JP2006225762A - Method for producing covered layer of component - Google Patents

Method for producing covered layer of component Download PDF

Info

Publication number
JP2006225762A
JP2006225762A JP2006018384A JP2006018384A JP2006225762A JP 2006225762 A JP2006225762 A JP 2006225762A JP 2006018384 A JP2006018384 A JP 2006018384A JP 2006018384 A JP2006018384 A JP 2006018384A JP 2006225762 A JP2006225762 A JP 2006225762A
Authority
JP
Japan
Prior art keywords
treatment
coating layer
layer
sintering
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018384A
Other languages
Japanese (ja)
Inventor
Chingyung Lung
龍清勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2006225762A publication Critical patent/JP2006225762A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/0779Antenna details the antenna being foldable or folded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a covered layer of a component elongating the service life of a bearing, having abrasion resistance and lubricity including oil, and capable of preventing stain caused by lubricating oil or the like. <P>SOLUTION: The method is as follows: (a) powders of bronze-base alloy obtained by spraying are sorted out; (b) a trace amount of alloy metal material, and, if required, a lubricant are added to the powders with different diameters; (c) mixing is performed; (d) the powdery mixture is charged inside a hollow die for pressurization, and is compacted; (e) the compacting pressure, the contact area between punches and the predicted density of germ cells are related; (f) sintering treatment for the germ cells after the compacting is performed; (g) the surface quality thereof is improved, and the covered layer is treated; (h) degreasing treatment by heating is performed; (i) stirring, venting and filtering are performed at room temperature; (j) activation treatment for the surface and quality improvement treatment for the surface are performed; (k) regarding the hardness of an untreated electrolytic solution layer, after coating treatment, the coated layer on the surface is subjected to adhesion treatment by high temperature baking; (l), after the adhesion treatment, ultrasonic cleaning is performed, and cleaning is performed once more, so as to clean the particles on the uncoated surface by electrochemical reaction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、部品の被覆層の製造方法に関し、高性能の部品の表面を被覆する部品の被覆層の製造方法に関する。   The present invention relates to a method of manufacturing a coating layer of a component, and relates to a method of manufacturing a coating layer of a component that covers the surface of a high-performance component.

現在、使用されている部品は接触式と非接触式の2つに大別される。非接触式は、磁気を用いたものか、もしくは空気圧を用いたものからなる。しかしながら非接触式は、製造コストが高く、システム調整及び、設備の補修のコストも高く、構造も複雑である。このため、高い精度、価値の高い設備で使用する場合以外、部品は、接触式の回転式及び滑動式の部品が利用されている。   Currently, the parts used are roughly classified into two types: contact type and non-contact type. The non-contact type consists of one using magnetism or one using air pressure. However, the non-contact type has a high manufacturing cost, a high cost for system adjustment and equipment repair, and a complicated structure. For this reason, contact-type rotating and sliding parts are used for parts, except when used in equipment with high accuracy and high value.

滑動式の部品は、2つの滑動素子の間に潤滑油を加える方法を利用し、潤滑性を具えた部材には潤滑パッド、もしくは軟質の材質などが含まれる。該潤滑油を加える方法は経済的である。しかしながら、前述の方法では、潤滑油を加えるため密封することができず、油による汚れを避けなければならないため、実用的でない。また、軟質の材質は磨耗し易く、交換可能である特性を具えているため、本体の磨耗、損失に対して滑動体の代わりになる。しかしながら、軟質の材質は磨耗するという問題が存在する。よって、位置決めのサイズや精度の変化が大きいとともに、軟質の材質が磨耗されて大量の細かい粒が発生してシステムに重大な汚染になる。潤滑材は潤滑パッド、もしくは軸受けを含んでなり、平均的な価格が安く、潤滑油が自動的に染み出す直線運動及び回転運動の運動素子の機能を具えてなるため、関連産業で大量に利用されている。回転軸と軸受けの組み合わせではサイズ設定がし易いため、回転時に発生する音が比較的小さい。よって、小型扇風機は応用範囲が広い。しかしながら、潤滑油の消耗及び油の浸透率は作業時の温度、材料の密度、表面の摩擦係数の高さに影響されるため、運動速度が速い運動体では、使用寿命が短い。例えば、潤滑型軸受けでは、使用寿命の平均が約20000時間で、ボールベアリングの軸受けの50000時間には程遠いため、応用が制限される。   The sliding part uses a method of adding lubricating oil between two sliding elements, and the member having lubricity includes a lubricating pad or a soft material. The method of adding the lubricating oil is economical. However, the above-described method is not practical because it cannot be sealed because lubricating oil is added, and contamination by oil must be avoided. In addition, the soft material easily wears and can be exchanged, so that it can be used as a substitute for the sliding body against the wear and loss of the main body. However, there is a problem that soft materials wear out. Therefore, the size and accuracy of the positioning are greatly changed, and the soft material is worn, and a large amount of fine particles are generated to seriously contaminate the system. Lubricants include lubrication pads or bearings, and are used in large quantities in related industries because they have the functions of linear motion and rotational motion elements that the lubricating oil automatically seeps out, with a low average price. Has been. Since the size can be easily set in the combination of the rotating shaft and the bearing, the sound generated during rotation is relatively small. Therefore, the small fan has a wide range of applications. However, since the consumption of the lubricating oil and the oil penetration rate are affected by the temperature at the time of operation, the density of the material, and the high coefficient of friction of the surface, a moving body with a high motion speed has a short service life. For example, the lubrication type bearing has an average service life of about 20,000 hours, which is far from the 50,000 hours of ball bearings, which limits the application.

回転式の運動体は、従来の回転軸受けからなり、使用寿命が比較的長く、軸を組み合わせる場合、わずかな傾斜や比較的重い軸方向への負荷を受けることができる。よって、回転素子は軸方向や軸の一部に支持部材を具えてなる。直線運動体では、必ず複数の回転軸装置を直線のレール上に固定して直線運動をする。しかしながら、回転軸とレールが接触やぶつかって発生する騒音の問題によって、平均的な価格が高く、軸受けを含む潤滑材は複数のボールベアリングの線性の組み合わせの調整技術に対する需要が高いため、利用が制限される。   The rotary moving body is composed of a conventional rotary bearing, has a relatively long service life, and can be subjected to a slight inclination or a relatively heavy axial load when the shafts are combined. Therefore, the rotating element includes a support member in the axial direction or a part of the shaft. In a linear motion body, a plurality of rotary shaft devices are always fixed on a straight rail to perform linear motion. However, due to the problem of noise caused by contact and collision between the rotating shaft and the rail, the average price is high, and the use of lubricants including bearings is highly demanded for the adjustment technology of the linearity combination of multiple ball bearings. Limited.

THE GLACIER METAL CO.,LTDに開発され、イギリス、日本、アメリカ、カナダ、フランス、イタリア、ドイツ、スイスなどで特許登録し(日本特許登録番号223605、438282)、現在、市場で販売されているDUは、オイル軸受けが設けられていない。鋼合金上に青銅の粉末を燃焼接続して複数の孔を形成し、テフロンと鉛の混合物を充填し、表面にテフロンリードの薄いフィルムを形成し、軸受面に通常テフロンリードを設けて摩擦を少なくすることにより、潤滑油を利用する必要がない。該テフロンリードは青銅の焼結層が約0.3mmの厚さで、回転による摩擦で破損する部分が約0.01mmである。該鋼合金は軸受けを固定、サイズの精密さ、安定性、正確な緊密度が必要な強度を強化する。前述の製造工程により製造された製品はスリーブ、軸受け、フランジスリーブ、スライドボードなどに応用されている。図1に、製品の断面図を開示する。前述の技術は、加工済の鋼合金の材質の表面に青銅の粉末を焼結した複数の孔を具えた層を形成し、テフロンと鉛の混合物を表面に充填してテフロンリードの薄いフィルムを形成する。青銅の粉末はテフロンリードの充填材として、複数の孔を具えた表面を焼結する。材料と青銅の粉末は高温で結合するが、高温に達しなかった場合には用意に剥がれ落ち、分離する。また、青銅の粉末は約760度に達しなければ焼結しないため、鋼金の材料が熱で変形し、テフロンリードの混合物を複数の孔を具えた表面に充填した後、加熱温度が360度以上になると、テフロンリードと青銅の充填材料が相互に結合する。高温による製造方法はテフロンから有害な気体が発生するとともに、焼結層は厚さが0.3mmで、初期に摩擦で0.01mm失われるため、ミクロの精度を要求される運動体にとって、実用的でないとともに、原料に含まれる鉛が情報関連製品における環境保護の規定に違反する(地球環境の保護・保全に向け、地球環境に配慮し、EU(ヨーロッパ連合)で2006年に制定されたROHS(Restriction of the use of the certain Hazardous Substances in electrical and electronic equipment)指令)ため、利用価値に大きな影響を与えている。   THE GLACIER METAL CO. , LTD, and registered in the UK, Japan, USA, Canada, France, Italy, Germany, Switzerland, etc. (Japanese patent registration numbers 223605, 438282). Not provided. Bronze powder is burned and connected on a steel alloy to form multiple holes, filled with a mixture of Teflon and lead, a thin film of Teflon lead is formed on the surface, and a Teflon lead is usually provided on the bearing surface for friction. By reducing it, it is not necessary to use lubricating oil. The Teflon lead has a bronze sintered layer with a thickness of about 0.3 mm, and a portion damaged by friction due to rotation is about 0.01 mm. The steel alloy secures the bearings and reinforces the strength needed for size precision, stability and precise tightness. Products manufactured by the above-described manufacturing process are applied to sleeves, bearings, flange sleeves, slide boards, and the like. FIG. 1 discloses a cross-sectional view of a product. The aforementioned technique forms a layer with multiple holes in which the bronze powder is sintered on the surface of the processed steel alloy material, and fills the surface with a mixture of Teflon and lead to form a thin film of Teflon lead. Form. Bronze powder sinters the surface with multiple holes as a filler for Teflon leads. The material and the bronze powder bond at high temperatures, but if they do not reach high temperatures, they are easily peeled off and separated. Further, since the bronze powder does not sinter unless it reaches about 760 degrees, the steel gold material is deformed by heat, and after filling the surface with a plurality of holes with a mixture of Teflon leads, the heating temperature is 360 degrees. At this point, the Teflon lead and the bronze filling material are bonded to each other. The high temperature manufacturing method generates harmful gas from Teflon, and the sintered layer is 0.3 mm thick and 0.01 mm is lost due to friction in the initial stage, so it is practical for moving bodies that require micro precision. And lead contained in raw materials violates environmental protection regulations for information-related products (ROHS was established in 2006 by the EU (European Union) in order to protect and conserve the global environment) (Restriction of the use of the certain Hazardous Substantial in electrical and electrical equipment) command), which greatly affects the utility value.

この発明は、軸受けの使用寿命が長く、摩擦係数が低く、磨耗耐性があり、油を含む潤滑性を具えているため騒音が小さく、潤滑油による汚れなどを防ぐことができる部品の被覆層の製造方法を提供することを課題とする。   This invention has a long service life of bearings, a low coefficient of friction, wear resistance, and a lubricating property including oil. It is an object to provide a manufacturing method.

そこで、本発明の発明者は従来の技術に見られる欠点に鑑みて鋭意研究を重ねた結果、a.スプレーで得た青銅ベースの合金の粉末は選別し、b.異なる直径の粉末に適宜な比率で微量の合金金属材を加えと混ぜ合わせ、必要に応じて潤滑剤を加え、c.混合作業を実施し、d.十分に混ぜ合わせた粉末は、プレッシャーの中空の金型内部に充填し、上下のパンチと中空の金型を加圧して粉末を押し圧成形し、e.成形する圧力とパンチの接触面積、及び予想した胚細胞の密度とは非常に関連があり、その後、胚細胞の実験を実施し、f.成形後の胚細胞を焼結炉に送り、還元気体の中で焼結処理を実施し、g.焼結処理の後、直接、表面の品質を改善し、被覆層の処理を行い、その後、サイズの調整を実施し、h.表面を加熱して行う脱脂処理は、油脂の種類によって、水性、もしくは酸性の溶剤で洗浄、もしくは超音波による脱脂処理を行って表面の油脂を除去し、i.室温で攪拌、換気、ろ過を行い、動力の攪拌機で均一に攪拌し、j.表面の活性処理、表面の品質改善処理、水洗浄など洗浄、活性処理を実施し、k.処理されていない電解液層の硬度は被覆処理後、高温で焼き付けすると、表面の被覆層に密着処理を行い、l.密着処理を行った後、製造工程の精度に対する需要に応じて超音波洗浄を実施し、再度洗浄して電気化学反応で、まだ完全に被覆していない材料の表面の粒子を洗浄する製造方法によって課題を解決できる点に着眼し、かかる知見に基づいて本発明を完成させた。 Accordingly, the inventors of the present invention have conducted extensive research in view of the drawbacks found in the prior art, and as a result, a. Screening bronze based alloy powder obtained by spraying, b. Adding a small amount of alloy metal material in an appropriate ratio to powders of different diameters and mixing, adding a lubricant if necessary, c. Performing a mixing operation, d. The sufficiently mixed powder is filled in the hollow mold of the pressure, the upper and lower punches and the hollow mold are pressed, and the powder is pressed, and e. The pressure to mold and the contact area of the punch, and the expected density of the germ cells, are very related, after which experiments on the germ cells are performed, f. Sending the molded embryo cells to a sintering furnace and carrying out a sintering treatment in a reducing gas; g. Immediately after the sintering process, the surface quality is improved and the coating layer is processed, and then the size is adjusted, h. The degreasing treatment performed by heating the surface is performed by washing with an aqueous or acidic solvent, or by performing a degreasing treatment with ultrasonic waves, depending on the type of oil or fat, i. Stir, ventilate and filter at room temperature, stir uniformly with a power stirrer, j. Performing surface activation treatment, surface quality improvement treatment, cleaning such as water washing, and activation treatment, k. When the hardness of the untreated electrolyte layer is baked at a high temperature after the coating treatment, an adhesion treatment is performed on the coating layer on the surface, l. After the adhesion treatment, the ultrasonic cleaning is performed according to the demand for the accuracy of the manufacturing process, the cleaning is performed again, and the surface of the material that has not been completely coated is cleaned by an electrochemical reaction. The present invention has been completed based on this finding, focusing on the problems that can be solved.

以下、この発明について具体的に説明する。
請求項1に記載する部品の被覆層の製造方法は、a.スプレーで得た青銅ベースの合金の粉末は選別し、b.異なる直径の粉末に適宜な比率で微量の合金金属材を加えと混ぜ合わせ、必要に応じて潤滑剤を加え、c.混合作業を実施し、d.十分に混ぜ合わせた粉末は、プレッシャーの中空の金型内部に充填し、上下のパンチと中空の金型を加圧して粉末を押し圧成形し、e.成形する圧力とパンチの接触面積、及び予想した胚細胞の密度とは非常に関連があり、その後、胚細胞の実験を実施し、f.成形後の胚細胞を焼結炉に送り、還元気体の中で焼結処理を実施し、g.焼結処理の後、直接、表面の品質を改善し、被覆層の処理を行い、その後、サイズの調整を実施し、h.表面を加熱して行う脱脂処理は、油脂の種類によって、水性、もしくは酸性の溶剤で洗浄、もしくは超音波による脱脂処理を行って表面の油脂を除去し、i.室温で攪拌、換気、ろ過を行い、動力の攪拌機で均一に攪拌し、j.表面の活性処理、表面の品質改善処理、水洗浄など洗浄、活性処理を実施し、k.処理されていない電解液層の硬度は被覆処理後、高温で焼き付けすると、表面の被覆層に密着処理を行い、l.密着処理を行った後、製造工程の精度に対する需要に応じて超音波洗浄を実施し、再度洗浄して電気化学反応で、まだ完全に被覆していない材料の表面の粒子を洗浄する。
The present invention will be specifically described below.
The method for producing a coating layer for a component according to claim 1 comprises: a. Screening bronze based alloy powder obtained by spraying, b. Adding a small amount of alloy metal material in an appropriate ratio to powders of different diameters and mixing, adding a lubricant if necessary, c. Performing a mixing operation, d. The sufficiently mixed powder is filled in the hollow mold of the pressure, the upper and lower punches and the hollow mold are pressed, and the powder is pressed, and e. The pressure to mold and the contact area of the punch, and the expected density of the germ cells, are very related, after which experiments on the germ cells are performed, f. Sending the molded embryo cells to a sintering furnace and carrying out a sintering treatment in a reducing gas; g. Immediately after the sintering process, the surface quality is improved and the coating layer is processed, and then the size is adjusted, h. The degreasing treatment performed by heating the surface is performed by washing with an aqueous or acidic solvent, or by performing a degreasing treatment with ultrasonic waves, depending on the type of oil or fat, i. Stir, ventilate and filter at room temperature, stir uniformly with a power stirrer, j. Performing surface activation treatment, surface quality improvement treatment, cleaning such as water washing, and activation treatment, k. When the hardness of the untreated electrolyte layer is baked at a high temperature after the coating treatment, an adhesion treatment is performed on the coating layer on the surface, l. After performing the adhesion treatment, ultrasonic cleaning is performed according to the demand for accuracy of the manufacturing process, and cleaning is performed again to clean particles on the surface of the material that has not been completely coated by an electrochemical reaction.

請求項2に記載の部品の被覆層の製造方法は、請求項1における混合作業が直立式の螺旋状のリーフ型のミキサーを利用し、60〜120rpmの回転速度で、均一に混合する。   In the method for producing a coating layer of a component according to claim 2, the mixing operation according to claim 1 is uniformly mixed at a rotational speed of 60 to 120 rpm using an upright spiral leaf mixer.

請求項3に記載の部品の被覆層の製造方法は、請求項1における胚細胞の実験で得られたように最終的な胚細胞の密度が7.9〜8.0g/cm3以上になるように維持する。 The method for producing a coating layer of a component according to claim 3 is such that the final embryonic cell density is 7.9 to 8.0 g / cm3 or more as obtained in the embryonic cell experiment of claim 1. To maintain.

請求項4に記載の部品の被覆層の製造方法は、請求項5における熱処理していない電解液層の硬度が280〜380VHNで処理後に300〜350度の高温で焼き付けを10〜15分実施する。   The method for producing a coating layer of a component according to claim 4 is performed by baking at a high temperature of 300 to 350 degrees after treatment with a non-heat treated electrolyte layer having a hardness of 280 to 380 VHN in claim 5 for 10 to 15 minutes. .

請求項5に記載の部品の被覆層の製造方法は、請求項1における表面に密着処理を実施した後の部品が超音波洗浄900を約2〜5分実施する。   According to a fifth aspect of the present invention, there is provided a method for producing a coating layer of a component, wherein the component after the adhesion treatment on the surface according to the first aspect is subjected to ultrasonic cleaning 900 for about 2 to 5 minutes.

この発明は、騒音が小さく、潤滑油による汚れなどを防ぐことができる効果を有する。   The present invention has an effect that noise is low and contamination due to lubricating oil can be prevented.

この発明は、軸受けの使用寿命が長く、摩擦係数が低く、磨耗耐性があり、油を含む潤滑性を具えているため騒音が小さく、潤滑油による汚れなどを防ぐことができる部品の被覆層の製造方法を提供するものであって、a.スプレーで得た青銅ベースの合金の粉末は選別し、b.異なる直径の粉末に適宜な比率で微量の合金金属材を加えと混ぜ合わせ、必要に応じて潤滑剤を加え、c.混合作業を実施し、d.十分に混ぜ合わせた粉末は、プレッシャーの中空の金型内部に充填し、上下のパンチと中空の金型を加圧して粉末を押し圧成形し、e.成形する圧力とパンチの接触面積、及び予想した胚細胞の密度とは非常に関連があり、その後、胚細胞の実験を実施し、
f.成形後の胚細胞を焼結炉に送り、還元気体の中で焼結処理を実施し、g.焼結処理の後、直接、表面の品質を改善し、被覆層の処理を行い、その後、サイズの調整を実施し、h.表面を加熱して行う脱脂処理は、油脂の種類によって、水性、もしくは酸性の溶剤で洗浄、もしくは超音波による脱脂処理を行って表面の油脂を除去し、
i.室温で攪拌、換気、ろ過を行い、動力の攪拌機で均一に攪拌し、j.表面の活性処理、表面の品質改善処理、水洗浄など洗浄、活性処理を実施し、k.処理されていない電解液層の硬度は被覆処理後、高温で焼き付けすると、表面の被覆層に密着処理を行い、l.密着処理を行った後、製造工程の精度に対する需要に応じて超音波洗浄を実施し、再度洗浄して電気化学反応で、まだ完全に被覆していない材料の表面の粒子を洗浄する。
かかる部品の被覆層の製造方法と特徴を詳述するために具体的な実施例を挙げ、図示を参照にして以下に説明する。
This invention has a long service life of bearings, a low coefficient of friction, wear resistance, and a lubricating property including oil. A manufacturing method comprising: a. Screening bronze based alloy powder obtained by spraying, b. Adding a small amount of alloy metal material in an appropriate ratio to powders of different diameters and mixing, adding a lubricant if necessary, c. Performing a mixing operation, d. The sufficiently mixed powder is filled in the hollow mold of the pressure, and the upper and lower punches and the hollow mold are pressed to press the powder, and e. The pressure to mold and the contact area of the punch and the density of the expected germ cells are very related,
f. Sending the molded embryo cells to a sintering furnace and carrying out a sintering treatment in a reducing gas; g. Immediately after the sintering process, the surface quality is improved and the coating layer is processed, and then the size is adjusted, h. The degreasing treatment performed by heating the surface is cleaned with an aqueous or acidic solvent, depending on the type of fat or oil, or by performing a degreasing treatment with ultrasonic waves to remove the fat on the surface,
i. Stir, ventilate and filter at room temperature, stir uniformly with a power stirrer, j. Performing surface activation treatment, surface quality improvement treatment, cleaning such as water washing, and activation treatment, k. When the hardness of the untreated electrolyte layer is baked at a high temperature after the coating treatment, an adhesion treatment is performed on the coating layer on the surface, l. After performing the adhesion treatment, ultrasonic cleaning is performed according to the demand for accuracy of the manufacturing process, and cleaning is performed again to clean particles on the surface of the material that is not completely covered by an electrochemical reaction.
In order to describe the manufacturing method and characteristics of the coating layer of the component in detail, a specific example will be given and described below with reference to the drawings.

図2に、この発明の製造工程を開示する。図面によれば、スプレーで得た青銅ベースの合金の粉末は選別10後、異なる直径(0.5〜30μm)の粉末に一定の割合で微量の合金金属材と混ぜ合わせ、必要に応じて潤滑剤20(例えばグラファイト、脂肪酸アミドなど)を加えて混ぜ合わせる混合作業30を実施する。   FIG. 2 discloses the manufacturing process of the present invention. According to the drawing, the bronze-based alloy powder obtained by spraying is screened 10 and then mixed with a small amount of alloy metal material at a certain ratio to powder of different diameter (0.5-30 μm), and lubricated as necessary A mixing operation 30 is performed in which the agent 20 (for example, graphite, fatty acid amide, etc.) is added and mixed.

混合作業30は、原料の化学的、物理的な性質の均一さを高めるために実施し、粒子が移動する原理を利用して多様な異なる直径の粒子を均一に混合する。混合する速度、ミキサーの構造などが粉末を混ぜ合わせる混合工程の均一さに影響するため、混合工程を実施する場合、粒子のサイズの分布の違い、比重の違いなどの要素など粉末の特性に合わせて偏析現象が発生しない混合工程を実施する。この発明では特性に合わせて直立式の螺旋状のリーフ型のミキサーを利用し、回転速度(60〜120rpm)で、均一に混合する。   The mixing operation 30 is performed to increase the uniformity of the chemical and physical properties of the raw material, and uniformly mixes particles of various different diameters using the principle of particle movement. The mixing speed and the mixer structure affect the uniformity of the mixing process for mixing the powder, so when performing the mixing process, match the characteristics of the powder, such as differences in particle size distribution and specific gravity. Therefore, a mixing process is performed in which segregation does not occur. In the present invention, an upright spiral leaf-type mixer is used according to the characteristics, and the mixture is uniformly mixed at a rotational speed (60 to 120 rpm).

十分に混ぜ合わせた粉末は、プレッシャーの中空の金型内部に充填し、上下のパンチと中空の金型を加圧して粉末を押し圧成形40する。成形する圧力とパンチの接触面積、及び予想した胚細胞の密度とは非常に関連がある。胚細胞の実験50結果を分析して得られたのは、最終的な胚細胞の密度が7.9〜8.0g/cm3以上に維持することが最も好ましい。胚細胞の密度が前述の基準に達しない場合、完成した製品は需要を満たすことができるが、その後の製造工程を増やすとともに、品質の安定性に影響を与える。よって、最も好ましい密度で成形するため、大量生産や製造コストを削減する場合、製品の品質の安定させる必要性がある。   The sufficiently mixed powder is filled in the hollow mold of the pressure, and the upper and lower punches and the hollow mold are pressed to press-mold the powder 40. The pressure to be molded and the contact area of the punch and the expected density of germ cells are very much related. It is most preferable that the density of the final embryo cell is maintained at 7.9 to 8.0 g / cm 3 or more obtained by analyzing the result of the experiment 50 of the embryo cell. If the density of the germ cells does not reach the above-mentioned standard, the finished product can meet the demand, but it increases the subsequent manufacturing process and affects the quality stability. Therefore, since molding is performed at the most preferable density, it is necessary to stabilize the quality of the product when mass production or manufacturing costs are reduced.

成形する工程で利用する潤滑剤は、胚細胞の離型を補助するために利用し、離型による圧力を減少させる。離型をスムーズにする方法は2種類ある。1つは乾燥した潤滑剤を金属の粉末と混ぜ合わせて、直接、金型に充填し、押し圧成形する。もう一方の方法は金型の内壁を潤滑させる方法である。即ち、金属の粉末を金型に充填する前に揮発性の高い有機溶剤で溶解した液体の潤滑剤を金型の内壁及びパンチの表面に塗布するか、噴射し、有機溶剤が揮発して乾燥した後、金型の内壁に潤滑層が形成されて離型をスムーズにする効果を達成する。この発明の実験では、電解する銅合金の粉末、もしくは適宜な粒子サイズの粉末を利用して押し圧成形する。潤滑剤を加えていない場合、胚細胞を成形した後の密度が7.97g/cm3に達し、胚細胞の成形における最も好ましい密度を得ることができる。   The lubricant used in the molding process is used to assist the release of the germ cells, and reduces the pressure due to the release. There are two methods for smooth release. One is mixing dry lubricant with metal powder, filling the mold directly, and pressing. The other method is a method of lubricating the inner wall of the mold. That is, before filling the metal powder into the mold, a liquid lubricant dissolved in a highly volatile organic solvent is applied to the inner wall of the mold and the surface of the punch or sprayed, and the organic solvent is volatilized and dried. After that, a lubricating layer is formed on the inner wall of the mold to achieve the effect of smooth release. In the experiment of the present invention, pressure molding is performed using a copper alloy powder to be electrolyzed or a powder having an appropriate particle size. When the lubricant is not added, the density after molding the embryo cells reaches 7.97 g / cm 3, and the most preferable density in molding the embryo cells can be obtained.

成形後の胚細胞は焼結炉に送り、還元気体の中で焼結処理60を実施する。焼結は熱力学及び拡散学を利用して温度を上昇して炉内の空気を有効に調整して粉末を部分的に固体もしくは液体の常態にする拡散現象を発生させて、粉末を結合する。焼結の製造工程は時間、温度変化、炉内の空気、気体の流量、高温で停留させる時間、炉の構造などを含む変数が重要になる。よって、好ましい焼結を行うためには、前述の要素のどれも欠かすことができない。   The molded embryo cells are sent to a sintering furnace and a sintering process 60 is performed in a reducing gas. Sintering uses thermodynamics and diffusion studies to raise the temperature and effectively adjust the air in the furnace to generate a diffusion phenomenon that makes the powder partially solid or liquid and binds the powder . In the manufacturing process of sintering, variables including time, temperature change, air in the furnace, gas flow rate, time for holding at high temperature, furnace structure, etc. are important. Thus, any of the above-described elements is indispensable in order to achieve preferred sintering.

焼結は次の3つのステップで実施する。
1. 予熱エリア:熱エネルギーにより脱脂及び脱蝋の効果を達成するとともに、脱蝋工程において粉末が変形することがない。
2. 焼結エリア:予熱エリアで脱蝋処理を実施した後、さらに高温の熱エネルギーで胚細胞を緻密にする。
3. 冷却エリア:高温で処理した後、冷却していく場合の冷却速度を調整して成形後の金属組織、性質を決定する。
Sintering is performed in the following three steps.
1. Preheating area: The effect of degreasing and dewaxing is achieved by thermal energy, and the powder is not deformed in the dewaxing process.
2. Sintering area: After dewaxing treatment in the preheating area, the embryo cells are densified with higher-temperature heat energy.
3. Cooling area: After processing at high temperature, the metal structure and properties after forming are determined by adjusting the cooling rate when cooling.

どのように焼結する場合でも脱蝋及び脱脂を実施しなければならない。よって、適宜な予熱による脱脂は好ましい焼結を得る条件である。予熱エリアの温度は、潤滑剤の種類によって決める必要がある。例えば、通常利用するステアリン酸亜鉛は130度で溶解、260度で気化し、約427度で完全に除去することができる。この発明の予熱エリアの温度は潤滑剤の特性を考慮して、450度を基準に設定する。また、焼結する過程で、加熱速度が速すぎるか、温度が高すぎる場合、予熱エリアの潤滑剤が化合物の成分の分解により製品の表面にカーボンが堆積するとともに、製品が容易に変形して破裂する。このため焼結する速度を調整することは非常に重要である。この発明は何度か行った実験の結果、製品を焼結する速度が45〜44mm/minになるように調整すれば、好ましい焼結結果が得られる。   In any case, dewaxing and degreasing must be performed. Therefore, degreasing by appropriate preheating is a condition for obtaining preferable sintering. The temperature in the preheating area must be determined by the type of lubricant. For example, the commonly used zinc stearate can be dissolved at 130 degrees, vaporized at 260 degrees, and completely removed at about 427 degrees. The temperature of the preheating area of the present invention is set based on 450 degrees in consideration of the characteristics of the lubricant. In addition, if the heating rate is too high or the temperature is too high during the sintering process, the lubricant in the preheating area accumulates carbon on the surface of the product due to decomposition of the components of the compound, and the product is easily deformed. Burst. Therefore, it is very important to adjust the sintering speed. As a result of experiments conducted several times in the present invention, preferable sintering results can be obtained by adjusting the product sintering speed to 45 to 44 mm / min.

焼結エリアは焼結する材料の性質に基づいて設ける。異なる成分を具えた材料は異なる焼結温度、焼結気と気体の流量を利用する。この発明では焼結の過程において、ベルトコンベア式の連続した焼結炉を利用する。反復実験の結果、予熱エリアから焼結エリアに到達するまでの温度を710〜730度に設定し、焼結エリアの温度を800度プラスマイナス5度に設定し、焼結時間を25〜35分に設定している。焼結炉内の空気の調整では、この発明は需要に応じて分解アンモニアガスを利用しているため、加熱し、アンモニアを分解して炉内の空気を得られる。このため、焼結エリアは、強い還元性を具えているが、カーボンが堆積することがなく、銅の焼結に適している。   The sintering area is provided based on the nature of the material to be sintered. Materials with different components utilize different sintering temperatures, sintering air and gas flow rates. In the present invention, a belt conveyor type continuous sintering furnace is used in the sintering process. As a result of repeated experiments, the temperature from the preheating area to the sintering area is set to 710 to 730 degrees, the temperature of the sintering area is set to 800 degrees plus or minus 5 degrees, and the sintering time is 25 to 35 minutes. Is set. In adjusting the air in the sintering furnace, since the present invention utilizes decomposed ammonia gas according to demand, it can be heated to decompose the ammonia to obtain air in the furnace. For this reason, the sintered area has a strong reducibility, but carbon is not deposited and is suitable for copper sintering.

冷却エリアは、除冷エリアと急冷エリアを含んでなる。除冷エリアは高温の焼結エリアから急冷エリアに送られて、急速な温度変化で炉が変形することを防ぐ。急冷エリアは、焼結した製品を決められた時間で運送可能、もしくは処理可能な温度にする。この発明の実験では、前述の焼結速度で焼結した製品は約30分冷却エリアに停留すれば、温度を下げることができる。   The cooling area includes a cooling area and a quenching area. The cooling area is sent from the high temperature sintering area to the quenching area to prevent the furnace from being deformed by a rapid temperature change. The quenching area is set to a temperature at which the sintered product can be transported or processed in a predetermined time. In the experiment of the present invention, the temperature of the product sintered at the aforementioned sintering speed can be lowered if it remains in the cooling area for about 30 minutes.

焼結した製品は、いずれもいくらか変形している。製品に対して要求されている精度があまり高くない場合、製品は直接、表面の質の修正、被覆処理を実施することができる。一方、高い精度が求められる製品の場合には、サイズ調整70を実施してから、被覆処理などを行う。   All of the sintered products are somewhat deformed. If the required accuracy of the product is not very high, the product can be directly subjected to surface quality correction and coating treatment. On the other hand, in the case of a product that requires high accuracy, the size adjustment 70 is performed, and then a covering process is performed.

サイズ調整70の後、焼結した製品は表面に加熱による脱脂処理90を行う。油脂の種類によって、水性、もしくは酸性の溶剤で洗浄、もしくは超音波による脱脂処理80を行って表面の油脂を除去しなければ、表面の被覆層の品質に影響を与える。図3に、焼結した製品の表面の組織図を開示する。   After the size adjustment 70, the sintered product is degreased 90 by heating on the surface. Depending on the type of oil or fat, the quality of the surface coating layer is affected unless the oil or fat on the surface is removed by washing with an aqueous or acidic solvent or by performing ultrasonic degreasing 80. FIG. 3 discloses a structure diagram of the surface of the sintered product.

焼結、サイズ調整などの処理を実施した後、製品は、後工程の充填材として粉末や粒子の密度を利用して表面に被覆処理を実施する。   After performing processing such as sintering and size adjustment, the product is coated on the surface using the density of powder and particles as a filler in a subsequent process.

無電解ニッケルめっきに少量のポリテトラフロロエチレンをベースにしたミクロ、ナノレベルの微粒子から製造した流動体を加えて、微粒子を合成電解液の中に均一に散布させる。該微粒子は直径が平均90〜500nmで、複合めっき液の総質量の3〜10%を占める。動力の攪拌機100で均一に攪拌した後、攪拌速度は合成電解液内のすべての粒子が均一に浮遊することを基準に設定し、金属ニッケルイオンとナノミクロ粒子とを均一に混合した合成電解液を形成する。 A fluid produced from micro- and nano-level microparticles based on a small amount of polytetrafluoroethylene is added to electroless nickel plating, and the microparticles are uniformly dispersed in the synthetic electrolyte. The fine particles have an average diameter of 90 to 500 nm and occupy 3 to 10% of the total mass of the composite plating solution. After stirring uniformly with the power stirrer 100, the stirring speed is set based on the uniform suspension of all particles in the synthetic electrolyte, and the synthetic electrolyte in which metallic nickel ions and nano-micro particles are uniformly mixed is set. Form.

電圧を加える必要がない状況では、溶液中の金属イオンが触媒作用で固体表面に合成電解液中の還元剤とともに存在するとともに、化学反応により金属イオンが固体の金属に還元されて、約15〜30%のポリテトラフルオロエチレンの非常に微細な粒子が混合されて固体の表面に沈積する。前述の反応は反応が始まると、電子は外部の導線を通してではなく、溶液中の物質が固体の表面で反応すると、直接伝導する。このため、製造工程の温度は90度に維持しなければならない。   In a situation where it is not necessary to apply voltage, the metal ions in the solution are present together with the reducing agent in the synthetic electrolyte on the solid surface through catalysis, and the metal ions are reduced to a solid metal by a chemical reaction. Very fine particles of 30% polytetrafluoroethylene are mixed and deposited on the surface of the solid. In the aforementioned reaction, when the reaction starts, electrons conduct directly when the substance in the solution reacts on the surface of the solid, not through the external conductor. For this reason, the temperature of the manufacturing process must be maintained at 90 degrees.

この発明の製造工程で硬度、耐摩耗性、低摩擦係数を具えた合成電解液層を形成する。該電解液層は平均摩擦係数がニッケル−リン電解液層の1/2になる。しかしながら、被覆処理の前、材料の表面の洗浄、例えば、表面の活性処理200、400、表面の品質改善処理300、500、水洗浄110、210、310、410、510など洗浄、活性処理をいずれも確実に行わないと、被覆層の品質に大きな影響を与える。   In the manufacturing process of the present invention, a synthetic electrolyte layer having hardness, wear resistance, and a low coefficient of friction is formed. The electrolyte layer has an average friction coefficient that is ½ that of the nickel-phosphorus electrolyte layer. However, before coating treatment, cleaning of the surface of the material, for example, surface activation treatment 200, 400, surface quality improvement treatment 300, 500, water washing 110, 210, 310, 410, 510, etc. If it is not performed reliably, the quality of the coating layer will be greatly affected.

該化学電解液の主要成分は:
1.金属イオン(metal ions):電解液層の金属になる。
2.還元剤(reducing agent):金属イオンを金属に還元する。
3.触媒(catalyst):材料の表面が触媒さようを具える。
4.錯化剤(complexing agent):水酸化物が沈殿することを防ぎ、分析速度を調節し、電解液バスの分解を防ぎ、電解液バスを安定させる。
5.安定剤(stabilizer):微細な粒子以外の余分なものを吸収し、電解液バスの自然分解を防ぎ、電解液バスの寿命を延長する。
6.緩衝剤(buffer):ペーハー値を作業範囲内に調整する。
7.潤湿剤(wetting agent):表面を滑らかにする。
8.Dispersion:超微粒子の耐磨材を被覆する。
The main components of the chemical electrolyte are:
1. Metal ions: become metal in the electrolyte layer.
2. Reducing agent: reducing metal ions to metal.
3. Catalyst: the surface of the material has a catalytic appearance.
4). Complexing agent: prevents precipitation of hydroxide, adjusts the analysis rate, prevents decomposition of the electrolyte bath, and stabilizes the electrolyte bath.
5. Stabilizer: Absorbs extras other than fine particles, prevents spontaneous decomposition of the electrolyte bath, and extends the life of the electrolyte bath.
6). Buffer: Adjust the pH value within the working range.
7). Wetting agent: smoothes the surface.
8). Dispersion: Covers an ultrafine abrasive material.

還元剤は、通常、次亜リン酸ナトリウムを利用する。ペーハー(PH)値は、電解液層のPの含量を調整する。PHが比較的高く、Pの含量が少ない場合、被覆層の性質が変化する。Pの含量が低い被覆層はPの含量が高い被覆層に比べて耐蝕性が低く、Pの含量が8%以上の被覆層は磁性がない。この発明の表面の被覆層はPの含量が6%で、ポリテトラフルオロエチレンの容積比が30%に達する場合、表面の被覆層が黒色に近くなる。Pの含量が9%で、ポリテトラフルオロエチレンの容積比が20%の場合、被覆層の表面が光沢のある灰色になり、被覆層全体の効果が実験結果に非常に近い。表面の電解液層は黒色で、熱処理していない電解液層では硬度が280〜380VHNに達し、処理後、300〜350度の高温で焼き付け700を10〜15分実施すると、電解液の被覆層の表面に密着処理800が実施される。該密着処理の焼き付け(post−baking)は被覆層の結晶構造に明確な影響を与える。   As the reducing agent, sodium hypophosphite is usually used. The pH (PH) value adjusts the P content of the electrolyte layer. When the pH is relatively high and the P content is low, the properties of the coating layer change. A coating layer having a low P content has lower corrosion resistance than a coating layer having a high P content, and a coating layer having a P content of 8% or more is not magnetic. In the surface coating layer of the present invention, when the P content is 6% and the volume ratio of polytetrafluoroethylene reaches 30%, the surface coating layer becomes nearly black. When the P content is 9% and the volume ratio of polytetrafluoroethylene is 20%, the surface of the coating layer becomes glossy gray, and the effect of the entire coating layer is very close to the experimental result. The electrolyte layer on the surface is black, and the hardness of the electrolyte layer that has not been heat-treated reaches 280 to 380 VHN. After the treatment, baking is performed at a high temperature of 300 to 350 ° C. for 10 to 15 minutes. An adhesion treatment 800 is performed on the surface of the substrate. The adhesion treatment post-baking has a clear influence on the crystal structure of the coating layer.

密着処理800を行った製品は、製造工程の精度に対する需要に応じて超音波洗浄900を約2〜5分実施し、再度洗浄して電気化学反応600で、まだ完全に被覆していない材料の表面の粒子を剥がし落とすことによりサイズの変化が発生する。被覆層の厚さは6〜12μmの範囲で調整されるため、製品1000はサイズが非常に高い精度で調整することができる。図4に、被覆層の表面を密着処理した後の表面の状況を開示する。
〔実験結果〕
The product subjected to the adhesion treatment 800 is subjected to ultrasonic cleaning 900 for about 2 to 5 minutes according to the demand for accuracy of the manufacturing process, washed again, and subjected to the electrochemical reaction 600 of the material not completely coated yet. A change in size occurs when the particles on the surface are peeled off. Since the thickness of the coating layer is adjusted in the range of 6 to 12 μm, the product 1000 can be adjusted with a very high size accuracy. FIG. 4 discloses the state of the surface after the surface of the coating layer is adhered.
〔Experimental result〕

この発明により製造された部品の被覆層の製造方法の実験では、低摩擦係数、耐磨耗、硬度が高く、サイズの変化が少なく精密で、製造コストが低い、動力エネルギーの作用を高めるだけでなく、被覆層面の磨耗量もわずか約0.1〜0.2μmであるという結果が得られた。   In the experiment of the method of manufacturing the coating layer of the parts manufactured according to the present invention, the low coefficient of friction, wear resistance, high hardness, small size change, precise, low manufacturing cost, just increase the action of motive energy. As a result, the amount of wear on the coating layer surface was only about 0.1 to 0.2 μm.

製造した製品は、物理的、化学的な性質は下記の通りである:
1.温度変化の範囲は約30〜200度。
2.慣性層で保護し、化学及び気化腐食作用を防ぐ。
3.低摩擦係数は、30日間の冷却ファンのテストで、磨耗がほとんどなく、極少量の潤滑油を加えた場合でも250日後の磨耗量が1μmよりも少なかった。
4.機械の表面の引っ張り強度であるテンシル強度は200Kgf/cm2に達する。
5.熱伝導係数は約0.5で、熱膨張係数は成分により約5〜10/度に調整される。
6.表面の品質を改善後の層の厚さは均一に薄く、剥離し難く、長期で使用した後でも製品の精密度が維持できる。
7.細胞を緻密にするため表面に微細な孔がない。
The manufactured products have the following physical and chemical properties:
1. The range of temperature change is about 30-200 degrees.
2. Protect with inertia layer to prevent chemical and vapor corrosion action.
3. The low coefficient of friction showed little wear in a 30 day cooling fan test, and even after adding a very small amount of lubricating oil, the wear after 250 days was less than 1 μm.
4). Tensile strength, which is the tensile strength of the surface of the machine, reaches 200 kgf / cm2.
5. The thermal conductivity coefficient is about 0.5, and the thermal expansion coefficient is adjusted to about 5 to 10 / degree depending on the components.
6). The thickness of the layer after improving the surface quality is uniformly thin and difficult to peel off, so that the precision of the product can be maintained even after long-term use.
7). There are no fine pores on the surface to make the cells dense.

同時に、この発明は図5、6に開示するように、DCファンの回転軸受けに技術を応用した。作動して行った実験の結果、MTBF(Mean Time Between Failures:平均故障間隔)が5000時間を上回った。該テストの結果は添付の表1から表5の通りである。この発明の使用寿命は、広範囲の軸受けに応用でき、直線運動を行う部品にも応用できる。

Figure 2006225762
Figure 2006225762
Figure 2006225762
Figure 2006225762
Figure 2006225762
〔結果と討論〕 At the same time, as disclosed in FIGS. 5 and 6, the present invention applies the technology to a rotary bearing of a DC fan. As a result of experiments conducted, MTBF (Mean Time Between Failures) exceeded 5000 hours. The results of the test are shown in the attached Tables 1 to 5. The service life of the present invention can be applied to a wide range of bearings, and can also be applied to parts that perform linear motion.
Figure 2006225762
Figure 2006225762
Figure 2006225762
Figure 2006225762
Figure 2006225762
[Results and discussion]

この発明の製品は直接、銅めっき部品の表面の微小な粉末の粒子をテトラフルオロエチレンの充填材にして低摩擦係数、耐磨耗、硬度が強く、サイズが精密で、製造越す炉が低く、動力エネルギーの効果を高める。このため、直線運動及び回転運動の滑動体上に応用できるとともに、製造の制度を高め、従来の製品よりもよい製品になる。   The product of this invention is made of a fine powder particle on the surface of the copper plated part with tetrafluoroethylene as a filler, low friction coefficient, wear resistance, high hardness, precise size, low furnace over production, Increase the effect of power energy. For this reason, it can be applied to a sliding body of linear motion and rotational motion, and the manufacturing system is enhanced, resulting in a product that is better than conventional products.

同時に、予め置いた粉末冶金用金属粉の製造方法の材料は、金属を削った方法で処理する場合、この発明では材料の表面の平均表面粗さの値(Ra値は約0.6〜0.8)を適宜に調整する。材質の表面は適宜に断面の高低の輪郭の変化は後工程での充填材になり、前述の製造工程で得られた製品の物理、化学的な性質を具えてなる。しかしながら、製造コストは前述の粉末の粉末冶金の製造工程よりも高くなる。このため、品質の高さを追求し、低コストの製造方法求められる中、この発明が提供する製造技術は産業の需要を満足し、解決する方法の1つである。   At the same time, when the material of the metal powder for powder metallurgy placed in advance is processed by the method of shaving the metal, in the present invention, the average surface roughness value (Ra value is about 0.6 to 0) in the surface of the material. .8) is adjusted accordingly. As for the surface of the material, the change in the profile of the cross-sectional height appropriately becomes a filler in the subsequent process, and has the physical and chemical properties of the product obtained in the aforementioned manufacturing process. However, the manufacturing cost is higher than that of the powder metallurgy manufacturing process. For this reason, while pursuing high quality and demanding a low-cost manufacturing method, the manufacturing technology provided by the present invention is one of the methods for satisfying and solving industrial demand.

以上は、この発明の好ましい実施例であって、この発明の実施の範囲を限定するものではない。よって、当業者のなし得る修正、もしくは変更であって、この発明の精神の下においてなされ、この発明に対して均等の効果を有するものは、いずれもこの発明の特許請求の範囲に属するものとする。 The above is a preferred embodiment of the present invention and does not limit the scope of the present invention. Therefore, any modifications or changes that can be made by those skilled in the art, which are made within the spirit of the present invention and have an equivalent effect on the present invention, shall belong to the scope of the claims of the present invention. To do.

従来のDUの油受けの断面図である。It is sectional drawing of the oil receiver of the conventional DU. この発明の製造方法を示したブロック図である。It is the block diagram which showed the manufacturing method of this invention. 図2に開示する粉末を焼結した表面の組織の構造の拡大図である。It is an enlarged view of the structure of the structure | tissue of the surface which sintered the powder disclosed in FIG. 図2に開示する被覆層の表面の密着性処理後の表面の状況を示した説明図である。It is explanatory drawing which showed the condition of the surface after the adhesiveness process of the surface of the coating layer disclosed in FIG. 図2に開示する回転運動体を示した製品の説明図である。It is explanatory drawing of the product which showed the rotary body disclosed in FIG. 図2に開示する実験用ファンの回転部を装着した後を示した説明図である。It is explanatory drawing which showed after mounting | wearing with the rotation part of the experimental fan disclosed in FIG.

符号の説明Explanation of symbols

10 選別
20 潤滑剤
30 混合作業
40 押し圧成形
50 胚細胞の実験
60 焼結処理
70 サイズ調整
80 超音波による脱脂処理
90 加熱による脱脂処理
110 水洗浄
200 活性処理
210 水洗浄
300 品質改善処理
310 水洗浄
400 活性処理
410 水洗浄
500 品質改善処理
510 水洗浄






DESCRIPTION OF SYMBOLS 10 Selection 20 Lubricant 30 Mixing operation 40 Press molding 50 Experiment of embryo cell 60 Sintering process 70 Size adjustment 80 Degreasing process by ultrasonic 90 Degreasing process by heating 110 Water washing 200 Active process 210 Water washing 300 Quality improvement process 310 Water Cleaning 400 Activation processing 410 Water cleaning 500 Quality improvement processing 510 Water cleaning






Claims (5)

a.スプレーで得た青銅ベースの合金の粉末は選別し、
b.異なる直径の粉末に適宜な比率で微量の合金金属材を加えと混ぜ合わせ、必要に応じて潤滑剤を加え、
c.混合作業を実施し、
d.十分に混ぜ合わせた粉末は、プレッシャーの中空の金型内部に充填し、上下のパンチと中空の金型を加圧して粉末を押し圧成形し、
e.成形する圧力とパンチの接触面積、及び予想した胚細胞の密度とは非常に関連があり、その後、胚細胞の実験を実施し、
f.成形後の胚細胞を焼結炉に送り、還元気体の中で焼結処理を実施し、
g.焼結処理の後、直接、表面の品質を改善し、被覆層の処理を行い、その後、サイズの調整を実施し、
h.表面を加熱して行う脱脂処理は、油脂の種類によって、水性、もしくは酸性の溶剤で洗浄、もしくは超音波による脱脂処理を行って表面の油脂を除去し、
i.室温で攪拌、換気、ろ過を行い、動力の攪拌機で均一に攪拌し、
j.表面の活性処理、表面の品質改善処理、水洗浄など洗浄、活性処理を実施し、
k.処理されていない電解液層の硬度は被覆処理後、高温で焼き付けすると、表面の被覆層に密着処理を行い、
l.密着処理を行った後、製造工程の精度に対する需要に応じて超音波洗浄を実施し、再度洗浄して電気化学反応で、まだ完全に被覆していない材料の表面の粒子を洗浄することを特徴とする部品の被覆層の製造方法。
a. Bronze-based alloy powder obtained by spraying is sorted,
b. Add a small amount of alloy metal material to powders of different diameters at an appropriate ratio and mix, add lubricant as necessary,
c. Carry out mixing work,
d. The fully mixed powder is filled inside the hollow mold of the pressure, presses the upper and lower punches and the hollow mold, and press-molds the powder,
e. The pressure to mold and the contact area of the punch and the density of the expected germ cells are very related,
f. Send the embryo cells after molding to the sintering furnace, and perform the sintering process in the reducing gas.
g. Immediately after the sintering process, improve the surface quality, process the coating layer, and then adjust the size,
h. The degreasing treatment performed by heating the surface is cleaned with an aqueous or acidic solvent depending on the type of oil or fat, or degreased by ultrasonic waves to remove the oil on the surface,
i. Stir, ventilate and filter at room temperature, stir uniformly with a power stirrer,
j. Perform surface activation treatment, surface quality improvement treatment, water washing and activation treatment,
k. The hardness of the electrolyte layer that has not been processed is subjected to adhesion treatment on the coating layer on the surface when baked at a high temperature after the coating treatment,
l. After performing the adhesion treatment, ultrasonic cleaning is performed according to the demand for accuracy of the manufacturing process, and cleaning is performed again to clean particles on the surface of the material that is not completely covered by an electrochemical reaction. A method for manufacturing a coating layer of a component.
前記混合工程は直立式の螺旋状のリーフ型のミキサーを利用し、60〜120rpmの回転速度で、均一に混合することを特徴とする請求項1に記載の部品の被覆層の製造方法。 2. The method for producing a coating layer of a component according to claim 1, wherein the mixing step uses an upright spiral leaf-type mixer and uniformly mixes at a rotation speed of 60 to 120 rpm. 前記胚細胞の実験で得られたように最
終的な胚細胞の密度が7.9〜8.0g/cm以上になるように維持することを特徴とする請求項1に記載の部品の被覆層の製造方法。
2. The component coating according to claim 1, wherein the density of the final embryo cell is maintained to be 7.9 to 8.0 g / cm 3 or more as obtained in the experiment of the embryo cell. Layer manufacturing method.
前記熱処理していない電解液層の硬度は280〜380VHNで処理後に300〜350度の高温で焼き付けを10〜15分実施することを特徴とする請求項1に記載の部品の被覆層の製造方法。 The method for producing a coating layer for a component according to claim 1, wherein the non-heat-treated electrolyte layer has a hardness of 280 to 380 VHN and is baked at a high temperature of 300 to 350 degrees after the treatment for 10 to 15 minutes. . 前記表面に密着処理を実施した後の部品は超音波洗浄900を約2〜5分実施することを特徴とする請求項1に記載の部品の被覆層の製造方法。


The method for producing a coating layer of a component according to claim 1, wherein the component after the surface is subjected to the adhesion treatment is subjected to ultrasonic cleaning 900 for about 2 to 5 minutes.


JP2006018384A 2005-01-27 2006-01-27 Method for producing covered layer of component Pending JP2006225762A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094102516A TW200626756A (en) 2005-01-27 2005-01-27 Surface cladding manufacturing method of high-efficiency motion pairs system

Publications (1)

Publication Number Publication Date
JP2006225762A true JP2006225762A (en) 2006-08-31

Family

ID=36060960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018384A Pending JP2006225762A (en) 2005-01-27 2006-01-27 Method for producing covered layer of component

Country Status (7)

Country Link
US (1) US20080138231A1 (en)
JP (1) JP2006225762A (en)
KR (1) KR20060086873A (en)
AU (1) AU2006200273A1 (en)
DE (1) DE102006003823A1 (en)
GB (1) GB2423306A (en)
TW (1) TW200626756A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537361B (en) * 2010-12-07 2015-05-27 济源市中科新型陶瓷有限公司 Sealing ring for water circulation sealing box of car and preparation method of sealing ring
CN106217912B (en) * 2016-09-26 2018-03-23 佛山慧氟高分子材料有限公司 A kind of production technology of LCD liquid crystal displays module binding Teflon film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050429B (en) * 1979-06-05 1984-04-04 Hitachi Powdered Metals Method of producing bronze-based sintered bearing material
JP2512477B2 (en) * 1987-06-17 1996-07-03 大豊工業株式会社 Copper-based sliding material
US4830889A (en) * 1987-09-21 1989-05-16 Wear-Cote International, Inc. Co-deposition of fluorinated carbon with electroless nickel
DE3838461A1 (en) * 1988-11-12 1990-05-23 Krebsoege Gmbh Sintermetall POWDER METALLURGICAL MATERIAL BASED ON COPPER AND ITS USE
GB9114291D0 (en) * 1991-07-02 1991-08-21 Johnson Electric Sa A sheet metal bearing for an electric motor
ES2189917T3 (en) * 1996-12-14 2003-07-16 Federal Mogul Deva Gmbh BEARING MATERIAL AND PROCEDURE FOR MANUFACTURING.
US6132486A (en) * 1998-11-09 2000-10-17 Symmco, Inc. Powdered metal admixture and process

Also Published As

Publication number Publication date
DE102006003823A1 (en) 2006-08-10
GB2423306A (en) 2006-08-23
TWI312016B (en) 2009-07-11
GB0601645D0 (en) 2006-03-08
US20080138231A1 (en) 2008-06-12
TW200626756A (en) 2006-08-01
KR20060086873A (en) 2006-08-01
AU2006200273A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CN101871058A (en) Metal-based self-lubricating composite material and preparation method thereof
CN110369730B (en) Copper-coated iron powder and preparation method thereof
CN100449163C (en) Integral gradient self-lubricating bearing, and fabricating method
CN106756214A (en) A kind of copper-based bimetal bearing material of antifriction and preparation method thereof
CN105177461A (en) Iron-based self-lubricating material and preparation method thereof
CN106544542B (en) A kind of unleaded Cu-based sliding bearing material and preparation method thereof
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
CN105369147A (en) Anti-cracking self-lubricating metal ceramic bearing and preparation method thereof
JP2018016844A (en) Multilayer sintered plate and multilayer sliding member and method for producing multilayer sintered plate
CN105420603A (en) Sintered metal powder bearing with good heat resistance and high lubricating property and preparation method of sintered metal powder bearing
CN103255413B (en) Copper and copper alloy surface laser melting coating cobalt-based self-lubricating coat in use and preparation technology
JP2006225762A (en) Method for producing covered layer of component
CN108130501B (en) Preparation method of steel backing copper-based bearing copper coating
CN110976852B (en) Preparation method of copper-based graphite composite lubricating sealing material
US20180056394A1 (en) Machine component and production method therefor
JP5995389B1 (en) Method for producing copper composite iron powder and method for producing sintered metal
EP3088106A1 (en) Machine component using powder compact and method for producing same
CN105369146A (en) High-strength self-lubricating metal ceramic bearing and preparation method thereof
JP2004124258A (en) Sintered alloy and production method therefor
Huang et al. Surface texturing for adaptive Ag/MoS 2 solid lubricant plating
KR100921408B1 (en) Sliding bearing using sintering of cooper and teflon and method for manufacturing thereof
CN109890539B (en) Sintered bearing and method for manufacturing same
KR101547442B1 (en) Method for manufacuring a helical gear using powder metallugy
CN112387975A (en) Lead-free copper-based self-lubricating composite bearing material and preparation method thereof
CN100376347C (en) Method for producing high efficiency movement pair surface coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726