JP2006226778A - Ground pressure distribution measuring device of tire - Google Patents

Ground pressure distribution measuring device of tire Download PDF

Info

Publication number
JP2006226778A
JP2006226778A JP2005039475A JP2005039475A JP2006226778A JP 2006226778 A JP2006226778 A JP 2006226778A JP 2005039475 A JP2005039475 A JP 2005039475A JP 2005039475 A JP2005039475 A JP 2005039475A JP 2006226778 A JP2006226778 A JP 2006226778A
Authority
JP
Japan
Prior art keywords
tire
drum
pressure distribution
test tire
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039475A
Other languages
Japanese (ja)
Inventor
Teruhiro Nakatani
彰宏 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2005039475A priority Critical patent/JP2006226778A/en
Publication of JP2006226778A publication Critical patent/JP2006226778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure tire ground pressure distribution under various conditions in high speed rotation or the like. <P>SOLUTION: This measuring device comprises a drum retaining section 15 for retaining a drum 11 rotatably about the axial center P1, and a tire retaining section 17 for supporting a test tire 16 rotatably about the axial center P2 while radially pressing the test tire 16 to the inner peripheral surface 12a (or outer peripheral surface) of a drum body 12. A plurality of micro pressure sensors 25 are buried on the inner peripheral surface 12a side (or outer peripheral surface side) of the drum body 12 with which the test tire 16 comes into contact, and the test tire 16 is rolled on the micro pressure sensors 25 to measure the tire ground pressure distribution at any rotation speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等のタイヤの接地圧分布測定装置に関し、詳しくは、試験タイヤを測定装置の回転ドラムの内周面あるいは外周面に接触させて接地圧力分布を測定するものである。   The present invention relates to a contact pressure distribution measuring apparatus for tires of automobiles and the like, and more specifically, to measure a contact pressure distribution by bringing a test tire into contact with an inner peripheral surface or an outer peripheral surface of a rotating drum of the measuring apparatus.

従来のタイヤの接地圧分布測定方法として、測定装置の台上に圧力マットや圧力センサを配置し、台上で試験タイヤを接地させて接地圧分布を測定する方法と、実路面上に圧力マット等を敷き、その上に実車を通過させて測定する方法がある。   As a conventional method for measuring the contact pressure distribution of a tire, a pressure mat and a pressure sensor are arranged on the table of the measuring device, and the test tire is grounded on the table to measure the contact pressure distribution, and the pressure mat on the actual road surface. There is a method of measuring by passing an actual vehicle on the surface.

前記圧力マットの一例としては、図9に示すように、均一厚みの基体1aの裏面を平坦面1bとし、表面に弾性突起1cを規則的に等分布配置したシート体1が挙げられる(特開平3−226636号参照)。
具体的には、このシート体1を、透明体よりなる接地体2に前記弾性突起1cを当接させて配置し、該シート体1の平坦面1b側からタイヤ3を接地体2に押圧したときの弾性突起1cの変形状態を、接地体2を介して観察し、圧力分布を測定するものである。
As an example of the pressure mat, as shown in FIG. 9, there is a sheet body 1 in which a back surface of a base 1a having a uniform thickness is a flat surface 1b and elastic protrusions 1c are regularly distributed on the surface (Japanese Patent Laid-Open No. Hei. No. 3-226636).
Specifically, the sheet body 1 is disposed with the elastic protrusions 1c in contact with the grounding body 2 made of a transparent body, and the tire 3 is pressed against the grounding body 2 from the flat surface 1b side of the sheet body 1. The deformation state of the elastic protrusion 1c is observed through the grounding body 2 and the pressure distribution is measured.

前記の圧力センサを用いて台上で接地圧分布を測定する方法としては、センサを格子状に配置したフィルム状のセンサーシートを台上に敷き、該シート上で回転体を転動させて測定する方法や、図10に示すように、回転体5を走行させる走行平板6に、圧力センサ8を組み込んだ測定プレート7を取り付け、この圧力センサ8の位置と回転体5の測定点9とが一致するように調整したうえで、回転体5を測定プレート7上に転動させて測定する方法などがある(特開平3−78636号参照)。   As a method of measuring the contact pressure distribution on the table using the pressure sensor, a film-like sensor sheet in which the sensors are arranged in a grid is laid on the table, and the rotating body is rolled on the sheet. As shown in FIG. 10, a measuring plate 7 incorporating a pressure sensor 8 is attached to a traveling flat plate 6 on which the rotating body 5 travels, and the position of the pressure sensor 8 and the measuring point 9 of the rotating body 5 are There is a method of measuring by rotating the rotating body 5 on the measurement plate 7 after adjusting so as to match (refer to Japanese Patent Laid-Open No. 3-78636).

しかしながら、測定装置の台上での測定は、回転体の移動速度を約2km/hの極低速にしか設定できないため、任意の速度、特に高速回転時の接地圧分布を測定することができない。
また、前記実路に埋め込んだセンサ上に実車を走行させて測定する場合も、走行速度は約100km/hが限界であり、100km/h〜300km/hの超高速走行時の測定は不可能である。従って、高速走行時のタイヤデータの取得ができないのみでなく、スタンディングウェーブ現象やハイドロプレーニング現象など、自動車の高速走行時に生じ得る様々な現象の検証ができない点に問題があった。
However, the measurement on the table of the measuring device can set the moving speed of the rotating body only to an extremely low speed of about 2 km / h, and therefore cannot measure the contact pressure distribution at an arbitrary speed, particularly at a high speed.
Also, when measuring by running an actual vehicle on the sensor embedded in the actual road, the traveling speed is limited to about 100 km / h, and it is impossible to measure at ultra high speed from 100 km / h to 300 km / h. It is. Therefore, there is a problem that not only tire data cannot be acquired during high-speed driving, but also various phenomena that can occur during high-speed driving of an automobile such as a standing wave phenomenon and a hydroplaning phenomenon cannot be verified.

特開平3−226636号公報JP-A-3-226636 特開平3−78636号公報JP-A-3-78636

本発明は前記問題に鑑みてなされたもので、高速走行時におけるタイヤの接地圧力分布を、試験測定装置で測定できるようにすることを課題としている。
さらに、濡れた路面走行時、制動時、コーナリング時など、様々な条件下でのタイヤの接地圧分布を高精度に試験測定できるようにすることを課題としている。
The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to measure a tire contact pressure distribution during high-speed running with a test and measurement device.
Another object of the present invention is to make it possible to test and measure the contact pressure distribution of a tire under various conditions such as running on a wet road, braking, and cornering with high accuracy.

前記課題を解決するために、本発明は、 円筒形状で、表面が円滑面とされるドラムと、 前記ドラムを水平方向の軸心周りに回転可能に保持するドラム保持手段と、
前記ドラムの内周面または外周面に対して、試験タイヤの外周面を所要の荷重で接触させながら、該試験タイヤを水平方向の軸心回りに回転可能に支持するタイヤ保持手段と、
前記ドラムおよび/または前記タイヤ保持手段を回転させる回転駆動手段と、
前記試験タイヤが接触する前記ドラムの外周面側または内周面側に、少なくとも同一軸線上に間隔をあけて埋設される複数の超小型の圧力センサを備え、
前記ドラムの内周面または外周面を転動する前記試験タイヤの接地圧力を前記圧力センサで検出して、タイヤの接地圧力分布を計測出来る構成としていることを特徴とするタイヤの接地圧力分布測定装置を提供している。
In order to solve the above problems, the present invention comprises a drum having a cylindrical shape and a smooth surface, and drum holding means for holding the drum so as to be rotatable around a horizontal axis.
Tire holding means for supporting the test tire so as to be rotatable about a horizontal axis while bringing the outer peripheral surface of the test tire into contact with the inner peripheral surface or the outer peripheral surface of the drum with a required load;
Rotation driving means for rotating the drum and / or the tire holding means;
A plurality of ultra-small pressure sensors embedded on the outer peripheral surface side or the inner peripheral surface side of the drum with which the test tire contacts at least on the same axis;
Contact pressure distribution measurement of a tire, wherein the contact pressure distribution of the tire is measured by detecting the contact pressure of the test tire rolling on the inner or outer peripheral surface of the drum with the pressure sensor. The device is provided.

前記した本発明で用いる超小型の圧力センサとは、負荷荷重を検出する露出面の幅が約2mm以下、好ましくは約1mm以下を指す。
前記したように、本発明の測定装置はドラム式とし、ドラムの内周面またはドラムの外周面に超小型圧力センサを埋設し、この超小型の圧力センサ上に試験タイヤを転動させることにより、前記圧力センサでタイヤの接地圧を検出している。
この方法によれば、ドラムあるいは試験タイヤの回転速度を高速とすることで、高速・超高速走行時におけるタイヤの接地圧分布を計測することが可能となる。よって、従来技術のような低速回転では検証できなかったスタンディングウエーブ現象などの諸現象の検証が可能となる。また、速度変化に対応する接地圧の変化を定量的に調べることができるため、タイヤスペックの相違に基づく接地圧の違いなども検証することができる。
The ultra-small pressure sensor used in the present invention described above refers to a width of an exposed surface for detecting a load load of about 2 mm or less, preferably about 1 mm or less.
As described above, the measuring device of the present invention is a drum type, and an ultra-small pressure sensor is embedded in the inner peripheral surface of the drum or the outer peripheral surface of the drum, and a test tire is rolled on the ultra-small pressure sensor. The tire contact pressure is detected by the pressure sensor.
According to this method, by increasing the rotational speed of the drum or the test tire, it is possible to measure the contact pressure distribution of the tire during high-speed / ultra-high speed running. Therefore, it becomes possible to verify various phenomena such as a standing wave phenomenon that could not be verified at low speed rotation as in the prior art. Moreover, since the change in the contact pressure corresponding to the speed change can be quantitatively examined, the difference in the contact pressure based on the difference in tire specifications can be verified.

さらに、実車試験に比べて、速度や進入角度等の条件の正確な調整が可能となるうえ、高速回転時における接地圧分布および接地入りの状態から出るまでの微小時間内における圧分布の変化なども解析可能となる。
このように、タイヤの様々な条件を想定した、精度と有効性の高い多様なタイヤデータを取得できるため、タイヤ性能向上に飛躍的に貢献することができる。
Furthermore, compared to actual vehicle tests, conditions such as speed and entry angle can be adjusted accurately, and the contact pressure distribution during high-speed rotation and changes in the pressure distribution within a very short time before exiting from the contact state, etc. Can also be analyzed.
Thus, since various tire data with high accuracy and effectiveness assuming various conditions of the tire can be acquired, it is possible to make a significant contribution to improving tire performance.

本発明のタイヤ接地圧分布測定装置では、下記のタイプがある。
第一のタイプは、前記回転駆動手段をドラム保持手段に連結して、ドラムを回転駆動させる一方、タイヤ保持部は試験タイヤを回転自在にフリーに保持し、回転駆動させるドラムにタイヤを従回転させるタイプとしている。
第二のタイプは、タイヤ保持部にタイヤを回転駆動させる回転駆動手段を備える一方、ドラムは回転自在にフリーに保持し、タイヤの実回転に対してドラムを従回転させるタイプとしている。
第三のタイプは、タイヤ保持部およびドラムの両方を回転駆動する駆動部を夫々備えるタイプとし、ドラムの回転速度と試験タイヤの回転速度とを変えて、タイヤスリップ時の接地圧を測定できるタイプとしている。
The tire contact pressure distribution measuring device of the present invention includes the following types.
In the first type, the rotation driving means is connected to the drum holding means to rotate the drum, while the tire holding section rotatably holds the test tire freely and rotates the tire on the drum to be rotated. The type to be made.
The second type is a type in which the tire holding portion is provided with a rotation driving means for rotating the tire, while the drum is rotatably held freely and the drum is rotated with respect to the actual rotation of the tire.
The third type is a type that has both a tire holding part and a drive part that rotationally drives both the drum and can measure the contact pressure at the time of tire slip by changing the rotational speed of the drum and the rotational speed of the test tire. It is said.

前記タイプのうち、第一のタイプのドラムを所定の回転速度で回転駆動させる前記回転駆動手段を備え、前記試験タイヤを前記ドラムの回転により従動回転させる構成とすることが好ましい。
即ち、ドラム側を回転させることにより、所要の荷重で接触させた試験タイヤを容易に従動させてドラム表面に沿って回転駆動させることが出来るが、試験タイヤ側を回転駆動させてドラム側を従動させるのは容易ではなく、試験タイヤの回転駆動力を大きく設定しなければならないと共に、ドラム側に対する試験タイヤの接触荷重を大きくし且つ試験タイヤの回転駆動力を大きく設定する必要がある。
It is preferable that the first type drum among the types is provided with the rotation driving means for rotating the drum at a predetermined rotation speed, and the test tire is driven to rotate by rotation of the drum.
In other words, by rotating the drum side, the test tire brought into contact with the required load can be easily driven and driven to rotate along the drum surface, but the test tire side is driven to rotate and the drum side is driven. It is not easy to do so, and the rotational driving force of the test tire must be set large, and the contact load of the test tire on the drum side must be increased and the rotational driving force of the test tire must be set large.

さらに、前記試験タイヤの軸芯を前記ドラムの軸芯と平行あるいは傾斜させる軸芯角度調整手段および/あるいは試験タイヤのドラムに対する負荷荷重調整手段を設けてもよい。
前記軸心角度調整手段により試験タイヤの軸芯をドラム軸芯に対して傾斜させるとタイヤのコーナリング時を想定でき、且つ、其の際、試験タイヤのドラムへの接触荷重を試験タイヤ軸線方向で相違させることにより、コーナリング時におけるタイヤの挙動に正確に近似させることができる。
Furthermore, an axis angle adjusting means for making the axis of the test tire parallel or inclined with respect to the axis of the drum and / or a load load adjusting means for the drum of the test tire may be provided.
When the axis of the test tire is tilted with respect to the drum axis by the axis angle adjusting means, it is possible to assume the cornering of the tire, and in that case, the contact load on the drum of the test tire is measured in the test tire axial direction. By making the difference, it is possible to accurately approximate the behavior of the tire during cornering.

前記ドラムは、円筒形状のドラム本体の一端面が閉鎖されると共に、他端面にタイヤ挿入用開口が設けられ、該開口を通して前記試験タイヤが前記ドラム内部に挿入され、該ドラムの内周面に試験タイヤが所要の荷重で接触されることが好ましい。
このようにインサイドドラム式とすると、ドラム内に薄い水膜を張ることにより、濡れた路面の走行を想定した接地圧分布を測定することができるため、ハイドロプレーニング現象の検証も可能となる。同様に、ドラム内周面を氷結させることにより、氷結路面での接地圧分布も測定可能となる。
The drum is closed at one end of a cylindrical drum body and provided with a tire insertion opening at the other end, and the test tire is inserted into the drum through the opening. The test tire is preferably contacted with the required load.
When the inside drum type is used in this way, a thin water film is stretched in the drum, so that the contact pressure distribution assuming the running on a wet road surface can be measured, so that the hydroplaning phenomenon can be verified. Similarly, by icing the drum inner peripheral surface, the contact pressure distribution on the icing road surface can be measured.

前記ドラムの軸線方向の幅は前記試験タイヤの軸線方向の幅よりも大寸とされ、前記圧力センサは、前記ドラムの全幅にわたって間隔をあけて並設されていることが好ましい。
前記構成とすると、一通過時点におけるタイヤ全幅の接地圧分布を正確に把握することができる。
前記超小型圧力センサは、軸線方向に一列だけでなく、ドラムの周方向に複数列で埋設し、タイヤの接地長さよりも広範囲にセンサを埋設することがより好ましい。これにより、接地面全体の圧分布、さらには、接地形状に対応する接地面全体の圧分布を計測することが可能となり、タイヤ性能を一層詳細に解析することができる。
It is preferable that the width of the drum in the axial direction is larger than the width of the test tire in the axial direction, and the pressure sensors are arranged side by side over the entire width of the drum.
With this configuration, it is possible to accurately grasp the contact pressure distribution of the entire width of the tire at the time of one passage.
More preferably, the micro pressure sensors are embedded not only in a single line in the axial direction but also in a plurality of lines in the circumferential direction of the drum, and the sensors are embedded in a wider range than the ground contact length of the tire. As a result, it is possible to measure the pressure distribution of the entire contact surface, and further, the pressure distribution of the entire contact surface corresponding to the contact shape, and the tire performance can be analyzed in more detail.

隣接する超小型圧力センサ同士の間隔は、センサの幅の半分以上、センサの幅以下とすることが好ましい。これは、センサの幅の半分よりも近接すると、お互いのセンサが干渉してしまい、センサの幅よりも離隔させると、データの精度が低下することに因る。
例えば、圧力センサの幅が0.8mmである場合、センサ間の幅は0.4mm〜0.8mmの範囲で、特に、0.4mmとするとセンサを多数配置でき、より正確な圧力分布を計測できる。
The interval between adjacent micro pressure sensors is preferably not less than half the width of the sensor and not more than the width of the sensor. This is because the sensors interfere with each other when they are closer than half the width of the sensor, and the accuracy of data decreases when they are separated from the width of the sensors.
For example, when the width of the pressure sensor is 0.8 mm, the width between the sensors is in the range of 0.4 mm to 0.8 mm. Especially when the width is 0.4 mm, many sensors can be arranged, and more accurate pressure distribution is measured. it can.

前記超小型圧力センサとしては、市販の光ファイバ超小型圧力センサを好適に用いることができる。
光学式センサである光ファイバ超小型圧力センサは、EMI/RFIの影響をうけず、350℃までの高温領域で安全性に優れ、かつ、接続する計測手段に対して高精度で検知信号を伝達できる等の利点がある。
As the micro pressure sensor, a commercially available optical fiber micro pressure sensor can be suitably used.
Optical fiber ultra-compact pressure sensor, which is an optical sensor, is not affected by EMI / RFI, has excellent safety at high temperatures up to 350 ° C, and transmits detection signals to the connected measuring means with high accuracy. There are advantages such as being able to.

上述のように、本発明によれば、高速走行時や濡れた路面の走行時など、様々な条件を想定した精度の高い多様なタイヤデータを取得、解析することができる。特に、超高速走行時に生じ得るスタンディングウエーブ現象やハイドロプレーニング現象などの諸現象や、タイヤスペックによる現象の違いなども検証できる。その結果、タイヤの設計に寄与でき、タイヤ性能向上に飛躍的に貢献することができる。   As described above, according to the present invention, it is possible to acquire and analyze a variety of tire data with high accuracy assuming various conditions such as when traveling at high speed or traveling on a wet road surface. In particular, it is possible to verify various phenomena such as standing wave phenomenon and hydroplaning phenomenon that can occur during ultra-high speed driving, and differences in phenomena due to tire specifications. As a result, it can contribute to the design of the tire and can greatly contribute to the improvement of the tire performance.

以下、発明の実施形態を図面を参照して説明する。
図1乃至図4は、本発明の第一実施形態に係るインサイドドラム式のタイヤ接地圧分布測定装置10を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show an inside drum type tire ground pressure distribution measuring apparatus 10 according to a first embodiment of the present invention.

前記測定装置10は、円筒形状のドラム11と、該ドラム11を水平方向の軸芯P1周りに回転可能に保持するドラム保持手段15と、該ドラム保持手段15に付設した回転駆動装置18と、ドラム11の内周面に対して試験タイヤ16の外周面を所要の荷重で接触させながら試験タイヤ16を水平方向の軸芯P2回りに回転可能に支持する試験タイヤ保持手段(以下、タイヤ保持手段と略称する)17とを備えている。該タイヤ保持手段17には回転駆動装置は設けられておらず、試験タイヤ16は回転駆動されるドラム11に従動回転される構成としている。   The measuring device 10 includes a cylindrical drum 11, a drum holding means 15 that rotatably holds the drum 11 around a horizontal axis P1, a rotation driving device 18 attached to the drum holding means 15, Test tire holding means (hereinafter referred to as tire holding means) that supports the test tire 16 so as to be rotatable about the horizontal axis P2 while bringing the outer peripheral surface of the test tire 16 into contact with the inner peripheral surface of the drum 11 with a required load. 17). The tire holding means 17 is not provided with a rotational drive device, and the test tire 16 is configured to be driven and rotated by the drum 11 that is rotationally driven.

前記ドラム11は鋼製で、内周面が平滑面とされたドラム本体12と、該ドラム本体12の一端面を閉鎖する円板形状の背面壁13を備え、他端面は開口14とし、該開口14の周縁に沿って内鍔部14aを設けている。
前記ドラム保持手段15は、ドラム11の背面壁13の背後に装備され、基台50上に軸受51を介して回転自在に支承した支持ロッド52の先端を背面壁13に固定して、ドラム11を支持している。支持ロッド52の他端は基台50に搭載した回転駆動手段のモータ18の出力軸に連結し、モータ18の回転速度を調節することによりドラム11の回転速度も調節可としている。
The drum 11 is made of steel, and includes a drum main body 12 having a smooth inner peripheral surface, a disk-shaped back wall 13 that closes one end surface of the drum main body 12, and an opening 14 on the other end surface. An inner flange portion 14 a is provided along the periphery of the opening 14.
The drum holding means 15 is provided behind the back wall 13 of the drum 11, and the tip of a support rod 52 that is rotatably supported on a base 50 via a bearing 51 is fixed to the back wall 13. Support. The other end of the support rod 52 is connected to the output shaft of the motor 18 of the rotational drive means mounted on the base 50, and the rotational speed of the drum 11 can be adjusted by adjusting the rotational speed of the motor 18.

前記タイヤ保持手段17は、ドラム本体12の開口側に装備し、基台19上に矢印で示す前後方向にスライド可能に立設された支持脚20と、該支持脚20に昇降用シリンダ40を介して取り付けた支持アーム21と、該支持アーム21の下側に水平方向に連結されたタイヤ支持軸22とを備えている。該タイヤ支持軸22で、垂直方向に配置する試験タイヤ16を支承し、試験タイヤ16をドラム本体12の内部に垂直方向に回転自在に配置している。該試験タイヤ16をドラム本体12の内周面12aに圧接させ、負荷する荷重は前記昇降用シリンダ40により支持アーム21を上下移動させて調節している。試験タイヤ16はホイールリムをつけて所要の空気圧を充填したタイヤを用い、ホイールリムの軸穴に前記支持軸22を挿入している。   The tire holding means 17 is provided on the opening side of the drum body 12, and is provided with a support leg 20 slidably provided on the base 19 so as to be slidable in the front-rear direction indicated by arrows, and a lifting cylinder 40 is provided on the support leg 20. And a tire support shaft 22 connected to the lower side of the support arm 21 in the horizontal direction. The tire support shaft 22 supports the test tire 16 arranged in the vertical direction, and the test tire 16 is arranged in the drum body 12 so as to be rotatable in the vertical direction. The test tire 16 is brought into pressure contact with the inner peripheral surface 12a of the drum body 12, and the load to be applied is adjusted by moving the support arm 21 up and down by the lifting cylinder 40. The test tire 16 is a tire with a wheel rim and filled with a required air pressure, and the support shaft 22 is inserted into a shaft hole of the wheel rim.

図2に示すように、ドラム本体12の軸芯P1方向の幅W1は、試験タイヤ16の軸芯P2方向の幅W2よりも大寸としている。このドラム本体12の内周面12a側には、前記幅W1の全幅にわたって、多数の超小型の圧力センサ25を間隔L1をあけて軸芯P1方向に直線上に埋設するとともに、ドラム本体12の周方向にも所要長さL2にわたって間隔L1をあけて複数列埋設している。   As shown in FIG. 2, the width W1 of the drum body 12 in the direction of the axis P1 is larger than the width W2 of the test tire 16 in the direction of the axis P2. On the inner peripheral surface 12a side of the drum body 12, a large number of ultra-small pressure sensors 25 are embedded in a straight line in the direction of the axis P1 with an interval L1 over the entire width W1. Also in the circumferential direction, a plurality of rows are embedded at intervals L1 over the required length L2.

本実施形態では、超小型の圧力センサ25として、図3に示す光ファイバ超小型センサを使用している。各圧力センサ25はケーブル27の先端に接続されている。図4に示すように、センサ25は、直方体形状で、ドラム本体12の内周面に露出させる接触面25aは正方形とし、ドラム本体12内への埋込部分25bを長くしている。
本実施形態では露出面は0.8mm四方の正方形状で、深さを10mmとしている。
In the present embodiment, the optical fiber microminiature sensor shown in FIG. 3 is used as the microminiature pressure sensor 25. Each pressure sensor 25 is connected to the tip of a cable 27. As shown in FIG. 4, the sensor 25 has a rectangular parallelepiped shape, the contact surface 25 a exposed to the inner peripheral surface of the drum body 12 is a square, and the embedded portion 25 b in the drum body 12 is elongated.
In this embodiment, the exposed surface has a square shape of 0.8 mm square and a depth of 10 mm.

詳細には、ドラム本体12の厚み方向に複数のケーブル穴22を貫通して設け、各ケーブル穴22に各圧力センサ25に接続したケーブル27を挿通し、全てのケーブル27をドラム本体12の外周側に導出して、センサからの検知信号により接地圧分布を計測する計測装置100に接続している。
圧力センサ25は、接触面25aをドラム本体12の内周面12aの表面と連続した平面を構成するように配置している。このように配置される圧力センサ25の周囲は、ドラム本体12に予め形成しておいた凹部12bに充填した樹脂23で固着している。
Specifically, a plurality of cable holes 22 are provided in the thickness direction of the drum body 12, cables 27 connected to the pressure sensors 25 are inserted into the cable holes 22, and all the cables 27 are connected to the outer periphery of the drum body 12. Derived to the side and connected to the measuring device 100 that measures the ground pressure distribution by the detection signal from the sensor.
The pressure sensor 25 is arranged so that the contact surface 25 a forms a flat surface that is continuous with the surface of the inner peripheral surface 12 a of the drum body 12. The periphery of the pressure sensor 25 arranged in this way is fixed by a resin 23 filled in a recess 12b formed in advance in the drum body 12.

埋設される圧力センサ25同士の間隔L1は、本実施形態では0.5mmとしている。また、圧力センサ25の埋設領域のドラム周方向の長さL2は、試験タイヤ16の接地長さよりも長寸に設定している。
前記ケーブル27は圧力センサ25からの検知信号を受信し、この検知信号により試験タイヤの接地圧力分布を計測する計測手段(コンピュータ)55を備え、かつ、該計測手段55に計測結果表示手段56を付設している。
The interval L1 between the embedded pressure sensors 25 is 0.5 mm in this embodiment. Further, the length L2 in the drum circumferential direction of the embedded region of the pressure sensor 25 is set to be longer than the contact length of the test tire 16.
The cable 27 is provided with a measuring means (computer) 55 that receives a detection signal from the pressure sensor 25 and measures the contact pressure distribution of the test tire based on the detection signal, and the measurement means 55 includes a measurement result display means 56. It is attached.

前記構成よりなるタイヤ接地圧分布測定装置10において、試験タイヤの接地圧分布を計測する際、まず、試験タイヤ16をタイヤ保持手段17で保持してドラム11の開口14を通してドラム内部に挿入する。ついで、試験タイヤ16を昇降用シリンダ40により所要の荷重でタイヤ本体12の内周面に接触させる。
この状態でモータ18を所要の回転速度で回転駆動し、ドラム11を回転させる。
ドラム11の回転により、内周面に弾性接触させた試験タイヤ16は、逆回転方向に従動し、ドラム11の回転速度と試験タイヤ16との回転速度は比例関係となる。したがって、ドラム11を高速回転すると、試験タイヤ16も高速回転し、路面上を高速走行する状態を想定できる。
When measuring the contact pressure distribution of the test tire in the tire contact pressure distribution measuring apparatus 10 having the above configuration, first, the test tire 16 is held by the tire holding means 17 and inserted into the drum through the opening 14 of the drum 11. Next, the test tire 16 is brought into contact with the inner peripheral surface of the tire body 12 with a required load by the lifting cylinder 40.
In this state, the motor 18 is rotationally driven at a required rotational speed to rotate the drum 11.
The test tire 16 elastically brought into contact with the inner peripheral surface by the rotation of the drum 11 follows the reverse rotation direction, and the rotation speed of the drum 11 and the rotation speed of the test tire 16 are in a proportional relationship. Therefore, when the drum 11 is rotated at a high speed, the test tire 16 is also rotated at a high speed, and a state of traveling at a high speed on the road surface can be assumed.

このように、試験タイヤ16を任意の速度で回転させながら、圧力センサ25によって接地圧分布を高精度に測定することができる。即ち、圧力センサ25は負荷される荷重で電気抵抗が変化し、計測手段55で圧力分布と大きさとを計測することができる。
従って、高速回転時や超高速回転時におけるタイヤ接地圧分布も測定することが可能であるため、スタンディングウエーブ現象などの諸現象を検証することができる。
Thus, the contact pressure distribution can be measured with high accuracy by the pressure sensor 25 while rotating the test tire 16 at an arbitrary speed. In other words, the electrical resistance of the pressure sensor 25 changes with the load applied, and the pressure distribution and magnitude can be measured by the measuring means 55.
Accordingly, it is possible to measure the tire contact pressure distribution during high-speed rotation or ultra-high-speed rotation, and thus various phenomena such as a standing wave phenomenon can be verified.

特に、本実施形態では、超小型の圧力センサ25の接触面25aを試験タイヤ16の接地面全体に接触するように広範囲に埋設しているため、詳細なデータ解析が可能となる。
また、隣接する接触面25aの間隔L1を、接触面25aの幅0.8mm以下で且つ幅半分0.4mm以上の0.5mmに設定しているため、圧力センサ部25同士が干渉することがなく、かつ、密に配置しているため、データの精度も高レベルに保つことができる。
In particular, in this embodiment, since the contact surface 25a of the ultra-compact pressure sensor 25 is embedded in a wide range so as to contact the entire ground contact surface of the test tire 16, detailed data analysis is possible.
Further, since the interval L1 between the adjacent contact surfaces 25a is set to 0.5 mm which is not more than the width 0.8 mm of the contact surface 25a and the width is not less than 0.4 mm, the pressure sensor portions 25 may interfere with each other. In addition, since the data is arranged densely, the data accuracy can be maintained at a high level.

さらに、ドラム11には、背面壁13と内鍔部14aが設けられているため、該ドラム11内部に水を溜めて薄い水膜を作ることができる。よって、濡れた路面の高速走行時における接地圧分布を測定でき、ハイドロプレーニング現象についても検証することができる。さらに、ドラム11の内周面に氷結部を設けておくと、氷結部におけるタイヤの接地圧分布も測定できる。   Further, since the drum 11 is provided with the back wall 13 and the inner flange portion 14a, water can be accumulated in the drum 11 to form a thin water film. Therefore, it is possible to measure the contact pressure distribution during high-speed traveling on a wet road surface, and to verify the hydroplaning phenomenon. Furthermore, if an icing part is provided on the inner peripheral surface of the drum 11, the contact pressure distribution of the tire at the icing part can also be measured.

図5および図6は、本発明の第2実施形態に係るドラム式のタイヤ接地圧分布測定装置30を示している。   5 and 6 show a drum-type tire contact pressure distribution measuring apparatus 30 according to a second embodiment of the present invention.

このドラム式のタイヤ接地圧分布測定装置30は、表面が平滑な円筒形状のドラム31を軸心P3回りに回転可能に保持するドラム保持部35と、試験タイヤ36を軸心P4回りに回転自在に保持するタイヤ保持部37とを備えており、ドラム31の外周面31aに接触するように試験タイヤ36を転動させて接地圧分布を測定するものである。   The drum-type tire contact pressure distribution measuring device 30 includes a drum holding portion 35 that holds a cylindrical drum 31 having a smooth surface rotatably around an axis P3, and a test tire 36 that is rotatable around an axis P4. And a tire holding portion 37 for holding the tire, and the contact pressure distribution is measured by rolling the test tire 36 so as to be in contact with the outer peripheral surface 31 a of the drum 31.

詳しくは、前記ドラム保持部35には、ドラム31の回転速度制御手段を備えた回転駆動装置38が装備されているが、タイヤ保持部37には回転駆動装置は設けられておらず、試験タイヤ36はドラム31の回転に従動回転される。   Specifically, the drum holder 35 is equipped with a rotation drive device 38 having a rotation speed control means for the drum 31, but the tire holder 37 is not provided with a rotation drive device, and the test tire 36 is rotated by the rotation of the drum 31.

前記タイヤ保持部37は、試験タイヤ36をドラム31の外周面31aに対して接触・離反方向に昇降させるシリンダ40’を介して基台39に支承している。前記シリンダ40’により、ドラム31の外周面31aに試験タイヤ36を半径方向より押圧接触させて負荷をかけるとともに、負荷する荷重を調整可能としている。   The tire holding portion 37 is supported on the base 39 via a cylinder 40 ′ that raises and lowers the test tire 36 in the contact / separation direction with respect to the outer peripheral surface 31 a of the drum 31. The cylinder 40 'allows the test tire 36 to be pressed and brought into contact with the outer peripheral surface 31a of the drum 31 in the radial direction to apply a load, and the load to be applied can be adjusted.

図6にも示すように、前記ドラム31の軸心P3方向の幅W3は、試験タイヤ36の軸心P4方向の幅W4よりも大寸としている。このドラム31の外周面31a側には、前記幅W3の全幅にわたって、多数の超小型の圧力センサ25を軸心P3方向に一列に埋設している。この超小型の圧力センサ25は、前記第1実施形態の圧力センサ25と同一のものであるため、同一符号を付して説明を省略する。   As shown in FIG. 6, the width W3 of the drum 31 in the direction of the axis P3 is larger than the width W4 of the test tire 36 in the direction of the axis P4. On the outer peripheral surface 31a side of the drum 31, a large number of ultra-small pressure sensors 25 are embedded in a line in the direction of the axis P3 over the entire width W3. Since this ultra-small pressure sensor 25 is the same as the pressure sensor 25 of the first embodiment, the same reference numerals are given and description thereof is omitted.

具体的には、圧力センサ25の接触面25aをドラム31の外周面31a側に、該外周面31aが平坦になるように露出させながら、0.5mm間隔をあけて一列に埋設している。このように配置された圧力センサ25の周囲は、ドラム31に予め形成しておいた凹部31bに充填した樹脂43で固めている。各圧力センサ25のケーブル27はドラム31の内周側に導出し、図示しないデータ読取装置に接続している。   Specifically, the contact surface 25a of the pressure sensor 25 is embedded on the outer peripheral surface 31a side of the drum 31 in a row at intervals of 0.5 mm while being exposed so that the outer peripheral surface 31a is flat. The periphery of the pressure sensor 25 arranged in this manner is hardened with a resin 43 filled in a recess 31b formed in advance in the drum 31. The cable 27 of each pressure sensor 25 is led out to the inner peripheral side of the drum 31 and connected to a data reading device (not shown).

本実施形態においては、超小型圧力センサ25をドラム31の幅W3方向に一列にのみ配置しているが、ドラム31は試験タイヤ36よりも広幅であるため、一通過時点におけるタイヤ全幅の接地圧分布を正確に測定することができる。   In the present embodiment, the micro pressure sensors 25 are arranged only in a row in the width W3 direction of the drum 31. However, since the drum 31 is wider than the test tire 36, the contact pressure of the entire width of the tire at the time of one pass. The distribution can be measured accurately.

図7は第3実施形態を示し、第1実施形態との相違点は、タイヤ保持手段17側に試験タイヤ16を任意の回転速度で回転駆動させる駆動手段を付設している点である。他の構成は同様とし、ドラム11を回転駆動するモータを備えている。
即ち、支持アーム21にモータ60を付設し、該モータ60により支持軸22を所要の回転速度で回転駆動している。
このように、ドラム11と試験タイヤ16の両方を回転駆動させると共に、回転速度を相違させることにより、タイヤのスリップ状態とすることができ、該スリップ時における]タイヤの接地圧力分布も測定することができる。
FIG. 7 shows the third embodiment, which is different from the first embodiment in that drive means for rotating the test tire 16 at an arbitrary rotational speed is provided on the tire holding means 17 side. Other configurations are the same, and a motor for rotating the drum 11 is provided.
That is, a motor 60 is attached to the support arm 21, and the support shaft 22 is rotationally driven by the motor 60 at a required rotational speed.
Thus, by rotating both the drum 11 and the test tire 16 and making the rotation speed different, the tire can be slipped, and the contact pressure distribution of the tire at the time of the slip is also measured. Can do.

図8は第4実施形態を示し、第1実施形態との相違点は、タイヤの軸線をドラムの軸線に対して水平方向で傾斜させて、試験タイヤをドラムに接触させることができる軸線角度調整手段を設け、タイヤが直線状に進行するのではなく進行方向に対して傾き、スリップ角度を有する状態での接地圧力分布を測定できるようにしている。
詳細には、支持アーム21から上下狭持板部21a、21bを突設し、これら狭持板部21aの間に支持軸22の基端側に挿入し、上下狭持板部21a、21bの間に支持軸22を挟んだ状態でピン49で支承している。該ピン49は支持軸22に固定すると共に、上下狭持板部21a,21bに回転自在に通し、ピン49の一端に設けた回転操作板49aを回転操作することによりピン49を介して支持軸22を回転させ、該支持軸22で保持する試験タイヤ16を回転させて、その軸線P5をドラム11の軸線P6と任意の角度で傾斜できるようにしている。
このように、試験タイヤの軸線をドラム11の軸線に対して傾斜させ、スリップ角度を調整することにより、コーナリング時におけるタイヤの接地圧力分布が測定できる。
FIG. 8 shows the fourth embodiment. The difference from the first embodiment is that the axis of the tire is inclined in the horizontal direction with respect to the axis of the drum so that the test tire can be brought into contact with the drum. Means are provided to measure the ground pressure distribution in a state where the tire does not travel linearly but is inclined with respect to the traveling direction and has a slip angle.
Specifically, the upper and lower sandwiching plate portions 21a and 21b are projected from the support arm 21, inserted between the sandwiching plate portions 21a on the proximal end side of the support shaft 22, and the upper and lower sandwiching plate portions 21a and 21b. It is supported by a pin 49 with the support shaft 22 sandwiched therebetween. The pin 49 is fixed to the support shaft 22 and is rotatably passed through the upper and lower sandwiching plate portions 21a and 21b. By rotating the rotation operation plate 49a provided at one end of the pin 49, the support shaft is interposed via the pin 49. 22, the test tire 16 held by the support shaft 22 is rotated so that the axis P5 can be inclined with respect to the axis P6 of the drum 11 at an arbitrary angle.
In this way, the tire contact pressure distribution during cornering can be measured by inclining the axis of the test tire with respect to the axis of the drum 11 and adjusting the slip angle.

さらに、前記軸線角度調整手段で、水平方向に配置されているタイヤの軸線とドラムの軸線に対して、タイヤの軸線を垂直方向で傾斜させると、試験タイヤをドラムに対してキャンバー角度を調整しながら接地圧力分布を測定することができる。
また、スリップ角度とキャンバー角度を同時に調整しながら接地圧力分布の測定をすることもできる。
Further, when the tire axis is tilted in the vertical direction with respect to the tire axis and the drum axis arranged in the horizontal direction by the axis angle adjusting means, the camber angle of the test tire with respect to the drum is adjusted. The ground pressure distribution can be measured.
It is also possible to measure the ground pressure distribution while simultaneously adjusting the slip angle and the camber angle.

本発明の第一実施形態に係るタイヤ接地圧分布測定装置の正面図である。1 is a front view of a tire ground pressure distribution measuring apparatus according to a first embodiment of the present invention. 図1に示すタイヤ接地圧分布測定装置の要部概略斜視図である。It is a principal part schematic perspective view of the tire ground-pressure distribution measuring apparatus shown in FIG. 図2に示す超小型圧力センサの平面図である。It is a top view of the microminiature pressure sensor shown in FIG. 図2に示すドラム本体の要部拡大斜視図である。FIG. 3 is an enlarged perspective view of a main part of the drum body shown in FIG. 2. 本発明の第二実施形態に係るタイヤ接地圧分布測定装置の平面図である。It is a top view of the tire ground pressure distribution measuring apparatus concerning a second embodiment of the present invention. 図5に示すタイヤ接地圧分布測定装置の要部概略斜視図である。It is a principal part schematic perspective view of the tire ground-pressure distribution measuring apparatus shown in FIG. 第3実施形態を示す要部拡大正面図である。It is a principal part enlarged front view which shows 3rd Embodiment. (A)は第4実施形態を示す要部拡大正面図、(B)は(A)の断面図である。(A) is a principal part enlarged front view which shows 4th Embodiment, (B) is sectional drawing of (A). 従来例を示す図である。It is a figure which shows a prior art example. 他の従来例の図である。It is a figure of another prior art example.

符号の説明Explanation of symbols

10、30 タイヤ接地圧分布測定装置
11、31 ドラム
12 ドラム本体
15、35 ドラム保持部
16、36 試験タイヤ
17、37 タイヤ保持部
25 超小型の圧力センサ
25a 接触面
10, 30 Tire contact pressure distribution measuring device 11, 31 Drum 12 Drum body 15, 35 Drum holder 16, 36 Test tire 17, 37 Tire holder 25 Ultra-compact pressure sensor 25a Contact surface

Claims (8)

円筒形状で、表面が円滑面とされるドラムと、
前記ドラムを水平方向の軸心周りに回転可能に保持するドラム保持手段と、
前記ドラムの内周面または外周面に対して、試験タイヤの外周面を所要の荷重で接触させながら前記試験タイヤを水平方向の軸心回りに回転可能に支持するタイヤ保持手段と、
前記ドラムおよび/または前記タイヤ保持手段を回転させる回転駆動手段と、
前記試験タイヤが接触する前記ドラムの外周面側または内周面側に、少なくとも同一軸線上に間隔をあけて埋設される複数の超小型の圧力センサを備え、
前記ドラムの内周面または外周面を転動する前記試験タイヤの接地圧力を前記圧力センサで検出して、タイヤの接地圧力分布を計測出来る構成としていることを特徴とするタイヤの接地圧力分布測定装置。
A drum having a cylindrical shape and a smooth surface;
Drum holding means for holding the drum rotatably about a horizontal axis;
Tire holding means for supporting the test tire rotatably around an axis in the horizontal direction while contacting the outer peripheral surface of the test tire with a required load with respect to the inner peripheral surface or the outer peripheral surface of the drum;
Rotation driving means for rotating the drum and / or the tire holding means;
A plurality of ultra-small pressure sensors embedded on the outer peripheral surface side or the inner peripheral surface side of the drum with which the test tire contacts at least on the same axis;
Contact pressure distribution measurement of a tire, wherein the contact pressure distribution of the tire is measured by detecting the contact pressure of the test tire rolling on the inner or outer peripheral surface of the drum with the pressure sensor. apparatus.
前記ドラム保持手段は所定の回転速度で回転駆動させる前記回転駆動手段を備え、前記試験タイヤを前記ドラムの回転により従動回転させる構成としている請求項1に記載のタイヤの接地圧力分布測定装置。   The tire ground contact pressure distribution measuring device according to claim 1, wherein the drum holding means includes the rotation driving means for rotating the drum at a predetermined rotation speed, and the test tire is driven to rotate by rotation of the drum. 前記試験タイヤのドラムに対する負荷荷重調整手段を備えている請求項1または請求項2に記載のタイヤの接地圧力分布測定装置。   The tire contact pressure distribution measuring device according to claim 1, further comprising a load load adjusting unit for a drum of the test tire. 前記試験タイヤの軸線を前記ドラムの軸線と平行あるいは傾斜させる軸線角度調整手段を備えている請求項1乃至請求項3のいずれか1項に記載のタイヤの接地圧力分布測定装置。   The tire ground contact pressure distribution measuring device according to any one of claims 1 to 3, further comprising: an axis angle adjusting means for making the axis of the test tire parallel or inclined with respect to the axis of the drum. 前記ドラムは、円筒形状のドラム本体の一端面が閉鎖されると共に、他端面にタイヤ挿入用開口が設けられ、該開口を通して前記試験タイヤが前記ドラム内部に挿入され、該ドラムの内周面に試験タイヤが所要の荷重で接触される構成としている請求項1乃至請求項4のいずれか1項に記載のタイヤの接地圧力分布測定装置。   The drum is closed at one end of a cylindrical drum body and provided with a tire insertion opening at the other end, and the test tire is inserted into the drum through the opening. The tire ground contact pressure distribution measuring device according to any one of claims 1 to 4, wherein the test tire is configured to contact with a required load. 前記ドラムの軸線方向の幅は前記試験タイヤの軸線方向の幅よりも大寸とされ、前記圧力センサは、前記ドラムの全幅にわたって間隔をあけて並設されている請求項1乃至請求項5のいずれか1項に記載のタイヤの接地圧分布測定装置。   The width of the drum in the axial direction is larger than the width of the test tire in the axial direction, and the pressure sensors are arranged side by side across the entire width of the drum. The tire contact pressure distribution measuring device according to any one of the preceding claims. 隣接配置する前記圧力センサの間隔は、センサの幅の半分以上で且つセンサの幅以下とされている請求項6に記載のタイヤの接地圧分布測定装置。   The tire contact pressure distribution measuring apparatus according to claim 6, wherein an interval between the adjacent pressure sensors is not less than half of the sensor width and not more than the sensor width. 前記圧力センサは光ファイバ超小型圧力センサである請求項1乃至請求項7のいずれか1項に記載のタイヤの接地圧分布測定装置。   The tire pressure contact pressure distribution measuring device according to any one of claims 1 to 7, wherein the pressure sensor is an optical fiber microminiature pressure sensor.
JP2005039475A 2005-02-16 2005-02-16 Ground pressure distribution measuring device of tire Pending JP2006226778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039475A JP2006226778A (en) 2005-02-16 2005-02-16 Ground pressure distribution measuring device of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039475A JP2006226778A (en) 2005-02-16 2005-02-16 Ground pressure distribution measuring device of tire

Publications (1)

Publication Number Publication Date
JP2006226778A true JP2006226778A (en) 2006-08-31

Family

ID=36988291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039475A Pending JP2006226778A (en) 2005-02-16 2005-02-16 Ground pressure distribution measuring device of tire

Country Status (1)

Country Link
JP (1) JP2006226778A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire
JP2010078416A (en) * 2008-09-25 2010-04-08 Bridgestone Corp Method for measuring frictional energy in ground contact section of tire
JP2010216888A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber testing machine
WO2011118667A1 (en) * 2010-03-26 2011-09-29 株式会社ブリヂストン Measurement method and measurement device for ground properties of tyre
CN102445300A (en) * 2011-10-09 2012-05-09 北京化工大学 Dynamic grounding pressure test device
WO2012176359A1 (en) * 2011-06-23 2012-12-27 株式会社ブリヂストン Tire testing device
CN103323266A (en) * 2013-06-25 2013-09-25 华南理工大学 Testing device for simulating wheel pressurization
WO2014013688A1 (en) * 2012-07-20 2014-01-23 株式会社ブリヂストン Tire contact properties measurement method and measurement device
JP2014145785A (en) * 2014-05-07 2014-08-14 Bridgestone Corp Measuring method and measuring device of grounding characteristics of tire
JP2014181958A (en) * 2013-03-18 2014-09-29 Toyo Tire & Rubber Co Ltd Wet road surface measuring apparatus, measuring method, and test road surface
JP2017090234A (en) * 2015-11-10 2017-05-25 住友ゴム工業株式会社 Tire ground plane stress measurement method
CN106840711A (en) * 2017-02-27 2017-06-13 三角轮胎股份有限公司 Eight station tire high speed durability-testing machines
EP3301424A2 (en) 2016-09-29 2018-04-04 Subaru Corporation Load distribution measuring device for vehicles
EP3217161A4 (en) * 2015-10-01 2018-09-19 A & D Company, Limited Tire testing device
CN110160809A (en) * 2019-06-14 2019-08-23 青岛科技大学 The indoor wet and slippery performance test methods of tire
JP2019203717A (en) * 2018-05-21 2019-11-28 住友ゴム工業株式会社 Tire ground plane stress measurement device
WO2020121575A1 (en) * 2018-12-10 2020-06-18 株式会社ブリヂストン Vehicle action simulation method and vehicle action simulation system
CN112033624A (en) * 2020-09-23 2020-12-04 赛轮集团股份有限公司 Device for measuring ground pressure distribution of tire in coating state
WO2021070410A1 (en) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ Tire testing device
CN113670492A (en) * 2021-08-19 2021-11-19 西安电子工程研究所 Bearing clamping force detection device for arc tooth type position marker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107128A (en) * 1987-10-20 1989-04-25 Agency Of Ind Science & Technol Indoor test of snow tire
JPH02176438A (en) * 1988-12-28 1990-07-09 Toyota Central Res & Dev Lab Inc Force detecting apparatus
JPH03226636A (en) * 1990-02-01 1991-10-07 Sumitomo Rubber Ind Ltd Measuring apparatus for ground-contacting shape and grounding pressure of tire and sheet body for measuring grounding pressure of tire
US5641900A (en) * 1994-06-09 1997-06-24 Pirelli Coordinamento Pneumatici S.P.A. Device for analysis of tire ground contact pressure
JPH11142265A (en) * 1997-11-07 1999-05-28 Mitsubishi Heavy Ind Ltd Instrument for measuring load of tire contact area
JPH11326142A (en) * 1998-05-21 1999-11-26 Sumitomo Rubber Ind Ltd Tire testing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107128A (en) * 1987-10-20 1989-04-25 Agency Of Ind Science & Technol Indoor test of snow tire
JPH02176438A (en) * 1988-12-28 1990-07-09 Toyota Central Res & Dev Lab Inc Force detecting apparatus
JPH03226636A (en) * 1990-02-01 1991-10-07 Sumitomo Rubber Ind Ltd Measuring apparatus for ground-contacting shape and grounding pressure of tire and sheet body for measuring grounding pressure of tire
US5641900A (en) * 1994-06-09 1997-06-24 Pirelli Coordinamento Pneumatici S.P.A. Device for analysis of tire ground contact pressure
JPH11142265A (en) * 1997-11-07 1999-05-28 Mitsubishi Heavy Ind Ltd Instrument for measuring load of tire contact area
JPH11326142A (en) * 1998-05-21 1999-11-26 Sumitomo Rubber Ind Ltd Tire testing device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire
JP2010078416A (en) * 2008-09-25 2010-04-08 Bridgestone Corp Method for measuring frictional energy in ground contact section of tire
JP2010216888A (en) * 2009-03-13 2010-09-30 Bridgestone Corp Rubber testing machine
WO2011118667A1 (en) * 2010-03-26 2011-09-29 株式会社ブリヂストン Measurement method and measurement device for ground properties of tyre
JP2011203207A (en) * 2010-03-26 2011-10-13 Bridgestone Corp Measuring method and measuring device of grounding characteristic of tire
JPWO2012176359A1 (en) * 2011-06-23 2015-02-23 株式会社ブリヂストン Tire testing equipment
WO2012176359A1 (en) * 2011-06-23 2012-12-27 株式会社ブリヂストン Tire testing device
US9329104B2 (en) 2011-06-23 2016-05-03 Bridgestone Corporation Tire testing device
CN102445300A (en) * 2011-10-09 2012-05-09 北京化工大学 Dynamic grounding pressure test device
WO2014013688A1 (en) * 2012-07-20 2014-01-23 株式会社ブリヂストン Tire contact properties measurement method and measurement device
JP2014021012A (en) * 2012-07-20 2014-02-03 Bridgestone Corp Method and device for measuring tire grounding properties
CN104471367A (en) * 2012-07-20 2015-03-25 株式会社普利司通 Tire contact properties measurement method and measurement device
US10048171B2 (en) 2012-07-20 2018-08-14 Bridgestone Corporation Method and apparatus for measuring tire ground contact properties
JP2014181958A (en) * 2013-03-18 2014-09-29 Toyo Tire & Rubber Co Ltd Wet road surface measuring apparatus, measuring method, and test road surface
CN103323266A (en) * 2013-06-25 2013-09-25 华南理工大学 Testing device for simulating wheel pressurization
JP2014145785A (en) * 2014-05-07 2014-08-14 Bridgestone Corp Measuring method and measuring device of grounding characteristics of tire
EP3217161A4 (en) * 2015-10-01 2018-09-19 A & D Company, Limited Tire testing device
JP2017090234A (en) * 2015-11-10 2017-05-25 住友ゴム工業株式会社 Tire ground plane stress measurement method
EP3301424A2 (en) 2016-09-29 2018-04-04 Subaru Corporation Load distribution measuring device for vehicles
CN106840711A (en) * 2017-02-27 2017-06-13 三角轮胎股份有限公司 Eight station tire high speed durability-testing machines
CN106840711B (en) * 2017-02-27 2023-04-18 三角轮胎股份有限公司 Eight-station high-speed endurance testing machine for tire
JP7035799B2 (en) 2018-05-21 2022-03-15 住友ゴム工業株式会社 Tire tread stress measuring device
JP2019203717A (en) * 2018-05-21 2019-11-28 住友ゴム工業株式会社 Tire ground plane stress measurement device
JP7060495B2 (en) 2018-12-10 2022-04-26 株式会社ブリヂストン Vehicle motion simulation method and vehicle motion simulation system
JP2020094823A (en) * 2018-12-10 2020-06-18 株式会社ブリヂストン Vehicle operation simulation method and vehicle operation simulation system
WO2020121575A1 (en) * 2018-12-10 2020-06-18 株式会社ブリヂストン Vehicle action simulation method and vehicle action simulation system
US11879809B2 (en) 2018-12-10 2024-01-23 Bridgestone Corporation Vehicle action simulation method and vehicle action simulation system
CN110160809A (en) * 2019-06-14 2019-08-23 青岛科技大学 The indoor wet and slippery performance test methods of tire
WO2021070410A1 (en) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ Tire testing device
JP6912686B1 (en) * 2019-10-08 2021-08-04 株式会社エー・アンド・デイ Tire test equipment
CN112033624A (en) * 2020-09-23 2020-12-04 赛轮集团股份有限公司 Device for measuring ground pressure distribution of tire in coating state
CN112033624B (en) * 2020-09-23 2022-09-27 赛轮集团股份有限公司 Device for measuring ground pressure distribution of tire in coating state
CN113670492A (en) * 2021-08-19 2021-11-19 西安电子工程研究所 Bearing clamping force detection device for arc tooth type position marker

Similar Documents

Publication Publication Date Title
JP2006226778A (en) Ground pressure distribution measuring device of tire
EP2876423B1 (en) Method and apparatus for measuring tire ground contact properties
EP2787337B1 (en) Traveling test apparatus for vehicle
US7392693B2 (en) Test stand for motor vehicles
US6546791B2 (en) Indoor hydroplaning test apparatus and method
CN104111176A (en) Automotive shop service apparatus having means for determining the rolling resistance coefficient of a tyre
JP6966198B2 (en) Vehicle test equipment, vehicle test methods and programs for vehicle test equipment
WO2011118667A1 (en) Measurement method and measurement device for ground properties of tyre
JP2007003218A (en) Tire characteristic measuring device and tire characteristics measuring method
JPH06129954A (en) Drum testing device
JPH10160437A (en) Method and device for judging external shape of tire
KR20090046181A (en) Contact area measurement apparatus of traveling tire
CN108572085B (en) tire wear measuring device
JPH10160453A (en) Method and device for judging external shape of tire
JP2006329831A (en) Testing device for wheel with vehicular tire
JP6042844B2 (en) Method and apparatus for measuring tire ground contact characteristics
KR100716226B1 (en) A apparatus for measuring friction energy of contact area between tire bead and wheel flange
JP4832456B2 (en) Optical non-contact velocimeter calibration apparatus, optical non-contact velocimeter attitude setting machine used in the calibration apparatus, and optical non-contact velocimeter calibration method using the calibration apparatus
JP2013104809A (en) Test method of tire
KR101891889B1 (en) Portable Measurement Apparatus for Tire Bead Slip
KR101829436B1 (en) Test apparatus for measurement of dynamic spring rate of high speed rotating tire
KR100411797B1 (en) Contact Pressure Measuring Apparatus of Tire Bead
KR20210136446A (en) Indoor test machine for performance evaluation of tire
JP2005321311A (en) Tire running test method and apparatus
JP2023092236A (en) Measuring device and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412