面に導電部材を配置する工程と、上記導電部材の上面に接触子の内面を形成する内型を配設する工程と、上記接触子の原料粉末を上記内型とダイの間で上記導電部材上に充填する工程と、上記内型とダイの間に挿入し得るように環状に形成された上パンチを上記接触子の原料粉末上に配設する工程と、上記上パンチにより上記原料粉末を加熱加圧して成形及び焼結を行い、上記接触子を上記導電部材に接合する工程とを含むことを特徴とする請求項1記載の真空バルブ用電極の製造方法。   A step of disposing a conductive member on the upper surface of the lower punch, and forming an inner surface of a contact on the upper surface of the conductive member. A step of disposing the mold, a step of filling the contact material powder on the conductive member between the inner mold and the die, and an annular shape so as to be inserted between the inner mold and the die. A step of disposing the upper punch on the raw material powder of the contact, and a step of heating and pressurizing the raw material powder by the upper punch to form and sinter, and joining the contact to the conductive member. The manufacturing method of the electrode for vacuum valves of Claim 1 characterized by the above-mentioned. 外周を取り囲むダイと、その中央部下側に配設された下パンチとを有し、上記下パンチの上面に補強板を配置すると共に、上記補強板の上面に導電部材を配置する工程と、上記導電部材の上面に接触子の内面を形成する内型を配設する工程と、上記接触子の原料粉末を上記内型とダイの間で上記導電部材上に充填する工程と、上記内型とダイの間に挿入し得るように環状に形成された上パンチを上記接触子の原料粉末上に配設する工程と、上記上パンチにより上記原料粉末を加熱加圧して成形及び焼結を行い、上記接触子を上記導電部材に接合する工程とを含むことを特徴とする請求項1記載の真空バルブ用電極の製造方法。   A die having a die surrounding the outer periphery and a lower punch disposed on the lower side of the central portion, a step of disposing a reinforcing plate on the upper surface of the lower punch, and disposing a conductive member on the upper surface of the reinforcing plate; A step of disposing an inner mold for forming the inner surface of the contact on the upper surface of the conductive member; a step of filling the conductive member with a raw material powder of the contact between the inner mold and the die; and the inner mold; A step of disposing an upper punch formed in an annular shape so as to be inserted between dies on the raw material powder of the contact, and heating and pressurizing the raw material powder with the upper punch to perform molding and sintering, The method for manufacturing an electrode for a vacuum valve according to claim 1, further comprising the step of joining the contact to the conductive member. 上記導電部材の上面に耐アーク材の円板を配置あるいは上記導電部材の上面に耐アーク材となる原料粉末を充填した後、上記円板あるいは原料粉末上に上記内型を配設することを特徴とする請求項6または請求項7記載の真空バルブ用電極の製造方法。   An arc resistant material disk is disposed on the upper surface of the conductive member, or the upper surface of the conductive member is filled with a raw material powder to be an arc resistant material, and then the inner mold is disposed on the disk or the raw material powder. 8. The method for producing an electrode for a vacuum valve according to claim 6 or 7, wherein 上記接触子と導電部材との接合または焼結は、パルス通電加熱法またはホットプレス法によって行うことを特徴とする請求項6〜請求項8のいずれか1項記載の真空バルブ用電極の製造方法。   The method for manufacturing an electrode for a vacuum valve according to any one of claims 6 to 8, wherein the contact or conductive member is joined or sintered by a pulse current heating method or a hot press method. .
JP2005037783A 2005-02-15 2005-02-15 Electrode for vacuum valve and its manufacturing method Withdrawn JP2006228454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037783A JP2006228454A (en) 2005-02-15 2005-02-15 Electrode for vacuum valve and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037783A JP2006228454A (en) 2005-02-15 2005-02-15 Electrode for vacuum valve and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006228454A true JP2006228454A (en) 2006-08-31

Family

ID=36989661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037783A Withdrawn JP2006228454A (en) 2005-02-15 2005-02-15 Electrode for vacuum valve and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006228454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202390A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202390A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
US10256054B2 (en) 2013-06-20 2019-04-09 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
US10573472B2 (en) 2013-06-20 2020-02-25 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
US10573472B2 (en) Method and device for producing contact elements for electrical switching contacts
US10256054B2 (en) Method and device for producing contact elements for electrical switch contacts
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
US8302303B2 (en) Process for producing a contact piece
JP2002245907A (en) Electrode for vacuum valve, method of manufacturing the electrode, vacuum valve, vacuum breaker, and electric contact for vacuum valve electrode
JP2941682B2 (en) Vacuum valve and method of manufacturing the same
JPWO2009041246A1 (en) Contact member manufacturing method, contact member and switch
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
EP2587507A1 (en) Electrical contact material
JP6304454B2 (en) Contact member manufacturing method, contact member and vacuum valve
JP2006228454A (en) Electrode for vacuum valve and its manufacturing method
US4659885A (en) Vacuum interrupter
JP2009289652A (en) Agwc-ag composite contact, and manufacturing method thereof
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP2012004076A (en) Vacuum valve contact and manufacturing method thereof
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP5614721B2 (en) Vacuum circuit breaker electrode
JP2001351451A (en) Contact element material and contact element
EP2586883A1 (en) Electrical contact material
EP2620515A1 (en) Electric contact material
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP7182946B2 (en) Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090203