JP2006225761A - Chromium-free rust inhibitive treatment method for metal product having zinc surface and metal product treated thereby - Google Patents

Chromium-free rust inhibitive treatment method for metal product having zinc surface and metal product treated thereby Download PDF

Info

Publication number
JP2006225761A
JP2006225761A JP2006005537A JP2006005537A JP2006225761A JP 2006225761 A JP2006225761 A JP 2006225761A JP 2006005537 A JP2006005537 A JP 2006005537A JP 2006005537 A JP2006005537 A JP 2006005537A JP 2006225761 A JP2006225761 A JP 2006225761A
Authority
JP
Japan
Prior art keywords
chromium
zinc
metal member
chemical conversion
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006005537A
Other languages
Japanese (ja)
Other versions
JP4074320B2 (en
Inventor
Yasuhiko Endo
康彦 遠藤
Kengo Takase
健吾 高瀬
Shunjiro Watanabe
俊次郎 渡邊
Shoichiro Adachi
正一郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Technology Precision Electrical Discharge Works
Original Assignee
Institute of Technology Precision Electrical Discharge Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Technology Precision Electrical Discharge Works filed Critical Institute of Technology Precision Electrical Discharge Works
Priority to JP2006005537A priority Critical patent/JP4074320B2/en
Publication of JP2006225761A publication Critical patent/JP2006225761A/en
Application granted granted Critical
Publication of JP4074320B2 publication Critical patent/JP4074320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chromium-free surface treatment method which imparts practical rust inhibitive performance to a metal product having a zinc surface to which it was difficult to impart rust inhibitive performance of practical level when a chromium-free surface treatment agent for forming a silica-based film is applied. <P>SOLUTION: A conversion-coated film of zinc phosphate etc. is formed on the zinc surface of the metal product as pretreatment, and the silica-based film is formed by applying a chromium-free surface treatment agent which uses alcohol or mixture of water and alcohol as a solvent to the conversion-coated film. As a result, when an aqueous surface treatment agent containing alcohol is applied, it is possible to suppress the formation of white rusting for 72 hours or longer in the salt spray test. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は亜鉛めっき製品など亜鉛表面を有する金属部材の非クロム防錆処理方法と、非クロム防錆処理がされた亜鉛表面を有する金属部材に関する。本発明における亜鉛表面は亜鉛合金となった表面とすることができる。   The present invention relates to a non-chromium antirust treatment method for a metal member having a zinc surface such as a galvanized product, and a metal member having a zinc surface subjected to a nonchromium antirust treatment. The zinc surface in the present invention can be a surface made of a zinc alloy.

化成処理は化学的または電気化学的な処理によって金属表面に安定な化合物を生成させる手段であり、リン酸塩処理、黒染め処理、クロメート処理などがあるとJIS規格の本に説明されている。金属製品に化成処理を施す主な目的は、防錆性能を向上させること、表面に塗布する塗料の密着性を向上させること、表面を着色することなどである。   Chemical conversion treatment is a means for producing a stable compound on a metal surface by chemical or electrochemical treatment, and it is described in JIS standard books that there are phosphate treatment, black dyeing treatment, chromate treatment and the like. The main purpose of applying a chemical conversion treatment to metal products is to improve rust prevention performance, improve the adhesion of the coating applied to the surface, and color the surface.

亜鉛表面を有する金属部材、例えば亜鉛めっきされた金属製品の表面には、従来クロメート処理などのクロム酸を含む水溶液を使った化成処理を施すか、クロム酸成分を含まない化成処理が施される。たいていさらにその表面に有機樹脂を主成分とする塗膜などを被覆して防錆性能を付与する方法が普及している。   The surface of a metal member having a zinc surface, for example, a galvanized metal product is conventionally subjected to a chemical conversion treatment using an aqueous solution containing chromic acid such as chromate treatment, or a chemical conversion treatment not containing a chromic acid component. . In most cases, a method of imparting rust prevention performance by coating a coating film mainly composed of an organic resin on the surface thereof has become widespread.

クロム酸が有毒で、発ガン性もあるため、欧州を発信源として六価クロムを含む製品を使わない方針が打ち出され、クロム酸(クロメート)成分を含まない表面処理剤の開発が活発に行われている。既に公開された特許文献中にもいくつか非クロム表面処理方法が提案されているが、現在は防錆を目的とする三価クロムを用いた亜鉛めっきの化成処理製品がようやく実用化の段階に入ったところである。しかし、三価クロム化成処理は液の管理が容易でなく、三価クロム成分の一部が六価クロムに変化して排水中に出るなどの問題点を抱えている。   Since chromic acid is toxic and carcinogenic, a policy not to use products containing hexavalent chromium from Europe is proposed, and active development of surface treatment agents that do not contain chromic acid (chromate) components It has been broken. Several non-chromium surface treatment methods have been proposed in already published patent documents, but at present, galvanized chemical conversion products using trivalent chromium for the purpose of rust prevention are finally at the stage of practical application. Just entered. However, the trivalent chromium chemical conversion treatment is not easy to manage the liquid, and has a problem that a part of the trivalent chromium component is changed to hexavalent chromium and is discharged into the waste water.

亜鉛表面を有する金属部材、例えば亜鉛めっきされた金属製品の表面に非クロムの化成処理を施し、さらにその上に水系のシリカその他を含む表面処理剤で皮膜を形成して防錆性能を向上させる方法も提案されている。   A metal member having a zinc surface, for example, a surface of a galvanized metal product is subjected to a non-chromium chemical conversion treatment, and a film is formed thereon with a surface treatment agent containing water-based silica or the like to improve rust prevention performance. A method has also been proposed.

例えば、特許文献1には亜鉛めっきした表面を化成処理して黒色化し、この化成処理表面に珪酸塩水溶液やコロイドシリカなどの水溶液を塗布して表面処理し、シリカ質皮膜で被覆して防錆性能を付与する方法が開示されている。しかし、この方法で防錆処理された亜鉛めっき鋼板はJISに規定された塩水噴霧試験において48時間足らずで白錆が発生し、防錆性能は実用上不充分である。   For example, Patent Document 1 discloses that a galvanized surface is blackened by chemical conversion, and this chemical conversion surface is coated with an aqueous solution such as silicate aqueous solution or colloidal silica, surface-treated, and coated with a siliceous film to prevent rust. A method of imparting performance is disclosed. However, the galvanized steel sheet treated with rust prevention by this method generates white rust in less than 48 hours in the salt spray test specified in JIS, and the rust prevention performance is insufficient in practice.

特許文献2には、亜鉛系めっき鋼板の表面に燐酸塩化成処理を施し、主成分である有機樹脂の他にチオカルボニル基含有化合物や燐酸化合物、微粒シリカ、シランカップリング剤などを含む水溶液で処理表面に薄い皮膜を形成したもの、又は主成分である有機樹脂の他にバナジン酸化合物、チオカルボニル基含有化合物、燐酸化合物、微粒シリカ、シランカップリング剤などを含む水溶液で化成処理表面に薄い皮膜を形成したものが開示されている。この表面処理された亜鉛めっき鋼板のサンプルを塩水噴霧試験機中に168時間入れておいても変化がないと述べている。   In Patent Document 2, a surface of a zinc-based plated steel sheet is subjected to a phosphate conversion treatment, and in addition to an organic resin as a main component, an aqueous solution containing a thiocarbonyl group-containing compound, a phosphoric acid compound, fine silica, a silane coupling agent, etc. A thin film on the treated surface, or an aqueous solution containing a vanadic acid compound, thiocarbonyl group-containing compound, phosphoric acid compound, fine silica, silane coupling agent, etc. in addition to the organic resin as the main component. What formed the film is disclosed. It states that there is no change even if this surface-treated galvanized steel sheet sample is placed in a salt spray tester for 168 hours.

特許文献3には、亜鉛系めっき鋼板に非クロム化成処理を施し、この表面に非クロム防錆顔料を含むポリエステル系下塗り塗料(4〜25μm)と上塗り塗料を塗布した塗装金属板を開示しており、非クロム系防錆顔料として変性シリカ(シールデックス;富士シリシア化学(株)製シリカ微粉末)を例示している。   Patent Document 3 discloses a coated metal sheet obtained by applying a non-chromium chemical conversion treatment to a zinc-based plated steel sheet and applying a polyester-based undercoating paint (4 to 25 μm) containing a non-chromium anticorrosive pigment and an overcoating paint to the surface. In addition, modified silica (Shieldex; silica fine powder manufactured by Fuji Silysia Chemical Co., Ltd.) is illustrated as a non-chromium-based rust preventive pigment.

特許文献4には、溶融亜鉛合金めっき(Al、Mgを含む)を施した鋼板に化成処理を施し、この表面に水性塗料を下塗りし、さらに上塗りを施した鋼板を開示している。化成処理液はアクリルエマルジョンなどの水性樹脂の他、ヘキサフルオロチタン酸やチタンフッ化水素酸などのチタン化合物、ヘキサフルオロジルコニウム酸などのジルコニウム化合物を含むもので、下塗りの塗料としてアクリルエマルジョンなどの水性樹脂を主成分とし、シリカ系防錆顔料(シールデックス)を分散させた水性塗料を例示している。上塗り塗料としてアクリルエマルジョンなどの水性樹脂を主成分として含み、酸化チタン顔料を分散させた水性塗料を塗布している。この実施例では、上塗り塗料まで塗布された状態のサンプル鋼板を塩水噴霧試験機に入れ、塗膜の膨れ具合で評価しているので防錆特性は明らかでない。   Patent Document 4 discloses a steel sheet obtained by subjecting a steel sheet subjected to hot dip zinc alloy plating (including Al and Mg) to chemical conversion treatment, undercoating the surface with a water-based paint, and further overcoating it. The chemical conversion treatment liquid contains an aqueous resin such as an acrylic emulsion, a titanium compound such as hexafluorotitanic acid and titanium hydrofluoric acid, and a zirconium compound such as hexafluorozirconic acid, and an aqueous resin such as an acrylic emulsion as an undercoat paint. A water-based paint in which a silica-based anticorrosive pigment (sealdex) is dispersed is exemplified. A water-based paint containing a water-based resin such as an acrylic emulsion as a main component and having a titanium oxide pigment dispersed therein is applied as a top coat. In this example, the sample steel plate with the top coating applied is put in a salt spray tester and evaluated by the degree of swelling of the coating film, so the rust prevention characteristics are not clear.

また、特許文献5には、市販の亜鉛めっき鋼板(電気亜鉛めっき鋼板と溶融亜鉛めっき鋼板、市販品は通常クロメート処理がされている)に燐酸亜鉛化成処理を施し、この表面にノンクロム型皮膜を形成した鋼板が開示されている。この皮膜はフェノール系の水溶性有機樹脂と、チタンフッ化アンモニウムなどのチタン化合物又はジルコニウムフッ化水素酸などのジルコニウム化合物と、メルカプトプロピルトリメトキシシランなどのシランカップリング剤を含む弱酸性水溶液を塗布した皮膜が形成されている。表面処理された亜鉛めっき鋼板のサンプルを塩水噴霧試験機中に72時間入れて置いたとき、白錆の発生がないサンプルがあると述べている。   Patent Document 5 discloses that a commercially available galvanized steel sheet (electrogalvanized steel sheet and hot-dip galvanized steel sheet, and commercially available products are usually chromated) is subjected to a zinc phosphate conversion treatment, and a non-chromium coating is applied to this surface. A formed steel sheet is disclosed. This film was coated with a weakly acidic aqueous solution containing a phenolic water-soluble organic resin, a titanium compound such as ammonium titanium fluoride or a zirconium compound such as zirconium hydrofluoric acid, and a silane coupling agent such as mercaptopropyltrimethoxysilane. A film is formed. It states that when a sample of a surface-treated galvanized steel sheet is placed in a salt spray tester for 72 hours, there is a sample that does not generate white rust.

また、特許文献6には、アルコールとシリカを含む表面処理剤を化成処理した亜鉛めっき表面に塗布して防錆性能(耐白錆性)を向上させることが開示されている。しかし、その表面処理剤を塗布して形成される被膜は樹脂を主成分としており、表面処理剤の被膜はシリカ質とはいえない。実施例に記載されている例に拠れば、いずれもメラミン樹脂などの硬化剤樹脂を含む樹脂成分が51重量%以上含まれている。さらに、六価クロムを使ったクロメート処理を施した亜鉛めっき表面に表面処理剤を塗布した例のみが記載されている。   Patent Document 6 discloses that a surface treatment agent containing alcohol and silica is applied to a galvanized surface subjected to chemical conversion treatment to improve rust prevention performance (white rust resistance). However, the film formed by applying the surface treatment agent has a resin as a main component, and the film of the surface treatment agent cannot be said to be siliceous. According to the examples described in Examples, 51 wt% or more of a resin component containing a curing agent resin such as a melamine resin is included. Furthermore, only an example in which a surface treatment agent is applied to a galvanized surface subjected to chromate treatment using hexavalent chromium is described.

特許文献7には、テトラエトキシシランのエタノール溶液に水と塩酸とを加えて加水分解して得たエタノール溶媒のシリカゾルを表面処理剤として使うことと、着色できる化成処理を施した溶融亜鉛めっき鋼板の表面にその表面処理剤に浸漬して塗布し焼付けることが開示されている。特許文献に開示された、塩水噴霧試験における表面処理鋼板の防錆性能では、シリカゾルを塗布したサンプルでは12時間で白錆が出ている。このプアな防錆性能の理由は、シリカ成分の濃度が5重量%よりうすいシリカゾル溶液を塗布しているために0.3μmよりも薄い膜厚の被膜が着いたためと考えられる。   Patent Document 7 discloses a hot-dip galvanized steel sheet that uses, as a surface treatment agent, a silica sol of an ethanol solvent obtained by adding water and hydrochloric acid to an ethanol solution of tetraethoxysilane and hydrolyzing it. It is disclosed that it is dipped in the surface treatment agent, applied and baked on the surface. In the antirust performance of the surface-treated steel sheet in the salt spray test disclosed in the patent document, white rust appears in 12 hours in the sample coated with silica sol. The reason for this poor rust prevention performance is considered to be that a film having a film thickness thinner than 0.3 μm was applied because the silica sol solution having a silica component concentration of 5% by weight was applied.

本発明者らは先の出願(特願2004−052991号)において、亜鉛めっきされた金属部材の表面に塗布すれば赤錆の発生を長時間抑止できるシリカ質の皮膜を形成する非クロム表面処理剤を提案している。この非クロム表面処理剤中には分散処理された一次粒子の平均粒径が70nm以下(好ましくは、40nm以下)である酸化チタン超微粉末が有効量配合されている。   In the previous application (Japanese Patent Application No. 2004-052991), the present inventors have prepared a non-chromium surface treatment agent that forms a siliceous film that can suppress the occurrence of red rust for a long time when applied to the surface of a galvanized metal member. Has proposed. In this non-chromium surface treatment agent, an effective amount of an ultrafine titanium oxide powder in which the average particle diameter of the dispersed primary particles is 70 nm or less (preferably 40 nm or less) is blended.

また特願2004−73736号において、特定の重量平均分子量を有するアルコキシシランオリゴマーを主成分とするアルコール溶液である白錆発生の抑止に効果のある表面処理剤を提案した。   In Japanese Patent Application No. 2004-73736, a surface treatment agent that is effective in inhibiting white rust generation, which is an alcohol solution mainly composed of an alkoxysilane oligomer having a specific weight average molecular weight, was proposed.

即ち、重量平均分子量が1000〜10000のアルコキシシランオリゴマーを主成分として含むアルコール溶液の表面処理剤を亜鉛めっき製品等の表面に塗布し、薄いシリカ質皮膜で亜鉛表面を被覆することにより赤錆の発生は勿論、白錆の発生を長時間抑止することができる。この場合、下地の亜鉛めっきとの相性が良ければ、塩水噴霧試験で300時間以上白錆の発生を抑止できる。   That is, a surface treatment agent of an alcohol solution containing an alkoxysilane oligomer having a weight average molecular weight of 1000 to 10000 as a main component is applied to the surface of a galvanized product and the surface of zinc is coated with a thin siliceous film to generate red rust. Of course, the occurrence of white rust can be suppressed for a long time. In this case, if compatibility with the underlying galvanizing is good, generation of white rust can be suppressed for 300 hours or more in the salt spray test.

表面処理剤の溶媒にはNON−VOCの水を使うのが好ましい。しかし、水のみを溶媒とする非クロム表面処理剤を亜鉛めっき製品の表面に塗布した場合、赤錆の発生を長時間抑止することはできても(特許文献1に記されているように)白錆の発生が早い。   It is preferable to use NON-VOC water as the solvent for the surface treatment agent. However, when a non-chromium surface treatment agent containing only water as a solvent is applied to the surface of a galvanized product, the occurrence of red rust can be suppressed for a long time (as described in Patent Document 1). Rust occurs quickly.

本発明者らは、複数の業者から種々の条件で白あげ亜鉛めっきされたボルト(クロメート処理なし)などの金属部材を取り寄せ、アルコキシシランオリゴマーを主成分として含むアルコール溶液の表面処理剤を塗布してみたところ、亜鉛めっきのめっき条件によって防錆性能が大きく変動することを知った。   The present inventors ordered metal members such as bolts (no chromate treatment) that were whitened and galvanized under various conditions from a plurality of suppliers, and applied a surface treatment agent of an alcohol solution containing an alkoxysilane oligomer as a main component. As a result, it was found that the rust prevention performance fluctuates greatly depending on the galvanizing conditions.

そこで、バレル亜鉛めっきの小型装置を導入し、ジンケート浴を建浴して亜鉛めっきしたボルトやねじに表面処理剤を塗布したときの防錆性能に差が出る原因の追求を試みた。しかし、光沢剤が添加された亜鉛めっき浴中の現象が非常に複雑なため、防錆性能に差が出る原因を解明できていないが、いくつかの因果関係を把握できた。例えば、クロメート処理を行う前に通常行われている希い硝酸で洗うピクリングを行うと、表面処理剤を塗布したときの防錆性能が損なわれることが分かった。   Therefore, a small apparatus for barrel galvanization was introduced, and an attempt was made to investigate the cause of the difference in rust prevention performance when a zincate bath was constructed and a surface treatment agent was applied to galvanized bolts and screws. However, because the phenomenon in the galvanizing bath to which the brightener is added is very complicated, the cause of the difference in rust prevention performance has not been elucidated, but some causal relationships have been grasped. For example, it has been found that rust prevention performance when a surface treatment agent is applied is impaired when pickling is performed by washing with dilute nitric acid, which is usually performed before chromate treatment.

また、亜鉛めっきを短時間で終えるように亜鉛めっきの電流密度を大きくすると表面処理剤を塗布したときの防錆性能が劣化することが分かった。   In addition, it was found that when the current density of galvanization is increased so that the galvanization is completed in a short time, the rust prevention performance is deteriorated when the surface treatment agent is applied.

さらに、ねじ部外径が3mm以下の小さいボルトやねじに、バレルめっき装置を使って亜鉛めっきすると、予め計算して求めた適当な電流密度で亜鉛めっきを施しても、表面処理剤を塗布したとき期待したレベルの防錆性能を付与できないことが分かった。
特開昭61−253381号公報 特開2000−248367号公報 特開2001−81578号公報 特開2002−317279号公報 特開2003−253464号公報 特開平05−001391号公報 特開2001−64782号公報
Furthermore, when a zinc bolt is galvanized on a small bolt or screw having an outer diameter of 3 mm or less using a barrel plating apparatus, a surface treatment agent is applied even if galvanization is performed at an appropriate current density calculated in advance. It was found that sometimes the expected level of rust prevention performance could not be imparted.
JP 61-253381 A JP 2000-248367 A JP 2001-81578 A JP 2002-317279 A JP 2003-253464 A JP 05-001391 A Japanese Patent Laid-Open No. 2001-64782

本発明の目的は、シリカ質皮膜を形成する非クロム表面処理剤を塗布したとき実用レベルの防錆性能を付与し難い亜鉛表面を有する金属部材、例えば表面処理剤との相性が悪い亜鉛めっきされた金属部材の白錆に対する防錆性能を向上させる表面処理方法を提供することである。   The object of the present invention is to apply a non-chromium surface treatment agent that forms a siliceous film to a metal member having a zinc surface that is difficult to provide a practical level of rust prevention performance, for example, a galvanized material that has poor compatibility with a surface treatment agent. Another object of the present invention is to provide a surface treatment method for improving the rust prevention performance of a metallic member against white rust.

具体的には、シリカ質皮膜を形成する表面処理剤を塗布したとき、実用レベルの防錆性能を付与し難い亜鉛表面を有する金属部材の表面に、一手間加えて非クロム表面処理を施すことにより、JIS−Z−2371に規定された塩水噴霧試験において実用性ありとされる72時間以上の間白錆の発生を抑止できる非クロム防錆処理方法を提供することを目的とする。   Specifically, when a surface treatment agent that forms a siliceous film is applied, a non-chromium surface treatment is applied to the surface of a metal member having a zinc surface that is difficult to impart a practical level of rust prevention performance. Accordingly, an object of the present invention is to provide a non-chromium rust preventive treatment method capable of suppressing the occurrence of white rust for 72 hours or more, which is considered to be practical in the salt spray test specified in JIS-Z-2371.

更には水性の表面処理剤を塗布した亜鉛めっき金属部材においても、実用レベルの白錆抑制性能を付与できる非クロム防錆処理方法を提供することを目的とする。   It is another object of the present invention to provide a non-chromium rust preventive treatment method capable of imparting a practical level of white rust suppression performance even to a galvanized metal member coated with an aqueous surface treatment agent.

本発明者らは、電気亜鉛めっき条件及び亜鉛めっきの前後の処理条件などを種々検討した結果、非クロム表面処理剤を塗布する前に一手間加えることによって亜鉛表面を有する金属部材の防錆性能を向上させる表面処理方法を見付け、本発明に到達した。   As a result of various studies on the electrogalvanization conditions and the treatment conditions before and after the galvanization, the present inventors have found that the anticorrosion performance of the metal member having the zinc surface by adding a single effort before applying the non-chromium surface treatment agent. As a result, the present inventors have found a surface treatment method for improving the temperature.

本発明による亜鉛表面を有する金属部材の非クロム防錆処理方法は、亜鉛表面を有する金属部材の表面に化成処理を施して亜鉛表面に化成処理膜を形成し、この化成処理膜の表面に、アルコール溶媒又は水とアルコールとの混合溶媒中にシリカ成分又はシリカに変化する成分を含む非クロム表面処理剤溶液を塗布し、平均厚さが0.5〜3μmのシリカ質皮膜を形成することを特徴とする。本発明に用いる非クロム表面処理剤溶液は、シリカ成分又はシリカに変化する成分をシリカに換算して10〜25重量%含むことが好ましい。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, a chemical conversion treatment is performed on the surface of the metal member having a zinc surface to form a chemical conversion treatment film on the zinc surface. Applying a non-chromium surface treating agent solution containing a silica component or a component that changes to silica in an alcohol solvent or a mixed solvent of water and alcohol to form a siliceous film having an average thickness of 0.5 to 3 μm. Features. The non-chromium surface treatment agent solution used in the present invention preferably contains 10 to 25% by weight of a silica component or a component that changes to silica in terms of silica.

本発明による非クロム防錆処理方法を適用して亜鉛表面を有する金属部材の表面処理を行うと、JIS−Z−2371に準じた塩水噴霧試験における防錆性能が向上し、実用性があるとされる72時間以上白錆の発生を抑止できる。   When the surface treatment of a metal member having a zinc surface is performed by applying the non-chromium rust prevention treatment method according to the present invention, the rust prevention performance in a salt spray test according to JIS-Z-2371 is improved, and there is practicality. The generation of white rust can be suppressed for 72 hours or more.

本発明の亜鉛表面を有する金属部材の非クロム防錆処理方法は、亜鉛表面を有する金属部材が亜鉛めっきあるいは亜鉛合金めっきされた金属部材又は亜鉛を主成分とする合金の鋳造品であることが好ましい。   The non-chromium rust preventive treatment method for a metal member having a zinc surface according to the present invention may be a metal member having a zinc surface plated with zinc or a zinc alloy, or a cast product of a zinc-based alloy as a main component. preferable.

本発明の亜鉛表面を有する金属部材の非クロム防錆処理方法では、シリカ成分がコロイドシリカであり、溶媒を水とアルコールとの混合溶媒とすることができる。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, the silica component is colloidal silica, and the solvent can be a mixed solvent of water and alcohol.

本発明の亜鉛表面を有する金属部材の非クロム防錆処理方法は、シリカに変化する成分がアルコキシシランモノマーを加水分解して縮重合させたアルコキシシランオリゴマーであり、溶媒をアルコールとすることができる。このアルコキシシランオリゴマーの重量平均分子量は1000〜10000であることが好ましい。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, the component that changes to silica is an alkoxysilane oligomer obtained by polycondensation by hydrolysis of an alkoxysilane monomer, and the solvent can be alcohol. . It is preferable that the weight average molecular weight of this alkoxysilane oligomer is 1000-10000.

本発明による亜鉛表面を有する金属部材の非クロム防錆処理方法において、非クロム表面処理剤溶液は分散処理された一次粒子の平均粒径が40nm以下である酸化チタン超微粉末を有効量含むことが好ましい。非クロム表面処理剤溶液は酸化チタン超微粉末を0.3〜2重量%、好ましくは0.5〜1.5重量%含む。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, the non-chromium surface treating agent solution contains an effective amount of ultrafine titanium oxide powder having an average particle size of the dispersed primary particles of 40 nm or less. Is preferred. The non-chromium surface treatment agent solution contains 0.3 to 2% by weight, preferably 0.5 to 1.5% by weight of titanium oxide ultrafine powder.

本発明による亜鉛表面を有する金属部材の非クロム防錆処理方法において、非クロム表面処理剤溶液がシランカップリング剤を有効量含むことが好ましい。非クロム表面処理剤溶液は好ましくはシランカップリング剤を4〜16重量%、より好ましくは6〜14重量%含む。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, it is preferable that the non-chromium surface treatment agent solution contains an effective amount of a silane coupling agent. The non-chromium surface treating agent solution preferably contains 4 to 16% by weight, more preferably 6 to 14% by weight of a silane coupling agent.

本発明による亜鉛表面を有する金属部材の非クロム防錆処理方法では、非クロム化成処理液として燐酸亜鉛を主成分とする水溶液を用いることができる。非クロム化成処理液が亜鉛イオンを0.5g/リットル〜5g/リットルと燐酸イオンを2.0g/リットル〜20g/リットル含んでいることが好ましい。   In the non-chromium antirust treatment method for a metal member having a zinc surface according to the present invention, an aqueous solution mainly composed of zinc phosphate can be used as the non-chromium chemical conversion treatment solution. The non-chromium chemical conversion treatment solution preferably contains 0.5 g / liter to 5 g / liter of zinc ions and 2.0 g / liter to 20 g / liter of phosphate ions.

本発明の非クロム防錆処理がされた亜鉛表面を有する金属部材は、亜鉛表面を有する金属部材の亜鉛表面に化成処理膜が形成されており、この化成処理膜の表面に一次粒子の平均粒径が40nm以下である酸化チタン超微粉末を有効量含む厚さ0.5〜3μmのシリカ質皮膜が被覆されていることを特徴とする。このシリカ質皮膜は2〜10重量%の酸化チタン超微粉末を含んでいるのが好ましく、シリカを65重量%以上含んでいることが好ましい。   In the metal member having a zinc surface subjected to the non-chromium rust prevention treatment of the present invention, a chemical conversion treatment film is formed on the zinc surface of the metal member having a zinc surface, and the average particle size of primary particles is formed on the surface of the chemical conversion treatment film. A siliceous film having a thickness of 0.5 to 3 μm containing an effective amount of ultrafine titanium oxide powder having a diameter of 40 nm or less is coated. This siliceous film preferably contains 2 to 10% by weight of titanium oxide ultrafine powder, and preferably contains 65% by weight or more of silica.

本発明による非クロム防錆処理がされた亜鉛表面を有する金属部材は、その亜鉛表面に燐酸亜鉛を主成分とする化成処理膜が形成されていることが好ましい。   The metal member having a zinc surface subjected to the non-chromium rust prevention treatment according to the present invention preferably has a chemical conversion treatment film mainly composed of zinc phosphate formed on the zinc surface.

本発明による他の非クロム防錆処理がされた亜鉛表面を有する金属部材は、その亜鉛表面に化成処理膜が形成され、さらにその表面に、アルコキシシランオリゴマーのアルコール溶液を主成分とする表面処理剤溶液が塗布され、厚さ0.5〜3μmのシリカ質被膜で被覆されている。   The metal member having a zinc surface subjected to another non-chromium rust prevention treatment according to the present invention has a chemical conversion treatment film formed on the zinc surface, and a surface treatment mainly comprising an alcohol solution of an alkoxysilane oligomer on the surface. An agent solution is applied and coated with a siliceous film having a thickness of 0.5 to 3 μm.

本発明による非クロム防錆処理がされた亜鉛表面を有する金属部材は、化成処理液がクエン酸を0.5〜5g/リットル含む水溶液であることが好ましい。さらに、本発明によるクエン酸を含む化成処理液が、クエン酸の他に水性シリカゾルをシリカに換算して2〜20g/リットル含み、亜鉛イオンを0.6〜6g/リットル含むものであることが好ましい。   The metal member having a zinc surface subjected to the non-chromium rust prevention treatment according to the present invention is preferably an aqueous solution containing 0.5 to 5 g / liter of citric acid in the chemical conversion treatment solution. Further, the chemical conversion treatment solution containing citric acid according to the present invention preferably contains 2 to 20 g / liter of an aqueous silica sol in terms of silica in addition to citric acid and 0.6 to 6 g / liter of zinc ions.

本発明による非クロム防錆処理がされた亜鉛表面を有する金属部材は、その化成処理膜が暗色であることができる。すなわち、マンセル表色系で明度が4以下であることが好ましい。   The metal member having a zinc surface that has been subjected to non-chromium rust prevention treatment according to the present invention may have a chemical conversion treatment film having a dark color. That is, the lightness is preferably 4 or less in the Munsell color system.

本発明による非クロム防錆処理がされた亜鉛表面を有する金属部材は、金属部材がバレル法で電気亜鉛めっきされたねじ部外径が3mm以下の小ねじであることが好ましい。   The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to the present invention is preferably a machine screw having a screw portion outer diameter of 3 mm or less obtained by electrogalvanizing the metal member by a barrel method.

本発明の亜鉛表面を有する金属部材の非クロム防錆処理方法を適用することにより、亜鉛表面の亜鉛が酸化して生ずる白錆の発生を、単に非クロム表面処理剤のみを塗布したときと比べて長時間抑止することができる。この効果は表面処理剤を塗布したときに劣った防錆性能しか示さない亜鉛表面を有する金属部材に適用したときに顕著である。   By applying the non-chromium anticorrosion treatment method for a metal member having a zinc surface according to the present invention, the occurrence of white rust caused by the oxidation of zinc on the zinc surface is compared to when only the non-chromium surface treatment agent is applied. Can be deterred for a long time. This effect is remarkable when applied to a metal member having a zinc surface that exhibits only inferior rust prevention performance when a surface treatment agent is applied.

また、従来水性の非クロム表面処理剤による処理では困難であった白錆発生の防止を、本発明の非クロム防錆処理方法、即ち非クロム化成処理と水とアルコールとの混合溶媒を使った水性表面処理剤溶液とを組み合わせた表面処理方法の適用により、実用性があるとされる72時間以上に亙って白錆の発生を抑止できる。   In addition, the prevention of white rust generation, which has been difficult with the conventional treatment with a non-chromium surface treatment agent, is performed using the non-chromium antirust treatment method of the present invention, that is, a mixed solvent of non-chromium chemical conversion treatment, water and alcohol. By applying a surface treatment method in combination with an aqueous surface treatment agent solution, the occurrence of white rust can be suppressed for 72 hours or more, which is considered to be practical.

また、亜鉛めっきが施された小ねじ類においては、めっき電流密度が一部の表面に偏ることに起因して、白錆生成の抑止に有効なアルコール溶媒の非クロム表面処理剤溶液を塗布しても白錆の発生を長時間抑止できないという問題があったが、前処理として化成処理を施す本発明の非クロム防錆処理方法を適用することにより、白錆の発生を長時間抑止できるという効果が得られる。   In addition, for small screws that have been galvanized, a non-chromium surface treatment agent solution of an alcohol solvent that is effective in suppressing white rust formation is applied due to the plating current density being biased to a part of the surface. However, the occurrence of white rust cannot be prevented for a long time, but by applying the non-chromium rust preventive treatment method of the present invention in which chemical conversion treatment is performed as a pretreatment, the occurrence of white rust can be suppressed for a long time. An effect is obtained.

また、亜鉛を主成分とする合金のダイカスト部材についても、本発明の非クロム防錆処理方法を適用することにより、白錆の発生を長時間抑止できる。   In addition, the generation of white rust can be suppressed for a long time by applying the non-chromium rust preventive treatment method of the present invention to an alloy die-cast member mainly composed of zinc.

また、クエン酸系の化成処理剤を使うと、亜鉛表面を梨地にしないで化成処理でき、希い硝酸を使って洗うピクリング処理がされた亜鉛表面にクエン酸系の化成処理を行ってからアルコール溶媒の表面処理剤溶液を塗布することにより白錆が発生する迄の時間を延長できる。   In addition, when a citrate-based chemical conversion treatment agent is used, it is possible to perform a chemical conversion treatment without leaving the surface of the zinc textured. By applying the solvent surface treating agent solution, the time until white rust is generated can be extended.

また、亜鉛めっき表面に燐酸亜鉛化成処理を施してから表面処理剤を塗布した鉄板では、耐光性試験に供した後において、塩水噴霧試験で評価したときの防錆性能の劣化が少なくなるという効果がある。耐光性試験は自動車の内部部品の評価に日本で一般に適用されている方法である。燐酸亜鉛化成処理を前処理として行うと、表面処理した亜鉛めっき鋼板は耐光性試験をした後でも優れた防錆性能を示す。   In addition, the effect of reducing deterioration in rust prevention performance when evaluated in a salt spray test after being subjected to a light resistance test on an iron plate that has been subjected to a zinc phosphate chemical conversion treatment on the galvanized surface. There is. The light resistance test is a method generally applied in Japan for the evaluation of internal parts of automobiles. When the zinc phosphate chemical conversion treatment is performed as a pretreatment, the surface-treated galvanized steel sheet exhibits excellent rust prevention performance even after a light resistance test.

さらに、水素脆性を避けるために行うベーキングによる黄色い着色をクエン酸系の化成処理剤で脱色することができ、その上にアルコール溶媒の表面処理剤溶液を塗布することによって実用性があるとされる72時間以上に亙って白錆の発生を抑止できる。   Furthermore, yellow coloration by baking performed to avoid hydrogen embrittlement can be decolorized with a citric acid-based chemical conversion treatment agent, and it is said that there is practicality by applying a surface treatment agent solution of an alcohol solvent thereon. Generation of white rust can be suppressed over 72 hours.

本発明者らは、金属部材の表面に非クロム化成処理、好ましくは燐酸亜鉛化成処理を行い、シリカ質皮膜を形成するアルコール溶媒又は水とアルコールとの混合溶媒を用いた表面処理剤溶液を塗布して金属部材の表面にシリカ質皮膜を形成すると、亜鉛表面を有する金属部材の白錆の発生に対する防錆性能を顕著に向上させられることを見出した。混合溶液は好ましくは15〜40重量%のアルコール成分を含む。   The present inventors perform a non-chromium chemical conversion treatment, preferably a zinc phosphate chemical conversion treatment on the surface of a metal member, and apply a surface treatment agent solution using an alcohol solvent or a mixed solvent of water and alcohol to form a siliceous film. And when the siliceous membrane | film | coat was formed in the surface of a metal member, it discovered that the rust prevention performance with respect to generation | occurrence | production of the white rust of the metal member which has a zinc surface could be improved notably. The mixed solution preferably contains 15 to 40% by weight of an alcohol component.

本発明において、シリカ質皮膜の意味は、シリカ(SiO)を主成分とする皮膜、好ましくはシリカを65重量%以上含む皮膜である。 In the present invention, the meaning of the siliceous film is a film mainly composed of silica (SiO 2 ), preferably a film containing 65% by weight or more of silica.

シリカ質皮膜を形成するアルコール溶媒又は水とアルコールとの混合溶媒を用いた表面処理剤と処理される亜鉛表面との相性が悪いと、これら表面処理剤を塗布したとき、JISに基づく塩水噴霧試験において24時間以内に白錆が発生する。しかし、予め亜鉛表面に化成処理を施しておくと、塩水噴霧試験で白錆が発生するまでの時間を72時間以上にまで延長することができる。   If the surface treatment agent using an alcohol solvent or a mixed solvent of water and alcohol is not compatible with the surface of the zinc to be treated, a salt spray test based on JIS is performed when these surface treatment agents are applied. , White rust occurs within 24 hours. However, if a chemical conversion treatment is performed on the zinc surface in advance, the time until white rust is generated in the salt spray test can be extended to 72 hours or more.

他方、塩水噴霧試験で赤錆が発生するまでの時間は、処理条件によって変動するが、亜鉛層が厚ければ長くなる。   On the other hand, the time until red rust occurs in the salt spray test varies depending on the treatment conditions, but becomes longer if the zinc layer is thicker.

非クロム化成処理は、市販の化成処理剤を使って指定された処方で亜鉛表面を有する金属部材の表面に施すことができる。しかし化成処理剤の種類によって得られる最終製品の防錆性能に差が出るので、予め試験をして防錆性能を確実に向上させられる非クロム化成処理剤を選ぶのが好ましい。   The non-chromium chemical conversion treatment can be applied to the surface of a metal member having a zinc surface in a prescribed formulation using a commercially available chemical conversion treatment agent. However, since there is a difference in the rust prevention performance of the final product obtained depending on the type of the chemical conversion treatment agent, it is preferable to select a non-chromium chemical conversion treatment agent that can be tested in advance to reliably improve the rust prevention performance.

種々ある非クロム化成処理の内、比較的安定して防錆性能が向上するのは燐酸亜鉛化成処理である。めっきされた亜鉛表面に化成処理を施すと、亜鉛めっき層の厚さが消耗して赤錆の発生が早くなるので、厚い化成処理膜は形成しないのが好ましい。化成処理された亜鉛表面は、多くの場合梨地になって表面処理剤の皮膜との密着性が向上するので、これも化成処理を施すことによって表面処理剤を塗布したとき防錆性能が向上する一つの理由と考えられる。   Among various non-chromium chemical conversion treatments, the zinc phosphate chemical conversion treatment has a relatively stable and improved rust prevention performance. When a chemical conversion treatment is performed on the plated zinc surface, the thickness of the zinc plating layer is consumed and red rust is quickly generated. Therefore, it is preferable not to form a thick chemical conversion treatment film. In many cases, the surface of the chemically treated zinc surface becomes satin and improves the adhesion to the coating film of the surface treatment agent, and this also improves the rust prevention performance when the surface treatment agent is applied by applying the chemical conversion treatment. This is considered to be one reason.

亜鉛表面の処理に使う非クロム化成処理剤の中には、亜鉛表面の色を暗色から黒色に着色できるものがある。本発明で用いる表面処理剤で形成される皮膜は無色透明であるので、化成処理で着色した色はそのまま製品の色とすることができる。着色する種類の化成処理を行えば、本発明の非クロム防錆処理方法を、亜鉛表面を有する金属部材の着色方法として利用することができる。   Among the non-chromium chemical conversion treatment agents used for the treatment of the zinc surface, there are those that can color the surface of the zinc from dark to black. Since the film formed of the surface treatment agent used in the present invention is colorless and transparent, the color colored by the chemical conversion treatment can be used as it is as the product color. If the type of chemical conversion treatment to be colored is performed, the non-chromium antirust treatment method of the present invention can be used as a coloring method for a metal member having a zinc surface.

亜鉛表面を有する金属部材として多いのは亜鉛めっきされた金属部材であり、亜鉛めっきには電気亜鉛めっきと溶融亜鉛めっきとがある。さらに、何れにも亜鉛合金めっきがある。亜鉛めっきや亜鉛合金めっきの他、亜鉛を主成分とする合金の鋳造品(ダイカスト品を含む)に対しても本発明の非クロム防錆処理方法を適用できる。   Many metal members having a zinc surface are galvanized metal members, and there are electrogalvanization and hot dip galvanization. Furthermore, there is zinc alloy plating in any case. In addition to zinc plating and zinc alloy plating, the non-chromium rust preventive treatment method of the present invention can also be applied to cast products (including die cast products) of alloys containing zinc as a main component.

シリカ質皮膜を形成する、アルコール溶媒の非クロム表面処理剤溶液は、重量平均分子量が1000〜10000のアルコキシシランオリゴマーをシリカに変化する成分として含むことが好ましい。アルコキシシランの重量平均分子量が1000より小さいと表面処理剤の防錆性能が低下し、10000より大きいと表面処理剤溶液が不安定になって表面処理剤のゲル化が起き易い。ゲル化が進行すると表面処理剤の防錆性能が損なわれ、ポットライフが尽きる。   It is preferable that the non-chromium surface treating agent solution in an alcohol solvent that forms a siliceous film contains an alkoxysilane oligomer having a weight average molecular weight of 1000 to 10,000 as a component that changes to silica. When the weight average molecular weight of the alkoxysilane is less than 1000, the rust preventive performance of the surface treatment agent is lowered, and when it is more than 10,000, the surface treatment agent solution becomes unstable and the surface treatment agent is easily gelled. As the gelation proceeds, the rust prevention performance of the surface treatment agent is impaired and the pot life is exhausted.

少し防錆性能は劣るが、重量平均分子量が1000より小さいアルコキシシランオリゴマーのアルコール溶液の他、市販のアルコール溶媒のコロイドシリカを、シリカ質皮膜を形成する表面処理剤溶液の主成分として使うことができる。   Although the rust prevention performance is slightly inferior, in addition to the alcohol solution of the alkoxysilane oligomer having a weight average molecular weight of less than 1000, a commercially available alcohol solvent colloidal silica may be used as the main component of the surface treatment agent solution for forming the siliceous film. it can.

重量平均分子量が1000〜10000のアルコキシシランオリゴマーは、例えばテトラエトキシシランなどのテトラアルコキシシラン、アルキルトリアルコキシシランなどのアルコール溶液(シリカ成分に換算した濃度を予め目標濃度となるようにイソプロピルアルコールなどで希釈しておくのが好ましい)中に塩酸、硝酸、硫酸、酢酸などの酸触媒を少量溶かした水を、オリゴマーが目標とする重量平均分子量になるように混合して加水分解し、縮重合させる。この合成反応は、例えば一昼夜攪拌しながら30〜40℃に保温しておくと縮重合が進んで重量平均分子量が飽和したアルコキシシランオリゴマーが合成される。   An alkoxysilane oligomer having a weight average molecular weight of 1000 to 10000 is, for example, an alcohol solution such as tetraalkoxysilane such as tetraethoxysilane or alkyltrialkoxysilane (with isopropyl alcohol or the like so that the concentration converted to a silica component becomes a target concentration in advance). It is preferable to dilute) water in which a small amount of an acid catalyst such as hydrochloric acid, nitric acid, sulfuric acid or acetic acid is dissolved and mixed so that the oligomer has the target weight average molecular weight. . In this synthesis reaction, for example, when the temperature is kept at 30 to 40 ° C. while stirring all day and night, condensation polymerization proceeds and an alkoxysilane oligomer having a saturated weight average molecular weight is synthesized.

テトラエトキシシランなどのモノマーを縮重合の原料とする代わりに、予めテトラエトキシシランなどを4量体程度まで縮重合してある市販のオリゴマーを原料に使ってさらに目標とする重量平均分子量となるように縮重合させることもできる。   Instead of using a monomer such as tetraethoxysilane as a raw material for polycondensation, a commercially available oligomer that has been prepolymerized to a tetramer of tetraethoxysilane or the like in advance is used as the raw material so that the target weight average molecular weight can be achieved. Can also be polycondensed.

表面処理剤溶液中に配合するシリカ質皮膜を形成する成分は、シリカ成分に換算した量で10〜25重量%となるよう配合するのが好ましい。表面処理剤溶液中には、有効量のシランカップリング剤の他、分散処理された一次粒子の平均粒径が40nm以下である酸化チタン超微粉末を有効量配合するのが好ましい。シランカップリング剤はアルコキシシランオリゴマーのアルコール溶液と混合したとき不安定にならないものを選ぶのが好ましく、特にpHをほとんど変動させないエポキシ官能基を有するシランカップリング剤を使用するのが好ましい。表面処理剤溶液中のシランカップリング剤の好ましい配合量は4〜16重量%である。また、分散処理された酸化チタン超微粉末の好ましい配合量は0.3〜2重量%である。シランカップリング剤の配合量は少ないと防錆性能が小さく、多いとシランカップリング剤が比較的高価なので表面処理剤のコストが嵩む。酸化チタン超微粉末についても同様である。他に、表面処理剤溶液中にポリビニルブチラールなどアルコールに溶ける樹脂を0.2〜2重量%配合するのが好ましい。少量の樹脂成分の添加は、形成される皮膜の硬度を下げ、下地への密着性を向上させるのに有効である。樹脂の配合量が多いと不安定になってゲル化が起き易い。さらにまた、表面処理剤溶液中に分散している酸化チタン超微粉末などの凝集や沈降を防ぐため少量の分散剤を添加しておくのが好ましい。   It is preferable to mix | blend the component which forms the siliceous membrane | film | coat mix | blended in a surface treating agent solution so that it may become 10 to 25 weight% in the quantity converted into the silica component. In addition to an effective amount of the silane coupling agent, an effective amount of titanium oxide ultrafine powder having an average particle size of the dispersed primary particles of 40 nm or less is preferably added to the surface treatment agent solution. It is preferable to select a silane coupling agent that does not become unstable when mixed with an alcohol solution of an alkoxysilane oligomer, and it is particularly preferable to use a silane coupling agent having an epoxy functional group that hardly changes pH. A preferable blending amount of the silane coupling agent in the surface treating agent solution is 4 to 16% by weight. Moreover, the preferable compounding quantity of the titanium oxide ultrafine powder by which the dispersion process was carried out is 0.3 to 2 weight%. When the amount of the silane coupling agent is small, the rust prevention performance is small, and when it is large, the cost of the surface treatment agent increases because the silane coupling agent is relatively expensive. The same applies to the titanium oxide ultrafine powder. In addition, it is preferable to add 0.2 to 2% by weight of a resin that is soluble in alcohol such as polyvinyl butyral in the surface treating agent solution. The addition of a small amount of a resin component is effective in reducing the hardness of the formed film and improving the adhesion to the ground. When the amount of the resin is large, the resin becomes unstable and gelation tends to occur. Furthermore, it is preferable to add a small amount of a dispersant in order to prevent agglomeration and sedimentation of the titanium oxide ultrafine powder dispersed in the surface treating agent solution.

水とアルコールとの混合溶媒を溶媒とする表面処理剤溶液として、市販のコロイドシリカ水溶液を主成分とする表面処理剤溶液を使うことができる。アルコールとしては、イソプロピルアルコール、エチルアルコール、メチルアルコール、ブチルアルコールなどを混合して使うことができる。しかし、コロイドシリカ水溶液のpHがアルカリ側又は酸性側に調整されているため、混合時にpHが変動するとゲル化する傾向があるので、ゲル化を避けるように混合する必要がある。   As the surface treating agent solution using a mixed solvent of water and alcohol as a solvent, a surface treating agent solution mainly comprising a commercially available colloidal silica aqueous solution can be used. As alcohol, isopropyl alcohol, ethyl alcohol, methyl alcohol, butyl alcohol, etc. can be mixed and used. However, since the pH of the colloidal silica aqueous solution is adjusted to the alkali side or the acid side, it tends to gel when the pH fluctuates during mixing. Therefore, it is necessary to mix so as to avoid gelation.

水のみを溶媒とした表面処理剤溶液と比べ、水とアルコールとの混合溶媒を溶媒とするシリカ質皮膜を形成する非クロム表面処理剤溶液を用いることにより、非クロム化成処理が施された亜鉛めっき表面に塗布したときに白錆の発生を抑制する防錆性能が明らかに向上する。本発明に使用する非クロム水性表面処理剤溶液では、その溶媒の少なくとも10重量%がアルコールであることが必要であり、溶媒中の水とアルコールとの混合割合(重量比)は、好ましくは6:4〜9:1、さらに好ましくは7:3〜8:2である。水とアルコールとを溶媒とする表面処理剤溶液においても、好ましくは分散処理された一次粒子の平均粒径が40nm以下である酸化チタン超微粉末を有効量配合する。さらに好ましくは、有効量のシランカップリング剤を配合する。   Zinc that has been subjected to non-chromium chemical conversion treatment by using a non-chromium surface treatment agent solution that forms a siliceous film using a mixed solvent of water and alcohol as a solvent, compared with a surface treatment agent solution that uses only water as a solvent. Rust prevention performance that suppresses the occurrence of white rust when applied to the plating surface is clearly improved. In the non-chromium aqueous surface treating agent solution used in the present invention, it is necessary that at least 10% by weight of the solvent is alcohol, and the mixing ratio (weight ratio) of water and alcohol in the solvent is preferably 6%. : 4-9: 1, more preferably 7: 3-8: 2. Also in the surface treating agent solution using water and alcohol as a solvent, an effective amount of an ultrafine titanium oxide powder in which the average particle diameter of primary particles subjected to dispersion treatment is preferably 40 nm or less is blended. More preferably, an effective amount of a silane coupling agent is blended.

好ましい酸化チタン超微粉末の表面処理剤溶液中への配合量は0.3〜2重量%、さらに好ましくは0.5〜1.5重量%である。分散処理された酸化チタン超微粉末を配合することにより、塩水噴霧試験における赤錆発生を長時間抑制する効果が得られる。酸化チタン超微粉末の配合量が多く、分散が完全でないときシリカ質皮膜が白く着色する傾向があり、表面処理剤がコスト高になる。この場合、シリカ質皮膜中における酸化チタン超微粉末の含有量を2〜10重量%とするのが好ましい。   The blending amount of the ultrafine titanium oxide powder in the surface treating agent solution is 0.3 to 2% by weight, more preferably 0.5 to 1.5% by weight. By blending the dispersion-treated titanium oxide ultrafine powder, the effect of suppressing the occurrence of red rust in the salt spray test for a long time can be obtained. When the amount of the titanium oxide ultrafine powder is large and the dispersion is not complete, the siliceous film tends to be colored white, and the surface treatment agent becomes expensive. In this case, the content of the ultrafine titanium oxide powder in the siliceous film is preferably 2 to 10% by weight.

酸化チタン超微粉末は光触媒用として市販されているものを使用することができる。しかし、市販の光触媒用酸化チタン超微粉末は、通常10〜40nmの一次粒子が多数集まった二次粒子からなる粉末になっているので、少ない添加量で防錆性能を向上させる効果を得るため分散処理が必要である。分散処理は、市販の酸化チタン超微粉末を好ましくはエチルセロソルブやプロピレングリコールモノメチルエーテル、n−ブチルアルコールなどの高沸点アルコールと混合してスラリーとし、このスラリーをビーズミルなどにより分散処理する。表面処理剤溶液中への酸化チタン超微粉末の配合は分散処理したスラリーの状態で配合するのが好ましい。ミクロンサイズの二次粒子からなっている酸化チタン超微粉末をナノサイズの一次粒子に解砕することは容易でなく、酸化チタン超微粉末スラリーをビーズミルで分散処理しても平均粒径が100nmレベルの二次粒子に留まることが多い。しかし、分散処理を行うことによって少量の酸化チタン超微粉末の添加で表面処理剤による防錆性能の向上効果を得ることができる。   As the titanium oxide ultrafine powder, those commercially available for photocatalysts can be used. However, since the commercially available titanium oxide ultrafine powder for photocatalyst is usually a powder composed of secondary particles in which a large number of primary particles of 10 to 40 nm are collected, in order to obtain the effect of improving the rust prevention performance with a small addition amount. Distributed processing is required. In the dispersion treatment, a commercially available titanium oxide ultrafine powder is preferably mixed with a high boiling alcohol such as ethyl cellosolve, propylene glycol monomethyl ether, n-butyl alcohol to form a slurry, and this slurry is subjected to a dispersion treatment by a bead mill or the like. The titanium oxide ultrafine powder is preferably blended in the surface treatment agent solution in the state of a dispersion-treated slurry. It is not easy to crush the titanium oxide ultrafine powder composed of micron-sized secondary particles into nanosized primary particles, and the average particle size is 100 nm even if the titanium oxide ultrafine powder slurry is dispersed with a bead mill. Often stays at the level of secondary particles. However, by carrying out the dispersion treatment, the effect of improving the rust prevention performance by the surface treatment agent can be obtained by adding a small amount of ultrafine titanium oxide powder.

表面処理剤溶液中への好ましいシランカップリング剤の配合量は、4〜16重量%である。シランカップリング剤を配合することによって、コロイドシリカ水溶液中にアルコールや酸化チタン超微粉末スラリーを混合するときのゲル化を抑制することができ、表面処理剤のポットライフを延長することができる。シランカップリング剤の配合量が少ないと配合した効果が得られず、配合量が多いと表面処理剤がコスト高になる。表面処理剤溶液中へのシランカップリング剤のさらに好ましい配合量は6〜14重量%である。   The compounding quantity of the preferable silane coupling agent in a surface treating agent solution is 4 to 16 weight%. By blending the silane coupling agent, gelation when alcohol or titanium oxide ultrafine powder slurry is mixed in the colloidal silica aqueous solution can be suppressed, and the pot life of the surface treatment agent can be extended. If the blending amount of the silane coupling agent is small, the blended effect cannot be obtained, and if the blending amount is large, the surface treatment agent becomes expensive. A more preferable blending amount of the silane coupling agent in the surface treating agent solution is 6 to 14% by weight.

表面処理剤溶液の亜鉛表面を有する金属部材への塗布は、亜鉛めっきされたボルトやナットなどの小物ではディップアンドスピン法で行うのが好ましい。ディップアンドスピン法を適用できないときにはディップドレイン法、スプレー法、ロールコーター法など種々の方法を利用できる。ディップアンドスピン法で行う塗布はワンコートワンベークで防錆性能を充分向上させられる。しかし、2回繰り返す(2コート、2ベーク)ことによって表面処理剤の皮膜で亜鉛の全表面を覆うことができ、これにより金属部材個々の防錆性能のバラツキを少なくすることができる。   Application of the surface treating agent solution to the metal member having a zinc surface is preferably performed by a dip-and-spin method for a zinc-plated bolt or nut. When the dip and spin method cannot be applied, various methods such as a dip drain method, a spray method, and a roll coater method can be used. The coating performed by the dip-and-spin method can sufficiently improve the rust prevention performance by one coat and one bake. However, by repeating twice (2 coats, 2 bake), the entire surface of zinc can be covered with the coating film of the surface treatment agent, thereby reducing variations in the rust prevention performance of each metal member.

低分子量のアルコールは蒸発しやすいので、表面処理剤を塗布した後室内に放置しておけば乾いたシリカ質皮膜を形成できる。しかし、アルコールの気化に伴って結露が起きることがあるので、これを避けるため高沸点のアルコールを混合して蒸発を抑制するのが好ましい。好ましくは表面処理剤を90〜150℃で15分程焼付ける。焼付け温度が低いと防錆性能が低下し、高過ぎると表面処理剤の皮膜が剥離しやすくなる。   Since low molecular weight alcohol easily evaporates, a dry siliceous film can be formed by applying a surface treatment agent and leaving it in the room. However, since condensation may occur with the vaporization of the alcohol, it is preferable to suppress evaporation by mixing a high-boiling point alcohol to avoid this. Preferably, the surface treatment agent is baked at 90 to 150 ° C. for about 15 minutes. When the baking temperature is low, the rust prevention performance is lowered, and when it is too high, the coating film of the surface treatment agent is easily peeled off.

亜鉛表面に形成する非クロム表面処理剤の皮膜の平均厚さは0.5〜3μmとする。0.5μmより薄いと防錆性能が低下し、3μmより厚くしても防錆性能の向上は見込めず、皮膜が厚いと皮膜が剥離しやすくなる傾向がある。より好ましい皮膜の平均厚さは1〜2μmである。塗布する非クロム表面処理剤の皮膜の厚さは、亜鉛表面を有する金属部材に要求される防錆性能のレベルによって変えることができる。   The average thickness of the non-chromium surface treatment film formed on the zinc surface is 0.5 to 3 μm. When the thickness is less than 0.5 μm, the rust prevention performance is lowered, and even when the thickness is more than 3 μm, the improvement of the rust prevention performance cannot be expected. When the coating is thick, the coating tends to be peeled off. The average thickness of the film is more preferably 1 to 2 μm. The thickness of the coating of the non-chromium surface treatment agent to be applied can be changed depending on the level of rust prevention performance required for a metal member having a zinc surface.

外径が3mm以下の小さいボルトやねじなどにバレルで電気亜鉛めっきを施し、このめっき表面に表面処理剤を塗布したときに期待したレベルの防錆性能が得られない現象は、バレル中に仕込んだ多数のボルトやねじの一部の表面に大きな密度のめっき電流が偏って流れることに起因するものと考えられる。   A phenomenon in which the expected level of rust prevention performance cannot be obtained when electrogalvanizing is applied to a small bolt or screw with an outer diameter of 3 mm or less with a barrel and a surface treatment agent is applied to the plated surface is charged in the barrel. However, it is considered that the plating current with a large density flows unevenly on the surface of some bolts and screws.

本発明者らは、表面処理剤を塗布しても期待したレベルの防錆性能を付与出来なかったこの小さな亜鉛めっきボルトに燐酸亜鉛化成処理を施し、この化成処理された表面にシリカ質の皮膜を形成する非クロム表面処理剤を塗布したところ、白錆に対する防錆性能が顕著に向上することを認めた。   The present inventors applied a zinc phosphate conversion treatment to this small galvanized bolt that could not provide the expected level of rust prevention performance even when a surface treatment agent was applied, and a siliceous film was formed on this chemical conversion treated surface. When a non-chromium surface treatment agent for forming sapphire was applied, it was found that the rust prevention performance against white rust was significantly improved.

本発明において、防錆性能の評価はJIS−Z−2371に規定された塩水噴霧試験法に準じて行う。即ち、試験機内で5重量%濃度の食塩水を噴霧し、温度を35℃に保持し、24時間毎に白錆と赤錆の発生状況を調べる方法を採用した。従って、72時間以上白錆が出ないというのは、96時間以上で白錆の発生が認められた場合を言う。72時間以上白錆が出ないという条件が充たされれば、金属部材の使える用途が多く存在するので、72時間以上白錆の発生を抑止できるという条件を付けた。めっき条件を含む種々の表面処理条件の組み合わせが適切であれば144時間以上、さらには288時間以上白錆の発生を抑止できる金属部材を提供できる。   In the present invention, the antirust performance is evaluated according to the salt spray test method defined in JIS-Z-2371. That is, a method of spraying 5% by weight salt solution in a test machine, keeping the temperature at 35 ° C., and examining the occurrence of white rust and red rust every 24 hours was adopted. Therefore, white rust does not appear for 72 hours or more refers to a case where white rust is observed after 96 hours or more. If the condition that white rust does not occur for 72 hours or more is satisfied, there are many uses where the metal member can be used. Therefore, the condition that generation of white rust can be suppressed for 72 hours or more was attached. If a combination of various surface treatment conditions including plating conditions is appropriate, it is possible to provide a metal member capable of suppressing the occurrence of white rust for 144 hours or more, and further for 288 hours or more.

防錆性能は表面処理条件の組み合わせの適否の他に、亜鉛めっきの厚さによっても変動する。例えば化成処理によって亜鉛めっき層が消耗されて薄くなると、めっき層が薄くなった分赤錆が早く発生する。このため化成処理膜は、必要な厚さを超える厚さにならないよう調節するのが好ましい。本発明の非クロム防錆処理方法で表面処理された亜鉛めっき金属部材を塩水噴霧試験機に入れたときの赤錆発生は、通常300時間から2000時間で起きる。   In addition to the suitability of the combination of surface treatment conditions, the rust prevention performance varies depending on the thickness of the galvanizing. For example, when the galvanized layer is consumed and thinned by the chemical conversion treatment, red rust is generated as soon as the plated layer is thinned. For this reason, it is preferable to adjust the chemical conversion film so as not to exceed the required thickness. The occurrence of red rust when a galvanized metal member surface-treated by the non-chromium rust preventive treatment method of the present invention is placed in a salt spray tester usually occurs in 300 to 2000 hours.

以下、本発明を実施例によって具体的に説明するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

試験に用いる非クロム表面処理剤溶液を以下の手順で調製した。先ず、酸化チタン超微粉末(昭和電工(株)製のスーパータイタニアF−6、一次粒子の平均粒径約15nm)1重量部に対してエチルセロソルブ5重量部を混合してスラリーとし、このスラリーをボールミル(容器に容量2リットルの広口ポリプロピレン瓶を用い、この容器に直径3mmと5mmのジルコニアボールを同重量混合した粉砕ボールを5kgと、ジルコニアボール層の上面と略同レベルとなる量のスラリーを入れて密封し、広口ポリプロピレン瓶が縦方向に回転するよう、約60RPMで回転する架台上に載せた容器中に収容)に入れて48時間分散処理を行い、酸化チタン超微粉末分散スラリー1を得た。   The non-chromium surface treating agent solution used for the test was prepared by the following procedure. First, 5 parts by weight of ethyl cellosolve was mixed with 1 part by weight of titanium oxide ultrafine powder (Super Titania F-6, Showa Denko Co., Ltd., average particle size of about 15 nm) to form a slurry. A ball mill (a 2 liter wide-mouth polypropylene bottle is used in the container, and 5 kg of pulverized balls in which the same weights of zirconia balls having a diameter of 3 mm and 5 mm are mixed in this container, and an amount of slurry that is approximately the same level as the upper surface of the zirconia ball layer. In a container placed on a gantry rotating at about 60 RPM so that the wide-mouthed polypropylene bottle can be rotated in the vertical direction) and dispersed for 48 hours to obtain a titanium oxide ultrafine powder dispersed slurry 1 Got.

同様にして、酸化チタン超微粉末(多木化学(株)製のタイノックA−100、一次粒子の平均粒径約10nm)1重量部に対しプロピレングリコールモノメチルエーテル(PGME)を5重量部混合してスラリーとし、同様にボールミルで48時間分散処理して酸化チタン超微粉末分散スラリー2を得た。   Similarly, 5 parts by weight of propylene glycol monomethyl ether (PGME) is mixed with 1 part by weight of titanium oxide ultrafine powder (Tynoch A-100 manufactured by Taki Chemical Co., Ltd., average particle size of primary particles is about 10 nm). Then, the slurry was similarly dispersed by a ball mill for 48 hours to obtain a titanium oxide ultrafine powder dispersion slurry 2.

また、酸化チタン超微粉末(スーパータイタニアF−6)1重量部に対してイオン交換水5重量部を混合してスラリーとし、同様にしてボールミルで48時間分散処理をし、水系の酸化チタン超微粉末分散スラリー3を得た。ここで調製した酸化チタン超微粉末分散スラリー1,2および3の組成を表1に纏めて示す。   In addition, 5 parts by weight of ion-exchanged water is mixed with 1 part by weight of ultrafine titanium oxide powder (Super Titania F-6) to form a slurry, which is similarly dispersed for 48 hours with a ball mill to obtain an aqueous titanium oxide super A fine powder dispersion slurry 3 was obtained. Table 1 summarizes the compositions of the titanium oxide ultrafine powder dispersion slurries 1, 2 and 3 prepared here.

Figure 2006225761
Figure 2006225761

次に、テトラエトキシシランのイソプロピルアルコール希釈液に少量の塩酸と水を加えて攪拌しつつ35℃に保温して加水分解と縮重合反応を24時間行い、重量平均分子量が約2200(ポリスチレン標準を使い、テトラヒドロフランを溶媒としてゲルパーミエイションクロマトグラフ(東ソー(株)製の型式HLC−8120GPC)で測定した。)のアルコキシシランオリゴマー(シリカ成分換算濃度が約20重量%、pH約3.5)を合成した。   Next, a small amount of hydrochloric acid and water are added to a dilute solution of tetraethoxysilane in isopropyl alcohol, and the mixture is kept at 35 ° C. while stirring and subjected to hydrolysis and polycondensation reaction for 24 hours. The weight average molecular weight is about 2200 (polystyrene standard). And an alkoxysilane oligomer (measured by silica component equivalent concentration of about 20% by weight, pH of about 3.5) of gel permeation chromatograph (measured by model HLC-8120GPC manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent. Was synthesized.

このアルコキシシランオリゴマー65重量部に対し、エポキシ基を有するシランカップリング剤(東芝GEシリコーン(株)のTSL8350、シリカ成分換算濃度が約25重量%)5重量部、ポリビニルブチラール(積水化学工業(株)製のエスレックBM−1)をエチルセロソルブに溶かした10重量%の溶液5重量部、エチルセロソルブ5重量部、イソプロピルアルコール5重量部、及び6重量部の酸化チタン超微粉末分散スラリー1を混合してアルコール溶媒の非クロム表面処理剤溶液1を得た。   With respect to 65 parts by weight of this alkoxysilane oligomer, 5 parts by weight of a silane coupling agent having an epoxy group (TSL8350 of Toshiba GE Silicone Co., Ltd., silica component equivalent concentration is about 25% by weight), polyvinyl butyral (Sekisui Chemical Co., Ltd.) 5 parts by weight of a 10% by weight solution of ESREC BM-1) made in) and 5 parts by weight of ethyl cellosolve, 5 parts by weight of isopropyl alcohol, and 6 parts by weight of titanium oxide ultrafine powder dispersion slurry 1 were mixed. Thus, a non-chromium surface treating agent solution 1 in an alcohol solvent was obtained.

また、コロイドシリカ水溶液(日産化学工業(株)製のスノーテックスXS、コロイドシリカ粒子の平均粒径約5nm、pH約11、シリカ成分を約20重量%含む)60重量部に対し、シランカップリング剤(東芝GEシリコーン(株)のTSL8350)10重量部、イソプロピルアルコール10重量部、及び6重量部の酸化チタン超微粉末分散スラリー2を混合したものに、消泡剤を兼ねた濡れ剤としてダイノール604(日信化学工業(株)製)を0.05重量部添加して水とアルコールを溶媒とする非クロム表面処理剤溶液2を得た。   In addition, silane coupling to 60 parts by weight of colloidal silica aqueous solution (Snowtex XS manufactured by Nissan Chemical Industries, Ltd., average particle diameter of colloidal silica particles of about 5 nm, pH of about 11, and silica component of about 20% by weight). DYNOL as a wetting agent that also functions as an antifoaming agent in a mixture of 10 parts by weight of an agent (TSL8350 from Toshiba GE Silicone Co., Ltd.), 10 parts by weight of isopropyl alcohol, and 6 parts by weight of titanium oxide ultrafine powder dispersion slurry 2. 0.05 part by weight of 604 (manufactured by Nissin Chemical Industry Co., Ltd.) was added to obtain a non-chromium surface treating agent solution 2 using water and alcohol as solvents.

さらに、コロイドシリカ水溶液(日産化学工業(株)製のスノーテックスXS)72重量部に対し、エポキシ基を有するシランカップリング剤(東芝GEシリコーン(株)のTSL8350)8重量部、水系の酸化チタン超微粉末分散スラリー3の6重量部を混合したものに、ダイノール604(日信化学工業(株)製)を0.06重量部添加して水を溶媒とする非クロム表面処理剤溶液3を得た。   Furthermore, 8 parts by weight of an epoxy group-containing silane coupling agent (TSL8350 from Toshiba GE Silicone Co., Ltd.) and 72 parts by weight of colloidal silica aqueous solution (Snowtex XS manufactured by Nissan Chemical Industries, Ltd.), water-based titanium oxide A non-chromium surface treating agent solution 3 containing 0.06 part by weight of dynol 604 (manufactured by Nissin Chemical Industry Co., Ltd.) and 6 parts by weight of the ultrafine powder dispersion slurry 3 and water as a solvent is added. Obtained.

更に、非クロム表面処理剤溶液1に使用したのと同じ重量平均分子量が2200のアルコキシシランオリゴマーを123重量部、ポリビニルブチラール(積水化学工業(株)製のBL−1)をイソプロピルアルコールに溶かした10重量%溶液を9重量部、イソプロピルアルコール溶媒のシリカゾル液(日産化学工業(株)製のIPA−ST(シリカ成分を約30重量%含む))を14.7重量部、エチルセロソルブ17.1重量部およびイソプロピルアルコール14.6重量部を混合してアルコール溶媒の非クロム表面処理剤溶液4を調整した。ここで調製した非クロム表面処理剤溶液1、2、3および4の配合組成を表2に纏めて示す。   Furthermore, 123 parts by weight of an alkoxysilane oligomer having the same weight average molecular weight of 2200 as used in the non-chromium surface treating agent solution 1 and polyvinyl butyral (BL-1 manufactured by Sekisui Chemical Co., Ltd.) were dissolved in isopropyl alcohol. 9 parts by weight of a 10% by weight solution, 14.7 parts by weight of a silica sol solution of an isopropyl alcohol solvent (IPA-ST (including about 30% by weight of a silica component) manufactured by Nissan Chemical Industries, Ltd.), and ethyl cellosolve 17.1 A non-chromium surface treating agent solution 4 in an alcohol solvent was prepared by mixing 1 part by weight and 14.6 parts by weight of isopropyl alcohol. Table 2 summarizes the composition of the non-chromium surface treating agent solutions 1, 2, 3, and 4 prepared here.

Figure 2006225761
Figure 2006225761

次に試験用の化成処理液を調製した。亜鉛1.0g/リットル、ニッケル0.05g/リットル、マグネシウム1.0g/リットル、燐酸イオン4.0g/リットル、硝酸イオン2.5g/リットル、亜硝酸イオン0.05g/リットル、残部は水となるように燐酸亜鉛四水和物、塩基性炭酸ニッケル(II)水和物、第二燐酸マグネシウム、85重量%燐酸、60重量%硝酸、亜硝酸ナトリウム及びイオン交換水を混合して非クロム化成処理液1を得た。   Next, a chemical conversion treatment solution for test was prepared. Zinc 1.0 g / liter, nickel 0.05 g / liter, magnesium 1.0 g / liter, phosphate ion 4.0 g / liter, nitrate ion 2.5 g / liter, nitrite ion 0.05 g / liter, the balance being water Zinc phosphate tetrahydrate, basic nickel carbonate (II) hydrate, dibasic magnesium phosphate, 85 wt% phosphoric acid, 60 wt% nitric acid, sodium nitrite and ion-exchanged water were mixed to form a non-chromium chemical conversion. Treatment liquid 1 was obtained.

また、亜鉛0.8g/リットル、マグネシウム2.0g/リットル、燐酸イオン8.0g/リットル、硝酸イオン4.0g/リットル、亜硝酸イオン0.05g/リットル、フッ素イオン0.01g/リットル、残部は水となるように燐酸亜鉛四水和物、第二燐酸マグネシウム、85重量%燐酸、60重量%硝酸、亜硝酸ナトリウム、フッ化水素酸及びイオン交換水を混合して非クロム化成処理液2を得た。   Moreover, zinc 0.8g / liter, magnesium 2.0g / liter, phosphate ion 8.0g / liter, nitrate ion 4.0g / liter, nitrite ion 0.05g / liter, fluorine ion 0.01g / liter, remainder Is mixed with zinc phosphate tetrahydrate, dibasic magnesium phosphate, 85 wt% phosphoric acid, 60 wt% nitric acid, sodium nitrite, hydrofluoric acid and ion-exchanged water so that it becomes water. Got.

他に、ケミコート(株)製の燐酸亜鉛化成処理液(ケミコートNo.422、非クロム化成処理液3と呼ぶ)と表面調製剤のケミクロンS−2(ケミコート(株)製の前処理剤、チタニアゾルを含む)を準備した。表3に非クロム化成処理液1,2および3の組成を纏めて示す。   In addition, a zinc phosphate chemical conversion treatment solution manufactured by Chemicoat Co., Ltd. (referred to as Chemocoat No. 422, non-chromium chemical conversion treatment solution 3) and a surface preparation agent Chemmicron S-2 (a pretreatment agent manufactured by Chemicoat Co., Ltd., titania sol) Prepared). Table 3 summarizes the compositions of the non-chromium chemical conversion treatment liquids 1, 2 and 3.

Figure 2006225761
Figure 2006225761

亜鉛表面を有する金属部材表面への非クロム表面処理剤溶液の塗布は、塗装方法の一種であるディップアンドスピン法で行った。即ち、白あげ亜鉛めっきボルト等(クロメート処理なし)を表面処理剤溶液中に浸漬して濡らし、取り出して遠心分離機に取り付けたステンレス籠に移し、回転半径約15cm、回転数約500RPMで約4秒間回転させ、遠心力でボルト等の表面に付着している余分の表面処理剤溶液を振り落とす塗布方法で塗布した。   The non-chromium surface treating agent solution was applied to the surface of a metal member having a zinc surface by a dip and spin method, which is a kind of coating method. That is, a whitening galvanized bolt or the like (without chromate treatment) is dipped in a surface treating agent solution, wetted, removed, transferred to a stainless steel bowl attached to a centrifuge, and about 4 cm at a rotation radius of about 15 cm and a rotation speed of about 500 RPM. Rotating for 2 seconds, it was applied by an application method in which excess surface treatment agent solution adhering to the surface of a bolt or the like was shaken off by centrifugal force.

防錆性能の評価は、JIS−Z−2371に基づく塩水噴霧試験機によって行い、24時間毎に肉眼でサンプルの表面(水シャワーで洗った)を観察して白錆と赤錆の発生をチェックした。各サンプルの防錆性能は、3本の内2本に白錆と赤錆が発生した時間で記録し、評価した。   Rust prevention performance was evaluated using a salt spray tester based on JIS-Z-2371, and the surface of the sample (washed with a water shower) was observed with the naked eye every 24 hours to check the occurrence of white rust and red rust. . The antirust performance of each sample was recorded and evaluated at the time when white rust and red rust occurred on two of the three samples.

実施例1と比較例1
A社の塩化亜鉛浴による白あげ(クロメート処理なし)亜鉛めっきボルト(M8、半ねじ、ねじ部長さ約20mm)3本を前処理剤のケミクロンS−2に30秒間浸し、次いで60℃に保温した非クロム化成処理液3に30秒間浸して亜鉛表面に燐酸亜鉛化成処理を施し、水洗して乾かした。この亜鉛めっきボルトの表面は化成処理によって梨地になり、亜鉛めっきの光沢が消えていた。この化成処理した亜鉛めっきボルトに非クロム表面処理剤溶液1を前述のディップアンドスピン法で塗布し、80℃で10分保持後150℃に昇温して20分間この温度に保持し、非クロム表面処理剤を焼付けた(実施例1)。
Example 1 and Comparative Example 1
Whitening (no chromate treatment) galvanized bolts (M8, half screw, thread length approx. 20 mm) in Company A's zinc chloride bath are immersed in the pretreatment agent Chemmicron S-2 for 30 seconds and then kept at 60 ° C. The zinc surface was soaked in the non-chromium chemical conversion solution 3 for 30 seconds, subjected to zinc phosphate chemical conversion treatment, washed with water and dried. The surface of this galvanized bolt became a satin finish by chemical conversion treatment, and the galvanized luster disappeared. The non-chromium surface treating agent solution 1 was applied to the chemically treated galvanized bolt by the dip-and-spin method described above, held at 80 ° C. for 10 minutes, then heated to 150 ° C. and held at this temperature for 20 minutes. The surface treatment agent was baked (Example 1).

別途、A社の塩化亜鉛浴で亜鉛めっきされた白あげ亜鉛めっきボルト3本にアルコール溶媒の非クロム表面処理剤溶液1をディップアンドスピン法で塗布し、80℃で10分保持後150℃に昇温して20分間保持し、非クロム表面処理剤を焼付けた(比較例1)。   Separately, a non-chromium surface treating agent solution 1 of an alcohol solvent was applied to three white galvanized bolts galvanized in a zinc chloride bath of Company A by a dip-and-spin method, kept at 80 ° C. for 10 minutes, and then kept at 150 ° C. The temperature was raised and held for 20 minutes, and the non-chromium surface treatment agent was baked (Comparative Example 1).

実施例1と比較例1の非クロム表面処理をした亜鉛めっきボルトをJIS−Z−2371に基づく塩水噴霧試験機に入れて防錆性能を評価した。その結果、実施例1の非クロム表面処理をした亜鉛めっきボルトは、192時間で白錆が発生し、672時間で赤錆が発生した。他方、比較例1の亜鉛めっきボルトは48時間で白錆が発生し、600時間で赤錆が発生した。即ち、実施例1と比較例1とを比べ、非クロム表面処理剤との相性が悪い(非クロム表面処理剤溶液を塗布したときの防錆性能が不良)亜鉛めっきボルトであっても、燐酸亜鉛化成処理を施してから表面処理剤を塗布することによって、表面処理剤を塗布したとき白錆の発生に対する防錆性能が顕著に向上することが分かる。   The galvanized bolts subjected to the non-chromium surface treatment of Example 1 and Comparative Example 1 were put in a salt spray tester based on JIS-Z-2371 to evaluate the rust prevention performance. As a result, the galvanized bolt subjected to the non-chromium surface treatment of Example 1 generated white rust in 192 hours and red rust in 672 hours. On the other hand, the galvanized bolt of Comparative Example 1 generated white rust in 48 hours and red rust in 600 hours. That is, comparing Example 1 with Comparative Example 1, the compatibility with the non-chromium surface treatment agent is poor (the rust prevention performance is poor when the non-chromium surface treatment agent solution is applied). It can be seen that by applying the surface treatment agent after the zinc chemical conversion treatment, the rust prevention performance against the occurrence of white rust is remarkably improved when the surface treatment agent is applied.

実施例2と比較例2
同じA社によるシアン浴の白あげ(クロメート処理なし)亜鉛めっきボルト(M8半ねじ、ねじ部長さ約20mm)3本を、実施例1と同様に前処理剤のケミクロンS−2に30秒浸し、次いで60℃に保温した非クロム化成処理液3中に30秒浸して亜鉛表面に燐酸亜鉛化成処理を施し、水洗して乾かした。この亜鉛めっきボルトの表面は化成処理で梨地になった。この化成処理をした亜鉛めっきボルトに非クロム表面処理剤溶液1を塗布し、80℃で10分保持し、次いで150℃に昇温して20分間保持し、非クロム表面処理剤を焼付けた(実施例2)。
Example 2 and Comparative Example 2
Cyan bath whitening (no chromate treatment) by the same company A 3 galvanized bolts (M8 half screw, thread length approx. 20 mm) were immersed in the pretreatment agent Chemmicron S-2 for 30 seconds in the same manner as in Example 1. Then, it was immersed in a non-chromium chemical conversion treatment liquid 3 kept at 60 ° C. for 30 seconds to subject the zinc surface to a zinc phosphate chemical conversion treatment, washed with water and dried. The surface of this galvanized bolt became textured by chemical conversion treatment. The non-chromium surface treating agent solution 1 was applied to the galvanized bolt subjected to the chemical conversion treatment, held at 80 ° C. for 10 minutes, then heated to 150 ° C. and held for 20 minutes, and the non-chromium surface treating agent was baked ( Example 2).

次に、同じA社によるシアン浴の白あげ(クロメート処理なし)亜鉛めっきボルト(非クロム表面処理剤との相性が悪い)3本に、比較例1と同様にしてアルコール溶媒の非クロム表面処理剤溶液1をディップアンドスピン法で塗布し、80℃に10分保持して乾かし、次いで150℃に昇温して20分間保持し、非クロム表面処理剤を焼付けた(比較例2)。実施例2と比較例2の非クロム表面処理をした亜鉛めっきボルトをJIS−Z−2371に基づく塩水噴霧試験機に入れて防錆性能を評価した。その結果、実施例2の非クロム表面処理をした亜鉛めっきボルトでは、192時間で白錆が発生し、624時間で赤錆が発生した。これに対し、比較例2の亜鉛めっきボルトでは48時間で白錆が発生し、648時間で赤錆が発生した。   Next, in the same manner as in Comparative Example 1, non-chromium surface treatment of an alcohol solvent was applied to three galvanized bolts (not compatible with non-chromium surface treatment agent) of a cyan bath by the same company A. The agent solution 1 was applied by the dip and spin method, held at 80 ° C. for 10 minutes and dried, then heated to 150 ° C. and held for 20 minutes, and the non-chromium surface treatment agent was baked (Comparative Example 2). The galvanized bolts subjected to the non-chromium surface treatment of Example 2 and Comparative Example 2 were put into a salt spray tester based on JIS-Z-2371 to evaluate the rust prevention performance. As a result, in the galvanized bolt subjected to the non-chromium surface treatment of Example 2, white rust was generated in 192 hours and red rust was generated in 624 hours. In contrast, the galvanized bolt of Comparative Example 2 generated white rust in 48 hours and red rust in 648 hours.

実施例3と実施例4
A社による塩化亜鉛浴の白あげ亜鉛めっきボルト(実施例1と同じ白あげ亜鉛めっきボルト)とシアン浴の白あげ亜鉛めっきボルト(実施例2と同じ白あげ亜鉛めっきボルト)各3本を前処理剤のケミクロンS−2に30秒浸し、次いで60℃に保温した非クロム化成処理液1で化成処理した(いずれも色が黒っぽく変色)。次にこれら化成処理した亜鉛めっきボルトに、非クロム表面処理剤溶液1を塗布し、80℃で10分保持して乾かし、150℃に昇温して20分間保持し、非クロム表面処理剤を焼付け、それぞれ実施例3と実施例4の非クロム表面処理をした亜鉛めっきボルトを得た。実施例3と実施例4の非クロム表面処理をした亜鉛めっきボルトを塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例3のボルトは148時間で白錆が発生して576時間で赤錆が発生し、実施例4のボルトは148時間で白錆が発生して648時間で赤錆が発生した。
Example 3 and Example 4
The three whitening zinc plating bolts of the zinc chloride bath (the same whitening zinc plating bolt as in Example 1) and the whitening zinc plating bolt of the cyan bath (the same whitening zinc plating bolt as in Example 2) by Company A It was soaked in the treatment agent Chemmicron S-2 for 30 seconds and then subjected to chemical conversion treatment with the non-chromium chemical conversion treatment liquid 1 kept at 60 ° C. (both colors changed to blackish). Next, the non-chromium surface treating agent solution 1 is applied to these chemically treated galvanized bolts, held at 80 ° C. for 10 minutes and dried, heated to 150 ° C. and held for 20 minutes, and the non-chromium surface treating agent is applied. Baking and galvanized bolts with non-chromium surface treatment of Example 3 and Example 4 respectively were obtained. As a result of putting the galvanized bolt with the non-chromium surface treatment of Example 3 and Example 4 into a salt spray tester and investigating rust prevention performance, the bolt of Example 3 generated white rust in 148 hours and 576 hours. Then, red rust was generated, and the bolt of Example 4 had white rust in 148 hours and red rust in 648 hours.

実施例5と比較例3
B社による塩化亜鉛浴白あげ亜鉛めっきボルト(この亜鉛めっきボルトは表面処理剤との相性が比較的良好)3本をケミクロンS−2(前処理剤)に30秒間浸し、次いで60℃に保温した非クロム化成処理液2に30秒間浸して燐酸亜鉛化成処理を施した(このとき亜鉛めっき表面が梨地になった)。次に非クロム表面処理剤溶液1を実施例1と同様にして塗布し、実施例5の非クロム表面処理をした亜鉛めっきボルトを得た。別途、B社の塩化亜鉛浴白あげ亜鉛めっきボルト3本に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例3の非クロム表面処理をした亜鉛めっきボルトを得た。これらのボルト各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例5のボルトは260時間で白錆が発生し、1680時間で赤錆が発生した。他方、比較例3の非クロム表面処理をした亜鉛めっきボルトは192時間で白錆が発生し、1704時間で赤錆が発生した。
Example 5 and Comparative Example 3
Zinc chloride whitening galvanized bolts manufactured by company B (this galvanized bolt has a relatively good compatibility with the surface treatment agent) are immersed in Chemron S-2 (pretreatment agent) for 30 seconds, and then kept at 60 ° C. The zinc phosphate chemical conversion treatment was performed by immersing in the non-chromium chemical conversion treatment liquid 2 for 30 seconds (at this time, the surface of the galvanized sheet became satin). Next, the non-chromium surface treating agent solution 1 was applied in the same manner as in Example 1 to obtain a galvanized bolt subjected to the non-chromium surface treatment of Example 5. Separately, non-chromium surface treatment solution 1 was applied to three zinc chloride bath whitening zinc plating bolts of Company B in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated zinc plating bolt of Comparative Example 3. . As a result of putting these three bolts in a salt spray tester and examining the antirust performance, the bolt of Example 5 generated white rust in 260 hours and red rust in 1680 hours. On the other hand, the galvanized bolt with the non-chromium surface treatment of Comparative Example 3 generated white rust in 192 hours and red rust in 1704 hours.

実施例6と比較例4
C社によるジンケート浴白あげ亜鉛めっきボルト(この亜鉛めっきボルトは表面処理剤との相性が比較的良好)3本をケミクロンS−2に30秒間浸し、次いで60℃に保持した非クロム化成処理液3に30秒間浸して燐酸亜鉛化成処理を施した(このとき亜鉛めっき表面は亜鉛の金属光沢が消えて梨地になった)。次に非クロム表面処理剤溶液1を実施例1と同様にして塗布し、実施例6の非クロム表面処理をした亜鉛めっきボルトを得た。別途、C社のジンケート浴白あげ亜鉛めっきボルト3本に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例4の非クロム表面処理をした亜鉛めっきボルトを得た。これらのボルト各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例6のボルトは240時間で白錆が発生し、1200時間で赤錆が発生した。他方、比較例4の非クロム表面処理をした亜鉛めっきボルトは168時間で白錆が発生し、1704時間で赤錆が発生した。
Example 6 and Comparative Example 4
Zincate bath whitening galvanized bolt by Company C (this galvanized bolt has relatively good compatibility with the surface treatment agent) 3 pieces were immersed in Chemmicron S-2 for 30 seconds and then kept at 60 ° C. No. 3 was subjected to a zinc phosphate chemical conversion treatment for 30 seconds (at this time, the surface of the galvanized surface became zincy with the metallic luster of zinc disappeared). Next, the non-chromium surface treating agent solution 1 was applied in the same manner as in Example 1 to obtain a galvanized bolt subjected to the non-chromium surface treatment of Example 6. Separately, non-chromium surface treating agent solution 1 was applied to three zincate bath whitening galvanized bolts of Company C in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated galvanized bolt in Comparative Example 4. As a result of putting these three bolts into a salt spray tester and examining the antirust performance, the bolt of Example 6 generated white rust in 240 hours and red rust in 1200 hours. On the other hand, the galvanized bolt with the non-chromium surface treatment of Comparative Example 4 generated white rust in 168 hours and red rust in 1704 hours.

実施例7と比較例5
バレル容積が約2.9リットルの小型バレルめっき装置のバスにディップソール(株)製のジンケート亜鉛めっき浴を建浴した。次いで酸洗及びアルカリ脱脂処理したM8半ねじボルト(ねじ部長さ約20mm)80本(約1.7Kg)をバレル中に入れ、平均電流密度が0.8〜1.0A/dmとなるように設定し、めっき浴に浸したバレルを9RPMで回転させながらめっき電流を約30分間通じてボルト表面に平均厚さ約10μmの亜鉛めっきを施した。希硝酸洗い(ピクリング)を省略して水洗したこの亜鉛めっきボルト3本をケミクロンS−2に30秒間浸し、次いで60℃に保温した非クロム化成処理液3に30秒間浸して燐酸亜鉛化成処理を施した(このとき亜鉛めっき表面は亜鉛の金属光沢が消えて梨地になった)。水洗して乾燥後、非クロム表面処理剤溶液1を実施例1と同様にして塗布し、実施例7の非クロム表面処理をした亜鉛めっきボルトを得た。また、同じ種類の亜鉛めっきボルト3本に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例5の非クロム表面処理をした亜鉛めっきボルトを得た。
Example 7 and Comparative Example 5
A zincate galvanizing bath manufactured by Dipsol Co., Ltd. was erected in a bath of a small barrel plating apparatus having a barrel volume of about 2.9 liters. Next, 80 pieces (about 1.7 kg) of M8 half screw bolts (thread length: about 20 mm) subjected to pickling and alkali degreasing treatment are put in the barrel so that the average current density becomes 0.8 to 1.0 A / dm 2. Then, while rotating a barrel immersed in a plating bath at 9 RPM, a plating current was passed through for about 30 minutes to apply a zinc plating with an average thickness of about 10 μm to the bolt surface. Three zinc plating bolts that have been washed with water while omitting dilute nitric acid washing (picking) are immersed in Chemmicron S-2 for 30 seconds, and then immersed in non-chromium chemical conversion liquid 3 kept at 60 ° C. for 30 seconds to perform zinc phosphate chemical conversion treatment. (At this time, the galvanized surface disappeared from the metallic luster of zinc and became satin). After washing with water and drying, the non-chromium surface treating agent solution 1 was applied in the same manner as in Example 1 to obtain a non-chromium surface-treated galvanized bolt in Example 7. Further, non-chromium surface treating agent solution 1 was applied to three galvanized bolts of the same type in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated galvanized bolt in Comparative Example 5.

これらのボルト各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例7のボルトは216時間で白錆が発生し、1104時間で赤錆が発生した。他方、比較例5の非クロム表面処理をした亜鉛めっきボルトは192時間で白錆が発生し、1128時間で赤錆が発生した。   As a result of putting these three bolts in a salt spray tester and examining the rust prevention performance, the bolt of Example 7 generated white rust in 216 hours and red rust in 1104 hours. On the other hand, the galvanized bolt with the non-chromium surface treatment of Comparative Example 5 generated white rust in 192 hours and red rust in 1128 hours.

実施例8と比較例6
容積1.6リットルのバレルを備えた小型バレルめっき装置にディップソール(株)製のジンケート亜鉛めっき浴を建浴し、M2.5の小ねじ約300gをバレルに入れて小ねじに亜鉛めっきを施した。めっき条件は平均電流密度が1.0A/dmとなるように設定し、めっき浴に浸したバレルを10RPMで回転させながら、約22分間めっき電流を流して小ねじ表面に平均厚さ約7μmの亜鉛めっきを施した。
Example 8 and Comparative Example 6
Build a zincate zinc plating bath manufactured by Dipsol Co., Ltd. in a small barrel plating machine equipped with a 1.6 liter barrel. Place about 300 g of M2.5 small screws in the barrel and galvanize the small screws. gave. The plating conditions were set so that the average current density was 1.0 A / dm 2, and the barrel was immersed in the plating bath was rotated at 10 RPM, and the plating current was passed for about 22 minutes, and the average thickness was about 7 μm on the surface of the small screw. The galvanization was applied.

この亜鉛めっき小ねじ3本をケミクロンS−2に30秒間浸し、次いで60℃に保持した非クロム化成処理液3に30秒間浸して燐酸亜鉛化成処理を施した(このとき亜鉛めっき表面は亜鉛の金属光沢が消えて梨地になった)。水洗して乾燥後、非クロム表面処理剤溶液1を実施例1と同様にして塗布し、実施例8の非クロム表面処理をした亜鉛めっきボルトを得た。また、同じ種類の亜鉛めっき小ねじ3本に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例6の非クロム表面処理をした亜鉛めっきボルトを得た。   These three galvanized small screws were immersed in Chemmicron S-2 for 30 seconds and then immersed in a non-chromium chemical conversion solution 3 maintained at 60 ° C. for 30 seconds to perform zinc phosphate conversion treatment (the galvanized surface was made of zinc). The metallic luster disappeared and it became satin). After washing with water and drying, the non-chromium surface treating agent solution 1 was applied in the same manner as in Example 1 to obtain a non-chromium surface-treated galvanized bolt in Example 8. Moreover, the non-chromium surface treating agent solution 1 was applied to three galvanized small screws of the same type in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated galvanized bolt in Comparative Example 6.

これらの小ねじ各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例8の小ねじは168時間で白錆が発生し、504時間で赤錆が発生した。他方、比較例6の非クロム表面処理をした亜鉛めっき小ねじは124時間で白錆が発生し、552時間で赤錆が発生した。   As a result of putting these three small screws into a salt spray tester and examining the rust prevention performance, the small screws of Example 8 generated white rust in 168 hours and red rust in 504 hours. On the other hand, the galvanized small screw subjected to the non-chromium surface treatment of Comparative Example 6 generated white rust in 124 hours and red rust in 552 hours.

実施例9と比較例7
D社の塩化浴で亜鉛めっきされたM2の小ねじ(ねじ部長さ3mm)3個をケミクロンS−2に30秒漬け、次いで60℃に保温した非クロム化成処理液3中に30秒間浸して化成処理を施した(表面が梨地になった)。この化成処理された表面に非クロム表面処理剤溶液1を実施例1と同様にして塗布し、焼き付け、実施例9の亜鉛めっき小ねじを得た。別途、D社の塩化浴で亜鉛めっきされたM2小ねじ3本に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例7の非クロム表面処理をした亜鉛めっき小ねじを得た。これらの小ねじ各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例9の小ねじは168時間で白錆が発生し、216時間で赤錆が発生した。他方、比較例7の非クロム表面処理をした亜鉛めっき小ねじは24時間で白錆が発生し、144時間で赤錆が発生した。
Example 9 and Comparative Example 7
Three M2 small screws (thread length 3 mm) galvanized in a chloride bath of company D are immersed in Chemmicron S-2 for 30 seconds, and then immersed in non-chromium chemical treatment solution 3 kept at 60 ° C. for 30 seconds. A chemical conversion treatment was applied (the surface became satin). The non-chromium surface treating agent solution 1 was applied to the surface subjected to the chemical conversion treatment in the same manner as in Example 1 and baked to obtain a galvanized machine screw of Example 9. Separately, the non-chromium surface treatment solution 1 was applied to three M2 machine screws galvanized in a chloride bath of Company D in the same manner as in Comparative Example 1, and the galvanized machine screws subjected to the non-chromium surface treatment of Comparative Example 7 Got. As a result of putting three of these small screws into a salt spray tester and examining the antirust performance, the small screw of Example 9 generated white rust in 168 hours and red rust in 216 hours. On the other hand, the galvanized small screw subjected to the non-chromium surface treatment of Comparative Example 7 generated white rust in 24 hours and red rust in 144 hours.

実施例10と比較例8
C社によるジンケート浴白あげ亜鉛めっきボルト(実施例6と同じボルト)3本をケミクロンS−2に30秒間浸し、次いで60℃に保持した非クロム化成処理液3に30秒間浸して燐酸亜鉛化成処理を施した(亜鉛めっき表面は金属光沢が消えて梨地になった)。水洗して乾燥後、水とアルコールの混合溶媒の非クロム表面処理剤溶液2を実施例1と同様にして塗布し、実施例10の非クロム表面処理をした亜鉛めっきボルトを得た。別途、C社のジンケート浴白あげ亜鉛めっきボルト3本に非クロム表面処理剤溶液2を比較例1と同様にして塗布し、比較例8の非クロム表面処理をした亜鉛めっきボルトを得た。これらのボルト各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例10のボルトは120時間で白錆が発生し、1176時間で赤錆が発生した。他方、比較例8の非クロム表面処理をした亜鉛めっきボルトは24時間で白錆が発生し、1200時間で赤錆が発生した。
Example 10 and Comparative Example 8
Three zincate whitening galvanized bolts (same bolts as in Example 6) by Company C were immersed in Chemmicron S-2 for 30 seconds, and then immersed in non-chromium chemical conversion liquid 3 maintained at 60 ° C. for 30 seconds to form zinc phosphate. The galvanized surface disappeared and became a satin finish. After washing with water and drying, non-chromium surface treating agent solution 2 of a mixed solvent of water and alcohol was applied in the same manner as in Example 1 to obtain a non-chromium surface-treated galvanized bolt of Example 10. Separately, non-chromium surface treatment solution 2 was applied to three zincate bath whitening galvanized bolts of Company C in the same manner as in Comparative Example 1 to obtain a galvanized bolt subjected to non-chromium surface treatment in Comparative Example 8. As a result of putting these three bolts into a salt spray tester and investigating rust prevention performance, the bolt of Example 10 generated white rust in 120 hours and red rust in 1176 hours. On the other hand, the galvanized bolt subjected to the non-chromium surface treatment of Comparative Example 8 generated white rust in 24 hours and red rust in 1200 hours.

比較例9と比較例10
C社によるジンケート浴亜鉛めっきボルト(白あげ)3本をケミクロンS−2に30秒間浸し、次いで60℃に保温した非クロム化成処理液3に30秒間浸して燐酸亜鉛化成処理を施した(亜鉛めっき表面は光沢が消え梨地になった)。次に水を溶媒とする非クロム表面処理剤溶液3を実施例1と同様にして塗布し、比較例9の非クロム表面処理をした亜鉛めっきボルトを得た。別途、C社のジンケート浴白あげ亜鉛めっきボルト3本に非クロム表面処理剤溶液3を比較例1と同様にして塗布し、比較例10の非クロム表面処理をした亜鉛めっきボルトを得た。これらのボルト各3本を塩水噴霧試験機に入れ、防錆性能を調べた結果、比較例9のボルトは24時間で白錆が発生し、1128時間で赤錆が発生した。他方、比較例10の非クロム表面処理をした亜鉛めっきボルトは24時間で白錆が発生し、1152時間で赤錆が発生した。
Comparative Example 9 and Comparative Example 10
3 zincate bath galvanized bolts (whitening) by Company C were immersed in Chemmicron S-2 for 30 seconds and then immersed in non-chromium chemical conversion solution 3 kept at 60 ° C. for 30 seconds to perform zinc phosphate conversion treatment (Zinc The plating surface has lost its luster and has become satin). Next, the non-chromium surface treating agent solution 3 using water as a solvent was applied in the same manner as in Example 1 to obtain a galvanized bolt subjected to the non-chromium surface treatment of Comparative Example 9. Separately, the non-chromium surface treating agent solution 3 was applied to three zincate bath whitening galvanized bolts of Company C in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated galvanized bolt in Comparative Example 10. As a result of putting these three bolts into a salt spray tester and examining the rust prevention performance, the bolt of Comparative Example 9 generated white rust in 24 hours and red rust in 1128 hours. On the other hand, the galvanized bolt with the non-chromium surface treatment of Comparative Example 10 generated white rust in 24 hours and red rust in 1152 hours.

実施例11と比較例11
亜鉛ダイカスト部材(直径約10mm、内径6mm、長さ約15mm)3個を脱脂処理後にケミクロンS−2に30秒間浸し、次いで60℃に保温した非クロム化成処理液3に30秒間浸して亜鉛表面に燐酸亜鉛化成処理を施した(表面が梨地になる)。次に非クロム表面処理剤溶液1を実施例1と同様にして塗布し、実施例11の非クロム表面処理をした亜鉛ダイカスト部材を得た。別途、同じ種類の亜鉛ダイカスト部材3個に非クロム表面処理剤溶液1を比較例1と同様にして塗布し、比較例11の非クロム表面処理をした亜鉛ダイカスト部材を得た。
Example 11 and Comparative Example 11
Three zinc die-cast members (diameter: about 10 mm, inner diameter: 6 mm, length: about 15 mm) were degreased and then immersed in Chemmicron S-2 for 30 seconds, and then immersed in non-chromium chemical conversion treatment liquid 3 kept at 60 ° C. for 30 seconds. Was subjected to a zinc phosphate chemical conversion treatment (the surface became satin). Next, the non-chromium surface treating agent solution 1 was applied in the same manner as in Example 1 to obtain a zinc die-cast member subjected to non-chromium surface treatment in Example 11. Separately, non-chromium surface treating agent solution 1 was applied to three zinc die cast members of the same type in the same manner as in Comparative Example 1 to obtain a non-chromium surface-treated zinc die cast member of Comparative Example 11.

これらの亜鉛ダイカスト部材各3個を塩水噴霧試験機に入れ、防錆性能を調べた結果、実施例11の亜鉛ダイカスト部材は432時間で白錆が発生した(亜鉛なので赤錆は出ない)。他方、比較例11の非クロム表面処理をした亜鉛ダイカスト部材は192時間で白錆が発生した。   As a result of putting three each of these zinc die-cast members into a salt spray tester and investigating rust prevention performance, the zinc die-cast member of Example 11 generated white rust in 432 hours (since it is zinc, no red rust is produced). On the other hand, in the zinc die-cast member subjected to the non-chromium surface treatment of Comparative Example 11, white rust occurred in 192 hours.

上に述べた実施例1〜11と比較例1〜11とを纏めて表4に示す。   Table 1 summarizes Examples 1 to 11 and Comparative Examples 1 to 11 described above.

Figure 2006225761
Figure 2006225761

実施例12から15及び比較例12から15
ジンケート浴で亜鉛めっきした鉄板(寸法50×50×2mm、めっき厚さ8μm)と塩化浴で亜鉛めっきした鉄板(寸法50×50×2mm、めっき厚さ7μm)を入手した。このジンケート浴で亜鉛めっきした鉄板について、非クロム化成処理液3で化成処理したサンプル(実施例12)と化成処理しないサンプル(比較例12)とを準備した。また、塩化浴で亜鉛めっきした鉄板を同様に非クロム化成処理液3で化成処理したサンプル(実施例13)と化成処理しないサンプル(比較例13)とを準備した。
Examples 12 to 15 and Comparative Examples 12 to 15
An iron plate (dimension 50 × 50 × 2 mm, plating thickness 8 μm) galvanized in a zincate bath and an iron plate (dimension 50 × 50 × 2 mm, plating thickness 7 μm) galvanized in a chloride bath were obtained. About the iron plate galvanized with this zincate bath, the sample (Example 12) which chemically converted with the non-chromium chemical conversion liquid 3 and the sample (Comparative Example 12) which are not subjected to chemical conversion treatment were prepared. In addition, a sample (Example 13) obtained by subjecting an iron plate galvanized in a chloride bath to a chemical conversion treatment with a non-chromium chemical conversion solution 3 and a sample not subjected to a chemical conversion treatment (Comparative Example 13) were prepared.

これら実施例12と13および比較例12と13のサンプルにアルコール溶媒系の非クロム表面処理剤溶液1をディップアンドスピン法で塗布して130℃で焼付けた。実施例12と13および比較例12と13からそれぞれ数個のサンプルをJASO M346に基づく耐光性試験装置に入れた。非クロム化成処理液3で化成処理をした実施例12と13のサンプルのうち耐光性試験で光曝射をしたサンプルをそれぞれ実施例14と15のサンプルとする。また、非クロム化成処理液3で化成処理をした比較例12と13のサンプルのうち耐光性試験で光曝射をしたサンプルをそれぞれ比較例14と15のサンプルとする。   The samples of Examples 12 and 13 and Comparative Examples 12 and 13 were coated with alcohol solvent-based non-chromium surface treating agent solution 1 by the dip and spin method and baked at 130 ° C. Several samples from Examples 12 and 13 and Comparative Examples 12 and 13 were put in a light resistance test apparatus based on JASO M346. Of the samples of Examples 12 and 13 subjected to chemical conversion treatment with the non-chromium chemical conversion treatment solution 3, samples subjected to light exposure in the light resistance test are referred to as samples of Examples 14 and 15, respectively. Further, among the samples of Comparative Examples 12 and 13 subjected to chemical conversion treatment with the non-chromium chemical conversion treatment solution 3, samples subjected to light exposure in the light resistance test are referred to as Comparative Examples 14 and 15, respectively.

耐光性試験装置に入れたサンプルと耐光性試験装置に入れなかったサンプルを同時にJIS−Z−2371塩水に基づく噴霧試験機に入れて防錆性能を評価した。その結果を表5に示す。表5の結果から、化成処理を行った上で表面処理剤を塗布したサンプルは耐光性試験による白錆の発生に対する防錆性能の劣化が少ないことが分かる。   The sample put in the light resistance test apparatus and the sample not put in the light resistance test apparatus were simultaneously put in a spray tester based on JIS-Z-2371 salt water to evaluate the rust prevention performance. The results are shown in Table 5. From the results shown in Table 5, it can be seen that the sample subjected to the chemical conversion treatment and coated with the surface treatment agent has little deterioration in the rust prevention performance against the occurrence of white rust by the light resistance test.

Figure 2006225761
Figure 2006225761

なお、JASO M346は自動車内装部品のキセノンアークランプ(太陽光に近い人工光源)を使う促進耐光性試験方法であり、この試験方法では温度を89±3℃、湿度を50±5%に保持した雰囲気中で波長が300〜400nmの範囲にある光の積算放射露光量が100MJ/mとなるように放射露光する。 JASO M346 is an accelerated light resistance test method using a xenon arc lamp (an artificial light source close to sunlight) for automobile interior parts. In this test method, the temperature was maintained at 89 ± 3 ° C. and the humidity at 50 ± 5%. Radiation exposure is performed so that the cumulative radiation exposure amount of light having a wavelength in the range of 300 to 400 nm is 100 MJ / m 2 in an atmosphere.

実施例16と比較例16
イオン交換水1リットル中にクエン酸を1g、水性シリカゾル(日産化学工業(株)製のスノーテックス−O)を30g(シリカ換算で6g)及び塩化亜鉛を3g(亜鉛換算で1.44g)を溶かして表6に示すクエン酸系の非クロム化成処理液4を調製した。
Example 16 and Comparative Example 16
1 g of citric acid in 1 liter of ion-exchanged water, 30 g of aqueous silica sol (Snowtex-O manufactured by Nissan Chemical Industries, Ltd.) (6 g in terms of silica) and 3 g of zinc chloride (1.44 g in terms of zinc) By dissolving, a citric acid-based non-chromium chemical conversion treatment solution 4 shown in Table 6 was prepared.

Figure 2006225761
Figure 2006225761

バレル容積が1.6リットルの小型バレルめっき装置にディップソール(株)製のジンケート浴の亜鉛めっき液を建浴し、M3ねじ(ねじ部長さが8mm)1.14Kgをめっき装置のバレルに入れ、めっきの平均電流密度が0.8〜1.0A/dmとなるように設定してバレルを10RPMで回転させ約40分間めっき電流を流し、水洗後乾燥してめっき厚さが9.5μmのM3ねじを得た。 Dipsol Co., Ltd. zinc plating solution zinc plating solution was built in a small barrel plating machine with a barrel volume of 1.6 liters, and 1.14 kg of M3 screw (thread length: 8 mm) was placed in the barrel of the plating machine. The plating is set so that the average current density is 0.8 to 1.0 A / dm 2 , the barrel is rotated at 10 RPM, the plating current is passed for about 40 minutes, the substrate is washed with water and dried to obtain a plating thickness of 9.5 μm. M3 screws were obtained.

この亜鉛めっきしたM3ねじに、水素脆性を防ぐベーキング処理(200℃で4時間加熱)をしたところ、黄色く着色した。この着色したねじを25℃に保持した上記非クロム化成処理液4に10秒間浸し、水洗乾燥したところ、黄色い着色を脱色することができた。化成処理をしたねじ(実施例16)と化成処理をしなかったねじ(黄色に着色している)(比較例16)とにアルコール溶媒系の非クロム表面処理剤溶液1をディップアンドスピン法で塗布して120℃で10分間焼き付けた。   When this galvanized M3 screw was baked (heated at 200 ° C. for 4 hours) to prevent hydrogen embrittlement, it was colored yellow. When this colored screw was immersed in the non-chromium chemical conversion treatment solution 4 kept at 25 ° C. for 10 seconds, washed with water and dried, the yellow coloring could be removed. A non-chromium surface treatment agent solution 1 based on an alcohol solvent was applied to the screw subjected to chemical conversion treatment (Example 16) and the screw not subjected to chemical conversion treatment (colored yellow) (Comparative Example 16) by the dip-and-spin method. It was applied and baked at 120 ° C. for 10 minutes.

実施例16と比較例16とのねじ各10本をJIS−Z−2371に基づく塩水噴霧試験機に入れて防錆性能を評価した結果を表7に示す。表7の結果から、化成処理を行うことによる防錆性能の向上効果は少ないが、この化成処理によって表面を梨地にしないで、ベーキングで発生した黄色い着色を脱色することができるという効果を得た。   Table 7 shows the results of evaluation of rust prevention performance by putting 10 screws of Example 16 and Comparative Example 16 in a salt spray tester based on JIS-Z-2371. From the results of Table 7, the effect of improving the rust prevention performance by performing the chemical conversion treatment is small, but this chemical conversion treatment has the effect that the yellow color generated by baking can be removed without making the surface a satin finish. .

Figure 2006225761
Figure 2006225761

実施例17と比較例17
実施例16と同様にしてディップソール(株)製のジンケート浴で亜鉛めっきしたM2.6ねじ(ねじ部長さ14mm、めっき厚さ9.5μm)を、200℃に加熱するベーキング処理を4時間行い、次いで0.2%の希硝酸水溶液に浸すピクリング処理(黄色い着色の脱色)を行いそのまま乾燥したねじ(比較例17)と、ピクリング処理後に25℃の非クロム化成処理液4に10秒間漬けてから乾燥したねじ(実施例17)を準備した。先に準備しておいた非クロム表面処理剤溶液4を、亜鉛めっき後にベーキングしてピクリング処理した比較例17のねじと、ピクリング処理後さらに非クロム化成処理液4に漬けて乾かした実施例17のねじの両方にディップアンドスピン法で塗布した。表面処理を施したこれらのねじ各5本をJIS−Z−2371に基づく塩水噴霧試験機に入れて防錆性能を評価した。その結果、実施例17のねじは144時間後に5本中2本に白錆が認められたのに対し、比較例17のねじでは24時間後に5本中3本に白錆が認められた。この塩水噴霧試験結果も表7に併せて示している。
Example 17 and Comparative Example 17
In the same manner as in Example 16, baking was performed by heating M2.6 screws (screw portion length: 14 mm, plating thickness: 9.5 μm) galvanized in a zincate bath manufactured by Dipsol Co., Ltd. to 200 ° C. for 4 hours. Next, a pickling treatment (yellowing decolorization) soaked in a 0.2% dilute nitric acid aqueous solution and dried as it is (Comparative Example 17), and after pickling treatment, immersed in a non-chromium chemical conversion treatment solution 4 at 25 ° C. for 10 seconds A dried screw (Example 17) was prepared. The previously prepared non-chromium surface treating agent solution 4 was baked after galvanization and baked and pickled in Comparative Example 17, and after pickling, it was further dipped in the non-chromium chemical conversion treatment solution 4 and dried. The dip and spin method was applied to both of the screws. Each of these 5 screws subjected to surface treatment was put into a salt spray tester based on JIS-Z-2371 to evaluate rust prevention performance. As a result, white rust was observed in 2 out of 5 screws after 144 hours, whereas white rust was observed in 3 out of 5 screws after 24 hours. The salt spray test results are also shown in Table 7.

亜鉛めっき後に希い硝酸で洗うピクリングを行った金属製品はアルコール系の非クロム表面処理剤溶液1あるいは4を塗布しても防錆性能が殆ど向上しないが、上記クエン酸系の非クロム化成処理液4で化成処理をしてからアルコール系の非クロム表面処理剤溶液1あるいは4を塗布すると、表面を梨地にしないで実用レベルの防錆性能を付与できることが分かった。   Metal products that have been pickled after washing with dilute nitric acid after galvanization have little improvement in rust prevention performance even when alcohol-based non-chromium surface treatment solution 1 or 4 is applied, but the above-mentioned citric acid-based non-chromium chemical conversion treatment It has been found that when the alcohol-based non-chromium surface treatment solution 1 or 4 is applied after the chemical conversion treatment with the liquid 4, a practical level of rust prevention performance can be imparted without making the surface textured.

Claims (23)

亜鉛表面を有する金属部材の表面に非クロム化成処理液で化成処理を施して化成処理膜を形成し、化成処理膜の表面に、アルコール溶媒又は水とアルコールとの混合溶媒中にシリカ成分又はシリカに変化する成分を含む非クロム表面処理剤溶液を塗布し、平均厚さが0.5〜3μmのシリカ質皮膜を形成する亜鉛表面を有する金属部材の非クロム防錆処理方法。 A metal component having a zinc surface is subjected to a chemical conversion treatment with a non-chromium chemical conversion treatment solution to form a chemical conversion treatment film, and a silica component or silica is added to the surface of the chemical conversion treatment film in an alcohol solvent or a mixed solvent of water and alcohol. A non-chromium anticorrosive treatment method for a metal member having a zinc surface on which a non-chromium surface treating agent solution containing a component that changes to a surface is formed to form a siliceous film having an average thickness of 0.5 to 3 μm. 非クロム表面処理剤溶液が、シリカ成分又はシリカに変化する成分をシリカに換算して10〜25重量%含む請求項1に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 2. The non-chromium rust preventive treatment method for a metal member having a zinc surface according to claim 1, wherein the non-chromium surface treating agent solution contains 10 to 25% by weight in terms of silica component or a component that changes to silica. 非クロム表面処理剤溶液が、分散処理された一次粒子の平均粒径40nm以下である酸化チタン超微粉末を0.3〜2重量%含む請求項2に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium surface treating agent solution contains 0.3 to 2% by weight of a titanium oxide ultrafine powder having an average particle size of 40 nm or less of dispersed primary particles. Chrome anti-rust treatment method. 非クロム表面処理剤溶液がシランカップリング剤を4〜16重量%含む請求項2に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 2, wherein the non-chromium surface treatment agent solution contains 4 to 16% by weight of a silane coupling agent. 非クロム表面処理剤溶液が、水とアルコールとの混合溶媒中にシリカ成分としてコロイドシリカをシリカに換算して10〜25重量%含む請求項2に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium surface treatment agent solution contains 10 to 25% by weight of colloidal silica as a silica component in a mixed solvent of water and alcohol in terms of silica, and prevents non-chromium of a metal member having a zinc surface according to claim 2. Rust treatment method. 非クロム表面処理剤溶液が、アルコキシシランモノマーを加水分解して縮重合させたアルコキシシランオリゴマーを、シリカに変化する成分として、アルコール溶媒中にシリカに換算して10〜25重量%含む請求項2に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium surface treating agent solution contains 10 to 25 wt% of an alkoxysilane oligomer obtained by hydrolyzing an alkoxysilane monomer and subjected to polycondensation as a component that changes to silica in terms of silica in an alcohol solvent. A non-chromium antirust treatment method for a metal member having a zinc surface as described in 1. アルコキシシランオリゴマーの重量平均分子量が1000〜10000である請求項6に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 6, wherein the alkoxysilane oligomer has a weight average molecular weight of 1,000 to 10,000. 非クロム化成処理液が燐酸亜鉛を含む水溶液である請求項1に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 1, wherein the non-chromium chemical conversion treatment solution is an aqueous solution containing zinc phosphate. 非クロム化成処理液が燐酸亜鉛を含む水溶液である請求項2に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 2, wherein the non-chromium chemical conversion treatment solution is an aqueous solution containing zinc phosphate. 非クロム化成処理液が燐酸亜鉛を含む水溶液である請求項5に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 5, wherein the non-chromium chemical conversion treatment solution is an aqueous solution containing zinc phosphate. 非クロム化成処理液が燐酸亜鉛を含む水溶液である請求項6に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 6, wherein the non-chromium chemical conversion treatment solution is an aqueous solution containing zinc phosphate. 非クロム化成処理液がクエン酸を0.5〜5g/リットル含む水溶液である請求項6に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 6, wherein the non-chromium chemical conversion treatment solution is an aqueous solution containing 0.5 to 5 g / liter of citric acid. 非クロム化成処理液が更に水性シリカゾルをシリカに換算して2〜20g/リットルと、亜鉛イオンを0.6〜6g/リットルとを含む請求項12に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 The non-chromium of the metallic member having a zinc surface according to claim 12, wherein the non-chromium chemical conversion treatment solution further contains 2 to 20 g / liter of aqueous silica sol converted to silica and 0.6 to 6 g / liter of zinc ions. Rust prevention treatment method. 亜鉛表面を有する金属部材が亜鉛めっきあるいは亜鉛合金めっきされた金属部材又は亜鉛を主成分とする合金の鋳造品である請求項1に記載の亜鉛表面を有する金属部材の非クロム防錆処理方法。 2. The non-chromium antirust treatment method for a metal member having a zinc surface according to claim 1, wherein the metal member having a zinc surface is a metal member plated with zinc or zinc alloy, or a cast product of an alloy mainly composed of zinc. 亜鉛表面を有する金属部材が、その表面に形成された化成処理膜と、その化成処理膜上に形成された、分散処理された一次粒子の平均粒径が40nm以下である2〜10重量%の酸化チタン超微粉末と65重量%以上のシリカとを含む厚さ0.5〜3μmのシリカ質皮膜で被覆されている非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface is 2 to 10% by weight of the chemical conversion treatment film formed on the surface, and the average particle size of the primary particles subjected to the dispersion treatment formed on the chemical conversion treatment film is 40 nm or less. A metal member having a non-chromium rust-proof zinc surface coated with a siliceous film having a thickness of 0.5 to 3 μm containing titanium oxide ultrafine powder and 65% by weight or more of silica. シリカがアルコキシシランオリゴマーから生成されている請求項15に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 15, wherein the silica is generated from an alkoxysilane oligomer. 化成処理膜が燐酸亜鉛からなる請求項15に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 15, wherein the chemical conversion treatment film is made of zinc phosphate. 化成処理膜が暗色である請求項15に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 15, wherein the chemical conversion treatment film has a dark color. 金属部材がバレル法で電気亜鉛めっきされたねじ部外径が3mm以下の小ねじである請求項15に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 15, wherein the metal member is a small screw having an outer diameter of 3 mm or less that is electrogalvanized by a barrel method. 亜鉛表面を有する金属部材が、その表面に形成された化成処理膜と、その化成処理膜上に形成された、アルコキシシランオリゴマーから生成されている65重量%以上のシリカとを含む厚さ0.5〜3μmのシリカ質皮膜で被覆されている非クロム防錆処理がされた亜鉛表面を有する金属部材。 A metal member having a zinc surface has a thickness of 0.1 mm and includes a chemical conversion film formed on the surface and 65 wt% or more silica formed from an alkoxysilane oligomer formed on the chemical conversion film. A metal member having a zinc surface which is coated with a 5 to 3 μm siliceous film and which has been subjected to a non-chromium antirust treatment. 化成処理膜が燐酸亜鉛からなる請求項20に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 20, wherein the chemical conversion treatment film is made of zinc phosphate. 化成処理膜が暗色である請求項20に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 20, wherein the chemical conversion treatment film has a dark color. 金属部材がバレル法で電気亜鉛めっきされたねじ部外径が3mm以下の小ねじである請求項20に記載の非クロム防錆処理がされた亜鉛表面を有する金属部材。 21. The metal member having a zinc surface subjected to non-chromium rust prevention treatment according to claim 20, wherein the metal member is a small screw having a screw portion outer diameter of 3 mm or less electrogalvanized by a barrel method.
JP2006005537A 2005-01-24 2006-01-13 Non-chromium anticorrosion treatment method for metal member having zinc surface Active JP4074320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005537A JP4074320B2 (en) 2005-01-24 2006-01-13 Non-chromium anticorrosion treatment method for metal member having zinc surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005014988 2005-01-24
JP2006005537A JP4074320B2 (en) 2005-01-24 2006-01-13 Non-chromium anticorrosion treatment method for metal member having zinc surface

Publications (2)

Publication Number Publication Date
JP2006225761A true JP2006225761A (en) 2006-08-31
JP4074320B2 JP4074320B2 (en) 2008-04-09

Family

ID=36987376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005537A Active JP4074320B2 (en) 2005-01-24 2006-01-13 Non-chromium anticorrosion treatment method for metal member having zinc surface

Country Status (1)

Country Link
JP (1) JP4074320B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119812A1 (en) 2006-04-18 2007-10-25 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
JP2008232238A (en) * 2007-03-20 2008-10-02 Calsonic Compressor Inc Fastening member and gas compressor using this fastening member
JP2014159627A (en) * 2013-01-24 2014-09-04 Yuken Industry Co Ltd Acidic composition for reaction-type chemical conversion treatment, and manufacturing method of member having chemical conversion coating on the surface
JP2016094639A (en) * 2014-11-13 2016-05-26 Jfeスチール株式会社 Method of producing electrogalvanized steel sheet
US9915006B2 (en) 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP2021063283A (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Coating formation method
CN112695314A (en) * 2020-12-09 2021-04-23 内蒙古第一机械集团股份有限公司 Solution for enhancing corrosion resistance of metal parts and preparation method thereof
JP7043083B2 (en) 2017-04-18 2022-03-29 奥野製薬工業株式会社 Rust prevention treatment method for metal materials

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119812A1 (en) 2006-04-18 2007-10-25 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
US8367201B2 (en) 2006-04-18 2013-02-05 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film
US8623503B2 (en) 2006-04-18 2014-01-07 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film
JP2008232238A (en) * 2007-03-20 2008-10-02 Calsonic Compressor Inc Fastening member and gas compressor using this fastening member
JP2014159627A (en) * 2013-01-24 2014-09-04 Yuken Industry Co Ltd Acidic composition for reaction-type chemical conversion treatment, and manufacturing method of member having chemical conversion coating on the surface
JP2016094639A (en) * 2014-11-13 2016-05-26 Jfeスチール株式会社 Method of producing electrogalvanized steel sheet
US9915006B2 (en) 2015-07-10 2018-03-13 Yuken Industry Co., Ltd. Reactive-type chemical conversion treatment composition and production method of member with chemical conversion coated surface
JP7043083B2 (en) 2017-04-18 2022-03-29 奥野製薬工業株式会社 Rust prevention treatment method for metal materials
JP2021063283A (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Coating formation method
WO2021075255A1 (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Method for forming coating film
CN112695314A (en) * 2020-12-09 2021-04-23 内蒙古第一机械集团股份有限公司 Solution for enhancing corrosion resistance of metal parts and preparation method thereof

Also Published As

Publication number Publication date
JP4074320B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR101157816B1 (en) Chromium-free rust inhibitive treatment method for metal products having zinc surface and metal products treated thereby
JP4074320B2 (en) Non-chromium anticorrosion treatment method for metal member having zinc surface
KR101014740B1 (en) Chromium-free metal surface treatment agent
EP2383370B1 (en) Surface treatment agent for galvanized steel sheet, galvanized steel sheet and production method thereof
RU2182161C2 (en) Covering composition, backing with cover, method of backing preparing, method of preparing covering composition
TWI392766B (en) Process for coating metallic surfaces with an aqueous composition, and this composition
TWI411702B (en) A non-chromium rust-preventive surface treatment agent for a metal member having a zinc surface, and a metal member having a zinc surface coated with the rust preventive coating
JPS6352114B2 (en)
CN102046843A (en) Finishing agent and member having overcoat formed from the finishing agent
JP5733980B2 (en) Method for forming black chemical conversion film and method for forming black rust preventive film on metal member having zinc or zinc alloy surface
CA2383323A1 (en) Pre-paint treatment of metal and product thereof
JP5364390B2 (en) Non-chromium aqueous rust preventive surface treatment agent for metal parts with zinc surface
JP3983386B2 (en) Chromate antirust treatment agent
EP3275646A1 (en) Organic resin-coated and surface treated metal plate
JP2005097719A (en) Non-chromium surface treatment agent for galvanized product
JP2002115084A (en) Surface treating agent, surface treatment film and surface modified metallic material
JP4128969B2 (en) Non-chromium surface treatment agent for galvanized products
JP4246689B2 (en) Pre-coated metal plate with excellent corrosion resistance
US20060014042A1 (en) Hybrid metal oxide/organometallic conversion coating for ferrous metals
JP2009167516A (en) Chromium-free colored or chromium-free black rust prevention treatment liquid for further improving rust prevention force of galvanized or galvannealed metal surface, and chromium-free colored or chromium-free black rust prevention film treatment method
JPH1161432A (en) Metal plate surface-treated with inorganic/organic composite
JP6552767B1 (en) Pretreatment agent, pretreatment method, metal material having chemical conversion film and method for producing the same, and painted metal material and method for producing the same
JP6772943B2 (en) Painted steel plate
JP2007229630A (en) White coated steel sheet having high reflectance
WO2015001645A1 (en) Agent for forming rust-preventing coating film on metal surface, and method for forming rust-preventing coating film for metal substrate by using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250