JP2006226910A - Abnormality detection method and detector for solid insulator - Google Patents

Abnormality detection method and detector for solid insulator Download PDF

Info

Publication number
JP2006226910A
JP2006226910A JP2005042826A JP2005042826A JP2006226910A JP 2006226910 A JP2006226910 A JP 2006226910A JP 2005042826 A JP2005042826 A JP 2005042826A JP 2005042826 A JP2005042826 A JP 2005042826A JP 2006226910 A JP2006226910 A JP 2006226910A
Authority
JP
Japan
Prior art keywords
solid insulator
transmittance
change
wave
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005042826A
Other languages
Japanese (ja)
Other versions
JP4614436B2 (en
Inventor
Tsuguhiro Takahashi
紹大 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005042826A priority Critical patent/JP4614436B2/en
Publication of JP2006226910A publication Critical patent/JP2006226910A/en
Application granted granted Critical
Publication of JP4614436B2 publication Critical patent/JP4614436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detection method and detector for a solid insulator suitable for practical use. <P>SOLUTION: This abnormality detector for detecting abnormality in an inside of the solid insulator 1 opaque to a visible light is provided with an electromagnetic wave source 3 for emitting an electromagnetic wave of a wavelength transmitted through the solid insulator 1 out of a terahertz wave, a submillimeter wave and a millimeter wave, a transmittance measuring instrument 4 for measuring a transmittance of a transmission wave 2 from the solid insulator 1, and a detecting means 5 for detecting an abnormality portion, based on a change of the transmittance in the abnormality portion, a change of the transmittance in a boundary portion between the abnormality portion and a normal portion, and a change on a transmission wave polarization face due to a change of a dielectric tensor in the abnormality portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体絶縁体の異常検出方法及び異常検出装置に関する。さらに詳述すると、本発明は、固体絶縁体の内部異常を非破壊、非接触で検出する異常検出方法及び異常検出装置に関するものである。なお、本出願において、テラヘルツ波(THz波)とは周波数が1THz〜30THzを中心とし、その上下に若干の誤差を含む範囲の電磁波をいい、サブミリ波とは波長が0.1mm〜1mm(周波数が300GHz〜3THz)を中心とし、その上下に若干の誤差を含む範囲の電磁波をいい、ミリ波とは波長が1mm〜10mm(周波数が30GHz〜300GHz)を中心とし、その上下に若干の誤差を含む範囲の電磁波をいう。   The present invention relates to an abnormality detection method and an abnormality detection apparatus for a solid insulator. More specifically, the present invention relates to an abnormality detection method and an abnormality detection device for detecting an internal abnormality of a solid insulator in a non-destructive and non-contact manner. In the present application, the terahertz wave (THz wave) refers to an electromagnetic wave having a frequency centered around 1 THz to 30 THz and including a slight error above and below the submillimeter wave, and the submillimeter wave has a wavelength of 0.1 mm to 1 mm (frequency). Is an electromagnetic wave in a range that includes some errors above and below it, and the millimeter wave is centered on a wavelength of 1 mm to 10 mm (frequency is 30 GHz to 300 GHz) and has some errors above and below it. This refers to the electromagnetic waves within the range.

テラヘルツ波の利用技術として提案されているのは、テラヘルツ波の透過・吸収率の差を利用した内部計測技術である。例えばテラヘルツ波は金属を透過できないため、プラスチック材料でモールドされたICパッケージを対象に、モールド部の透視画像を得て配線チェックを行うというアプリケーションが提案されている(非特許文献1)。   What is proposed as a terahertz wave utilization technique is an internal measurement technique that utilizes the difference in transmission and absorption rates of terahertz waves. For example, since a terahertz wave cannot pass through a metal, an application has been proposed in which a wiring image is obtained by obtaining a perspective image of a molded part for an IC package molded with a plastic material (Non-patent Document 1).

また、これに関する発明として、特開2004−108905号公報に開示されたテラヘルツ波を用いた差分イメージング装置がある。この差分イメージング装置を図17に示す。テラヘルツ波発生装置101で約0.5〜3THzの周波数範囲において異なる2波長のテラヘルツ波102を発生させ、2波長のテラヘルツ波102を被対象物103に照射してそれぞれの透過率を透過率計測装置104によって計測し、その透過率の相違からテラヘルツ波102の吸収に波長依存性のあるターゲットの有無をターゲット検出装置105によって検出している。また、二次元走査装置106によって被対象物103の表面に異なる2波長のテラヘルツ波102をそれぞれ二次元的に走査し、2波長の透過率が相違する位置を二次元的に画像表示するようにしている。   As an invention related to this, there is a differential imaging apparatus using a terahertz wave disclosed in Japanese Patent Application Laid-Open No. 2004-108905. This differential imaging apparatus is shown in FIG. The terahertz wave generator 101 generates two different wavelengths of terahertz waves 102 in a frequency range of about 0.5 to 3 THz, irradiates the target object 103 with the two wavelengths of terahertz waves 102, and measures the respective transmittances. The target is measured by the device 104, and the presence or absence of a target having wavelength dependency in the absorption of the terahertz wave 102 is detected by the target detection device 105 from the difference in transmittance. Further, the two-dimensional scanning device 106 two-dimensionally scans the surface of the object 103 with two different wavelengths of terahertz waves 102 so that the positions where the two-wavelength transmittances are different are displayed two-dimensionally. ing.

ところで近年、変電所等の電力設備では固体絶縁体の使用を拡大する傾向にある。固体絶縁体を有効に活用するためには、内部の空隙発生や電気的、機械的ひずみの集中等の異常を非破壊で確実に検出する技術の開発が必要である。   In recent years, power facilities such as substations tend to expand the use of solid insulators. In order to make effective use of solid insulators, it is necessary to develop a technology that reliably detects non-destructive abnormalities such as the generation of internal voids and concentration of electrical and mechanical strains.

特開2004−108905号JP 2004-108905 A 川瀬晃道、伊藤弘昌、「テラヘルツ波光源のイメージング応用可能性」、日本放射線技術学会雑誌、第58巻第4号、p441−447、2002年4月Hiromichi Kawase, Hiromasa Ito, “Possibility of imaging application of terahertz light source”, Journal of Japanese Society of Radiological Technology, Vol. 58, No. 4, p441-447, April 2002

しかしながら、固体絶縁体にはテラヘルツ波に対して不透明なものもあり、この場合には上述の差分イメージング装置を使用することができない。このため、使用できる固体絶縁体の種類に大きな制限がある。また、上述の差分イメージング装置では、電気的、機械的ひずみ等の異常を検出することができない。これらのため、固体絶縁体の異常検出としては実用性に劣る。さらに、実用化のためには、固体絶縁体中の異常が例えば気泡や亀裂等の微細なものであってもその異常を確実に検出できるようにする必要があり、検出性能の更なる向上が望まれている。   However, some solid insulators are opaque to terahertz waves, and in this case, the above-described differential imaging apparatus cannot be used. For this reason, there is a great limitation on the types of solid insulators that can be used. Further, the above-described differential imaging apparatus cannot detect abnormalities such as electrical and mechanical strains. For these reasons, it is inferior in practicality for detecting an abnormality of a solid insulator. Furthermore, for practical use, it is necessary to ensure that the abnormality can be reliably detected even if the abnormality in the solid insulator is fine, such as bubbles or cracks, and the detection performance is further improved. It is desired.

本発明は、固体絶縁体の異常検出への実用化に適した固体絶縁体の異常検出方法及び異常検出装置を提供することを目的とする。   An object of the present invention is to provide an abnormality detection method and an abnormality detection device for a solid insulator that are suitable for practical use for detecting an abnormality of a solid insulator.

本発明者は、固体絶縁体中に存在する気泡等の異常部分の検出をより確実なものにすべく鋭意研究を行った結果、固体絶縁体中に気泡が存在する場合、固体絶縁体の部分(正常部分)と気泡の部分(異常部分)とでテラヘルツ波の透過率が異なることの他、固体絶縁体部分と気泡部分との境界部分でもテラヘルツ波の透過率が変化することを見出した。   As a result of earnest research to make the detection of abnormal parts such as bubbles present in the solid insulator more reliable, the present inventor has found that when there are bubbles in the solid insulator, the solid insulator part The present inventors have found that the transmittance of terahertz waves differs between the (normal portion) and the bubble portion (abnormal portion), and that the terahertz wave transmittance also changes at the boundary between the solid insulator portion and the bubble portion.

即ち、固体絶縁体として代表的なポリエチレンを使用し、その内部に空隙がある場合を模擬して実験を行った。空気とポリエチレンでは若干の透過率差があるため、テラヘルツ波を用いてポリエチレン中の気泡を検出できる可能性があり、空気とポリエチレンの透過率差がどの程度判別できるものなのか確認するため、厚さ5mmのポリエチレン板に2つの孔をあけたサンプル(図9)を使用し、1.3THzのテラヘルツ波を使って2次元スキャン(サンプルを動かしてスキャンする方式)画像を取得してみた。   That is, a typical polyethylene was used as a solid insulator, and an experiment was performed by simulating a case where there was a void inside. Since there is a slight transmittance difference between air and polyethylene, there is a possibility that bubbles in polyethylene can be detected using terahertz waves, and in order to check how much the difference in transmittance between air and polyethylene can be distinguished, Using a sample (FIG. 9) in which two holes were formed in a 5 mm-thick polyethylene plate, a two-dimensional scan (method of moving and scanning the sample) image was obtained using a 1.3 THz terahertz wave.

その結果を図10〜図12に示す。ポリエチレン部分と孔(空気)部分とでは透過率の差がある程度観測されたが、それ以上にポリエチレン部分と空気部分との境界部分で透過率が激減する現象が観測された。これはポリエチレンと空気との境界面でテラヘルツ波が屈折・散乱したことに起因すると考えられる。そして、境界面での屈折・散乱現象は、ポリエチレンと空気の境界面に限らず、他の物質の境界面でも起きると考えられる。また、このような現象は、テラヘルツ波を使用した場合に限らず、テラヘルツ波と同じ電磁波であるサブミリ波やミリ波を使用した場合にも生じると考えられる。そこで、異常部分と正常部分の透過率の変化に加え、この変化よりも大きな変化である両者の境界部分の透過率の変化に基づいて異常部分を検出することで、その検出がより容易・確実になることを見出し、本発明に到達したものである。   The results are shown in FIGS. A difference in transmittance between the polyethylene portion and the hole (air) portion was observed to some extent, but a phenomenon in which the transmittance was drastically decreased at the boundary portion between the polyethylene portion and the air portion was observed. This is thought to be due to the refraction and scattering of terahertz waves at the interface between polyethylene and air. The refraction / scattering phenomenon at the interface is considered to occur not only at the interface between polyethylene and air but also at the interface between other substances. Such a phenomenon is considered to occur not only when a terahertz wave is used but also when a submillimeter wave or a millimeter wave that is the same electromagnetic wave as the terahertz wave is used. Therefore, in addition to the change in the transmittance of the abnormal part and the normal part, the abnormal part is detected based on the change in the transmittance of the boundary part between the two, which is a larger change than this change, making detection easier and more reliable. And the present invention has been achieved.

請求項1記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の透過率を計測し、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化に基づいて異常部分を検出するものである。   The invention according to claim 1 is a solid insulator abnormality detection method for detecting an abnormality inside a solid insulator that is opaque to visible light, and transmits the solid insulator of terahertz waves, submillimeter waves, and millimeter waves. Select the wavelength, irradiate the solid insulator with the electromagnetic wave of the selected wavelength, measure the transmittance of the transmitted wave, change the transmittance of the abnormal part and the transmittance of the boundary part between the abnormal part and the normal part An abnormal part is detected based on the change.

したがって、固体絶縁体に照射された電磁波は固体絶縁体を透過する。固体絶縁体の内部に異常がなければ、全ての部分で透過率は一定となる。一方、固体絶縁体の内部に例えば空隙等の異常がある場合には、その異常部分で透過波の透過率が変化すると共に、異常部分と正常部分の境界部分でも透過波の透過率が変化する。境界部分での透過率の変化は異常部分の透過率の変化よりも大きい。このため、異常部分がその周囲の境界部分の透過率変化で強調される。即ち、異常部分を強調しながら検出することができる。   Therefore, the electromagnetic wave irradiated to the solid insulator passes through the solid insulator. If there is no abnormality inside the solid insulator, the transmittance is constant in all parts. On the other hand, when there is an abnormality such as an air gap inside the solid insulator, the transmittance of the transmitted wave changes at the abnormal part, and the transmittance of the transmitted wave also changes at the boundary part between the abnormal part and the normal part. . The change in transmittance at the boundary portion is larger than the change in transmittance at the abnormal portion. For this reason, an abnormal part is emphasized by the transmittance | permeability change of the surrounding boundary part. That is, it is possible to detect an abnormal part while enhancing it.

また、請求項2記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の偏波変動を計測し、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出するものである。   According to a second aspect of the present invention, in the solid insulator abnormality detection method for detecting an abnormality inside the solid insulator that is opaque to visible light, the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves. Select the transmission wavelength, irradiate the solid insulator with the electromagnetic wave of the selected wavelength, measure the polarization fluctuation of the transmitted wave, and detect the abnormal part based on the change of the polarization plane due to the change of the dielectric constant tensor of the abnormal part It is to detect.

したがって、固体絶縁体に照射された電磁波は固体絶縁体を透過する。固体絶縁体の内部に異常がなければ、全ての部分で誘電率テンソルの変化量はゼロとなる。一方、固体絶縁体の内部に例えば電気的、機械的ひずみ等の異常がある場合には、その異常部分で誘電率テンソルが変化する。この誘電率テンソルの変化による透過波偏波面の変化に基づき異常部分を検出する。   Therefore, the electromagnetic wave irradiated to the solid insulator passes through the solid insulator. If there is no abnormality inside the solid insulator, the change amount of the dielectric constant tensor is zero in all parts. On the other hand, when there is an abnormality such as an electrical or mechanical strain inside the solid insulator, the dielectric constant tensor changes at the abnormal part. An abnormal portion is detected based on the change in the polarization plane of the transmitted wave due to the change in the dielectric constant tensor.

さらに、請求項3記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の透過率と偏波変動を計測し、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出するものである。   Furthermore, the invention described in claim 3 is a solid insulator abnormality detection method for detecting an abnormality inside a solid insulator that is opaque to visible light, wherein a solid insulator of terahertz waves, submillimeter waves, and millimeter waves is used. Select the transmission wavelength, irradiate the solid insulator with the electromagnetic wave of the selected wavelength, measure the transmittance and polarization fluctuation of the transmitted wave, change the transmittance of the abnormal part, and the abnormal part and the normal part The abnormal part is detected based on the change of the polarization plane due to the change of the transmittance of the boundary part and the change of the dielectric constant tensor of the abnormal part.

したがって、固体絶縁体に照射された電磁波は固体絶縁体を透過する。固体絶縁体の内部に異常がなければ、全ての部分で透過率は一定で、誘電率テンソルの変化量はゼロである。一方、固体絶縁体の内部に例えば空隙等の異常がある場合には、その異常部分で透過波の透過率が変化すると共に、異常部分と正常部分の境界部分でも透過波の透過率が変化する。境界部分での透過率の変化は異常部分の透過率の変化よりも大きい。このため、異常部分がその周囲の境界部分の透過率変化で強調されることになり、異常部分を強調しながら検出する。また、固体絶縁体の内部に例えば電気的ひずみ、機械的ひずみ、温度不均一によるひずみ等の異常がある場合には、その異常部分で誘電率テンソルが変化する。この変化に基づき異常部分を検出する。即ち、透過率の変化と誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分を検出することができる。   Therefore, the electromagnetic wave irradiated to the solid insulator passes through the solid insulator. If there is no abnormality inside the solid insulator, the transmittance is constant in all parts, and the change amount of the dielectric constant tensor is zero. On the other hand, when there is an abnormality such as an air gap inside the solid insulator, the transmittance of the transmitted wave changes at the abnormal part, and the transmittance of the transmitted wave also changes at the boundary part between the abnormal part and the normal part. . The change in transmittance at the boundary portion is larger than the change in transmittance at the abnormal portion. For this reason, the abnormal part is emphasized by the change in the transmittance of the surrounding boundary part, and the abnormal part is detected while being emphasized. Further, when there is an abnormality such as an electrical strain, a mechanical strain, or a strain due to temperature non-uniformity in the solid insulator, the dielectric constant tensor changes at the abnormal portion. An abnormal part is detected based on this change. That is, an abnormal portion can be detected based on a change in the transmitted wave polarization plane due to a change in transmittance and a change in dielectric constant tensor.

また、請求項4記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の透過率を計測する透過率計測装置と、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化に基づいて異常部分を検出する検出手段を備えるものである。   According to a fourth aspect of the present invention, there is provided a solid insulator abnormality detecting device for detecting an abnormality inside a solid insulator that is opaque to visible light, wherein a solid insulator of terahertz waves, submillimeter waves, and millimeter waves is used. An electromagnetic wave source that irradiates a solid insulator with an electromagnetic wave having a transmitted wavelength, a transmittance measuring device that measures the transmittance of the transmitted wave of the solid insulator, a change in the transmittance of the abnormal part, and an abnormal part and a normal part Detection means for detecting an abnormal part based on a change in the transmittance of the boundary part is provided.

したがって、電磁波源から固体絶縁体に向けて照射された電磁波は固体絶縁体を透過する。透過率計測装置は透過波の透過率を計測する。固体絶縁体の内部に異常がなければ、透過率は全ての部分で一定である。一方、固体絶縁体の内部に例えば空隙等の異常がある場合には、その異常部分で透過波の透過率が変化すると共に、異常部分と正常部分の境界部分でも透過波の透過率が変化する。境界部分での透過率の変化は異常部分の透過率の変化よりも大きい。このため、異常部分がその周囲の境界部分の透過率変化で強調される。検出手段は、強調された異常部分を検出する。   Therefore, the electromagnetic wave irradiated from the electromagnetic wave source toward the solid insulator passes through the solid insulator. The transmittance measuring device measures the transmittance of the transmitted wave. If there is no abnormality inside the solid insulator, the transmittance is constant in all parts. On the other hand, when there is an abnormality such as an air gap inside the solid insulator, the transmittance of the transmitted wave changes at the abnormal part, and the transmittance of the transmitted wave also changes at the boundary part between the abnormal part and the normal part. . The change in transmittance at the boundary portion is larger than the change in transmittance at the abnormal portion. For this reason, an abnormal part is emphasized by the transmittance | permeability change of the surrounding boundary part. The detecting means detects the emphasized abnormal part.

また、請求項5記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出する検出手段を備えるものである。   According to a fifth aspect of the present invention, there is provided an abnormality detection apparatus for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, wherein a solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves. Based on electromagnetic wave source that irradiates solid insulator with electromagnetic wave of transmitted wavelength, polarization measuring device that measures polarization fluctuation of transmitted wave of solid insulator, and change of polarization plane due to change of dielectric constant tensor of abnormal part And detecting means for detecting an abnormal part.

したがって、電磁波源から固体絶縁体に向けて照射された電磁波は固体絶縁体を透過する。偏波計測装置は透過波の偏波変動を計測する。固体絶縁体の内部に異常がなければ、誘電率テンソルの変化量は全ての部分でゼロである。一方、固体絶縁体の内部に例えば電気的、機械的ひずみ等の異常がある場合には、その異常部分で誘電率テンソルが変化するので、異常部分では透過波の偏波面が変化する。検出手段は、この変化に基づき異常部分を検出する。   Therefore, the electromagnetic wave irradiated from the electromagnetic wave source toward the solid insulator passes through the solid insulator. The polarization measuring device measures the polarization fluctuation of the transmitted wave. If there is no abnormality inside the solid insulator, the change amount of the dielectric constant tensor is zero in all parts. On the other hand, when there is an abnormality such as an electrical or mechanical strain inside the solid insulator, the dielectric constant tensor changes in the abnormal part, and the polarization plane of the transmitted wave changes in the abnormal part. The detecting means detects an abnormal part based on this change.

さらに、請求項6記載の発明は、可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の透過率を計測する透過率計測装置と、固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出する検出手段を備えるものである。   Furthermore, the invention described in claim 6 is a solid insulator abnormality detecting device for detecting an abnormality inside a solid insulator that is opaque to visible light, wherein a solid insulator of terahertz wave, submillimeter wave and millimeter wave is used. An electromagnetic wave source that irradiates a solid insulator with an electromagnetic wave having a transmitted wavelength, a transmittance measuring device that measures the transmittance of the transmitted wave of the solid insulator, and a polarization measurement that measures the polarization fluctuation of the transmitted wave of the solid insulator Detection that detects anomalous parts based on changes in the transmittance of the device, abnormal part, changes in transmittance at the boundary between the abnormal part and normal part, and changes in polarization plane due to changes in the dielectric constant tensor of the abnormal part Means are provided.

したがって、電磁波源から固体絶縁体に向けて照射された電磁波は固体絶縁体を透過する。透過率計測装置は透過波の透過率を計測する。固体絶縁体の内部に異常がなければ、透過率は全ての部分で一定である。一方、固体絶縁体の内部に例えば空隙等の異常がある場合には、その異常部分で透過波の透過率が変化すると共に、異常部分と正常部分の境界部分でも透過波の透過率が変化する。境界部分での透過率の変化は異常部分の透過率の変化よりも大きい。このため、異常部分がその周囲の境界部分の透過率変化で強調される。検出手段は、強調された異常部分を検出する。また、偏波計測装置は透過波の偏波変動を計測する。固体絶縁体の内部に異常がなければ、誘電率テンソルの変化は全ての部分でゼロである。一方、固体絶縁体の内部に例えば電気的、機械的ひずみ等の異常がある場合には、その異常部分で誘電率テンソルが変化するので、異常部分では透過波の偏波面が変化する。検出手段は、この変化に基づき異常部分を検出する。即ち、検出手段は、透過率の変化と誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分を検出する。   Therefore, the electromagnetic wave irradiated from the electromagnetic wave source toward the solid insulator passes through the solid insulator. The transmittance measuring device measures the transmittance of the transmitted wave. If there is no abnormality inside the solid insulator, the transmittance is constant in all parts. On the other hand, when there is an abnormality such as an air gap inside the solid insulator, the transmittance of the transmitted wave changes at the abnormal part, and the transmittance of the transmitted wave also changes at the boundary part between the abnormal part and the normal part. . The change in transmittance at the boundary portion is larger than the change in transmittance at the abnormal portion. For this reason, an abnormal part is emphasized by the transmittance | permeability change of the surrounding boundary part. The detecting means detects the emphasized abnormal part. The polarization measuring device measures the polarization fluctuation of the transmitted wave. If there is no abnormality inside the solid insulator, the change of the dielectric constant tensor is zero in all parts. On the other hand, when there is an abnormality such as an electrical or mechanical strain inside the solid insulator, the dielectric constant tensor changes in the abnormal part, and the polarization plane of the transmitted wave changes in the abnormal part. The detecting means detects an abnormal part based on this change. That is, the detecting means detects an abnormal portion based on a change in the transmitted wave polarization plane due to a change in transmittance and a change in permittivity tensor.

請求項1記載の固体絶縁体の異常検出方法では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の透過率を計測し、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化に基づいて異常部分を検出するので、異常部分をその周囲の境界部分の透過率変化で強調することができる。このため、異常部分の検出が容易になり、より確実に異常部分を検出することができる。また、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体に適用することができ、汎用性を高めることができる。これらのため、固体絶縁体の異常検出方法をより実用的なものにすることができる。   The method for detecting an abnormality of a solid insulator according to claim 1, wherein a wavelength that transmits the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves, and the solid insulator is irradiated with an electromagnetic wave having the selected wavelength. Wave transmittance is measured, and the abnormal part is detected based on the change in the transmittance of the abnormal part and the change in the transmittance of the boundary part between the abnormal part and the normal part. It can be emphasized by transmittance change. For this reason, detection of an abnormal part becomes easy and an abnormal part can be detected more reliably. In addition, since the electromagnetic wave having a wavelength that passes through the solid insulator among the terahertz wave, submillimeter wave, and millimeter wave is selected and used, it can be applied to more solid insulators, and versatility can be improved. For these reasons, the abnormality detection method for the solid insulator can be made more practical.

また、請求項2記載の固体絶縁体の異常検出方法では、テラヘルツ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の偏波変動を計測し、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出するので、異常部分を容易に検出することができる。このため、異常部分をより確実に検出することができる。また、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体に適用することができ、汎用性を高めることができる。これらのため、固体絶縁体の異常検出方法をより実用的なものにすることができる。   According to another aspect of the method for detecting an abnormality of a solid insulator according to claim 2, a wavelength that is transmitted through the solid insulator is selected from terahertz waves and millimeter waves, and an electromagnetic wave having the selected wavelength is irradiated onto the solid insulator to transmit the transmitted wave. Is measured, and the abnormal part is detected based on the change of the polarization plane due to the change of the dielectric constant tensor of the abnormal part. Therefore, the abnormal part can be easily detected. For this reason, an abnormal part can be detected more reliably. In addition, since the electromagnetic wave having a wavelength that passes through the solid insulator among the terahertz wave, submillimeter wave, and millimeter wave is selected and used, it can be applied to more solid insulators, and versatility can be improved. For these reasons, the abnormality detection method for the solid insulator can be made more practical.

さらに、請求項3記載の固体絶縁体の異常検出方法では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長を選択し、選択した波長の電磁波を固体絶縁体に照射して、透過波の透過率と偏波変動を計測し、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出するので、透過率の変化と誘電率テンソルの変化による透過波の偏波面の変化に基づいて異常部分を検出することができる。このため、異なる2つの手法を併用することになり、異常部分をより確実に検出することができて信頼性をより向上させることができる。また、様々な異常に対応することができ、汎用性、信頼性をより向上させることができる。   Furthermore, in the method for detecting an abnormality of a solid insulator according to claim 3, a wavelength that passes through the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves, and an electromagnetic wave having the selected wavelength is irradiated to the solid insulator. , Measure the transmittance and polarization fluctuation of the transmitted wave, change the transmittance of the abnormal part, change of the transmittance of the boundary part between the abnormal part and normal part, and the polarization plane due to the change of the dielectric constant tensor of the abnormal part Therefore, the abnormal portion can be detected based on the change in the polarization plane of the transmitted wave due to the change in the transmittance and the change in the dielectric constant tensor. For this reason, two different methods are used in combination, so that the abnormal part can be detected more reliably and the reliability can be further improved. Moreover, it can respond to various abnormalities, and can improve versatility and reliability.

また、請求項4記載の固体絶縁体の異常検出装置では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の透過率を計測する透過率計測装置と、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化に基づいて異常部分を検出する検出手段を備えているので、異常部分をその周囲の境界部分の透過率変化で強調することができる。このため、異常部分の検出が容易になり、より確実に異常部分を検出することができる。また、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体に適用することができ、汎用性を高めることができる。これらのため、固体絶縁体の異常検出装置をより実用的なものにすることができる。   According to another aspect of the abnormality detection device for a solid insulator according to claim 4, an electromagnetic wave source that irradiates the solid insulator with an electromagnetic wave having a wavelength that passes through the solid insulator among terahertz waves, submillimeter waves, and millimeter waves; A transmittance measuring device for measuring the transmittance of the transmitted wave, and a detecting means for detecting an abnormal portion based on a change in the transmittance of the abnormal portion and a change in the transmittance of the boundary portion between the abnormal portion and the normal portion. Therefore, the abnormal portion can be emphasized by the change in transmittance at the surrounding boundary portion. For this reason, detection of an abnormal part becomes easy and an abnormal part can be detected more reliably. In addition, since the electromagnetic wave having a wavelength that passes through the solid insulator among the terahertz wave, submillimeter wave, and millimeter wave is selected and used, it can be applied to more solid insulators, and versatility can be improved. For these reasons, the abnormality detector for solid insulators can be made more practical.

また、請求項5記載の固体絶縁体の異常検出装置では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて異常部分を検出する検出手段を備えているので、異常部分を容易に検出することができる。このため、異常部分をより確実に検出することができる。また、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体に適用することができ、汎用性を高めることができる。これらのため、固体絶縁体の異常検出装置をより実用的なものにすることができる。   In the solid insulator abnormality detecting device according to claim 5, an electromagnetic wave source that irradiates the solid insulator with an electromagnetic wave having a wavelength that passes through the solid insulator among terahertz waves, submillimeter waves, and millimeter waves; Equipped with a polarization measuring device that measures the polarization fluctuation of the transmitted wave and a detection means that detects the abnormal part based on the change of the polarization plane due to the change of the dielectric constant tensor of the abnormal part, so it is easy to detect the abnormal part can do. For this reason, an abnormal part can be detected more reliably. In addition, since the electromagnetic wave having a wavelength that passes through the solid insulator among the terahertz wave, submillimeter wave, and millimeter wave is selected and used, it can be applied to more solid insulators, and versatility can be improved. For these reasons, the abnormality detector for solid insulators can be made more practical.

さらに、請求項6記載の固体絶縁体の異常検出装置では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体を透過する波長の電磁波を固体絶縁体に照射する電磁波源と、固体絶縁体の透過波の透過率を計測する透過率計測装置と、固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化と、異常部分の誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分を検出する検出手段を備えるので、透過率の変化と誘電率テンソルの変化による偏波面の変化とに基づいて異常部分を検出することができる。このため、異なる2つの手法を併用することになり、異常部分をより確実に検出することができて信頼性をより向上させることができる。また、様々な異常に対応することができ、汎用性、信頼性をより向上させることができる。   Further, in the abnormality detection device for a solid insulator according to claim 6, an electromagnetic wave source for irradiating the solid insulator with an electromagnetic wave having a wavelength that transmits the terahertz wave, submillimeter wave, and millimeter wave through the solid insulator; Transmittance measuring device that measures the transmittance of the transmitted wave, polarization measuring device that measures the polarization fluctuation of the transmitted wave of the solid insulator, the change in the transmittance of the abnormal part, and the boundary between the abnormal part and the normal part Since it has detection means to detect the abnormal part based on the change of the transmittance of the part and the change of the transmitted wave polarization plane due to the change of the dielectric constant tensor of the abnormal part, An abnormal portion can be detected on the basis of the change in. For this reason, two different methods are used in combination, so that the abnormal part can be detected more reliably and the reliability can be further improved. Moreover, it can respond to various abnormalities, and can improve versatility and reliability.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の固体絶縁体の異常検出方法とこれを実施する異常検出装置の第1の実施形態を示す。固体絶縁体の異常検出方法(以下、単に異常検出方法という)は、可視光に対して不透明な固体絶縁体1の内部の異常を検出するもので、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長を選択し、選択した波長の電磁波を固体絶縁体1に照射して、その透過波2の透過率を計測し、異常部分の透過率の変化と、異常部分と正常部分との境界部分の透過率の変化に基づいて異常部分を検出するものである。   FIG. 1 shows a first embodiment of an abnormality detection method for a solid insulator according to the present invention and an abnormality detection apparatus for carrying out the method. An abnormality detection method for a solid insulator (hereinafter simply referred to as an anomaly detection method) detects an abnormality inside the solid insulator 1 that is opaque to visible light, and is solid among terahertz waves, submillimeter waves, and millimeter waves. The wavelength that passes through the insulator 1 is selected, the electromagnetic wave of the selected wavelength is irradiated onto the solid insulator 1, the transmittance of the transmitted wave 2 is measured, the change in the transmittance of the abnormal portion, and the abnormal portion and normal An abnormal portion is detected based on a change in transmittance at a boundary portion with the portion.

つまり、固体絶縁体1に照射された電磁波は固体絶縁体1を透過する。固体絶縁体1の内部に異常がなければ、透過率は全ての部分で一定である。一方、固体絶縁体1の内部に例えば空隙等の異常がある場合には、その異常部分で透過波2の透過率が変化すると共に、異常部分と正常部分の境界部分でも透過波2の透過率が変化する。例えば、図9〜図12に示すように固体絶縁体1としてのポリエチレン板に空隙を模擬した孔25をあけたサンプルにテラヘルツ波を照射した実験では、ポリエチレン部分(正常部分1a)と比べて空気部分即ち孔25部分(異常部分1b)の透過率は大きく、ポリエチレン部分と空気部分との境界部分1cの透過率は極めて小さくなった。なお、図12は図11の透過率の分布を概念的に示したもので、領域12は正常部分1aの透過率が現れた領域、領域13は異常部分1bの透過率が現れた領域、領域14は境界部分1cの透過率が現れた領域である。   That is, the electromagnetic wave irradiated to the solid insulator 1 passes through the solid insulator 1. If there is no abnormality inside the solid insulator 1, the transmittance is constant in all parts. On the other hand, when there is an abnormality such as a gap inside the solid insulator 1, the transmittance of the transmitted wave 2 changes in the abnormal part, and the transmittance of the transmitted wave 2 also in the boundary part between the abnormal part and the normal part. Changes. For example, in an experiment in which a terahertz wave is irradiated on a sample in which a hole 25 simulating a void is formed in a polyethylene plate as the solid insulator 1 as shown in FIGS. 9 to 12, air is compared with the polyethylene portion (normal portion 1 a). The transmittance of the portion, that is, the hole 25 portion (abnormal portion 1b) was large, and the transmittance of the boundary portion 1c between the polyethylene portion and the air portion was extremely small. FIG. 12 conceptually shows the transmittance distribution of FIG. 11, where the region 12 is a region where the transmittance of the normal portion 1a appears, and the region 13 is a region where the transmittance of the abnormal portion 1b appears. Reference numeral 14 denotes a region where the transmittance of the boundary portion 1c appears.

そして、空気部分(異常部分1b)の透過率の変化と境界部分1cの透過率の変化を比べると、境界部分1cの透過率の方が大きく変化しており、空気部分1bがその周囲の境界部分1cの透過率変化で強調された結果となっている。この現象はポリエチレンと空気との境界面26でテラヘルツ波が屈折・散乱したことに起因するものであり、この現象が発生するのは材料に関してはポリエチレンと空気の組み合わせに限るものではなく、また、透過波2に関してはテラヘルツ波に限るものではないと考えられる。   When the change in the transmittance of the air portion (abnormal portion 1b) and the change in the transmittance of the boundary portion 1c are compared, the transmittance of the boundary portion 1c is greatly changed, and the air portion 1b has a boundary around it. The result is emphasized by the change in transmittance of the portion 1c. This phenomenon is caused by the fact that the terahertz wave is refracted and scattered at the interface 26 between polyethylene and air, and this phenomenon is not limited to the combination of polyethylene and air in terms of materials, It is considered that the transmitted wave 2 is not limited to the terahertz wave.

本発明はかかる現象を利用しており、異常部分1bの透過率の変化と、異常部分1bと正常部分1aとの境界部分1cの透過率の変化に基づいて異常部分1bを検出することで、異常部分1bを強調しながら検出を行うことができる。このため、異常部分1bが目立つようになり、たとえ異常部分1b自体の透過率の変化が僅かな場合であっても異常部分1bを見逃さずに検出することができる。   The present invention utilizes such a phenomenon, and by detecting the abnormal portion 1b based on the change in the transmittance of the abnormal portion 1b and the change in the transmittance of the boundary portion 1c between the abnormal portion 1b and the normal portion 1a, Detection can be performed while emphasizing the abnormal portion 1b. For this reason, the abnormal part 1b becomes conspicuous, and even if the change of the transmittance of the abnormal part 1b itself is slight, it can be detected without missing the abnormal part 1b.

固体絶縁体1の異常検出では、製造時の不良や経時的な劣化に起因した異常を発見することが目的であることが多く、この場合には異常の有無を検出できれば良く、異常の正確な発生位置や大きさを測定する必要はないことが多い。本発明では異常部分1bを目立たせて検出するので、異常の有無を検出できれば目的を達成できる固体絶縁体1の異常検出に特に適している。ただし、使用する波長によっては異常部分1bの正確な位置や大きさを測定できるので、その場合には異常部分1bの位置や大きさを測定するようにしても良い。   The detection of an abnormality of the solid insulator 1 is often aimed at finding an abnormality caused by a manufacturing defect or deterioration over time. In this case, it is only necessary to detect the presence or absence of an abnormality, and the abnormality can be accurately detected. There is often no need to measure the location or size of the occurrence. In the present invention, since the abnormal portion 1b is conspicuously detected, it is particularly suitable for detecting an abnormality of the solid insulator 1 that can achieve the object if the presence or absence of the abnormality can be detected. However, since the exact position and size of the abnormal portion 1b can be measured depending on the wavelength used, in that case, the position and size of the abnormal portion 1b may be measured.

この異常検出方法は、例えば図1に示す固体絶縁体1の異常検出装置(以下、単に異常検出装置という)によって実施される。なお、この異常検出装置では、検出手段5を備えることで、異常部分1bの検出まで自動的に行うようにしている。この異常検出装置は、可視光に対して不透明な固体絶縁体1の内部の異常を検出するもので、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長の電磁波を固体絶縁体1に照射する電磁波源3と、固体絶縁体1の透過波2の透過率を計測する透過率計測装置4と、異常部分1bの透過率の変化と、異常部分1bと正常部分1aとの境界部分1cの透過率の変化に基づいて異常部分1bを検出する検出手段5を備えるものである。また、固体絶縁体1を透過波2に対して垂直で互いに直交する方向に移動させる二次元走査装置6を備えている。   This abnormality detection method is implemented by, for example, an abnormality detection apparatus (hereinafter simply referred to as an abnormality detection apparatus) for the solid insulator 1 shown in FIG. In this abnormality detection apparatus, the detection means 5 is provided so that the detection of the abnormal portion 1b is automatically performed. This anomaly detection device detects an anomaly inside the solid insulator 1 that is opaque to visible light, and solid-insulates electromagnetic waves having a wavelength that passes through the solid insulator 1 among terahertz waves, submillimeter waves, and millimeter waves. An electromagnetic wave source 3 that irradiates the body 1, a transmittance measuring device 4 that measures the transmittance of the transmitted wave 2 of the solid insulator 1, a change in the transmittance of the abnormal portion 1b, and the abnormal portion 1b and the normal portion 1a. The detection means 5 which detects the abnormal part 1b based on the change of the transmittance | permeability of the boundary part 1c is provided. Further, a two-dimensional scanning device 6 is provided for moving the solid insulator 1 in a direction perpendicular to the transmitted wave 2 and perpendicular to each other.

本実施形態では、電磁波源3として例えばテラヘルツ波を照射するテラヘルツ波照射装置とミリ波を照射するミリ波照射装置とサブミリ波を照射するサブミリ波照射装置を有しており、これらを必要に応じて使い分けている。即ち、検査を行う固体絶縁体1の種類によって透過できる電磁波の波長が異なるので、検査対象となる固体絶縁体1を透過する電磁波の波長を選択し、その波長の電磁波を照射できる電磁波照射装置を使用する。電磁波照射装置の使い分けや使用波長の選択は手動操作で行っても良く、あるいは固体絶縁体1の材料の入力により自動的に行われるようにしても良い。ただし、1つの電磁波照射装置でテラヘルツ波、サブミリ波とミリ波を照射できるものがあればその電磁波照射装置を使用しても良い。また、1つのテラヘルツ波照射装置で全ての波長範囲のテラヘルツ波をカバーできなくても、異なる波長のテラヘルツ波を照射する複数の照射装置を組み合わせて使用し、全体として広い波長範囲をカバーするようにしても良い。同様に、1つのミリ波照射装置で全ての波長範囲のミリ波をカバーできなくても、異なる波長のミリ波を照射する複数の照射装置を組み合わせて使用し、全体として広い波長範囲をカバーするようにしても良い。同様に、1つのサブミリ波照射装置で全ての波長範囲のサブミリ波をカバーできなくても、異なる波長のサブミリ波を照射する複数の照射装置を組み合わせて使用し、全体として広い波長範囲をカバーするようにしても良い。つまり、検出に使用する周波数の電磁波を照射できる電磁波源3を準備すれば良い。   In the present embodiment, the electromagnetic wave source 3 includes, for example, a terahertz wave irradiation device that irradiates terahertz waves, a millimeter wave irradiation device that emits millimeter waves, and a submillimeter wave irradiation device that emits submillimeter waves. Are used properly. That is, since the wavelength of the electromagnetic wave that can be transmitted differs depending on the type of the solid insulator 1 to be inspected, an electromagnetic wave irradiation device that can select the wavelength of the electromagnetic wave that transmits the solid insulator 1 to be inspected and irradiate the electromagnetic wave of that wavelength. use. The use of the electromagnetic wave irradiation device and the selection of the wavelength to be used may be performed manually, or may be automatically performed by inputting the material of the solid insulator 1. However, if there is one electromagnetic wave irradiation device that can irradiate terahertz waves, submillimeter waves, and millimeter waves, the electromagnetic wave irradiation device may be used. Even if one terahertz wave irradiation device cannot cover all the terahertz waves in the wavelength range, a plurality of irradiation devices that irradiate terahertz waves of different wavelengths are used in combination to cover a wide wavelength range as a whole. Anyway. Similarly, even if a single millimeter wave irradiation device cannot cover the entire range of millimeter waves, a plurality of irradiation devices that emit millimeter waves of different wavelengths are used in combination to cover a wide wavelength range as a whole. You may do it. Similarly, even if one submillimeter wave irradiation device cannot cover all the submillimeter waves in the wavelength range, a plurality of irradiation devices that emit submillimeter waves of different wavelengths are used in combination to cover a wide wavelength range as a whole. You may do it. That is, an electromagnetic wave source 3 that can irradiate an electromagnetic wave having a frequency used for detection may be prepared.

固体絶縁体1は、例えば高電圧ケーブルや変電所等の電力設備で使用されるものであり、例えば、CVケーブル(架橋ポリエチレン絶縁ケーブル)の絶縁体(ポリエチレン)、モールド変圧器の巻き線を覆う固体絶縁体(エポキシ)、ポリマーがいしやブッシング(シリコーンゴム)等である。ただし、適用可能な固体絶縁体1はこれに限るものではなく、例えば塩化ビニル絶縁ケーブルの固体絶縁体(塩化ビニル),OFケーブルの油浸紙絶縁体等でも良く、その他でも良い。   The solid insulator 1 is used, for example, in power equipment such as a high-voltage cable or a substation, and covers, for example, an insulator (polyethylene) of a CV cable (crosslinked polyethylene insulating cable) and a winding of a molded transformer. Solid insulator (epoxy), polymer insulator, bushing (silicone rubber) and the like. However, the applicable solid insulator 1 is not limited to this, and may be a solid insulator (vinyl chloride) of a vinyl chloride insulated cable, an oil-impregnated paper insulator of an OF cable, or the like.

固体絶縁体1の材料としては、例えば、ポリエチレン、ポリプロピレン、四フッ化エチレン、エポキシ、シリコーンゴム、アクリル、ポリ塩化ビニル、EPゴム等である。ただし、検査対象となる固体絶縁体1の材料はこれらに限るものではない。テラヘルツ波、サブミリ波やミリ波が透過する固体絶縁体1であれば検査可能である。   Examples of the material of the solid insulator 1 include polyethylene, polypropylene, tetrafluoroethylene, epoxy, silicone rubber, acrylic, polyvinyl chloride, EP rubber, and the like. However, the material of the solid insulator 1 to be inspected is not limited to these. Any solid insulator 1 that transmits terahertz waves, submillimeter waves, and millimeter waves can be inspected.

透過率計測装置4は、例えば分割器7、反射ミラー8、強度計測器9、透過率算出手段10を備えている。電磁波源3から照射された照射波11を分割器7で所定比率pで計測波11aと参照波11bに分割する。計測波11aは固体絶縁体1を透過して強度計測器9に入射する。一方、参照波11bは反射ミラー8によって反射され、固体絶縁体1を迂回して強度計測器9に入射する。強度計測器9の測定結果は透過率算出手段10に供給される。   The transmittance measuring device 4 includes, for example, a divider 7, a reflecting mirror 8, an intensity measuring device 9, and a transmittance calculating means 10. The irradiation wave 11 irradiated from the electromagnetic wave source 3 is divided by the divider 7 into a measurement wave 11a and a reference wave 11b at a predetermined ratio p. The measurement wave 11 a passes through the solid insulator 1 and enters the intensity measuring device 9. On the other hand, the reference wave 11 b is reflected by the reflection mirror 8 and enters the intensity measuring device 9 by bypassing the solid insulator 1. The measurement result of the intensity measuring device 9 is supplied to the transmittance calculating means 10.

二次元走査装置6は、透過波2に垂直な平面内で固体絶縁体1を移動させ、固体絶縁体1の表面に沿って透過波2を二次元的に走査させるもので、例えば固体絶縁体1を支持するホルダーと、当該ホルダーを二次元方向に移動させる駆動装置より構成されている。透過波2の走査位置に関する情報は、検出手段5に供給される。   The two-dimensional scanning device 6 moves the solid insulator 1 in a plane perpendicular to the transmitted wave 2 and scans the transmitted wave 2 two-dimensionally along the surface of the solid insulator 1. 1 is composed of a holder for supporting 1 and a driving device for moving the holder in a two-dimensional direction. Information regarding the scanning position of the transmitted wave 2 is supplied to the detection means 5.

透過率算出手段10と検出手段5は、例えばコンピュータによって実現されている。つまり、少なくとも1つのCPUやMPUなどの中央演算装置と、データの入出力を行うインターフェースと、プログラムやデータを記憶するメモリを備えるコンピュータと所定の制御ないし演算プログラムによって、透過率算出手段10と検出手段5を実現している。即ち、中央演算装置は、メモリに記憶されたOS等の制御プログラム、透過波2と参照波11bの強度に基づいて透過率を算出する手順を規定したプログラム、異常部分1bの透過率の変化と、異常部分1bと正常部分1aとの境界部分1cの透過率の変化に基づいて異常部分1bを検出する手順を規定したプログラム、所要データ等により、透過率算出手段10と検出手段5を実現している。また、コンピュータには、例えばディスプレイやプリンター等の出力装置が接続されている。   The transmittance calculating means 10 and the detecting means 5 are realized by a computer, for example. That is, the transmittance calculating means 10 and the detection are detected by at least one central processing unit such as a CPU or MPU, an interface for inputting / outputting data, a computer having a memory for storing programs and data, and a predetermined control or calculation program. Means 5 is realized. That is, the central processing unit includes a control program such as an OS stored in the memory, a program that defines a procedure for calculating the transmittance based on the intensity of the transmitted wave 2 and the reference wave 11b, and a change in the transmittance of the abnormal portion 1b. The transmittance calculating means 10 and the detecting means 5 are realized by a program that defines the procedure for detecting the abnormal part 1b based on the change in the transmittance of the boundary part 1c between the abnormal part 1b and the normal part 1a, necessary data, etc. ing. Further, an output device such as a display or a printer is connected to the computer.

固体絶縁体1の種類に応じて選択された波長の電磁波が電磁波源3から照射されると、固体絶縁体1を透過した透過波2と固体絶縁体1を迂回した参照波11bが強度計測器9に入射し、計測された強度データが透過率算出手段10に供給される。透過率算出手段10は、例えば、参照波11bの強度Irと分割器7の分割比率pより照射波11の強度I(=Ir/p)を求める。また、照射波11の強度Iと参照波11bの強度Irから計測波11aの強度Iin(=I−Ir)を求め、透過波2の強度をIoutとすると、透過率η=(Iin−Iout)/Iinより固体絶縁体1の透過率を求める。次いで、求めた透過率を二次元走査装置6から供給される透過波2の走査位置と関連させて記憶する。そして、二次元走査装置6によって固体絶縁体1を移動させて照射波11が当たる位置を所定距離(スキャンステップ)だけずらし、上述の手順を繰り返して当該位置における固体絶縁体1の透過率を求める。そして、二次元走査装置6は、例えば図2に示すように、照射波11が固体絶縁体1の表面を二次元的に走査するように固体絶縁体1を順次移動させ、各位置P1,P2,…における固体絶縁体1の透過率を求める。   When an electromagnetic wave having a wavelength selected according to the type of the solid insulator 1 is irradiated from the electromagnetic wave source 3, the transmitted wave 2 that has passed through the solid insulator 1 and the reference wave 11b that bypasses the solid insulator 1 are intensity measuring instruments. 9 and the measured intensity data is supplied to the transmittance calculation means 10. The transmittance calculating means 10 obtains the intensity I (= Ir / p) of the irradiation wave 11 from the intensity Ir of the reference wave 11b and the division ratio p of the divider 7, for example. Further, the intensity Iin (= I−Ir) of the measurement wave 11a is obtained from the intensity I of the irradiation wave 11 and the intensity Ir of the reference wave 11b, and the intensity of the transmitted wave 2 is Iout, the transmittance η = (Iin−Iout). The transmittance of the solid insulator 1 is obtained from / Iin. Next, the obtained transmittance is stored in association with the scanning position of the transmitted wave 2 supplied from the two-dimensional scanning device 6. Then, the solid insulator 1 is moved by the two-dimensional scanning device 6 to shift the position where the irradiation wave 11 hits by a predetermined distance (scan step), and the above procedure is repeated to obtain the transmittance of the solid insulator 1 at the position. . Then, for example, as shown in FIG. 2, the two-dimensional scanning device 6 sequentially moves the solid insulator 1 so that the irradiation wave 11 scans the surface of the solid insulator 1 two-dimensionally, and each position P1, P2 , ..., the transmittance of the solid insulator 1 is obtained.

検出手段5は、透過率の計測結果に基づき、透過率の変化している領域を検出する。例えば、図9〜図12の例では、ポリエチレン部分の透過率が現れた領域12の透過率に比べて空気部分(孔部分)の透過率が現れた領域13の透過率は大きく、境界部分1cの透過率が現れた領域14の透過率は極めて小さい。検出手段5は、各領域12〜14の透過率の変化に基づいて異常があることを検出する。空気部分に対応する領域13と比べ、境界部分1cに対応する領域14では透過率が大きく変化しており、空気部分を強調する結果となっている。このため、空気部分が目立つようになり、空気部分を確実に検出することができる。なお、図11では、透過率の大小を色の濃さで示しており、色の濃い部分ほど透過率が大きいことを示している。   The detecting means 5 detects a region where the transmittance is changing based on the measurement result of the transmittance. For example, in the example of FIGS. 9 to 12, the transmittance of the region 13 where the transmittance of the air portion (hole portion) appears is larger than the transmittance of the region 12 where the transmittance of the polyethylene portion appears, and the boundary portion 1c. The transmittance of the region 14 in which the transmittance of 1 appears is extremely small. The detection means 5 detects that there is an abnormality based on the change in the transmittance of each of the regions 12-14. Compared with the region 13 corresponding to the air portion, the transmittance is greatly changed in the region 14 corresponding to the boundary portion 1c, which results in emphasizing the air portion. For this reason, an air part becomes conspicuous and an air part can be detected reliably. In FIG. 11, the magnitude of the transmissivity is indicated by the color density, and the darker the portion, the greater the transmissivity.

また、本発明では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体1に適用することができ、汎用性及び実用性を高めることができる。   Further, in the present invention, since the electromagnetic wave having a wavelength that passes through the solid insulator 1 is selected and used among terahertz waves, submillimeter waves, and millimeter waves, it can be applied to more solid insulators 1 and is versatile. And the practicality can be enhanced.

特に、大容量(使用電圧の高い)の固体絶縁電力設備を作製、運用するには、固体絶縁体1内部を非破壊、非接触でモニタリングすることが必要である。固体絶縁体1内部の異常は設備製造時に発生し、また設備使用中の経年劣化によっても発生するので、固体絶縁電力設備を使用する上で、本発明は不可欠となる。固体絶縁体1内部の空隙や亀裂等の異常を検出することができる。   In particular, in order to produce and operate a large-capacity (high operating voltage) solid-insulated power facility, it is necessary to monitor the inside of the solid insulator 1 in a non-destructive and non-contact manner. Since the abnormality in the solid insulator 1 occurs during the manufacture of the equipment and also due to aging deterioration during use of the equipment, the present invention is indispensable for using the solid insulated power equipment. Abnormalities such as voids and cracks in the solid insulator 1 can be detected.

次に、本発明の第2の実施形態について説明する。図3に、本発明の固体絶縁体1の異常検出方法とこれを実施する異常検出装置を示す。この異常検出方法は、可視光に対し不透明な固体絶縁体1の内部の異常を検出するもので、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長を選択し、選択した波長の電磁波を固体絶縁体1に照射して、その透過波2の偏波変動を計測し、異常部分1bの誘電率テンソルの変化による偏波面の変化に基づいて異常部分1bを検出するものである。   Next, a second embodiment of the present invention will be described. FIG. 3 shows an abnormality detection method for a solid insulator 1 according to the present invention and an abnormality detection apparatus for carrying out the method. This anomaly detection method detects an anomaly in the solid insulator 1 that is opaque to visible light, and selects and selects the wavelength that passes through the solid insulator 1 among terahertz waves, submillimeter waves, and millimeter waves. The solid insulator 1 is irradiated with a wavelength electromagnetic wave, the polarization fluctuation of the transmitted wave 2 is measured, and the abnormal portion 1b is detected based on the change of the polarization plane due to the change of the dielectric constant tensor of the abnormal portion 1b. is there.

つまり、固体絶縁体1に照射された電磁波は固体絶縁体1を透過する。固体絶縁体1の内部に異常がなければ、誘電率テンソルの変化量は全ての部分でゼロである。一方、固体絶縁体1の内部に例えば電気的ひずみ、機械的ひずみ、温度不均一によるひずみ等の異常がある場合には、光弾性効果、ポッケルス効果、カー効果等によりその異常部分1bで誘電率テンソルが変化する。この変化に基づき異常部分1bを検出する。   That is, the electromagnetic wave irradiated to the solid insulator 1 passes through the solid insulator 1. If there is no abnormality inside the solid insulator 1, the change amount of the dielectric constant tensor is zero in all parts. On the other hand, when there is an abnormality such as electrical strain, mechanical strain, or strain due to temperature non-uniformity in the solid insulator 1, the dielectric constant of the abnormal portion 1b is caused by the photoelastic effect, Pockels effect, Kerr effect, or the like. The tensor changes. Based on this change, the abnormal portion 1b is detected.

図4に基づいてさらに説明すると、いま、参照波11として、例えば縦と横で位相のそろった波即ち位相差0の波を誘電率異方性(直線複屈折)を示す固体絶縁体1に入射させると、固体絶縁体1の直線複屈折によって透過波2に位相差Γが生じる。これは斜め45度の直線偏光(図5)が同じ方向に傾いている楕円偏光(図6)になることに対応している。位相差Γは固体絶縁体1に生じている電界(電気的なひずみ)や応力(機械的なひずみ)等で変化するので、楕円偏光のふくらみ具合を観測することで電界や応力を知ることができる。   Further description will be made based on FIG. 4. Now, as the reference wave 11, for example, a wave having a phase difference between vertical and horizontal, that is, a wave having a phase difference of 0 is applied to the solid insulator 1 exhibiting dielectric anisotropy (linear birefringence). When incident, a phase difference Γ is generated in the transmitted wave 2 due to the linear birefringence of the solid insulator 1. This corresponds to the fact that the linearly polarized light at an oblique angle of 45 degrees (FIG. 5) becomes elliptically polarized light (FIG. 6) tilted in the same direction. Since the phase difference Γ varies depending on the electric field (electrical strain) and stress (mechanical strain) generated in the solid insulator 1, it is possible to know the electric field and stress by observing the swelling of elliptically polarized light. it can.

即ち、電界や応力が作用していない状態の固体絶縁体1に電界や応力が部分的に作用した場合(この場合は異常が発生した部分の誘電率テンソルが電界や応力に応じて変化するため、透過波2の縦と横の波の間の位相差が異常の発生によって0からΓに変化する。すわなち偏波面が変化する。換言すると、正常部分1aの透過波2の縦と横の波の間の位相差が0であり、異常の発生した部分の透過波2の縦と横の波の間の位相差がΓになり、偏波面に違いが生じる。)や、固体絶縁体1に全体的に電界や応力が作用しているときにその一部分の電界や応力が変化した場合(この場合も異常が発生した部分の誘電率テンソルが変化するため、透過波2の縦と横の波の間の位相差が異常の発生によってΓからΓ+αに変化し、偏波面が変化する。換言すると、正常部分1aの透過波2の縦と横の波の間の位相差はΓであり、異常の発生した部分の透過波2の縦と横の波の間の位相差がΓ+αになり、偏波面に違いが生じる。)に、透過波2の縦と横の波の間の位相差の変化に基づいて部分的な電界や応力の発生や変化を検出することができる。これにより、電気的なひずみや機械的なひずみ等の異常の存在や発生を検出することができる。
That is, when an electric field or stress is partially applied to the solid insulator 1 in a state where no electric field or stress is applied (in this case, the dielectric constant tensor of the part where an abnormality has occurred changes according to the electric field or stress). The phase difference between the vertical and horizontal waves of the transmitted wave 2 changes from 0 to Γ due to the occurrence of an abnormality, that is, the polarization plane changes, in other words, the vertical and horizontal directions of the transmitted wave 2 of the normal portion 1a. The phase difference between the vertical and horizontal waves of the transmitted wave 2 in the part where the abnormality has occurred becomes Γ, resulting in a difference in the plane of polarization.) Or a solid insulator When an electric field or stress is applied to 1 as a whole and the electric field or stress of a part thereof changes (in this case, since the dielectric constant tensor of the part where the abnormality has occurred changes, the vertical and horizontal directions of the transmitted wave 2 are changed. The phase difference between the waves changes from Γ to Γ + α due to the occurrence of an abnormality, and the plane of polarization changes. Then, the phase difference between the vertical and horizontal waves of the transmitted wave 2 of the normal part 1a is Γ, and the phase difference between the vertical and horizontal waves of the transmitted wave 2 of the part where the abnormality occurs is Γ + α, The difference in the polarization plane occurs.) On the basis of the change in the phase difference between the longitudinal and transverse waves of the transmitted wave 2, it is possible to detect the occurrence or change of a partial electric field or stress. Thereby, the presence or occurrence of an abnormality such as an electrical strain or a mechanical strain can be detected.

この異常検出方法は、例えば図3に示す異常検出装置によって実施される。なお、この異常検出装置では、検出手段5を備えることで、異常部分1bの検出まで自動的に行うようにしている。この異常検出装置は、可視光に対し不透明な固体絶縁体1の内部の異常を検出するもので、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長の電磁波を固体絶縁体1に照射する電磁波源3と、固体絶縁体1の透過波2の偏波変動を計測する偏波計測装置15と、異常部分1bの誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分1bを検出する検出手段5を備えるものである。また、図1の異常検出装置と同様に、固体絶縁体1を透過波2に対して垂直で互いに直交する方向に移動させる二次元走査装置6を備えている。なお、電磁波源3、固体絶縁体1、二次元走査装置6は、図1の異常検出装置のものと同じであり、それらの説明を省略する。   This abnormality detection method is implemented by, for example, the abnormality detection apparatus shown in FIG. In this abnormality detection apparatus, the detection means 5 is provided so that the detection of the abnormal portion 1b is automatically performed. This anomaly detection device detects an anomaly in the solid insulator 1 that is opaque to visible light. Among the terahertz wave, submillimeter wave, and millimeter wave, an electromagnetic wave having a wavelength that passes through the solid insulator 1 is detected. 1 based on the change of the polarization plane of the transmitted wave due to the change of the dielectric constant tensor of the abnormal portion 1b, the electromagnetic wave source 3 that irradiates 1, the polarization measurement device 15 that measures the polarization fluctuation of the transmitted wave 2 of the solid insulator The detection means 5 which detects the abnormal part 1b is provided. 1 is provided with a two-dimensional scanning device 6 for moving the solid insulator 1 in a direction perpendicular to the transmitted wave 2 and perpendicular to each other. The electromagnetic wave source 3, the solid insulator 1, and the two-dimensional scanning device 6 are the same as those of the abnormality detection device of FIG.

偏波計測装置15は、例えば偏光子16、検光子17、光検出器18を備えている。偏光子16は電磁波源3と固体絶縁体1の間に設けられ、照射波11を例えば斜め45度の直線偏波にする。検光子17は固体絶縁体1と光検出器18の間に設けられ、偏光子16の直線偏波に対して90度傾いた透過波2を通過させる。光検出器18は透過波2を検出し、その信号を検出手段5に供給する。   The polarization measuring device 15 includes, for example, a polarizer 16, an analyzer 17, and a photodetector 18. The polarizer 16 is provided between the electromagnetic wave source 3 and the solid insulator 1 and converts the irradiation wave 11 into, for example, an oblique 45-degree linearly polarized wave. The analyzer 17 is provided between the solid insulator 1 and the photodetector 18 and allows the transmitted wave 2 inclined by 90 degrees with respect to the linear polarization of the polarizer 16 to pass therethrough. The photodetector 18 detects the transmitted wave 2 and supplies the signal to the detection means 5.

検出手段5は、例えばコンピュータによって実現されている。つまり、少なくとも1つのCPUやMPUなどの中央演算装置と、データの入出力を行うインターフェースと、プログラムやデータを記憶するメモリを備えるコンピュータと所定の制御ないし演算プログラムによって、検出手段5を実現している。即ち、中央演算装置は、メモリに記憶されたOS等の制御プログラム、異常部分1bの誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分1bを検出する手順を規定したプログラム、所要データ等により、検出手段5を実現している。また、コンピュータには、例えばディスプレイやプリンター等の出力装置が接続されている。   The detection means 5 is realized by a computer, for example. That is, the detection means 5 is realized by at least one central processing unit such as a CPU or MPU, an interface for inputting / outputting data, a computer having a memory for storing programs and data, and a predetermined control or arithmetic program. Yes. That is, the central processing unit includes a control program such as an OS stored in the memory, a program that defines a procedure for detecting the abnormal portion 1b based on a change in the transmitted wave polarization plane due to a change in the dielectric constant tensor of the abnormal portion 1b, The detection means 5 is realized by data or the like. Further, an output device such as a display or a printer is connected to the computer.

固体絶縁体1の種類に応じて選択された波長の電磁波が電磁波源3から照射されると、この照射波11は偏光子16によって斜め45度の直線偏波に偏波される。固体絶縁体1を透過した透過波2は検光子17に入射する。   When an electromagnetic wave having a wavelength selected according to the type of the solid insulator 1 is irradiated from the electromagnetic wave source 3, the irradiation wave 11 is polarized by the polarizer 16 into a 45-degree oblique linearly polarized wave. The transmitted wave 2 that has passed through the solid insulator 1 enters the analyzer 17.

いま、固体絶縁体1に電気的なひずみや機械的なひずみ等の異常が発生していなければ、照射波11は固体絶縁体1によって偏光されずに、あるいは検光子17を透過する程には偏光されずに固体絶縁体1を透過する。したがって、透過波2は検光子17を透過することができず、光検出器18によって透過波2が検出されることはない。   If no abnormality such as electrical strain or mechanical strain has occurred in the solid insulator 1, the irradiation wave 11 is not polarized by the solid insulator 1 or transmitted to the analyzer 17. The solid insulator 1 is transmitted without being polarized. Therefore, the transmitted wave 2 cannot pass through the analyzer 17 and the transmitted wave 2 is not detected by the photodetector 18.

一方、固体絶縁体1に電気的なひずみや機械的なひずみ等の異常が発生している場合には、固体絶縁体1の誘電率テンソルの変化に応じて決まる誘電率異方性によって透過波2の偏波面が変化する。このため、透過波2は検光子17を透過し、光検出器18によって検出される。検出手段5は光検出器18からの出力によって透過波2の偏波面が変化したことを認識し、二次元走査装置6から供給される透過波2の走査位置と関連させて固体絶縁体1の異常を検出する。そして、二次元走査装置6によって固体絶縁体1を移動させて照射波11が当たる位置を所定距離だけずらし、上述の手順を繰り返して当該位置における偏波面の変化を観測して異常を検出する。そして、二次元走査装置6は、例えば図2に示すように、照射波11が固体絶縁体1の表面を二次元的に走査するように固体絶縁体1を順次移動させ、各位置における固体絶縁体1の誘電率テンソルの変化による透過波偏波面の変化、即ち異常を検出する。   On the other hand, when an abnormality such as an electrical strain or a mechanical strain occurs in the solid insulator 1, a transmitted wave is generated by a dielectric anisotropy determined according to a change in the dielectric constant tensor of the solid insulator 1. 2 polarization plane changes. Therefore, the transmitted wave 2 passes through the analyzer 17 and is detected by the photodetector 18. The detecting means 5 recognizes that the plane of polarization of the transmitted wave 2 has changed due to the output from the light detector 18, and associates the solid insulator 1 with the scanning position of the transmitted wave 2 supplied from the two-dimensional scanning device 6. Detect anomalies. Then, the solid insulator 1 is moved by the two-dimensional scanning device 6 to shift the position where the irradiation wave 11 hits by a predetermined distance, and the above procedure is repeated to observe the change of the polarization plane at the position and detect the abnormality. Then, the two-dimensional scanning device 6 sequentially moves the solid insulator 1 so that the irradiation wave 11 scans the surface of the solid insulator 1 two-dimensionally, as shown in FIG. A change in the polarization plane of the transmitted wave due to a change in the dielectric constant tensor of the body 1, that is, an abnormality is detected.

本発明では、正常部分1aについては透過波2を検出することができず、異常部分1bでのみ透過波2を検出することになるので、異常の有無の判断が容易であり、異常部分1bを確実に検出することができる。なお、異常部分1bで透過波2を検出し、正常部分1aでは透過波2を検出できない構成に代えて、正常部分1aで透過波2を検出し、異常部分1bでは透過波2を検出できない構成にしても良い。   In the present invention, the transmitted wave 2 cannot be detected for the normal portion 1a, and the transmitted wave 2 is detected only for the abnormal portion 1b. Therefore, it is easy to determine whether there is an abnormality. It can be detected reliably. A configuration in which the transmitted wave 2 is detected in the abnormal portion 1b and the transmitted wave 2 cannot be detected in the normal portion 1a, but the transmitted wave 2 cannot be detected in the abnormal portion 1b, instead of the configuration in which the transmitted portion 2 cannot be detected in the normal portion 1a. Anyway.

また、透過波2の検出を二次元走査装置6から供給される透過波2の走査位置と関連させることで、異常の発生位置も検出することができる。ただし、二次元走査装置6を省略しても良い。この場合には、定点観測を行うことになるが、定期的に観測を行うことで、当該位置における異常の発生を検出することができる。異常の発生する位置が予め予測できる場合等に有効である。   Further, by relating the detection of the transmitted wave 2 to the scanning position of the transmitted wave 2 supplied from the two-dimensional scanning device 6, it is possible to detect the position where the abnormality has occurred. However, the two-dimensional scanning device 6 may be omitted. In this case, fixed-point observation is performed, but occurrence of an abnormality at the position can be detected by performing regular observation. This is effective when the position where an abnormality occurs can be predicted in advance.

また、本発明では、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長の電磁波を選択して使用するので、より多くの固体絶縁体1に適用することができ、汎用性及び実用性を高めることができる。   Further, in the present invention, since the electromagnetic wave having a wavelength that passes through the solid insulator 1 is selected and used among terahertz waves, submillimeter waves, and millimeter waves, it can be applied to more solid insulators 1 and is versatile. And the practicality can be enhanced.

特に、大容量(使用電圧の高い)の固体絶縁電力設備を作製、運用するには、固体絶縁体1内部を非破壊、非接触でモニタリングすることが必要である。固体絶縁体1内部の異常は設備製造時に発生し、また設備使用中の経年劣化によっても発生するので、固体絶縁電力設備を使用する上で、本発明は不可欠となる。固体絶縁体1内部の機械的ひずみ、電気的ひずみ、温度不均一によるひずみ等の異常を検出することができる。   In particular, in order to produce and operate a large-capacity (high operating voltage) solid-insulated power facility, it is necessary to monitor the inside of the solid insulator 1 in a non-destructive and non-contact manner. Since the abnormality in the solid insulator 1 occurs during the manufacture of the equipment and also due to aging deterioration during use of the equipment, the present invention is indispensable for using the solid insulated power equipment. Abnormalities such as mechanical strain, electrical strain, and strain due to temperature nonuniformity inside the solid insulator 1 can be detected.

本発明では、例えば固体絶縁体1としてポリエチレンを使用しているCVケーブル、エポキシ使用しているモールド変圧器、シリコーンゴムを使用しているポリマーがいし等を検査の対象とすることができる。ただし、これらの電気設備に限るものではないことは勿論である。   In the present invention, for example, a CV cable using polyethylene as the solid insulator 1, a mold transformer using epoxy, a polymer insulator using silicone rubber, and the like can be examined. However, it is needless to say that the present invention is not limited to these electric facilities.

例えば 図7に、電気設備として例えばモールド変圧器に適用した例を示す。この例では、二次元走査装置6を省略している。電磁波源3と偏光子16を備える発信器19と、検光子17と光検出器18を備える受信器20とを、モールド変圧器21の巻き線22を覆う固体絶縁体1の検査位置23を挟んで対向配置している。検査位置23は、例えば巻き線22部分のエッジ部等、電界や応力の異常集中が起きやすいと考えられる位置である(図7(B))。つまり、発信器19及び受信器20は、例えば固体絶縁体1の異常の起きそうな位置に設置することが好ましい。このようにすることで、モールド変圧器21の固体絶縁体1の異常を検出することができる。観測は、モールド変圧器21の稼働中に定期的に行うことができる。また、モールド変圧器21の停止中に観測を行っても良い。   For example, FIG. 7 shows an example in which the electrical equipment is applied to, for example, a molded transformer. In this example, the two-dimensional scanning device 6 is omitted. The transmitter 19 including the electromagnetic wave source 3 and the polarizer 16 and the receiver 20 including the analyzer 17 and the photodetector 18 are sandwiched between the inspection position 23 of the solid insulator 1 covering the winding 22 of the mold transformer 21. Are arranged opposite each other. The inspection position 23 is a position where an abnormal concentration of electric field or stress is likely to occur, such as an edge portion of the winding 22 (FIG. 7B). That is, it is preferable to install the transmitter 19 and the receiver 20 at a position where the abnormality of the solid insulator 1 is likely to occur, for example. By doing in this way, abnormality of the solid insulator 1 of the mold transformer 21 can be detected. Observation can be performed periodically while the mold transformer 21 is in operation. Further, observation may be performed while the mold transformer 21 is stopped.

現在、液体や気体の絶縁体を使用しない全固体変電所が開発されつつある等、固体絶縁体1の使用要求が高まっている。固体絶縁体1は可視光線に対し不透明なものが多く、この場合には内部の気泡等の異常を目視することができない。また、機械的ひずみ、電気的ひずみ、温度不均一によるひずみ等の異常は、もともと目視によって確認し難い。したがって、可視光に対し不透明な固体絶縁体1の内部の異常を非破壊、非接触で検出できる本発明は、非常に有用である。   Currently, there is an increasing demand for the use of the solid insulator 1, for example, an all-solid substation that does not use a liquid or gas insulator is being developed. The solid insulator 1 is often opaque to visible light, and in this case, abnormalities such as internal bubbles cannot be visually observed. In addition, abnormalities such as mechanical strain, electrical strain, and strain due to temperature nonuniformity are difficult to confirm by visual inspection. Therefore, the present invention that can detect the abnormality inside the solid insulator 1 opaque to visible light in a non-destructive and non-contact manner is very useful.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、固体絶縁体1の異常部分1b及び境界部分1cの透過率の変化に基づいて異常部分1bを検出し(図1)、または固体絶縁体1の異常部分1bの誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分1bを検出していた(図3)が、固体絶縁体1の異常部分1b及び境界部分1cの透過率の変化と、異常部分1bの誘電率テンソルの変化による透過波偏波面の変化の両方に基づいて異常部分1bを検出しても良い。この場合の例を図8に示す。この異常検出方法は、可視光に対して不透明な固体絶縁体1の内部の異常を検出するもので、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長を選択し、選択した波長の電磁波を固体絶縁体1に照射して、その透過波2の透過率と偏波変動を計測し、異常部分1bの透過率の変化と、異常部分1bと正常部分1aとの境界部分1cの透過率の変化と、異常部分1bの誘電率テンソルの変化による偏波面の変化に基づいて異常部分1bを検出するものである。そして、この異常検出方法を実施する異常検出装置は、可視光に対して不透明な固体絶縁体1の内部の異常を検出するものであって、テラヘルツ波、サブミリ波とミリ波のうち固体絶縁体1を透過する波長の電磁波を固体絶縁体1に照射する電磁波源3と、固体絶縁体1の透過波2の透過率を計測する透過率計測装置4と、固体絶縁体1の透過波2の偏波変動を計測する偏波計測装置15と、異常部分1bの透過率の変化と、異常部分1bと正常部分1aとの境界部分1cの透過率の変化と、異常部分1bの誘電率テンソルの変化による透過波偏波面の変化に基づいて異常部分1bを検出する検出手段5を備えるものである。   For example, in the above description, the abnormal part 1b is detected based on the change in the transmittance of the abnormal part 1b and the boundary part 1c of the solid insulator 1 (FIG. 1), or the dielectric constant of the abnormal part 1b of the solid insulator 1 Although the abnormal portion 1b was detected based on the change of the transmitted wave polarization plane due to the change of the tensor (FIG. 3), the change in the transmittance of the abnormal portion 1b and the boundary portion 1c of the solid insulator 1 and the abnormal portion 1b The abnormal portion 1b may be detected based on both the change of the transmitted wave polarization plane due to the change of the dielectric constant tensor. An example of this case is shown in FIG. This anomaly detection method detects an anomaly inside the solid insulator 1 that is opaque to visible light, and selects and selects a wavelength that passes through the solid insulator 1 among terahertz waves, submillimeter waves, and millimeter waves. The solid insulator 1 is irradiated with the electromagnetic wave having the wavelength, and the transmittance and polarization fluctuation of the transmitted wave 2 are measured. The change in the transmittance of the abnormal portion 1b and the boundary portion between the abnormal portion 1b and the normal portion 1a The abnormal portion 1b is detected based on the change in the polarization plane caused by the change in the transmittance 1c and the change in the dielectric constant tensor of the abnormal portion 1b. An abnormality detection apparatus that implements this abnormality detection method detects an abnormality inside the solid insulator 1 that is opaque to visible light, and is a solid insulator of terahertz waves, submillimeter waves, and millimeter waves. An electromagnetic wave source 3 that irradiates the solid insulator 1 with an electromagnetic wave having a wavelength that transmits 1, a transmittance measuring device 4 that measures the transmittance of the transmitted wave 2 of the solid insulator 1, and a transmitted wave 2 of the solid insulator 1 Polarization measuring device 15 that measures polarization fluctuation, change in transmittance of abnormal portion 1b, change in transmittance of boundary portion 1c between abnormal portion 1b and normal portion 1a, and dielectric constant tensor of abnormal portion 1b The detection means 5 which detects the abnormal part 1b based on the change of the transmitted wave polarization plane by a change is provided.

異常検出装置は、例えば分割器24を有しており、電磁波源3から照射された照射波11を透過率計測用波11cと偏波変動計測用波11dに分割する。透過率計測用波11cは図1と同様の透過率計測装置4に供給され、固体絶縁体1の透過率を計測してその結果を検出手段5に出力する。また、偏波変動計測用波11dは図3と同様の偏波計測装置15に供給され、固体絶縁体1の偏波変動を計測してその結果を検出手段5に出力する。これらの計測は二次元走査装置6によって固体絶縁体1を順次移動させながら行われる。   The abnormality detection device has, for example, a divider 24, and divides the irradiation wave 11 irradiated from the electromagnetic wave source 3 into a transmittance measurement wave 11c and a polarization fluctuation measurement wave 11d. The transmittance measuring wave 11 c is supplied to the transmittance measuring device 4 similar to that in FIG. 1, measures the transmittance of the solid insulator 1, and outputs the result to the detecting means 5. Further, the polarization fluctuation measuring wave 11d is supplied to the polarization measuring device 15 similar to that shown in FIG. 3, measures the polarization fluctuation of the solid insulator 1, and outputs the result to the detecting means 5. These measurements are performed while sequentially moving the solid insulator 1 by the two-dimensional scanning device 6.

検出手段5は、透過率計測装置4の出力に基づいて透過率の変化している領域を調べ、透過率の変化に基づいて異常部分1bに対応する領域13と境界部分1cに対応する領域14を判別し、固体絶縁体1の異常部分1bを検出する。これと並行し、検出手段5は偏波計測装置15の出力に基づいて偏波面の変化が相違している領域を識別し、固体絶縁材料の異常部分1bを検出する。つまり、2つの異なる原理に基づいて異常部分1bを検出するので、異常部分1bの検出をより確実にでき、信頼性をより一層向上させることができる。なお、この場合、照射波11を透過率計測用波11cと偏波変動計測用波11dに分割し、固体絶縁材料の透過率と偏波変動を同時に計測していたが、必ずしもこの構成に限るものではなく、透過率と偏波変動を片方ずつ順番に測定しても良い。   The detecting means 5 examines the region where the transmittance is changed based on the output of the transmittance measuring device 4, and based on the change of the transmittance, the region 13 corresponding to the abnormal portion 1b and the region 14 corresponding to the boundary portion 1c. And the abnormal portion 1b of the solid insulator 1 is detected. In parallel with this, the detection means 5 identifies the region where the change of the polarization plane is different based on the output of the polarization measuring device 15, and detects the abnormal portion 1b of the solid insulating material. That is, since the abnormal portion 1b is detected based on two different principles, the abnormal portion 1b can be detected more reliably, and the reliability can be further improved. In this case, the irradiation wave 11 is divided into the transmittance measuring wave 11c and the polarization fluctuation measuring wave 11d, and the transmittance and the polarization fluctuation of the solid insulating material are simultaneously measured. Instead, the transmittance and the polarization fluctuation may be measured one by one in order.

また、上述の説明では、二次元走査装置6を用いて固体絶縁体1を移動させるようにしていたが、必ずしもこの構成に限るものではなく、固体絶縁体1を移動させることに代えて、異常検出装置を移動させるようにしても良い。また、固体絶縁体1と異常検出装置の両方を移動させるようにしても良い。   In the above description, the two-dimensional scanning device 6 is used to move the solid insulator 1, but the configuration is not necessarily limited to this, and instead of moving the solid insulator 1, abnormalities are detected. You may make it move a detection apparatus. Moreover, you may make it move both the solid insulator 1 and an abnormality detection apparatus.

固体絶縁体1のサンプルにテラヘルツ波を照射し、透過率の変化に基づいて気泡を検出する実験を行った。実験に使用する固体絶縁体1のサンプルとして、厚さ5mmのポリエチレン板を使用した。サンプル1には、図9に示すように、直径10mmの孔25と8mmの孔25を8mmの間隔をあけて形成した。照射波11として、周波数1.3THzのテラヘルツ波を使用した。テラヘルツ波を発生させる電磁波源3として後進行波管(BWO管)を使用した。スキャンエリア:37.3mm(X方向)×28.2mm(Y方向)、スキャンステップ:0.54mmとした。   An experiment was performed in which a terahertz wave was irradiated to a sample of the solid insulator 1 and bubbles were detected based on a change in transmittance. A polyethylene plate having a thickness of 5 mm was used as a sample of the solid insulator 1 used in the experiment. In Sample 1, as shown in FIG. 9, holes 25 having a diameter of 10 mm and holes 25 having an diameter of 8 mm were formed with an interval of 8 mm. As the irradiation wave 11, a terahertz wave having a frequency of 1.3 THz was used. A backward traveling wave tube (BWO tube) was used as the electromagnetic wave source 3 for generating the terahertz wave. Scan area: 37.3 mm (X direction) × 28.2 mm (Y direction), scan step: 0.54 mm.

実験の結果を図10〜図12に示す。なお、図10は図9のL−L点線に沿う位置の透過光強度を示している。図10の破線Aは孔25以外の部分の平均的レベルを示している。また、図11では、透過率の大小を色の濃さで示しており、色の濃い部分ほど透過率が高い。なお、図12は図11の透過率の分布を概念的に示している。   The results of the experiment are shown in FIGS. FIG. 10 shows the transmitted light intensity at a position along the LL dotted line in FIG. A broken line A in FIG. 10 indicates an average level of a portion other than the hole 25. Moreover, in FIG. 11, the magnitude of the transmittance is shown by the color density, and the darker the portion, the higher the transmittance. FIG. 12 conceptually shows the transmittance distribution of FIG.

孔25部分(異常部分1b)の透過率がポリエチレン部分(正常部分1a)の透過率よりも大きくなっているほか、孔25の縁(空気とポリエチレンの界面)では透過率が激減し、境界面26が強調されて観測された。この現象は、テラヘルツ波が空気とポリエチレンの境界面26で屈折・散乱することによるものと思われる。実際の固体絶縁体1についても、内部に気泡や亀裂等の異常部分1bが存在する場合には同様の現象が観測されると考えられる。これにより、固体絶縁体1内の気泡や亀裂等の異常部分1bを検出できることを確認できた。   The transmittance of the hole 25 portion (abnormal portion 1b) is larger than that of the polyethylene portion (normal portion 1a), and the transmittance is drastically reduced at the edge of the hole 25 (interface between air and polyethylene). 26 was observed with emphasis. This phenomenon seems to be due to the terahertz wave being refracted and scattered at the interface 26 between air and polyethylene. It is considered that the same phenomenon is observed in the actual solid insulator 1 when an abnormal portion 1b such as a bubble or a crack exists inside. Thereby, it was confirmed that abnormal portions 1b such as bubbles and cracks in the solid insulator 1 could be detected.

固体絶縁体1に生じている機械的な応力を透過波2の、誘電率テンソルの変化による偏波面の変化に基づいて検出する実験を行った。固体絶縁体1のサンプルとして、厚さ5mmのポリエチレン片を使用した。図13に示すように、サンプル1を部分的にクランプ装置27で挟み付けることでサンプル1に部分的な機械的応力を発生させた。なお、図13においてP円は機械的応力付加部分を示している。照射波11として、周波数1THzのテラヘルツ波を使用した。偏光子16を使用して照射波11を斜め45度の直線偏光とし、偏光子16に対して90度傾いた検光子17を使用した。比較のために偏光子16及び検光子17を使用せずに実験を行った。   An experiment was conducted in which mechanical stress generated in the solid insulator 1 was detected based on a change in polarization plane of the transmitted wave 2 due to a change in dielectric constant tensor. As a sample of the solid insulator 1, a polyethylene piece having a thickness of 5 mm was used. As shown in FIG. 13, the sample 1 was partially sandwiched by the clamping device 27 to generate a partial mechanical stress on the sample 1. In FIG. 13, the P circle indicates a mechanical stress application portion. As the irradiation wave 11, a terahertz wave having a frequency of 1 THz was used. The polarizer 16 was used to make the irradiation wave 11 linearly polarized at an angle of 45 degrees, and the analyzer 17 inclined by 90 degrees with respect to the polarizer 16 was used. For comparison, an experiment was performed without using the polarizer 16 and the analyzer 17.

実験の結果を図14に示す。なお、図14中、白色の長方形はサンプル1であり、(A)においてサンプル1の両側にはクランプ装置27の輪郭を白色の線で示している。図14(A)は偏光子16及び検光子17を使用しない場合の結果を、(B)は偏光子16及び検光子17を使用した場合の結果をそれぞれ示している。偏光子16及び検光子17を使用しなかった実験では、サンプル1及びクランプ装置27以外の空気部分ではテラヘルツ波の透過率は大きく、金属部分(クランプ装置27部分)はテラヘルツ波は透過せず、ポリエチレン部分(サンプル1部分)はテラヘルツ波がある程透過することが確認できただけであった(図14(A))。   The result of the experiment is shown in FIG. In FIG. 14, the white rectangle is the sample 1, and the outline of the clamp device 27 is indicated by a white line on both sides of the sample 1 in FIG. FIG. 14A shows the results when the polarizer 16 and the analyzer 17 are not used, and FIG. 14B shows the results when the polarizer 16 and the analyzer 17 are used. In the experiment in which the polarizer 16 and the analyzer 17 were not used, the transmittance of the terahertz wave was large in the air portion other than the sample 1 and the clamp device 27, and the terahertz wave was not transmitted through the metal portion (clamp device 27 portion). It was only confirmed that a polyethylene part (sample 1 part) permeate | transmits so that there was a terahertz wave (FIG. 14 (A)).

これに対し、サンプル1への照射波11を偏光子16によって斜め45度の直線偏光とし、透過波2を90度傾いた方向の検光子17を通して検出すると、応力付加部分だけ透過波2が観測された。これは、サンプル1の応力発生部分以外の部分は照射波11の偏光状態を変化させないため、透過波2は検光子17を透過できないが、サンプル1の応力発生部分は光弾性効果により透過波2が楕円偏波となり、検光子17を透過できる成分が生じたためである。この実験では、サンプル1に生じさせたのは機械的応力(機械的なひずみ)であったが、電気的ひずみ、温度不均一によるひずみ等を生じさせた場合も同様である。これにより、固体絶縁体1内の機械的なひずみ、電気的なひずみ、温度不均一によるひずみ等の異常を検出できることを確認できた。   On the other hand, when the irradiation wave 11 on the sample 1 is linearly polarized at an angle of 45 degrees by the polarizer 16 and the transmitted wave 2 is detected through the analyzer 17 in a direction inclined by 90 degrees, the transmitted wave 2 is observed only at the stressed portion. It was done. This is because the portion other than the stress generation portion of sample 1 does not change the polarization state of irradiation wave 11, and transmitted wave 2 cannot pass through analyzer 17, but the stress generation portion of sample 1 is transmitted wave 2 due to the photoelastic effect. This is because a component that can be transmitted through the analyzer 17 is generated. In this experiment, the mechanical stress (mechanical strain) is generated in the sample 1, but the same applies to the case where electrical strain, strain due to temperature nonuniformity, and the like are generated. Thereby, it was confirmed that abnormalities such as mechanical strain, electrical strain, strain due to temperature nonuniformity, etc. in the solid insulator 1 could be detected.

代表的な固体絶縁体1であるポリエチレンに対するテラヘルツ波の透過特性を調べる実験を行った。実験サンプルとして、厚さ5mmのポリエチレン板を使用した。約0.85〜1.1THz、約1.2〜1.4THzのテラヘルツ波について実験を行った。その結果を図15に示す。その結果、テラヘルツ波はポリエチレンを良好に透過することがわかった。このため、ポリエチレン内の異常をテラヘルツ波を用いて検出できることを確認できた。なお、図15の透過率の振動はエタロン効果によるものである。   An experiment was conducted to examine the transmission characteristics of terahertz waves to polyethylene, which is a typical solid insulator 1. A polyethylene plate having a thickness of 5 mm was used as an experimental sample. Experiments were performed on terahertz waves of about 0.85 to 1.1 THz and about 1.2 to 1.4 THz. The result is shown in FIG. As a result, it was found that terahertz waves transmitted through polyethylene well. For this reason, it has confirmed that abnormality in polyethylene was detectable using a terahertz wave. Note that the transmittance vibration in FIG. 15 is due to the etalon effect.

代表的な固体絶縁体1であるエポキシやシリコーンゴムに対するサブミリ波、ミリ波の透過特性を調べる実験を行った。実験サンプルとして、厚さ5mmのエポキシ板とシリコーンゴム板を使用した。その結果を図16に示す。テラヘルツ波はエポキシやシリコーンゴムをほとんど透過できないが、波長を長く(周波数を低く)すると、つまりサブミリ波帯、ミリ波帯にすると、透過できるようになるのを確認できた。このため、エポキシやシリコーンゴム内の異常をサブミリ波やミリ波を用いて検出できることを確認できた。   Experiments were conducted to examine the transmission characteristics of submillimeter waves and millimeter waves with respect to typical solid insulators 1 such as epoxy and silicone rubber. As an experimental sample, an epoxy plate and a silicone rubber plate having a thickness of 5 mm were used. The result is shown in FIG. Although terahertz waves can hardly pass through epoxy or silicone rubber, it has been confirmed that transmission becomes possible when the wavelength is increased (lower frequency), that is, in the submillimeter wave band and the millimeter wave band. For this reason, it was confirmed that abnormalities in epoxy and silicone rubber could be detected using submillimeter waves and millimeter waves.

ただし、計測分解能(サブミリ波、ミリ波の進行方向に対して垂直な平面内)は波長の長さで決まるので、あまり波長を長くすると分解能が悪化し、高精度の検出には適切でなくなる可能性もある。特に高精度の検出には、透過率と分解能の兼ね合いを考慮して照射波11の波長を選択することが必要である。   However, the measurement resolution (in the plane perpendicular to the traveling direction of the submillimeter wave and millimeter wave) is determined by the length of the wavelength, so if the wavelength is too long, the resolution deteriorates and may not be suitable for high-precision detection. There is also sex. In particular, for highly accurate detection, it is necessary to select the wavelength of the irradiation wave 11 in consideration of the balance between transmittance and resolution.

本発明の固体絶縁体の異常検出装置の第1の実施形態を示すブロック図である。1 is a block diagram illustrating a first embodiment of an abnormality detection device for a solid insulator according to the present invention. 固体絶縁体の二次元走査を説明するための図である。It is a figure for demonstrating the two-dimensional scanning of a solid insulator. 本発明の固体絶縁体の異常検出装置の第2の実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the abnormality detection apparatus of the solid insulator of this invention. 誘電率テンソルに異方性のある固体絶縁体による縦と横の波の間の位相差変化(発生)を説明するための図である。It is a figure for demonstrating the phase difference change (generation | occurrence | production) between the vertical and horizontal waves by the solid insulator which has anisotropy in a dielectric constant tensor. 斜め45度の直線偏光を示す図である。It is a figure which shows 45-degree diagonal linearly polarized light. 斜め45度の楕円偏光を示す図である。It is a figure which shows the elliptically polarized light of diagonal 45 degree | times. 本発明の固体絶縁体の異常検出装置の第3の実施形態を概念的に示し、(A)はその全体図、(B)は(A)のB円部分における透過波に垂直な平面の概念図である。The 3rd Embodiment of the abnormality detection apparatus of the solid insulator of this invention is shown notionally, (A) is the whole figure, (B) is the concept of a plane perpendicular | vertical to the transmitted wave in the B circle part of (A). FIG. 本発明の固体絶縁体の異常検出装置の第4の実施形態を示すブロック図である。It is a block diagram which shows 4th Embodiment of the abnormality detection apparatus of the solid insulator of this invention. 気泡を検出する実験で使用したサンプルの平面図である。It is a top view of the sample used in the experiment which detects a bubble. 気泡を検出する実験の結果を示し、図9のL−L点線に沿う位置の透過光強度を示すグラフである。It is a graph which shows the result of the experiment which detects a bubble and shows the transmitted light intensity of the position along the LL dotted line of FIG. 気泡を検出する実験の結果を示し、透過率の分布を二次元的に示した図である。It is the figure which showed the result of the experiment which detects a bubble and showed distribution of the transmittance | permeability two-dimensionally. 図11の透過率の分布を概念的に示した図である。It is the figure which showed notionally the distribution of the transmittance | permeability of FIG. 機械的応力を検出する実験の様子を示す概略構成図である。It is a schematic block diagram which shows the mode of the experiment which detects a mechanical stress. 機械的応力を検出する実験の結果を示し、(A)は偏光子及び検光子を使用しない場合の透過率の分布を示す図、(B)は偏光子及び検光子を使用した場合の透過率の分布を示す図である。The result of the experiment which detects mechanical stress is shown, (A) is a figure which shows distribution of the transmittance | permeability when not using a polarizer and an analyzer, (B) is the transmittance | permeability when a polarizer and an analyzer are used. FIG. ポリエチレンにテラヘルツ波を照射した場合の周波数と透過率及び吸収係数との関係を示すグラフである。It is a graph which shows the relationship between the frequency at the time of irradiating a terahertz wave to polyethylene, a transmittance | permeability, and an absorption coefficient. エポキシ及びシリコーンゴムにテラヘルツ波、サブミリ波及びミリ波を照射した場合の周波数と透過率及び吸収係数との関係を示すグラフである。It is a graph which shows the relationship between the frequency at the time of irradiating a terahertz wave, a submillimeter wave, and a millimeter wave to an epoxy and silicone rubber, a transmittance | permeability, and an absorption coefficient. 従来のテラヘルツ波を用いた差分イメージング装置の概念図である。It is a conceptual diagram of the difference imaging apparatus using the conventional terahertz wave.

符号の説明Explanation of symbols

1 固体絶縁体
1a 正常部分
1b 異常部分
1c 境界部分
2 透過波
3 電磁波源
4 透過率計測装置
5 検出手段
15 偏波面計測装置
DESCRIPTION OF SYMBOLS 1 Solid insulator 1a Normal part 1b Abnormal part 1c Boundary part 2 Transmitted wave 3 Electromagnetic wave source 4 Transmittance measuring device 5 Detection means 15 Polarization plane measuring device

Claims (6)

可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長を選択し、選択した波長の電磁波を前記固体絶縁体に照射して、透過波の透過率を計測し、異常部分の透過率の変化と、前記異常部分と正常部分との境界部分の透過率の変化に基づいて前記異常部分を検出することを特徴とする固体絶縁体の異常検出方法。   In the abnormality detection method for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, a wavelength that passes through the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves. The solid insulator is irradiated with an electromagnetic wave having a wavelength, and the transmittance of the transmitted wave is measured. Based on the change in the transmittance of the abnormal part and the change in the transmittance of the boundary part between the abnormal part and the normal part, A method for detecting an abnormality of a solid insulator, characterized by detecting an abnormal part. 可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長を選択し、選択した波長の電磁波を前記固体絶縁体に照射して、透過波の偏波変動を計測し、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて前記異常部分を検出することを特徴とする固体絶縁体の異常検出方法。   In the abnormality detection method for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, a wavelength that passes through the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves. The solid insulator is irradiated with an electromagnetic wave having a wavelength, a polarization fluctuation of a transmitted wave is measured, and the abnormal portion is detected based on a change in a polarization plane due to a change in a dielectric constant tensor of the abnormal portion. Abnormality detection method for solid insulators. 可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出方法において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長を選択し、選択した波長の電磁波を前記固体絶縁体に照射して、透過波の透過率と偏波変動を計測し、異常部分の透過率の変化と、前記異常部分と正常部分との境界部分の透過率の変化と、前記異常部分の誘電率テンソルの変化による偏波面の変化に基づいて前記異常部分を検出することを特徴とする固体絶縁体の異常検出方法。   In the abnormality detection method for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, a wavelength that passes through the solid insulator is selected from terahertz waves, submillimeter waves, and millimeter waves. Irradiate the electromagnetic wave of the wavelength to the solid insulator, measure the transmittance and polarization fluctuation of the transmitted wave, change the transmittance of the abnormal part, and change of the transmittance of the boundary part between the abnormal part and the normal part And detecting an abnormal portion based on a change in polarization plane caused by a change in dielectric constant tensor of the abnormal portion. 可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長の電磁波を前記固体絶縁体に照射する電磁波源と、前記固体絶縁体の透過波の透過率を計測する透過率計測装置と、異常部分の透過率の変化と、前記異常部分と正常部分との境界部分の透過率の変化に基づいて前記異常部分を検出する検出手段を備えることを特徴とする固体絶縁体の異常検出装置。   In an abnormality detection apparatus for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, an electromagnetic wave having a wavelength that passes through the solid insulator among terahertz waves, submillimeter waves, and millimeter waves is solid-insulated. An electromagnetic wave source that irradiates the body, a transmittance measuring device that measures the transmittance of the transmitted wave of the solid insulator, a change in the transmittance of the abnormal portion, and a transmittance of the boundary portion between the abnormal portion and the normal portion An apparatus for detecting an abnormality of a solid insulator, comprising detecting means for detecting the abnormal part based on a change. 可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長の電磁波を前記固体絶縁体に照射する電磁波源と、前記固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて前記異常部分を検出する検出手段を備えることを特徴とする固体絶縁体の異常検出装置。   In an abnormality detection apparatus for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, an electromagnetic wave having a wavelength that passes through the solid insulator among terahertz waves, submillimeter waves, and millimeter waves is solid-insulated. An electromagnetic wave source that irradiates the body, a polarization measurement device that measures the polarization fluctuation of the transmitted wave of the solid insulator, and the abnormal part is detected based on a change in polarization plane due to a change in the dielectric constant tensor of the abnormal part An abnormality detection apparatus for a solid insulator comprising a detection means. 可視光に対して不透明な固体絶縁体の内部の異常を検出する固体絶縁体の異常検出装置において、テラヘルツ波、サブミリ波とミリ波のうち前記固体絶縁体を透過する波長の電磁波を前記固体絶縁体に照射する電磁波源と、前記固体絶縁体の透過波の透過率を計測する透過率計測装置と、前記固体絶縁体の透過波の偏波変動を計測する偏波計測装置と、異常部分の透過率の変化と、前記異常部分と正常部分との境界部分の透過率の変化と、異常部分の誘電率テンソルの変化による偏波面の変化に基づいて前記異常部分を検出する検出手段を備えることを特徴とする固体絶縁体の異常検出装置。   In an abnormality detection apparatus for a solid insulator that detects an abnormality inside a solid insulator that is opaque to visible light, an electromagnetic wave having a wavelength that passes through the solid insulator among terahertz waves, submillimeter waves, and millimeter waves is solid-insulated. An electromagnetic wave source for irradiating the body, a transmittance measuring device for measuring the transmittance of the transmitted wave of the solid insulator, a polarization measuring device for measuring the polarization fluctuation of the transmitted wave of the solid insulator, and an abnormal portion Detection means for detecting the abnormal portion based on a change in transmittance, a change in transmittance at a boundary portion between the abnormal portion and the normal portion, and a change in polarization plane due to a change in dielectric constant tensor of the abnormal portion. An abnormality detection device for a solid insulator characterized by the above.
JP2005042826A 2005-02-18 2005-02-18 Anomaly detection method and anomaly detection apparatus for solid insulator Expired - Fee Related JP4614436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042826A JP4614436B2 (en) 2005-02-18 2005-02-18 Anomaly detection method and anomaly detection apparatus for solid insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042826A JP4614436B2 (en) 2005-02-18 2005-02-18 Anomaly detection method and anomaly detection apparatus for solid insulator

Publications (2)

Publication Number Publication Date
JP2006226910A true JP2006226910A (en) 2006-08-31
JP4614436B2 JP4614436B2 (en) 2011-01-19

Family

ID=36988409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042826A Expired - Fee Related JP4614436B2 (en) 2005-02-18 2005-02-18 Anomaly detection method and anomaly detection apparatus for solid insulator

Country Status (1)

Country Link
JP (1) JP4614436B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164475A (en) * 2009-01-16 2010-07-29 Kansai Electric Power Co Inc:The Method and device for diagnosing inside of insulated wire
JP2014134575A (en) * 2013-01-08 2014-07-24 Arkray Inc Terahertz wave generation device and terahertz wave measuring method
JP2021028622A (en) * 2019-08-13 2021-02-25 東京電力ホールディングス株式会社 Diagnostic device and diagnostic method of cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163152A (en) * 1986-12-24 1988-07-06 Hitachi Condenser Co Ltd Method and apparatus for inspecting transparent substrate or translucent substrate
JPH11326238A (en) * 1998-03-16 1999-11-26 Toray Ind Inc Apparatus for detecting defect of sheet and formation for sheet
JP2005043230A (en) * 2003-07-23 2005-02-17 Institute Of Physical & Chemical Research Defect detection method and device of elongate member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163152A (en) * 1986-12-24 1988-07-06 Hitachi Condenser Co Ltd Method and apparatus for inspecting transparent substrate or translucent substrate
JPH11326238A (en) * 1998-03-16 1999-11-26 Toray Ind Inc Apparatus for detecting defect of sheet and formation for sheet
JP2005043230A (en) * 2003-07-23 2005-02-17 Institute Of Physical & Chemical Research Defect detection method and device of elongate member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164475A (en) * 2009-01-16 2010-07-29 Kansai Electric Power Co Inc:The Method and device for diagnosing inside of insulated wire
JP2014134575A (en) * 2013-01-08 2014-07-24 Arkray Inc Terahertz wave generation device and terahertz wave measuring method
US10126631B2 (en) 2013-01-08 2018-11-13 Arkray, Inc. Terahertz wave generator and terahertz wave measurement method
JP2021028622A (en) * 2019-08-13 2021-02-25 東京電力ホールディングス株式会社 Diagnostic device and diagnostic method of cable

Also Published As

Publication number Publication date
JP4614436B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5328319B2 (en) Inspection apparatus and inspection method using terahertz waves
Li et al. Nonintrusive inspection of moisture damp in composited insulation structure based on terahertz technology
US20100108889A1 (en) Method and apparatus for imaging an lcd using terahertz time domain spectroscopy
US20180224383A1 (en) Orientation evaluation device, orientation evaluation method, and distribution evaluation device
KR101739628B1 (en) Apparatus and method for analyzing a semiconductor wafer by using a terahertz wave
Takahashi et al. Observation of damage in insulated copper cables by THz imaging
JP4614436B2 (en) Anomaly detection method and anomaly detection apparatus for solid insulator
Zhang et al. Broadband stepped-frequency modulated continuous terahertz wave tomography for non-destructive inspection of polymer materials
JP2012021880A (en) Method and device for detecting package with terahertz light
US20160146937A1 (en) System and method for remote object sensing
WO2011040350A1 (en) Electromagnetic wave measurement device
JP4712438B2 (en) Gas leak visualization device
JP4944859B2 (en) Particle property measuring device
JP2018054392A (en) Inspection device and inspection method
JP2007017289A (en) Non-destructive inspection system and non-destructive inspection method of fss sandwich panel
KR20160122150A (en) Method and device for determining gas component inside a transparent container
Abdullah et al. Defect detection of the weld bead based on electromagnetic sensing
WO2010131762A1 (en) Housing, housing placement method, and measurement method
CN113720508A (en) Pillar porcelain insulator stress monitoring device and method based on double laser scanning
KR101197970B1 (en) Correction method and device for measuring roughness
Morita et al. A real-time inspection system using a terahertz technique to detect microleak defects in the seal of flexible plastic packages
KR101127796B1 (en) An Glass Substrate Crack Montoring Method and Unit
US20150219440A1 (en) Multi-analysis algorithm using signal sharing and related apparatus
JP2011180044A (en) Device for measurement of beam parallelism
KR20100011133A (en) Apparatus and method for detecting photothermal effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees