JPH01107128A - Indoor test of snow tire - Google Patents

Indoor test of snow tire

Info

Publication number
JPH01107128A
JPH01107128A JP62264252A JP26425287A JPH01107128A JP H01107128 A JPH01107128 A JP H01107128A JP 62264252 A JP62264252 A JP 62264252A JP 26425287 A JP26425287 A JP 26425287A JP H01107128 A JPH01107128 A JP H01107128A
Authority
JP
Japan
Prior art keywords
tire
drum
road surface
slip angle
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264252A
Other languages
Japanese (ja)
Other versions
JPH045935B2 (en
Inventor
Kenichi Shimizu
健一 清水
Tadashi Iketani
池谷 忠司
Yutaka Arai
豊 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62264252A priority Critical patent/JPH01107128A/en
Publication of JPH01107128A publication Critical patent/JPH01107128A/en
Publication of JPH045935B2 publication Critical patent/JPH045935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To perform the testing of a snow tire as tested on a simulated real road by a method, wherein a signal proportional to the real travel distance is output while a tire is run on an endless road simulator. CONSTITUTION:A tire support 4 is held by a linear bearing guide which is arranged in a direction parallel to the rotation axis of a drum 1, so that the whole body of the support 4 can be transported horizontally along the guide within the effective width of a simulated testing road 2 by a horizontal drive motor 8. A slip angle setting motor 9 provided on the support 4 adjusts the slip angle of a tire 5 by the rotation via a speed reducer 10. The tire 5 is connected via a power transmission device 11 to a dynamometer for tire 12, and the rotation axis of the drum 1 is connected to an encoder 13, which outputs signals proportional to the travel distance of the tire 5, and a dynamometer for drum 14. The slip angle of the tire 5 can be controlled by external signals or the like by driving the motor 9. On the other hand, a force generated on the tire is measured by a six-component force measuring device 6 with respect to the three-axial directions of the tire and a torque around the axis, separately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、雪氷路用タイヤの室内試験法に関するもので
あり、特に、タイヤの氷上性能試験やスパイクタイヤ等
による舗装路面の損傷度評価試験等を実施する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an indoor testing method for tires for snowy and icy roads, and in particular, a test for the performance of tires on ice and a test for evaluating the degree of damage to paved roads caused by spiked tires, etc. It is related to the method of implementing the above.

L従来の技術] タイヤの氷上性能試験は、従来、野外での火事実験によ
って行われているが、(1)氷の状態、温度等の均一化
が難しい、(2)制動トルクやスリップ比を制御した実
験ができないので、全制動試験や登板試験が中心になら
ざるを得ない、(3)試験の繰返し精度が確保できない
等の問題がある。また、摩擦係数測定用の試験車を用い
る場合も、上記(1)(3)の欠点は避けられない。
Conventional technology] Tire on-ice performance tests have traditionally been conducted using outdoor fire experiments; however, (1) it is difficult to equalize the ice condition, temperature, etc.; Since it is not possible to conduct controlled experiments, there are problems such as the necessity to focus on full braking tests and pitching tests, and (3) the inability to ensure test repeatability. Also, when using a test vehicle for measuring the coefficient of friction, the drawbacks of (1) and (3) above are unavoidable.

一方、ドラムやターンテーブル上で氷上性能試験を行う
ことも可能であるが、走行に供する路面長が短いため、
同−路面上を短周期で繰返し走行することになり、路面
を形成する氷の温度が1昇したり、圧力融解により氷が
部分的に融けてしまうという問題がある。また、舗装路
面の損傷試験時には、路面温度の上昇によって試験が不
可能になることもある。
On the other hand, it is possible to perform on-ice performance tests on drums or turntables, but because the length of the road surface used for driving is short,
As the vehicle repeatedly travels on the same road surface in short cycles, there are problems in that the temperature of the ice that forms the road surface rises by 1 or that the ice partially melts due to pressure melting. Furthermore, when testing damage to a paved road surface, the test may become impossible due to an increase in road surface temperature.

〔発明が解決しようとする問題点] 本発明の目的は、ドラム式タイヤ試験機等の走行に供す
る路面長が短い室内用の試験機を用いて、短周期での繰
返し走行による路面温度の」二昇を抑制しながら、繰返
し精度が確保できるタイヤの氷上性能試験や路面の損傷
度評価試験を実施する方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to measure the road surface temperature by repeated running in short cycles using an indoor testing machine with a short road surface length for running, such as a drum-type tire testing machine. It is an object of the present invention to provide a method for conducting a tire on-ice performance test and a road surface damage evaluation test that can ensure repeatability while suppressing second rise.

[問題点を解決するための手段及び作用]上記目的を達
成するため、本発明の雪氷路用タイヤの室内試験法は、
繰返し走行する無端路面を有し、タイヤのステアリング
角と横変位とを制御可能にしたタイヤ試験機において、
上記無端路面上におけるタイヤの走行に伴って走行距離
に比例した信号を出力させ、その走行距離に比例してタ
イヤの操舵角と横変位を同期制御することにより、タイ
ヤを、サイドフォースが発生しない状態で、路面中の全
体にわたりスラローム状に走行させることを特徴とする
ものである。
[Means and effects for solving the problems] In order to achieve the above object, the indoor testing method for tires for snowy and icy roads of the present invention is as follows:
In a tire testing machine that has an endless road surface that can be repeatedly traveled on, it is possible to control the steering angle and lateral displacement of the tire.
By outputting a signal proportional to the distance traveled by the tire as the tire travels on the endless road surface, and synchronously controlling the steering angle and lateral displacement of the tire in proportion to the distance traveled, the tire does not generate side force. The vehicle is characterized by running in a slalom-like manner over the entire road surface.

さらに具体的に説明すると、本発明に基づくタイヤの氷
上性能試験や路面の損傷度評価試験においては、ドラム
式あるいはターンテーブル式等、同一路面を繰返し使用
するタイヤ試験機が使用される。このタイヤ試験機は、
タイヤのステアリング角(スリップ角〕と横変位が外部
から制御可能であることが必要であり、また路面の走行
距離に比例した信号が得られることが必要である。
More specifically, in the ice performance test of the tire and the road surface damage evaluation test based on the present invention, a tire testing machine that repeatedly uses the same road surface, such as a drum type or a turntable type, is used. This tire testing machine is
It is necessary that the steering angle (slip angle) and lateral displacement of the tire can be controlled from the outside, and it is also necessary that a signal proportional to the distance traveled on the road surface can be obtained.

そして、走行距離に比例してタイヤの操舵角と横変位を
同期して制御し、タイヤにサイドフォースが発生しない
ようにしてスラローム状の走行を行わせる。これにより
、同一箇所の走行頻度を小さくし、路面を一様に使用し
て温度上昇を防止することができる。
Then, the steering angle and lateral displacement of the tires are synchronously controlled in proportion to the traveling distance, and the tires are driven in a slalom manner without generating side force. This makes it possible to reduce the frequency of driving at the same location, use the road surface uniformly, and prevent temperature rise.

なお、上記のサイドフォースが発生しない状態において
、操舵角に一定の舵角を加えることにより、実質的なス
リップ角を付榮した実験を行うことちり能である。
In addition, it is possible to conduct an experiment in which a substantial slip angle is created by adding a constant steering angle to the steering angle in a state where the above-mentioned side force is not generated.

このような試験法は、氷結面とだいや間での摩擦力発生
メカニズムの把握や、スパイクタイヤによる乾燥路面損
傷のメカニズムの把握等に際して極めて有効に利用でき
るものである。
Such testing methods can be extremely effectively used to understand the mechanism of frictional force generation between icy surfaces and tires, and the mechanism of damage to dry road surfaces caused by spiked tires.

[実施例] 7II11図は、木発男によるタイヤ試験に使用するの
に適したインサイドドラム型のタイヤ試験機の一例を示
している。このタイヤ試験機は、内面を供試用走路2と
して、水平軸の渕りに回転可能に支持させたドラムlを
備え、そのドラムlの内面に、多数のアスファルト会セ
グメントを貼り付けることにより、スパイクタイヤによ
る路面損傷の模擬を可能にし、またドラム1の開口部の
内縁につば3を突設することにより、内周に溜めた水を
凍結させて、内周面に氷結路面を形成可能にしたもので
ある。従って、このタイヤ試験機の主要部分は、その雰
囲気を一り0℃〜外気温の範囲で任意に設定可能にした
プレハブ方式の冷凍室内に設置される。
[Example] Figure 7II11 shows an example of an inside drum type tire testing machine suitable for use in tire testing by Kibatsu. This tire testing machine is equipped with a drum l rotatably supported on the edge of a horizontal axis with the inner surface serving as a test track 2, and a large number of asphalt segments are pasted on the inner surface of the drum l to create spikes. It is possible to simulate road surface damage caused by tires, and by protruding the collar 3 from the inner edge of the opening of the drum 1, it is possible to freeze water accumulated on the inner periphery and form an icy road surface on the inner periphery. It is something. Therefore, the main parts of this tire testing machine are installed in a prefabricated freezing chamber whose atmosphere can be arbitrarily set within the range of 0° C. to outside temperature.

タイヤ支持台4に支持させた供試タイヤ5は。The test tire 5 was supported on the tire support stand 4.

図示しない空気圧シリンダによりドラム内面に対して水
平方向に押し付ける方式を採り、その接地荷重はL配字
気圧シリンダへの空気圧力により調整++(能にしてい
る。この供試タイヤ5は、6分力計6を介して懸架系7
により支持させ、支持腕によってキャスタ角及びキャン
4角を調整可能に取付けている。特に、その懸架系7に
おいては、スパイクタイヤの試験で問題になると考えら
れる懸架系のコンプライアンスを実車に近づけるために
、ダブルウィツシュボーン型の懸架系と空気ばねを設け
ている。
A method is adopted in which the drum is pressed horizontally against the inner surface of the drum by a pneumatic cylinder (not shown), and the ground load is adjusted by the air pressure applied to the L-shaped pneumatic cylinder. Suspension system 7 via total 6
The caster angle and the four can angles can be adjusted using support arms. In particular, the suspension system 7 is equipped with a double wishbone type suspension system and an air spring in order to bring the compliance of the suspension system closer to that of an actual vehicle, which is considered to be a problem in spiked tire tests.

上記タイヤ支持台4は、ドラムlの回転軸線と平行する
方向に向けて配設した図示しない直線ベアリングガイド
によって支持させ、そのタイヤ支持台4の全体を横送り
モータ8により上記ガイドに添って供試用走路2の有効
幅内で横送り可能に可能にしている。また、タイヤ支持
台4上に設けたスリップ角設定用モータ9は、その回転
により減速機lOを介して供試タイヤ5のスリップ角を
調整するものである。ざらに、上記供試タイヤ5には効
力伝達機構11を介してタイヤ用動力計12を連結し、
一方、ドラム1の回転軸には、タイヤの走行距離に比例
した信号を出力するエンコーグ13及びドラム用動力計
14を接続している。
The tire support stand 4 is supported by a linear bearing guide (not shown) disposed in a direction parallel to the rotational axis of the drum l, and the entire tire support stand 4 is moved along the guide by a transverse feed motor 8. Traverse feed is possible within the effective width of the trial track 2. Further, the slip angle setting motor 9 provided on the tire support base 4 adjusts the slip angle of the test tire 5 by its rotation via the reduction gear IO. Roughly, a tire dynamometer 12 is connected to the test tire 5 via an effect transmission mechanism 11,
On the other hand, an encoder 13 and a drum dynamometer 14 are connected to the rotating shaft of the drum 1, which output a signal proportional to the distance traveled by the tire.

L記タイヤ試験機において、供試タイヤ5のスリップ角
は外部信号または操作盤内のプログラマブル・コントロ
ーラによってスリップ角設定用モータ9を駆動すること
により制御可能なものである。また、タイヤに発生する
力は、圧電素子を利用した6分力計6によって、タイヤ
の三軸方向の力(接地荷重、けん引力、サイドフォース
)と、これらの軸の廻りのトルク(セルファライニング
トルク、ころがり抵抗モーメント、オーバーターニング
モーメント)に分離して測定される。
In the L tire testing machine, the slip angle of the test tire 5 can be controlled by driving the slip angle setting motor 9 using an external signal or a programmable controller in the operation panel. In addition, the force generated in the tire is measured by a six-component force meter 6 using a piezoelectric element, which calculates the force in the three axes of the tire (ground load, traction force, side force) and the torque around these axes (self-aligning force). Torque, rolling resistance moment, overturning moment) are measured separately.

ドラムは、室外に設けた直流動力計14によって、定速
度、定トルク、走行抵抗制御の3種の制御が可能である
。また、供試タイヤ軸の動力の制御は、動力計12を低
温の室内に設けなければならず、直流動力計では結露に
よるブラシのトラブルが発生する危険が高いため、AC
サーボモータを採用して、定トルク、定速度制御を67
能にしている。
The drum can be controlled in three ways: constant speed, constant torque, and running resistance control using a DC dynamometer 14 installed outdoors. In addition, to control the power of the test tire shaft, the dynamometer 12 must be installed in a low-temperature room, and with a DC dynamometer, there is a high risk of problems with the brushes due to condensation.
Adopts a servo motor for constant torque and constant speed control.
It is made into Noh.

上記構成を有する室内タイヤ試験機を用いた場合、供試
路面が無端であるため、その路面上を直線的にスパイク
タイヤが走行すると、たちまちスパイクのトラックに対
応する路面が線状に破損してしまい、スパイクによる効
果が発揮できなくなる。タイヤが短いくり返し周期で供
試路面の同一・地点を走行することによるこの不都合は
、スパイクのないタイヤでも生じる。第2図は、タイヤ
を横移動させない状態で、2kNの輪荷重でサイドフォ
ースが30ON発生するようにスリップ角を付与した時
の供試路面表面の温度変化を示すものである。この状態
で、タイヤの表面温度は3℃〜4°C上昇し、これにと
もなって路面の温度も上昇するが、これは路面がタイヤ
から受けた熱を放出しないうちにタイヤが繰返し走行す
るために生じるものと考えられる。なお、測定した路面
の表面温度が単調に上昇していないのは、室内の温度制
御を冷凍機のオン−オフによって行っているためである
When using an indoor tire testing machine with the above configuration, the test road surface is endless, so when a spiked tire runs on the road surface in a straight line, the road surface corresponding to the track of the spikes is immediately damaged in a linear manner. This will prevent the spike from being effective. This inconvenience caused by tires repeatedly running over the same point on the test road surface occurs even with tires without spikes. FIG. 2 shows the temperature change on the test road surface when a slip angle is given so that a side force of 30 ON is generated with a wheel load of 2 kN without the tire being moved laterally. In this state, the surface temperature of the tire increases by 3°C to 4°C, and the temperature of the road surface increases accordingly, but this is because the tire runs repeatedly before the road surface releases the heat received from the tire. This is thought to occur in the following cases. The reason why the measured road surface temperature does not rise monotonically is because the indoor temperature is controlled by turning on and off the refrigerator.

このような不都合をなくすため、サイドフォースが発生
しない状態で供試タイヤ5をスラローム走行させ、タイ
ヤが供試路面の有効幅内を均一に走行するように、上記
タイヤ試験機に制御装置を付設する。
In order to eliminate such inconveniences, a control device is attached to the above tire testing machine so that the test tire 5 is run in a slalom state without side force being generated, and the tire runs uniformly within the effective width of the test road surface. do.

この制御装置を付設したタイヤ試験機において、タイヤ
の横送りとスリップ角は、外部パルスにより1パルス当
り各々0.01m層、0.01度の割合で駆動できる。
In a tire testing machine equipped with this control device, the lateral feed and slip angle of the tire can be driven by external pulses at a rate of 0.01 m layer and 0.01 degree per pulse, respectively.

一方、ドラムの回転によりドラム1回転で1024パル
スのドラムの走行距離に比例したパルスが出力される。
On the other hand, as the drum rotates, one rotation of the drum outputs 1024 pulses which are proportional to the travel distance of the drum.

そこで、この定距離走行毎に出力されるパルスに従って
、スリップ角の増減分と横変位の増減分を外部パルスと
して各々に与えれば1足まった走行軌跡を定まった操舵
で走行させることができる0周期をドラムの周長の整数
倍+αに選んで正弦波状にスラロームさせルト、走行距
glxでのタイヤの変位Yは、 となる、ここに、Aはスラロームの振幅、Lはドラム周
長、ΔLはαに相当する小さな値である。
Therefore, if the increase/decrease in the slip angle and the increase/decrease in the lateral displacement are given as external pulses according to the pulses output every time the vehicle travels a fixed distance, it is possible to travel on a travel trajectory with a fixed steering angle. Slalom is performed in a sinusoidal manner by selecting the period to be an integer multiple of the drum circumference + α, and the displacement Y of the tire at the traveling distance glx is as follows, where A is the amplitude of the slalom, L is the drum circumference, and ΔL. is a small value corresponding to α.

サイドフォースを発生させないためには、各走行距離で
の操舵角θを、 に選べば良い。
In order not to generate side force, the steering angle θ at each travel distance should be selected as follows.

なお、x、y、0を各々パルス駆動で与えると、離散的
な値しか採り得ないので、次のようにして0とYを決め
ることもできる。すなわち、(2)式で求まる変位Xn
での操舵角Onを、実現可能な値にまるめ、この値と走
行距離からXnでの変位Ynを計算し、Xnでの0とY
の増減分ΔθとΔYnを計算機にテーブルとして用意す
る0次に、ドラムの回転による走行距離パルス毎に、Δ
On、ΔY n  (n = I、2.−・−n )に
相当するパルスタqを各々の制4!l装置に加えること
によって、スラロームが行われる。
Note that if x, y, and 0 are each given by pulse drive, only discrete values can be taken, so 0 and Y can also be determined as follows. In other words, the displacement Xn determined by equation (2)
Round the steering angle On to a realizable value, calculate the displacement Yn at Xn from this value and the travel distance,
Prepare a table on the computer for the increment/decrement Δθ and ΔYn. Next, for each pulse of travel distance caused by the rotation of the drum,
On, each control 4! A slalom is performed by adding to the l device.

直進走行による実験と同一の輪荷重、スリップ角でスラ
ロームを実施した試験の結果、1時間の連続走行でも路
面の温度上昇や路面の部分的な破損が発生しないことを
確認している。
The results of a slalom test conducted with the same wheel load and slip angle as in the straight-ahead test confirmed that there was no rise in road surface temperature or partial damage to the road surface even after one hour of continuous driving.

[発明の効果] 以上に詳述した本発明の方法によれば、(1>氷の温度
上昇が無視できる。
[Effects of the Invention] According to the method of the present invention detailed above, (1> rise in temperature of ice can be ignored).

(2)スパイクタイヤ等による路面の部分的な破損がな
く、均一に穴のできた実路面に近い氷結路面での試験を
行うこともできる。
(2) It is also possible to conduct tests on icy roads, which are similar to actual roads and have holes evenly formed, without any partial damage to the road surface caused by spiked tires or the like.

(3)舗装路の実験でも路面とタイヤ温度の異常上yI
を防lトでき、実走行に近い状態で実験を行うことがで
きる。
(3) Even in experiments on paved roads, due to abnormalities in road surface and tire temperatures, yI
This makes it possible to conduct experiments under conditions close to actual driving conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタイヤ試験法の実施において用いるの
に適したタイヤ試験機の概V+示す構成図、第2図はタ
イヤにサイドフォースが発生するようにスリップ角を付
午した時の供試路面表面の温度変化を示すグラフである
。 2・・供試用走路、 5・・供試タイヤ、8・φ横送り
モータ、 9・φスリップ角設定用モータ、 13・番エンコーグ。 指定代理人 工業技術院機械技術研究所長 功  水  嘉  重  部
Figure 1 is a general configuration diagram of a tire testing machine suitable for use in implementing the tire testing method of the present invention, and Figure 2 is a diagram showing the configuration of a tire testing machine when the slip angle is adjusted to generate side force on the tire. It is a graph showing temperature changes on the surface of a test road surface. 2. Test track, 5. Test tire, 8. φ transverse feed motor, 9. φ slip angle setting motor, 13. Encog. Designated Agent: Agency of Industrial Science and Technology, Mechanical Technology Research Institute, Director, Yoshige Mizukibe

Claims (1)

【特許請求の範囲】[Claims] 1、繰返し走行する無端路面を有し、タイヤのステアリ
ング角と横変位とを制御可能にしたタイヤ試験機におい
て、上記無端路面上におけるタイヤの走行に伴って走行
距離に比例した信号を出力させ、その走行距離に比例し
てタイヤの操舵角と横変位を同期制御することにより、
タイヤを、サイドフォースが発生しない状態で、路面巾
の全体にわたりスラローム状に走行させることを特徴と
する雪氷路用タイヤの室内試験法。
1. In a tire testing machine that has an endless road surface that repeatedly runs on and is capable of controlling the steering angle and lateral displacement of the tire, outputting a signal proportional to the traveling distance as the tire runs on the endless road surface, By synchronously controlling the tire steering angle and lateral displacement in proportion to the distance traveled,
An indoor testing method for tires for snowy and icy roads, which is characterized by running the tire in a slalom-like manner over the entire width of the road without generating side force.
JP62264252A 1987-10-20 1987-10-20 Indoor test of snow tire Granted JPH01107128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264252A JPH01107128A (en) 1987-10-20 1987-10-20 Indoor test of snow tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264252A JPH01107128A (en) 1987-10-20 1987-10-20 Indoor test of snow tire

Publications (2)

Publication Number Publication Date
JPH01107128A true JPH01107128A (en) 1989-04-25
JPH045935B2 JPH045935B2 (en) 1992-02-04

Family

ID=17400593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264252A Granted JPH01107128A (en) 1987-10-20 1987-10-20 Indoor test of snow tire

Country Status (1)

Country Link
JP (1) JPH01107128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226778A (en) * 2005-02-16 2006-08-31 Sumitomo Rubber Ind Ltd Ground pressure distribution measuring device of tire
JP2008014667A (en) * 2006-07-03 2008-01-24 Sumitomo Rubber Ind Ltd Device for measuring tire performance on snow
JP2008503730A (en) * 2004-06-17 2008-02-07 エムティーエス システムズ コーポレイション Control method for multi-axis wheel fatigue system
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire
WO2012176359A1 (en) * 2011-06-23 2012-12-27 株式会社ブリヂストン Tire testing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503730A (en) * 2004-06-17 2008-02-07 エムティーエス システムズ コーポレイション Control method for multi-axis wheel fatigue system
JP4904260B2 (en) * 2004-06-17 2012-03-28 エムティーエス システムズ コーポレイション Control method for multi-axis wheel fatigue system
JP2006226778A (en) * 2005-02-16 2006-08-31 Sumitomo Rubber Ind Ltd Ground pressure distribution measuring device of tire
JP2008014667A (en) * 2006-07-03 2008-01-24 Sumitomo Rubber Ind Ltd Device for measuring tire performance on snow
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire
WO2012176359A1 (en) * 2011-06-23 2012-12-27 株式会社ブリヂストン Tire testing device
JPWO2012176359A1 (en) * 2011-06-23 2015-02-23 株式会社ブリヂストン Tire testing equipment
US9329104B2 (en) 2011-06-23 2016-05-03 Bridgestone Corporation Tire testing device

Also Published As

Publication number Publication date
JPH045935B2 (en) 1992-02-04

Similar Documents

Publication Publication Date Title
JP4914133B2 (en) Equipment for measuring tire performance on snow
US4662211A (en) Measuring friction characteristics of vehicle travel surfaces
JP2008082709A (en) Device of measuring performance of tire and method of measuring performance of racing tire
JP5204223B2 (en) Horizontal position control for tire tread wear test equipment.
CN201449365U (en) Road surface material accelerated abrader
CN108562536B (en) Device and method for testing friction performance of pavement material
JP2013156087A (en) Tire testing apparatus
JPH01107128A (en) Indoor test of snow tire
PT91842B (en) AUTOMOTIVE TEST BANK
KR101494887B1 (en) Break performance test apparatus and test method of tire
FR2842302A1 (en) DEVICE AND METHOD FOR SIMULATION OF SLIDING ON VEHICLE TEST BENCHES
JP2003513227A (en) Portable roller dynamometer and vehicle test method
CN207351694U (en) Chassis dynamometer for vehicle
JPH04102034A (en) Method and apparatus for measuring sliding friction resistance of road surface
RU2426662C1 (en) Method of automotive braking system diagnostics
JP3488699B2 (en) Road surface slip resistance measuring device
CN220671237U (en) Real-time correction observer for road adhesion coefficient
JP3798517B2 (en) Tire testing machine
JP2967295B2 (en) Method and apparatus for measuring dynamic frictional resistance
CN219657860U (en) Testing device of radar speed sensor
JP2805638B2 (en) Chassis dynamometer device using conveyor belt
JPH07239285A (en) Train running load measuring device
Shimizu et al. Indoor Test of Ice and Snow Tires on Iced Drum—Development of Tester and Characteristics of Coated Ice for Test
RU2805547C2 (en) Device for measuring the slippage of a tracked vehicle when turning around the centre of mass
KR101517092B1 (en) apparatus for measuring slipstream using moving pannel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term