JP2006224097A - Manufacturing method of polyimide asymmetric membrane comprising multi-component polyimide - Google Patents
Manufacturing method of polyimide asymmetric membrane comprising multi-component polyimide Download PDFInfo
- Publication number
- JP2006224097A JP2006224097A JP2006014426A JP2006014426A JP2006224097A JP 2006224097 A JP2006224097 A JP 2006224097A JP 2006014426 A JP2006014426 A JP 2006014426A JP 2006014426 A JP2006014426 A JP 2006014426A JP 2006224097 A JP2006224097 A JP 2006224097A
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- component
- polymerization
- asymmetric membrane
- mixed solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、緻密層と多孔質層とを有するポリイミド非対称膜の製造方法に関し、特に、フッ素原子含有ポリイミドを含む多成分のポリイミドからなり緻密層におけるフッ素原子含有ポリイミドの割合を制御したポリイミド非対称膜の製造方法に関する。この方法によれば、実用的な高性能ガス分離膜を得ることが可能である。 The present invention relates to a method for producing a polyimide asymmetric membrane having a dense layer and a porous layer, and in particular, a polyimide asymmetric membrane comprising a multi-component polyimide containing a fluorine atom-containing polyimide and controlling the proportion of fluorine atom-containing polyimide in the dense layer. It relates to the manufacturing method. According to this method, a practical high-performance gas separation membrane can be obtained.
工業的なガス分離プロセスに広くガス分離膜が利用されている。なかでも、ガス選択透過性(分離度)が高いポリイミドで形成されたガス分離膜が好適に用いられている。概して、ポリイミドはガス選択透過性(分離度)は高いけれども、ガス透過性(透過係数)が小さい。このため、ポリイミドからなるガス分離膜は、主に支持機能を果たす多孔質層と主に分離機能を果たす緻密層とからなる非対称構造にし、且つガスの透過抵抗が生じる緻密層をガス透過速度が小さくならないように薄くして用いられている。 Gas separation membranes are widely used in industrial gas separation processes. Especially, the gas separation membrane formed with the polyimide with high gas selective permeability (separation degree) is used suitably. In general, polyimide has a high gas selective permeability (separation degree) but a low gas permeability (permeability coefficient). For this reason, the gas separation membrane made of polyimide has an asymmetric structure mainly composed of a porous layer that performs a supporting function and a dense layer that mainly performs a separating function, and the gas permeation rate of the dense layer in which gas permeation resistance is generated. It is used thinly so that it does not become small.
実用的なガス分離膜には、ガス選択透過性やガス透過速度などのガス透過性能に加え、機械的強度などの特性が要求される。1種のテトラカルボン酸成分と1種のジアミン成分とからなるポリイミド(ホモポリマー)では、用いたテトラカルボン酸成分とジアミン成分との組合せによってそれらの特性が決定される。実用上要求される諸特性を満足するガス分離膜を得るために、テトラカルボン酸成分及び/又はジアミン成分の一部を他のテトラカルボン酸成分及び/又は他のジアミン成分に置き換えたものとからなる共重合ポリイミドを用いたガス分離膜が検討されてきた。このような共重合ポリイミドからなるガス分離膜は、それに用いた複数種のテトラカルボン酸成分及び/又はジアミン成分の組成によってそれらの特性が決定される。このような検討において、ガス透過性能特にガス透過速度を向上させるために、しばしばテトラカルボン酸成分やジアミン成分にフッ素原子を含有したポリイミドが用いられてきた。 Practical gas separation membranes require characteristics such as mechanical strength in addition to gas permeation performance such as gas permselectivity and gas permeation speed. In a polyimide (homopolymer) composed of one type of tetracarboxylic acid component and one type of diamine component, their characteristics are determined by the combination of the tetracarboxylic acid component and the diamine component used. In order to obtain a gas separation membrane that satisfies various properties required in practice, a part of the tetracarboxylic acid component and / or diamine component is replaced with another tetracarboxylic acid component and / or other diamine component. A gas separation membrane using a copolymerized polyimide has been studied. The characteristics of such a gas separation membrane made of copolymerized polyimide are determined by the composition of a plurality of types of tetracarboxylic acid components and / or diamine components used therein. In such studies, polyimides containing fluorine atoms in tetracarboxylic acid components and diamine components have been often used to improve gas permeation performance, particularly gas permeation rate.
しかしながら、一般に、ガス透過性能が優れた例えばフッ素原子含有ポリイミドを用いて非対称膜を形成すると機械的強度が十分ではなくなり、逆に機械的強度に優れたポリイミドを用いて非対称膜を形成するとガス透過性能が十分ではないという問題があった。 However, in general, when an asymmetric membrane is formed using, for example, a fluorine atom-containing polyimide having excellent gas permeation performance, the mechanical strength is not sufficient, and conversely, when an asymmetric membrane is formed using a polyimide having excellent mechanical strength, gas permeation is not achieved. There was a problem that the performance was not sufficient.
特許文献1には、多孔質ポリアクリロニトリル構造支持体と、架橋したフェニル含有極性オルガノポリシロキサンを含むガター層と、特定のフッ素原子含有ポリイミドからなる極薄の選択膜層とを積層した複合ガス分離膜が開示されている。
特許文献2には、脂肪族系の多孔質ポリイミド支持層と、フッ素原子含有ポリイミドからなる薄膜とを積層した気体用複合分離膜が開示されている。
しかし、このような複合膜では多孔質層の上に均一な薄膜を積層する必要があるが、多孔質層の上に均一な薄膜を形成するのは容易ではなく、これらの文献で示された方法によって高性能ガス分離膜を得るのは容易ではなかった。
Patent Document 2 discloses a gas composite separation membrane in which an aliphatic porous polyimide support layer and a thin film made of fluorine atom-containing polyimide are laminated.
However, in such a composite film, it is necessary to laminate a uniform thin film on the porous layer, but it is not easy to form a uniform thin film on the porous layer, and these documents have shown. It was not easy to obtain a high performance gas separation membrane by the method.
特許文献3には、2種類のポリイミドからなるポリマー混合溶液を用いて、相転換法によって非対称中空糸分離膜を製造する方法が開示されている。しかし、特定の重合度を有するポリイミド成分の組合せからなる混合溶液を調製し、その混合溶液をさらに重合イミド化反応してブロック性を有する共重合体を含有した混合溶液を調製し、前記ブロック性を有する共重合体を含有した混合溶液を用いて非対称膜を製造することについては記載がない。 Patent Document 3 discloses a method for producing an asymmetric hollow fiber separation membrane by a phase change method using a polymer mixed solution composed of two kinds of polyimides. However, a mixed solution composed of a combination of polyimide components having a specific degree of polymerization is prepared, and the mixed solution is further subjected to a polymerization imidization reaction to prepare a mixed solution containing a block copolymer. There is no description about producing an asymmetric membrane using a mixed solution containing a copolymer having the following.
本発明の目的は、フッ素原子含有ポリイミドを含む多成分のポリイミドからなり、緻密層におけるフッ素原子含有ポリイミドの割合を制御したポリイミド非対称膜の製造方法を提供することである。 An object of the present invention is to provide a method for producing a polyimide asymmetric membrane comprising a multi-component polyimide containing a fluorine atom-containing polyimide and controlling the proportion of the fluorine atom-containing polyimide in the dense layer.
本発明は、化学構造にフッ素原子を含むポリイミドAの原料成分及び/又は前記原料成分の重合イミド化反応物をポリイミド成分Aとし、前記ポリイミド成分Aの数平均重合度をNAとし、ポリイミドBの原料成分及び/又は前記原料成分の重合イミド化反応物をポリイミド成分Bとし、前記ポリイミド成分Bの数平均重合度をNBとしたときに、
(1)ポリイミド成分Aとポリイミド成分Bとを、NAとNBとが下記数式1を満たす組合せで混合して多成分ポリイミドの混合溶液を調製し、
The present invention, the polymerization and imidation reaction product of raw material components and / or the ingredients of the polyimide A including a fluorine atom and polyimide component A in chemical structure, the number average polymerization degree of the polyimide component A and N A, polyimide B starting components and / or the polymerization and imidation reaction product of the ingredients and the polyimide component B, and the number average polymerization degree of the polyimide component B is taken as N B,
(1) a polyimide components A and B, and the N A and N B to prepare a mixed solution of mixed and polyimide components in combination which satisfies the following
(3)前記多成分ポリイミドの混合溶液を用いて相転換法によって非対称膜を得る、
ことを特徴とする多成分ポリイミドからなる非対称膜の製造方法に関する。
(3) An asymmetric membrane is obtained by a phase conversion method using the mixed solution of the multi-component polyimide.
The present invention relates to a method for producing an asymmetric membrane made of multi-component polyimide.
本発明によって、緻密層と多孔質層とを有するポリイミド非対称膜であって、フッ素原子含有ポリイミドを含む多成分のポリイミドからなり、緻密層のフッ素原子含有ポリイミドの割合を好適に制御したポリイミド非対称膜を得ることができる。
このようなポリイミド非対称膜は、水素ガスとメタンガスなどの炭化水素ガスとの分離、水素ガスと窒素ガスとの分離、ヘリウムガスと窒素ガスとの分離、炭酸ガスとメタンガスなどの炭化水素ガスとの分離、酸素ガスと窒素ガスとの分離などを好適に行うことができる実用的な高性能ガス分離膜として好適である。
According to the present invention, a polyimide asymmetric film having a dense layer and a porous layer, comprising a multi-component polyimide containing a fluorine atom-containing polyimide, wherein the proportion of the fluorine atom-containing polyimide in the dense layer is suitably controlled Can be obtained.
Such a polyimide asymmetric membrane is separated from hydrogen gas and hydrocarbon gas such as methane gas, hydrogen gas and nitrogen gas, helium gas and nitrogen gas, carbon dioxide gas and methane gas such as methane gas. It is suitable as a practical high-performance gas separation membrane capable of suitably performing separation, separation of oxygen gas and nitrogen gas, and the like.
本発明のポリイミド非対称膜について以下では特に高性能ガス分離膜として具体的に説明するが、本発明のポリイミド非対称膜はガス分離膜用途に限定されるものではない。 The polyimide asymmetric membrane of the present invention will be specifically described below as a high-performance gas separation membrane, but the polyimide asymmetric membrane of the present invention is not limited to gas separation membrane applications.
本発明において、『ポリイミド成分』とは、ポリイミドの原料成分(未反応のテトラカルボン酸成分、未反応のジアミン成分)、及び/又は前記原料成分の重合イミド化反応物からなる。ここで、前記重合イミド化物は重合度が大きなポリマーのみを意味しない。ポリイミドの原料成分を重合イミド化したときに反応初期に生成するモノマーや重合度の低いオリゴマーなどを含む。すなわち、重合イミド化反応物は、モノマー(テトラカルボン酸成分とジアミン成分とが各1分子の計2分子でイミド化反応したもの)、及び/又はポリマー(テトラカルボン酸成分とジアミン成分とが計3分子以上でイミド化反応したもの)からなる。
本発明において、重合イミド化反応物の重合度はそこに含まれるポリイミドの繰返し単位数によるものとした。すなわち、モノマーの重合度は1であり、ポリマーの重合度は>1である。一方、ポリイミドの原料成分の重合度は、繰返し単位を持たないので、0.5と定義した。数平均重合度は前記のように定義した重合度から算出される。
ポリイミド成分Aは、ポリイミドAの原料成分(未反応のテトラカルボン酸成分、未反応のジアミン成分)及び/又は前記原料成分の重合イミド化反応物からなる。そして、ポリイミド成分Bは、ポリイミドBの原料成分(未反応のテトラカルボン酸成分、未反応のジアミン成分)及び/又は前記原料成分の重合イミド化反応物からなる。
In the present invention, the “polyimide component” includes a raw material component of polyimide (unreacted tetracarboxylic acid component, unreacted diamine component) and / or a polymerization imidization reaction product of the raw material component. Here, the polymerized imidized product does not mean only a polymer having a high degree of polymerization. It includes a monomer generated at the initial stage of the reaction when the raw material component of polyimide is polymerized imidized, an oligomer having a low polymerization degree, and the like. That is, the polymerization imidization reaction product is composed of a monomer (a tetracarboxylic acid component and a diamine component imidized by a total of two molecules each) and / or a polymer (a tetracarboxylic acid component and a diamine component). And imidization reaction of 3 molecules or more).
In the present invention, the polymerization degree of the polymerization imidization reaction product is determined by the number of repeating units of the polyimide contained therein. That is, the degree of polymerization of the monomer is 1, and the degree of polymerization of the polymer is> 1. On the other hand, the degree of polymerization of the raw material component of polyimide is defined as 0.5 because it has no repeating unit. The number average degree of polymerization is calculated from the degree of polymerization defined above.
The polyimide component A is composed of a raw material component of polyimide A (unreacted tetracarboxylic acid component, unreacted diamine component) and / or a polymerization imidization reaction product of the raw material component. And the polyimide component B consists of the raw material component (unreacted tetracarboxylic acid component, unreacted diamine component) of the polyimide B, and / or the polymerization imidation reaction product of the said raw material component.
ポリイミド成分Aとポリイミド成分Bとを、いずれも未反応のテトラカルボン酸成分とジアミン成分の状態(重合度はいずれも0.5)で混合して重合イミド化反応させた場合、両成分が著しくランダム性を帯びて結合したランダム共重合体を主成分とするポリイミドが生成する。このポリイミドを相転換法に適用すると、緻密層と多孔質層からなる非対称膜は形成できるが、緻密層にフッ素原子含有ポリイミドが偏在するようなことはなく、例えばガス分離膜として、高いガス透過性能と良好な機械的特性を兼ね備えたガス分離膜を得ることはできない。この原因は、高いガス透過性能を発現するポリイミドは機械的強度が劣り、一方良好な機械的強度を有するポリイミドはガス透過性能が劣るという相反した関係があるためである。 When the polyimide component A and the polyimide component B are both mixed in the state of an unreacted tetracarboxylic acid component and a diamine component (the degree of polymerization is 0.5) and subjected to a polymerization imidization reaction, both components are marked. A polyimide having a random copolymer as a main component bonded with randomness is formed. When this polyimide is applied to the phase conversion method, an asymmetric membrane consisting of a dense layer and a porous layer can be formed, but there is no uneven distribution of fluorine atom-containing polyimide in the dense layer. A gas separation membrane having both performance and good mechanical properties cannot be obtained. This is because a polyimide exhibiting high gas permeation performance is inferior in mechanical strength, while a polyimide having good mechanical strength is in conflict with gas permeation performance.
ポリイミドAとポリイミドBとを別々に重合イミド化反応し、いずれも重合度が大きいポリイミドの状態で混合する場合、均一な混合溶液を調製することは通常困難である。前記混合溶液をごく短時間ほぼ均一な状態にできることもあるが、均一な状態を長時間維持させて相転換法により非対称膜を安定的に得ることは容易ではない。重合度が大きい複数のポリイミドからなる混合溶液を相転換法に適用すると、僅かであっても化学的性質の違いによる両ポリイミド間の反発的相互作用によってマクロ相分離が急速に進行する。ここでマクロ相分離とは異種のポリイミドが相分離して、0.1μm以上しばしば1μm以上のサイズの異種ドメインを含むマクロな相分離構造が形成されることをいう。マクロ相分離構造の透過電子顕微鏡(以下TEMと呼ぶこともある)像の一例を図1、他の一例を図3に示した。マクロ相分離構造では、明瞭な界面を有する異種ドメインがTEM像中に観察される。マクロ相分離が生じると緻密層に大きな乱れが生じるので分離性能が良好な非対称膜を得ることはできない。乾湿式紡糸法で形成される非対称膜の緻密層の厚みはしばしば1〜1000nm程度が採用されるが、マクロ相分離が生じると緻密層にポリイミドAがリッチなドメインとポリイミドBがリッチなドメインが形成される。このことは図3を参照すれば理解しやすい。言い換えれば面内方向に沿って見たときに異種ドメインからなるマクロに不均一な緻密層が形成されるので分離性能が良好な非対称膜を得ることはできない。 When polyimide A and polyimide B are separately polymerized and imidized and mixed in a state of polyimide having a high degree of polymerization, it is usually difficult to prepare a uniform mixed solution. Although the mixed solution may be almost uniform for a very short time, it is not easy to stably obtain an asymmetric membrane by the phase change method while maintaining the uniform state for a long time. When a mixed solution composed of a plurality of polyimides having a high degree of polymerization is applied to the phase conversion method, macro phase separation rapidly proceeds due to repulsive interaction between both polyimides due to the difference in chemical properties. Here, the macro phase separation means that different types of polyimide are phase separated to form a macro phase separation structure including different domains having a size of 0.1 μm or more and often 1 μm or more. One example of a transmission electron microscope (hereinafter sometimes referred to as TEM) image of a macrophase separation structure is shown in FIG. 1, and another example is shown in FIG. In the macrophase separation structure, a heterogeneous domain having a clear interface is observed in the TEM image. When macrophase separation occurs, a large disturbance occurs in the dense layer, so that an asymmetric membrane with good separation performance cannot be obtained. The thickness of the dense layer of the asymmetric membrane formed by the dry-wet spinning method is often about 1 to 1000 nm, but when macrophase separation occurs, the dense layer has a domain rich in polyimide A and a domain rich in polyimide B. It is formed. This can be easily understood with reference to FIG. In other words, when viewed along the in-plane direction, a non-uniform dense layer is formed in a macro composed of different domains, so that an asymmetric membrane with good separation performance cannot be obtained.
本発明は、所定の重合度とブロック共重合体を含む多成分ポリイミドの混合溶液を調製し、前記多成分ポリイミドの混合溶液を相転換法に適用することを特徴とする非対称膜の製造方法である。このような多成分ポリイミドの混合溶液を相転換法に適用すると、相分離の過程でマクロ相分離は発生せず、ミクロ相分離というべき相分離が進行する。このミクロ相分離構造の一例のTEM像を図2に示す。ここでは異種ドメインを含む相分離構造(マクロ相分離)は見られない。数nm〜0.1μm程度の微細なドメインが形成されていると思われるが、全体としてはドメインの境界が不明確となって、異種のポリイミドが完全には相分離しない曖昧な領域を多く含む構造が形成される。この相分離の過程で、膜の面内方向(膜の表面に平行な方向)に沿って見たときにはポリイミド組成のマクロな乱れを生じさせないで、膜の断面方向(膜の表面に垂直な方向)に沿って見たときには後述するように緻密層にフッ素原子を含むポリイミドをより多く含んだ多成分ポリイミドの層が形成される。すなわち、本発明は、多成分ポリイミドからなる非対称膜の製造方法において、異種ポリイミド間にミクロな相分離を生じさせながら且つ前記相分離がマクロ相分離に至らないように異種ポリイミド間の相分離を制御することによって、マクロ相分離の進行に伴う膜の分離性能のばらつき・低下を生じさせないで、非対称膜の緻密層と多孔質層のそれぞれの化学的・物理的性質を異なるものにすることができる改良された非対称膜の製造方法である。 The present invention provides a method for producing an asymmetric membrane, comprising preparing a mixed solution of a multicomponent polyimide containing a predetermined degree of polymerization and a block copolymer, and applying the mixed solution of the multicomponent polyimide to a phase conversion method. is there. When such a mixed solution of multi-component polyimide is applied to the phase conversion method, macrophase separation does not occur in the phase separation process, and phase separation called microphase separation proceeds. A TEM image of an example of this microphase separation structure is shown in FIG. Here, a phase separation structure (macrophase separation) containing heterogeneous domains is not observed. It seems that fine domains of several nm to 0.1 μm are formed, but the boundary of the domain is unclear as a whole, and many kinds of ambiguous regions where different types of polyimide are not completely phase separated are included. A structure is formed. In this phase separation process, when viewed along the in-plane direction of the film (direction parallel to the film surface), the macroscopic disturbance of the polyimide composition does not occur, and the cross-sectional direction of the film (direction perpendicular to the film surface) ), A multi-component polyimide layer containing more polyimide containing fluorine atoms is formed in the dense layer as will be described later. That is, the present invention provides a method for producing an asymmetric membrane made of a multi-component polyimide, and causes phase separation between different types of polyimides while causing micro phase separation between different types of polyimides and preventing the phase separation from reaching macro phase separation. By controlling, the chemical / physical properties of the dense layer and the porous layer of the asymmetric membrane can be made different without causing variation / decrease in the separation performance of the membrane as the macrophase separation progresses. An improved method for producing an asymmetric membrane.
本発明の多成分ポリイミドからなる非対称膜の製造方法は、化学構造にフッ素原子を含むポリイミドAの原料成分及び/又は前記原料成分の重合イミド化反応物をポリイミド成分Aとし、前記ポリイミド成分Aの数平均重合度をNAとし、ポリイミドBの原料成分及び/又は前記原料成分の重合イミド化反応物をポリイミド成分Bとし、前記ポリイミド成分Bの数平均重合度をNBとして、次の工程1〜工程3からなることを特徴とする。
(工程1)ポリイミド成分Aとポリイミド成分Bとを、NAとNBとが下記数式を満たす組合せで混合して多成分ポリイミドの混合溶液を調製する
The method for producing an asymmetric membrane comprising a multi-component polyimide of the present invention comprises a polyimide component A containing a raw material component of polyimide A containing a fluorine atom in the chemical structure and / or a polymerization imidization reaction product of the raw material component. the number average polymerization degree of the N a, the polymerization and imidation reaction product of raw material components and / or the ingredients of polyimide B a polyimide component B, and the number average polymerization degree of the polyimide component B as N B, the
(Step 1) A polyimide component A and a polyimide component B are mixed in a combination in which N A and N B satisfy the following formula to prepare a mixed solution of multi-component polyimide.
(工程3)前記多成分ポリイミドの混合溶液を用いて相転換法によって非対称膜を得る
本発明において、化学構造にフッ素原子を含むポリイミドAは、原料成分であるテトラカルボン酸成分及びジアミン成分の少なくとも一方がフッ素原子を含有したものである。
ポリイミドAの原料成分としては、得られるポリイミドAが高いガス透過速度と高いガス選択性を有するものが好適に用いられる。特に、均一なフィルムで測定したときに、80℃でヘリウムガス透過係数(PHe)が5×10−10cm3 (STP)・cm/cm2 ・sec・cmHg以上且つヘリウムガスと窒素ガスの透過係数比(PHe/PN2)が20以上、好ましくは80℃でPHeが2.5×10−9cm3 (STP)・cm/cm2 ・sec・cmHg以上且つPHe/PN2が20以上、更に好ましくは80℃でPHeが3×10−9cm3 (STP)・cm/cm2 ・sec・cmHg以上且つPHe/PN2が30以上となるものが好適である。このポリイミドAはフッ素原子を含有しているために、フッ素原子を含有していないものに比較して、通常相転換法に用いられる各種溶媒に対する溶解性が高く且つ表面自由エネルギーが小さい。
PHeが上記の範囲より低いか、又はPHe/PN2が上記の範囲より低いと、得られる非対称ガス分離膜のガス選択透過性(分離度)とガス透過速度が十分でなくなるので、上記の範囲が適当である。
In the present invention, polyimide A containing a fluorine atom in its chemical structure is one in which at least one of a tetracarboxylic acid component and a diamine component, which are raw material components, contains a fluorine atom.
As a raw material component of the polyimide A, the polyimide A to be obtained preferably has a high gas permeation rate and a high gas selectivity. In particular, when measured with a uniform film, the helium gas permeability coefficient (P He ) is 5 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg or more at 80 ° C. and helium gas and nitrogen gas The transmission coefficient ratio (P He / P N2 ) is 20 or more, preferably at 80 ° C., P He is 2.5 × 10 −9 cm 3 (STP) · cm / cm 2 · sec · cm Hg or more, and P He / P N2 Is preferably 20 or more, more preferably 80 ° C. and P He is 3 × 10 −9 cm 3 (STP) · cm / cm 2 · sec · cm Hg or more and P He / PN 2 is 30 or more. Since this polyimide A contains a fluorine atom, it has higher solubility in various solvents usually used in the phase change method and a lower surface free energy than those not containing a fluorine atom.
If P He is lower than the above range or P He / P N2 is lower than the above range, the gas selective permeability (separation degree) and gas permeation rate of the obtained asymmetric gas separation membrane are not sufficient. The range of is appropriate.
ポリイミドAをなすフッ素原子を含有したテトラカルボン酸成分としては、特に限定するものではないが、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、2,2’−ビス(トリフルオロメチル)−4,4’,5,5’−ビフェニルテトラカルボン酸、4,4’−(ヘキサフルオロトリメチレン)−ジフタル酸、4,4’−(オクタフルオロテトラメチレン)−ジフタル酸、及びそれらの二無水物、及びそれらのエステル化物などを挙げることができる。特に、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、その二無水物(以下、6FDAと略記することもある)、及びそのエステル化物が好適である。
ポリイミドAをなすフッ素原子を含有したジアミン成分としては、特に限定するものではないが、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2−トリフルオロメチル−p−フェニレンジアミンなどを挙げることができる。
これらのフッ素原子を含有した原料成分は単独でもよいが、異なる2種の混合物でもよく、フッ素原子を含有しないモノマー成分と組合せても構わない。また、ポリイミドAをなす原料成分は、テトラカルボン酸成分又はジアミン成分のいずれかがフッ素原子を含有する原料成分を主成分(50モル%以上通常55モル%以上)とすることが好適である。
Although it does not specifically limit as a tetracarboxylic acid component containing the fluorine atom which makes polyimide A, 2, 2-bis (3,4- dicarboxyphenyl) hexafluoropropane, 2,2'-bis (tri Fluoromethyl) -4,4 ′, 5,5′-biphenyltetracarboxylic acid, 4,4 ′-(hexafluorotrimethylene) -diphthalic acid, 4,4 ′-(octafluorotetramethylene) -diphthalic acid, and These dianhydrides and their esterified products can be mentioned. In particular, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, dianhydride thereof (hereinafter sometimes abbreviated as 6FDA), and esterified products thereof are preferable.
Although it does not specifically limit as a diamine component containing the fluorine atom which makes the polyimide A, 2, 2-bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (trifluoromethyl) -4 , 4′-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2-trifluoromethyl-p-phenylenediamine, and the like.
These raw material components containing fluorine atoms may be used alone, or may be a mixture of two different types, or may be combined with monomer components not containing fluorine atoms. Moreover, it is preferable that the raw material component which comprises the polyimide A makes the main component (50 mol% or more normally 55 mol% or more) the raw material component in which either a tetracarboxylic-acid component or a diamine component contains a fluorine atom.
ポリイミドAをなすフッ素原子を含有したテトラカルボン酸成分を主成分とした際に組合せるジアミン成分としては、p−フェニレンジアミン、m−フェニレンジアミン(以下、MPDと略記することもある)、4,4’−ジアミノジフェニルエーテル(以下、DADEと略記することもある)、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、ジメチル−3,7−ジアミノジベンゾチオフェン=5,5−ジオキシド(以下、TSNと略記することもある。なお、通常のTSNは、2,8−ジメチル−3,7−ジアミノジベンゾチオフェン=5,5−ジオキシドを主成分とし、メチル基の位置が異なる異性体2,6−ジメチル−3,7−ジアミノジベンゾチオフェン=5,5−ジオキシド、4,6−ジメチル−3,7−ジアミノジベンゾチオフェン=5,5−ジオキシドなどを含む混合物である。)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニル、3,3’−ジカルボキシ−4,4’−ジアミノジフェニル、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラクロロ−4,4’−ジアミノジフェニル、ジアミノナフタレン、2,4−ジメチル−m−フェニレンジアミン、3,5−ジアミノ安息香酸(以下、DABAと略記することもある)、3,3’−ジアミノジフェニルスルホン(以下、MASNと略記することもある)などの芳香族ジアミンが挙げられる。テトラカルボン酸成分として6FDA及びその誘導体を主成分とした際に組合せるジアミン成分としては、これらの中でも特にアミノ基がメタ位に配置された芳香族ジアミン、例えばDABA、MASN、MPDなどが好適に用いられる。 As a diamine component to be combined when the main component is a tetracarboxylic acid component containing a fluorine atom that forms polyimide A, p-phenylenediamine, m-phenylenediamine (hereinafter sometimes abbreviated as MPD), 4, 4′-diaminodiphenyl ether (hereinafter sometimes abbreviated as DADE), 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′- Tetramethyl-4,4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, dimethyl-3,7-diaminodibenzothiophene = 5,5-dioxide (hereinafter also abbreviated as TSN) The usual TSN is 2,8-dimethyl-3,7-diaminodibenzothiophene = 5,5. Isomers 2,6-dimethyl-3,7-diaminodibenzothiophene = 5,5-dioxide, 4,6-dimethyl-3,7-diaminodibenzothiophene = 5 5-dioxide, etc.), 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 3,3′-dihydroxy-4,4′-diaminodiphenyl, 3,3′- Dicarboxy-4,4′-diaminodiphenyl, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetrachloro-4,4′-diaminodiphenyl, diaminonaphthalene 2,4-dimethyl-m-phenylenediamine, 3,5-diaminobenzoic acid (hereinafter sometimes abbreviated as DABA), 3,3′-diamino Phenyl sulfone (hereinafter sometimes abbreviated as MASN) include aromatic diamines such as. As the diamine component to be combined when 6FDA and its derivative are the main components as the tetracarboxylic acid component, among these, aromatic diamines in which the amino group is located at the meta position, such as DABA, MASN, MPD and the like are preferable. Used.
また、ポリイミドAをなすフッ素原子を含有したジアミン成分と組合せるテトラカルボン酸成分としては、特に限定するものではないが、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ナフタリンテトラカルボン酸、ビス(ジカルボキシフェニル)エーテル、ビス(ジカルボキシフェニル)スルホン、2,2−ビス(ジカルボキシフェニル)プロパン、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’3,3’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、それらの二無水物、及びそれらのエステル化物を挙げることができる。特に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、s−BPDAと略記することもある)が好適である。 The tetracarboxylic acid component to be combined with the diamine component containing a fluorine atom forming polyimide A is not particularly limited, but pyromellitic acid, benzophenone tetracarboxylic acid, naphthalene tetracarboxylic acid, bis (dicarboxyphenyl) ) Ether, bis (dicarboxyphenyl) sulfone, 2,2-bis (dicarboxyphenyl) propane, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2′3,3′-biphenyltetracarboxylic Mention may be made of acids, 3,3 ′, 4,4′-biphenyltetracarboxylic acids, their dianhydrides, and their esterified products. In particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as s-BPDA) is preferable.
ポリイミドBをなす原料成分としては、得られるポリイミドBからなるフィルムが、引張強度100MPa以上好ましくは150MPa以上、且つ引張破断伸び10%以上好ましくは15%以上となるものが好適に用いられる。引張強度が100MPaより低いか、又は引張破断伸びが10%より低いと、それを用いて得られた非対称膜の機械的強度が不足するので、延性が不十分になって例えばガス分離モジュール作製工程や高圧ガスを用いた用途に供し得なくなり、実用的でなくなるため前記の範囲が好適である。
化学構造にフッ素原子を含むポリイミドは比較的に機械的強度が低いことから、ポリイミドBをなすモノマー成分においては、テトラカルボン酸成分及びジアミン成分のいずれにも少なくとも主成分としてはフッ素原子を含まないこと、好ましくはフッ素原子を全く含まないことが好適である。
As a raw material component for forming polyimide B, a film having a tensile strength of 100 MPa or more, preferably 150 MPa or more, and a tensile elongation at breakage of 10% or more, preferably 15% or more is suitably used. If the tensile strength is lower than 100 MPa or the tensile elongation at break is lower than 10%, the mechanical strength of the asymmetric membrane obtained by using the tensile strength is insufficient. The above-mentioned range is preferable because it cannot be used in applications using high pressure gas and is not practical.
Polyimide containing a fluorine atom in its chemical structure has a relatively low mechanical strength. Therefore, in the monomer component forming polyimide B, neither the tetracarboxylic acid component nor the diamine component contains a fluorine atom as at least the main component. It is preferable that no fluorine atom is contained.
ポリイミドBのテトラカルボン酸成分としては、特に限定するものではないが、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ナフタリンテトラカルボン酸、ビス(ジカルボキシフェニル)エーテル、ビス(ジカルボキシフェニル)スルホン、2,2−ビス(ジカルボキシフェニル)プロパン、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’3,3’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、それら二無水物、及びそれらのエステル化物を挙げることができる。特に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が好適である。
これらのテトラカルボン酸成分は、単独で用いてもよいし、異なる2種類以上の混合物を用いてもよく、更にその混合物にはフッ素原子含有テトラカルボン酸成分を少量含んでも構わない。例えば、s−BPDA1モル部に対して0.3モル部以下の6FDAを組合せて用いても構わない。
ポリイミドBのジアミン成分としては、前記ポリイミドAをなす原料成分の説明において、例示したジアミンを好適に用いることができる。
The tetracarboxylic acid component of polyimide B is not particularly limited, but pyromellitic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, bis (dicarboxyphenyl) ether, bis (dicarboxyphenyl) sulfone, 2, 2-bis (dicarboxyphenyl) propane, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2′3,3′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-biphenyl Mention may be made of tetracarboxylic acids, their dianhydrides, and their esterified products. In particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is preferred.
These tetracarboxylic acid components may be used alone or in combination of two or more different types, and the mixture may further contain a small amount of a fluorine atom-containing tetracarboxylic acid component. For example, you may use combining 6FDA below 0.3 mol part with respect to 1 mol part of s-BPDA.
As the diamine component of the polyimide B, the diamine exemplified in the description of the raw material component forming the polyimide A can be suitably used.
本発明の製造方法の工程1では、数式1を満たす数平均重合度NAとNBとをそれぞれが有する、化学構造にフッ素原子を含むポリイミドAの原料成分及び/又は前記原料成分の重合イミド化反応物からなるポリイミド成分Aと、ポリイミドBの原料成分及び/又は前記原料成分の重合イミド化反応物からなるポリイミド成分Bとを混合して多成分ポリイミドの混合溶液を調製する。数式1を満たすNAとNBとの組合せの範囲を図4のグラフに斜線領域として示す。なお、ポリイミドの原料成分(未反応のテトラカルボン酸成分、未反応のジアミン成分)の重合度を0.5と定義したから、NA及びNBは当然0.5以上である。
次いで、工程2では、この多成分ポリイミドの混合溶液をさらに重合イミド化反応させる。この結果、前記ポリイミド成分Aとポリイミド成分Bとがさらに重合イミド化反応した混合物であって、少なくともポリイミド成分Aからなる重合体と、ポリイミド成分Bからなる重合体に加えて、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したジ又はマルチブロック共重合体を含有し且つ適当な重合度を持った多成分ポリイミドの混合液を得ることができる。
ここで、ジブロック共重合体とは、ポリイミド成分Aからなるブロックとポリイミド成分Bからなるブロックの各1個が互いの末端で結合した共重合体をいい、マルチブロック共重合体は前記ジブロック共重合体の末端に前記2種のブロックが更に1個以上結合した共重合体をいう。ジ又はマルチブロック共重合体には、ポリイミド成分Aからなるブロックが連続して結合した部分やポリイミド成分Bからなるブロックが連続して結合した部分も存在し得る。
In
Next, in step 2, the mixed solution of the multi-component polyimide is further subjected to a polymerization imidization reaction. As a result, the polyimide component A and the polyimide component B are a mixture obtained by further polymerization imidization reaction, and in addition to the polymer composed of at least the polyimide component A and the polymer composed of the polyimide component B, the polyimide component A and the polyimide It is possible to obtain a mixed liquid of a multi-component polyimide containing a di- or multi-block copolymer in which the component B is bonded to each other at an end and having an appropriate degree of polymerization.
Here, the diblock copolymer refers to a copolymer in which each of a block composed of a polyimide component A and a block composed of a polyimide component B is bonded to each other end, and the multiblock copolymer is a diblock copolymer. A copolymer in which one or more of the two types of blocks are further bonded to the end of the copolymer. In the di- or multi-block copolymer, there may be a portion in which blocks composed of the polyimide component A are continuously bonded and a portion in which blocks composed of the polyimide component B are continuously bonded.
前記図4のグラフを参照して説明する。
工程1で図4のA領域のNAとNBとの組合せからなる多成分ポリイミドの混合溶液を調製し、工程2でさらに重合イミド化反応すると、生成ポリマーを平均して見たときに、ポリイミド成分Aのみからなるブロックやポリイミド成分Bのみからなるブロックが形成されず、ポリイミド成分Aとポリイミド成分Bが平均化されたランダム性が極めて高い共重合体しか得ることができない。
工程1で図4のB領域のNAとNBとの組合せからなる多成分ポリイミドの混合溶液を調製し、工程2でさらに重合イミド化反応すると、ブロック共重合体を含む多成分ポリイミドの混合液を得ることができるかも知れないが、その重合度が大きくなるために、各ポリイミド間の反発的相互作用が大きくてマクロ相分離が容易に生じる。このため、図4のA領域及びB領域のNAとNBとの組合せでは本発明の非対称膜を得ることはできない。
This will be described with reference to the graph of FIG.
A mixed solution of multi-component polyimide in
A mixed solution of multi-component polyimide in
数式1を満たすNAとNBの組合せ範囲内(図4のグラフに斜線領域)では、少なくともポリイミド成分Aからなる重合体と、ポリイミド成分Bからなる重合体に加えて、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したブロックを有するジ又はマルチブロック共重合体を含有し且つ適当な重合度を持った多成分ポリイミドの混合液を得ることができる。この多成分ポリイミドは、反発的相互作用によるマクロ相分離を抑制することが可能であり、ミクロ相分離というべき制御された相分離を可能にする。 In the combination range of N A and N B satisfying Equation 1 (shaded area in the graph of FIG. 4), in addition to the polymer composed of at least polyimide component A and the polymer composed of polyimide component B, polyimide component A and polyimide A mixed liquid of a multi-component polyimide containing a di- or multi-block copolymer having a block in which the component B is bonded to each other at the terminal and having an appropriate degree of polymerization can be obtained. This multi-component polyimide can suppress macro phase separation due to repulsive interaction, and enables controlled phase separation that should be called micro phase separation.
本発明の工程1は、前記数式1を満たす数平均重合度NAとNBとをそれぞれが有する、化学構造にフッ素原子を含むポリイミドAの原料成分及び/又は前記原料成分の重合イミド化反応物からなるポリイミド成分Aと、ポリイミドBの原料成分及び/又前記原料成分の重合イミド化反応物からなるポリイミド成分Bとを混合して多成分ポリイミドの混合溶液を調製する工程である。この工程は前記多成分ポリイミドの混合溶液が得ることができれば具体的方法は特に限定されない。ポリイミドAの原料成分とポリイミドBの原料成分とをそれぞれ独立に必要に応じて重合イミド化反応によって調製した後でそれらを均一になるように混合して多成分ポリイミドの混合溶液を得ることもできる。また、工程1の多成分ポリイミドの混合溶液が、いずれか一方のポリイミド成分が原料成分(未反応のテトラカルボン酸成分、未反応のジアミン成分)の場合には、一方のポリイミド成分の原料成分を所定の数平均重合度になるように重合イミド化反応した溶液を調製し、次いで前記溶液に他方のポリイミド成分である未反応のテトラカルボン酸成分とジアミン成分を加えても構わない。特にポリイミドBをより高分子量化することが非対称膜の機械的強度を向上させるうえで好適なので、工程1で先ずポリイミドBをなす原料成分を極性溶媒中で重合イミド化反応して適当な重合度のポリイミドBを生成し、これにポリイミドAをなす原料成分を添加して多成分ポリイミドの混合溶液を調製する方法が好都合である。
ポリイミドを得る重合イミド化反応について説明する。重合イミド化反応は、極性溶媒中テトラカルボン酸成分とジアミン成分とを、所定の組成比で、120℃以上好ましくは160℃以上且つ使用する溶媒の沸点以下の温度範囲で、ポリアミド酸を生成すると共に脱水閉環反応を行わせてイミド化することによって好適に行われる。所定の重合度を達成するためにより低温の反応温度を採用してもよい。アミド酸結合が残ると交換反応によってポリイミドのブロック性が損なわれることがあるので、重合イミド化反応では少なくともイミド化率は40%以上であることが好ましく、実質的にイミド化を完了させることがより好ましい。 The polymerization imidation reaction for obtaining polyimide will be described. The polymerization imidation reaction generates a polyamic acid in a polar solvent in a temperature range of 120 ° C. or more, preferably 160 ° C. or more and the boiling point of the solvent to be used, with a predetermined composition ratio of a tetracarboxylic acid component and a diamine component. At the same time, it is preferably carried out by imidizing by carrying out a dehydration ring closure reaction. Lower reaction temperatures may be employed to achieve a predetermined degree of polymerization. If the amidic acid bond remains, the blocking property of the polyimide may be impaired by the exchange reaction. Therefore, in the polymerization imidization reaction, at least the imidization rate is preferably 40% or more, and the imidization can be substantially completed. More preferred.
重合イミド化反応において、テトラカルボン酸成分とジアミン成分との組成比を近づけて反応すると比較的高分子量(数平均重合度が大きい)のポリイミドを合成することができる。最初に比較的高分子量のポリイミドを調製する場合には、テトラカルボン酸成分1モル部に対してジアミン成分が0.95〜0.995モル部又は1.005〜1.05モル部、特に0.98〜0.995モル部又は1.005〜1.02モル部の範囲の組成比で反応して、比較的高分子量のポリイミド成分を調製するのが好ましい。
例えば、テトラカルボン酸成分として6FDAを用い、ジアミン成分としてTSNを用いた場合、6FDA1モル部に対してTSNを1.02モル部となる組成で190℃にて30時間脱水閉環反応を行った場合、数平均分子量が15000〜25000程度(数平均重合度が20〜40程度)のポリイミドを合成することができる。また6FDA1モル部に対してTSNを1.005モル部となる組成で190℃にて30時間脱水閉環反応を行った場合、数平均分子量が30000〜40000程度(数平均重合度が40〜60程度)のポリイミドを合成することができる。
例えば、テトラカルボン酸成分として6FDAを用い、ジアミン成分としてDABAを用いた場合、6FDA1モル部に対してDABAを1.02モル部となる組成で190℃にて30時間脱水閉環反応を生じせしめた場合、数平均分子量が15000〜25000程度(数平均重合度が25〜45程度)のポリイミドを合成することができる。また6FDA1モル部に対してDABAを1.005モル部となる組成で190℃にて30時間脱水閉環反応を生じせしめた場合、数平均分子量40000〜50000程度(数平均重合度が70〜90程度)のポリイミドを合成することができる。
In the polymerization imidization reaction, a polyimide having a relatively high molecular weight (high number average degree of polymerization) can be synthesized by reacting with the composition ratio of the tetracarboxylic acid component and the diamine component close to each other. When a relatively high molecular weight polyimide is first prepared, the diamine component is 0.95 to 0.995 mol part or 1.005 to 1.05 mol part, particularly 0 to 1 mol part of the tetracarboxylic acid component. It is preferable to react at a composition ratio in the range of .98 to 0.995 mole part or 1.005 to 1.02 mole part to prepare a relatively high molecular weight polyimide component.
For example, when 6FDA is used as the tetracarboxylic acid component and TSN is used as the diamine component, a dehydration ring closure reaction is performed at 190 ° C. for 30 hours with a composition of 1.02 mol part of TSN with respect to 1 mol part of 6FDA. A polyimide having a number average molecular weight of about 15,000 to 25,000 (number average degree of polymerization of about 20 to 40) can be synthesized. In addition, when a dehydration ring-closing reaction is performed at 190 ° C. for 30 hours with a composition of 1.005 mol part of TSN with respect to 1 mol part of 6FDA, the number average molecular weight is about 30,000 to 40,000 (number average degree of polymerization is about 40 to 60). ) Can be synthesized.
For example, when 6FDA was used as the tetracarboxylic acid component and DABA was used as the diamine component, a dehydration ring closure reaction was caused at 190 ° C. for 30 hours with a composition of 1.02 mol parts of DABA relative to 1 mol part of 6FDA. In this case, a polyimide having a number average molecular weight of about 15,000 to 25,000 (number average degree of polymerization of about 25 to 45) can be synthesized. In addition, when a dehydration ring-closing reaction is caused at 190 ° C. for 30 hours with a composition of DABA of 1.005 moles per 1 mole part of 6FDA, the number average molecular weight is about 40,000 to 50,000 (number average degree of polymerization is about 70 to 90). ) Can be synthesized.
一方、テトラカルボン酸成分1モル部に対してジアミン成分が0.98モル部以下又は1.02モル部以上の組成比で反応することにより、比較的低分子量(数平均重合度が小さい)のポリイミド成分を調製することもできる。 On the other hand, the diamine component reacts at a composition ratio of 0.98 mol part or less or 1.02 mol part or more with respect to 1 mol part of the tetracarboxylic acid component, so that a relatively low molecular weight (number average polymerization degree is small). A polyimide component can also be prepared.
工程1で得られる多成分ポリイミドの混合溶液は、テトラカルボン酸成分の総モル数に対するジアミン成分の総モル数の組成比((ジアミン成分の総モル数)/(テトラカルボン酸成分の総モル数))が0.95〜0.99又は1.01〜1.05モル部、より好ましくは0.96〜0.99又は1.015〜1.04モル部の範囲内となるようにすることが、工程2の結果得られる多成分ポリイミドの混合溶液の数平均分子量や溶液粘度が好適になるので好ましい。
The mixed solution of the multi-component polyimide obtained in
本発明の工程2は、工程1で得られた数式1を満たすNAとNBの組合せのポリイミドA成分とポリイミドB成分とからなる多成分ポリイミドの混合溶液をさらに重合イミド化反応させて、少なくともポリイミド成分Aからなる重合体と、ポリイミド成分Bからなる重合体に加えて、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したジ又はマルチブロック共重合体を含有し且つ適当な重合度を持った多成分ポリイミドの混合液を得る工程である。
Step 2 of the present invention, a mixed solution of multi-component polyimide comprising a polyimide A component of the combination of N A and N B satisfying Equation 1 obtained polyimide B component is further polymerization and imidation reaction in
本発明の工程2は、工程1で得られる多成分ポリイミドの混合溶液をさらに重合イミド化反応することに特徴があり、前述の重合イミド化反応の方法を好適に採用することができる。
Step 2 of the present invention is characterized in that the mixed solution of the multi-component polyimide obtained in
前記工程1及び工程2の多成分ポリイミドの混合溶液では、多成分ポリイミドを均一に溶解する極性溶媒が用いられる。ここで均一に溶解するとは、溶液内部に可視光を散乱する程度のサイズを持ったマクロ相分離したドメインが存在せず、外観上明らかな濁りがない状態を言う。可視光を散乱しない程度のサイズのミクロ相分離したドメインは存在してもよく、分子鎖レベルで均一になることを必須の要件とはしない。
多成分ポリイミドの調製後に、外観上明らかに濁りを生じるような溶媒を用いると、本発明で製造される高いガス処理能力を有するガス分離膜を得ることができない。
このような極性溶媒として、特に限定はないが、フェノール、クレゾール、キシレノール等のようなフェノール類、2個の水酸基をベンゼン環に有するカテコール類、3−クロルフェノール、4−クロルフェノール(以下、PCPと略記することもある)、4−ブロムフェノール、2−クロル−5−ヒドロキシトルエンなどのハロゲン化フェノール類などのフェノール系溶媒、または、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアミド系溶媒、あるいはそれらの混合物が好適である。
In the mixed solution of multi-component polyimides in
If a solvent that is apparently turbid in appearance is used after the preparation of the multi-component polyimide, it is not possible to obtain a gas separation membrane having a high gas processing capacity produced by the present invention.
Such polar solvents are not particularly limited, but include phenols such as phenol, cresol, xylenol, etc., catechols having two hydroxyl groups in the benzene ring, 3-chlorophenol, 4-chlorophenol (hereinafter referred to as PCP). A phenol solvent such as halogenated phenols such as 4-bromophenol and 2-chloro-5-hydroxytoluene, or N-methyl-2-pyrrolidone, N, N-dimethylformamide, Amide solvents such as N, N-dimethylacetamide and N, N-diethylacetamide, or mixtures thereof are preferred.
本発明の工程2の重合イミド化反応は、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したジ又はマルチブロック共重合体を生成させることができれば特に限定されるものではない。通常は多成分ポリイミド混合溶液の数平均分子量が好ましくは2倍以上より好ましくは5倍以上になる程度まで重合イミド化反応を行えば、ジ又はマルチブロック共重合体を好適に生成させることができる。工程2の重合イミド化反応によって得られる多成分ポリイミドの混合溶液の数平均重合度は20〜1000好ましくは20〜500より好ましくは30〜200が好適である。数平均重合度が低過ぎると、混合溶液の溶液粘度が低すぎて工程3の製膜が困難になり、得られる非対称膜の機械的強度が低下するので好ましくない。数平均重合度が高過ぎると、マクロ相分離し易くなり、また溶液粘度が高くなり過ぎて工程3の製膜が困難になるので好ましくない。工程2で得られる多成分ポリイミドの混合溶液の溶液粘度(回転粘度)は、相転換法において非対称膜を形成するときに、溶液を所定の形状(例えば中空糸形状)にし更にその形状を安定化するために要求される特性である。本発明においては、多成分ポリイミドの混合溶液の溶液粘度を、100℃において20〜17000ポイズ、好ましくは100〜15000ポイズ、特に200〜10000に調製するのが好適である。このような溶液粘度のポリイミド溶液であれば、例えば中空糸非対称膜を製造するときの紡糸過程においてポリイミド溶液をノズルから吐出する際、中空糸状などの吐出後の形状を安定に得ることができるので好適である。溶液粘度が20ポイズより低いか、あるいは17000ポイズより高いと中空糸状などの吐出後の形状を安定に得ることが困難になる。 The polymerization imidation reaction of the process 2 of this invention will not be specifically limited if the di- or multiblock copolymer which the polyimide component A and the polyimide component B couple | bonded with each other terminal can be produced | generated. Usually, a di- or multi-block copolymer can be suitably formed by carrying out the polymerization imidation reaction until the number average molecular weight of the multi-component polyimide mixed solution is preferably 2 times or more, more preferably 5 times or more. . The number average degree of polymerization of the mixed solution of the multicomponent polyimide obtained by the polymerization imidation reaction in step 2 is 20 to 1000, preferably 20 to 500, more preferably 30 to 200. If the number average degree of polymerization is too low, the solution viscosity of the mixed solution is too low, making film formation in Step 3 difficult, and the mechanical strength of the resulting asymmetric film is lowered, which is not preferable. If the number average degree of polymerization is too high, macrophase separation is likely to occur, and the solution viscosity becomes too high, making film formation in Step 3 difficult, which is not preferable. The solution viscosity (rotational viscosity) of the mixed solution of multi-component polyimide obtained in step 2 is to make the solution into a predetermined shape (for example, hollow fiber shape) and stabilize the shape when forming an asymmetric membrane in the phase change method. It is a characteristic required to do. In the present invention, the solution viscosity of the mixed solution of the multi-component polyimide is preferably adjusted to 20 to 17000 poise, preferably 100 to 15000 poise, particularly 200 to 10,000 at 100 ° C. With such a solution viscosity polyimide solution, for example, when a polyimide solution is discharged from a nozzle in the spinning process when manufacturing a hollow fiber asymmetric membrane, a shape after discharge such as a hollow fiber shape can be stably obtained. Is preferred. If the solution viscosity is lower than 20 poise or higher than 17000 poise, it becomes difficult to stably obtain a shape after discharge such as a hollow fiber shape.
好適な多成分ポリイミドの混合溶液の数平均重合度及び好適な溶液粘度は、工程1で得られる多成分ポリイミドの混合溶液のテトラカルボン酸成分の総モル数に対するジアミン成分の総モル数の組成比((ジアミン成分の総モル数)/(テトラカルボン酸成分の総モル数))を0.95〜0.99又は1.01〜1.05モル部、より好ましくは0.96〜0.99又は1.015〜1.04モル部の範囲内にして、工程2の重合イミド化反応によって容易に得られる。
The number average degree of polymerization and the preferred solution viscosity of the suitable mixed solution of the multicomponent polyimide are the composition ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component in the mixed solution of the multicomponent polyimide obtained in
なお、工程1及び工程2の多成分ポリイミドの混合溶液のポリマー濃度は、5〜40重量%好ましくは8〜25重量%特に9〜20重量%であるように溶媒量を調節しておくことが好適である。ポリマー濃度が5重量%未満では、相転換法によって非対称膜を製造する際に欠陥が生じやすくなり又ガス分離膜としたときのガス透過性能が不良となり易い。ポリマー濃度が40重量%を越えると、得られる非対称膜の緻密層が厚くなったり多孔質層の多孔性が低くなったりしてガス透過速度が小さくなるので、少なくともガス分離膜として好適な非対称膜を得ることが難しくなる。
In addition, the amount of solvent may be adjusted so that the polymer concentration of the mixed solution of the multi-component polyimide in
本発明の工程3は、前記工程2で得られた多成分ポリイミドの混合溶液を用いて相転換法によって非対称膜を形成することを特徴とする。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に採用される。乾湿式法は、膜形状にしたポリマー溶液の表面の溶媒を蒸発させて薄い緻密層を形成し、次いで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、Loebらが提案(例えば、米国特許3133132号)したものである。本発明においては、工程3においてマクロ相分離が抑制され、ミクロ相分離というべき相分離が進行して、緻密層のフッ素原子含有ポリイミドの割合を好適に制御したポリイミド非対称膜を製造することができる。 Step 3 of the present invention is characterized in that an asymmetric membrane is formed by a phase change method using the mixed solution of the multi-component polyimide obtained in Step 2 above. The phase change method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase change. In the present invention, a so-called dry and wet method is suitably employed. In the dry-wet method, the solvent on the surface of the polymer solution in the form of a film is evaporated to form a thin dense layer, and then immersed in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble), This is a method of forming a microporous layer by utilizing the phase separation phenomenon that occurs at that time to form a porous layer, and was proposed by Loeb et al. (For example, US Pat. No. 3,133,132). In the present invention, in step 3, the macro phase separation is suppressed, and the phase separation that should be called micro phase separation proceeds, and a polyimide asymmetric membrane in which the proportion of the fluorine atom-containing polyimide in the dense layer is suitably controlled can be produced. .
本発明において非対称中空糸膜は、工程3に乾湿式紡糸法を採用して好適に製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマー成分を実質的には溶解せず且つポリマー混合液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、更に必要に応じて加熱処理して分離膜を製造する方法である。
ノズルから吐出させる多成分ポリイミドの混合溶液の溶液粘度は、前述のとおり、吐出温度(例えば100℃)で20〜17000ポイズ、好ましくは100〜15000ポイズ、特に200〜10000ポイズとなるようなポリイミド溶液が中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状などの膜の形状が保持できる程度に凝固した後、案内ロールに巻き取られ、次いで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は炭化水素などの溶媒を用いて凝固液と置換した後乾燥する方法が効率的である。加熱処理は用いられている多成分のポリイミドの各成分ポリマーの軟化点又は二次転移点よりも低い温度で実施されることが好ましい。
In the present invention, the asymmetric hollow fiber membrane can be suitably produced by adopting a dry and wet spinning method in Step 3. The dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-shaped target shape. More specifically, the polymer solution is discharged from the nozzle into a hollow fiber-shaped target shape, and after passing through air or nitrogen gas atmosphere immediately after discharge, the polymer component is not substantially dissolved and the solvent of the polymer mixed solution is This is a method for producing a separation membrane by dipping in a compatible coagulating liquid to form an asymmetric structure, then drying, and further heat-treating as necessary.
As described above, the solution viscosity of the mixed solution of the multi-component polyimide discharged from the nozzle is 20 to 17000 poise, preferably 100 to 15000 poise, particularly 200 to 10,000 poise at the discharge temperature (for example, 100 ° C.). Is preferable because a shape after discharge such as a hollow fiber shape can be stably obtained. For immersion in the coagulation liquid, the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the membrane such as a hollow fiber can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify. For drying the coagulated film, a method of drying after replacing the coagulating liquid with a solvent such as hydrocarbon is effective. The heat treatment is preferably carried out at a temperature lower than the softening point or secondary transition point of each component polymer of the multicomponent polyimide used.
本発明の工程3で用いる多成分ポリイミドの混合溶液は、工程2の重合イミド化反応によって得られた、少なくともポリイミド成分Aからなる重合体と、ポリイミド成分Bからなる重合体に加えて、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したジ又はマルチブロック共重合体を含有し且つ適当な重合度を持った多成分ポリイミドの混合液である。
この混合溶液が相転換法による製膜工程で相分離するときに、ポリイミド成分Aとポリイミド成分Bとが互いの末端で結合したジ又はマルチブロック共重合体が互いに非相溶なポリイミド成分Aからなる重合体とポリイミド成分Bからなる重合体との一種の界面活性剤的な機能をすることで、あるいは別の表現をすれば、ポリイミド成分Aからなるドメインとポリイミド成分Bからなるドメインとの界面に前記ジ又はマルチブロック共重合体が分布することで、異種ドメイン間の反発的相互作用を遮蔽して、マクロ相分離を抑制し、望ましいミクロ相分離を生じさせることができる。
The mixed solution of the multicomponent polyimide used in Step 3 of the present invention is obtained by the polymerization imidization reaction in Step 2 and includes the polyimide component A and the polyimide component B. It is a mixed liquid of a multi-component polyimide containing a di- or multi-block copolymer in which A and a polyimide component B are bonded to each other and having an appropriate degree of polymerization.
When this mixed solution undergoes phase separation in the film-forming process by the phase conversion method, the di- or multi-block copolymer in which the polyimide component A and the polyimide component B are bonded to each other end is obtained from the polyimide component A that is incompatible with each other. The interface between the domain composed of the polyimide component A and the domain composed of the polyimide component B, by acting as a kind of surfactant between the polymer composed of the polymer composed of the polyimide component B and the polymer composed of the polyimide component B When the di- or multi-block copolymer is distributed on the surface, repulsive interaction between different domains can be shielded, macro phase separation can be suppressed, and desirable micro phase separation can be caused.
フッ素原子含有ポリイミドは、フッ素原子を含有しないポリイミドよりも、通常は溶解性が高いので、相転換法で非対称膜を形成する際に緻密層には析出し難いと考えられる。しかし、フッ素含有ポリイミドは表面自由エネルギーが低いために熱力学的には膜表面により多く分布することにより膜表面のエンタルピーを低下することができる。本発明の工程3の相分離工程で、緻密層にフッ素含有ポリイミドがより高い割合で存在するのは、この熱力学的理由に拠っていると推定できる。 Since a fluorine atom-containing polyimide is usually more soluble than a polyimide that does not contain a fluorine atom, it is considered difficult to deposit in a dense layer when an asymmetric film is formed by a phase change method. However, since fluorine-containing polyimide has a low surface free energy, it can be thermodynamically distributed more on the film surface, thereby reducing the enthalpy of the film surface. In the phase separation step of Step 3 of the present invention, it can be presumed that the higher proportion of fluorine-containing polyimide is present in the dense layer due to this thermodynamic reason.
本発明によって得られる非対称膜は、緻密層と多孔質層とを有するポリイミド非対称膜であって、フッ素原子含有ポリイミドを含む多成分のポリイミドからなり、緻密層にフッ素含有ポリイミドをより高い割合で存在させて得られたポリイミド非対称膜である。すなわち、ガス分離膜として高いガス透過性能が要求される緻密層に比較的ガス透過性能が良好なフッ素原子含有ポリイミドがより高い割合で存在し、一方、多孔質層にフッ素原子を含有しないか又は含有量が少なく比較的高い機械的強度を有するポリイミドが存在するポリイミド非対称膜であるから、ガス分離膜として極めて好適である。厚み方向の部位によって含まれる各ポリイミドの割合が変化しているという意味において傾斜構造の非対称膜といえる。 The asymmetric membrane obtained by the present invention is a polyimide asymmetric membrane having a dense layer and a porous layer, and is composed of a multi-component polyimide containing a fluorine atom-containing polyimide, and a higher proportion of the fluorine-containing polyimide is present in the dense layer. It is the polyimide asymmetric membrane obtained by making it. That is, a fluorine atom-containing polyimide having a relatively good gas permeation performance is present in a dense layer requiring high gas permeation performance as a gas separation membrane, while the porous layer does not contain fluorine atoms or Since it is a polyimide asymmetric membrane having a low content and a polyimide having a relatively high mechanical strength, it is extremely suitable as a gas separation membrane. It can be said that it is an asymmetric film having an inclined structure in the sense that the proportion of each polyimide contained varies depending on the portion in the thickness direction.
このような傾斜構造が得られることは、ダイナミック二次イオン質量分析法(以下dSIMSと略記する場合もある)を用いて知ることができる。この方法は、O2 +イオンを膜表面に照射して、膜のスパッターエッチングを行って、各エッチング深さにおいてスパッターされてきた二次イオンを質量分析することにより深さ方向の分析を行う方法である。本発明の製造方法によって製造されたジ又はマルチブロック共重合体を含有し且つ適当な重合度を持った多成分ポリイミドの混合液を、ガラス板上に流延し乾燥させて得られた均一なフィルムについて、フィルム表面から内部に向かってフッ素濃度の深さ方向分析を行った結果を図5(Atomica dynamic SIMS4000を用い、照射電流15nA/μm2にてO2+イオンを試料表面に照射して測定したフッ素原子分布の深さプロファイル。なお図の横軸は、サンプル表面に被せた厚みが既知の重水素化ポリスチレンカバー層をスパッターエッチングするのに要した時間から平均のエッチング速度を算出し、サンプルをスパッターエッチングした時間をサンプル表面からの深さに換算して表示したものである。)に示す。ここでは、表面から150nm以下の深さのフィルム内部におけるフッ素濃度の値に対して、フッ素濃度の高い領域が表面から50nm程度の深さに及んで観察される。
一方、通常の重合法によって得られたポリイミドドープを、ガラス板上に流延し乾燥させて得た均一なフィルムについての同様の分析結果を図6に示す。ここでは、表面付近のフッ素濃度分布に大きな傾斜構造は観察されない。
Such a tilted structure can be obtained using dynamic secondary ion mass spectrometry (hereinafter sometimes abbreviated as dSIMS). In this method, the film surface is irradiated with O 2 + ions, the film is sputter-etched, and the secondary ions sputtered at each etching depth are subjected to mass analysis to analyze in the depth direction. It is. A uniform solution obtained by casting and drying a mixed solution of a multi-component polyimide containing a di- or multi-block copolymer produced by the production method of the present invention and having an appropriate degree of polymerization on a glass plate. FIG. 5 shows the results of depth direction analysis of the fluorine concentration from the film surface toward the inside, and the sample surface was irradiated with O 2 + ions at an irradiation current of 15 nA / μm 2 using an atomic dynamic SIMS 4000. The depth profile of the measured fluorine atom distribution, where the horizontal axis in the figure calculates the average etching rate from the time required to sputter-etch the deuterated polystyrene cover layer with a known thickness on the sample surface, The time when the sample was sputter-etched was converted into a depth from the sample surface and displayed. Here, with respect to the fluorine concentration value in the film having a depth of 150 nm or less from the surface, a region having a high fluorine concentration is observed from the surface to a depth of about 50 nm.
On the other hand, the same analysis result about the uniform film obtained by casting the polyimide dope obtained by the normal polymerization method on a glass plate and drying it is shown in FIG. Here, a large gradient structure is not observed in the fluorine concentration distribution near the surface.
本発明のポリイミド非対称膜は、X線光電子分光で測定した緻密層表面のフッ素原子濃度φSと、膜を形成した多成分ポリイミドの平均のフッ素原子濃度fとの比φS/fが、好ましくは1.1〜1.8の範囲の割合となるものである。 The polyimide asymmetric film of the present invention preferably has a ratio φ S / f of the fluorine atom concentration φ S on the surface of the dense layer measured by X-ray photoelectron spectroscopy and the average fluorine atom concentration f of the multi-component polyimide forming the film. Is a ratio in the range of 1.1 to 1.8.
フッ素原子含有ポリイミドを含む多成分ポリイミドの全原料成分組成と同一の原料成分組成を用いて通常の重合イミド化法によってランダム共重合ポリイミド溶液を調製し、そのポリイミド溶液から乾湿式法によってポリイミド非対称膜を得た場合には、フッ素原子濃度比φS/fが1.0程度である。一方、本発明のポリイミド非対称膜では、フッ素原子含有ポリイミドは、緻密層により多く存在して、フッ素原子濃度比φS/fが、好ましくは1.1〜1.8の範囲、より好ましくは1.2〜1.7の範囲の割合で存在する。 A random copolymerized polyimide solution is prepared by a normal polymerization imidization method using the same raw material component composition as the entire raw material component composition of a multi-component polyimide containing a fluorine atom-containing polyimide, and a polyimide asymmetric film is obtained from the polyimide solution by a dry-wet method. Is obtained, the fluorine atom concentration ratio φ S / f is about 1.0. On the other hand, in the polyimide asymmetric membrane of the present invention, more fluorine atom-containing polyimide is present in the dense layer, and the fluorine atom concentration ratio φ S / f is preferably in the range of 1.1 to 1.8, more preferably 1. Present in a proportion in the range of 2 to 1.7.
ガス分離膜として用いられるポリイミド非対称膜は緻密層と多孔質層とを有する。緻密層はガス種によって透過速度が実質的に異なる(例えば、50℃においてヘリウムガスと窒素ガスとの透過速度比が1.2倍以上)程度の緻密さを有し、ガス種による分離機能を持つ。一方、多孔質層は実質的なガス分離機能を持たない程度に多孔性を有する層であって、必ずしも孔径は一定でなく、大きな孔から順次細かい孔となり更に連続的に緻密層を形成したものであっても構わない。本発明によって得られるポリイミド非対称膜は、緻密層に欠陥がなくガス分離性能が高い。形態、厚み、寸法等に特に限定はなく、例えば、平膜状であっても中空糸状であっても構わない。ただし、本発明によって得られるポリイミド非対称膜をガス分離膜として用いる場合には、緻密層の厚さは1〜1000nm好ましくは20〜200nm程度、多孔質層の厚さは10〜2000μm好ましくは10〜500μm程度が好適であり、とりわけ中空糸ガス分離膜としては、内径が10〜3000μm好ましくは20〜900μm程度、外径が30〜7000μm好ましくは50〜1200μm程度であり、中空糸膜としては、外側に緻密層を有する中空糸非対称膜が好適である。 A polyimide asymmetric membrane used as a gas separation membrane has a dense layer and a porous layer. The dense layer has a density that is substantially different in permeation rate depending on the gas type (for example, the permeation rate ratio of helium gas and nitrogen gas is 1.2 times or more at 50 ° C.) and has a separation function depending on the gas type. Have. On the other hand, the porous layer is a layer having porosity to such an extent that it does not have a substantial gas separation function, and the pore diameter is not necessarily constant, and the fine layer is formed sequentially from a large hole to a dense layer. It does not matter. The polyimide asymmetric membrane obtained according to the present invention has no defects in the dense layer and high gas separation performance. There are no particular limitations on the form, thickness, dimensions, etc., for example, it may be a flat membrane or a hollow fiber. However, when the polyimide asymmetric membrane obtained by the present invention is used as a gas separation membrane, the dense layer has a thickness of 1 to 1000 nm, preferably about 20 to 200 nm, and the porous layer has a thickness of 10 to 2000 μm, preferably 10 to 10 μm. About 500 μm is preferable, and the hollow fiber gas separation membrane has an inner diameter of 10 to 3000 μm, preferably about 20 to 900 μm, and an outer diameter of 30 to 7000 μm, preferably about 50 to 1200 μm. A hollow fiber asymmetric membrane having a dense layer is preferred.
更に、本発明によって得られるポリイミド非対称膜は、好ましくは高性能のガス分離性能と実用的な機械的強度とを有する。すなわち、水素ガス透過速度(P’H2)が4.0×10−4cm3 (STP)/cm2 ・sec・cmHg以上、より好ましくは5.0×10−4cm3 (STP)/cm2 ・sec・cmHg以上であり、水素ガス透過速度(P’H2)と窒素ガス透過速度(P’N2)との比(P’H2/P’N2)が20以上、より好ましくは45以上であり、且つ、引張破断伸びが15%以上特に中空糸膜としての引張破断伸びが15%以上である。また、ヘリウムガス透過速度(P’He)が4.0×10−4cm3 (STP)/cm2 ・sec・cmHg以上、より好ましくは5.0×10−4cm3 (STP)/cm2 ・sec・cmHg以上であり、ヘリウムガス透過速度(P’He)と窒素ガス透過速度(P’N2)との比(P’He/P’N2)が20以上、より好ましくは45以上であり、且つ、引張破断伸びが15%以上特に中空糸膜としての引張破断伸びが15%以上である。
中空糸としての引張破断伸びが15%未満では、中空糸膜を加工してモジュール化するときに容易に破断や破損するので、工業的にモジュール化できないから実用的ではない。中空糸としての引張破断伸びが15%以上では、工業的にモジュール化するのが容易になるから実用的である。また中空糸としての引張破断伸びが15%未満では、使用中(特に高圧ガスを供給したりする場合)に中空糸の切断が起こり易くなり、使用条件が限定されるから実用的ではない。
Furthermore, the polyimide asymmetric membrane obtained by the present invention preferably has high performance gas separation performance and practical mechanical strength. That is, the hydrogen gas permeation rate (P ′ H2 ) is 4.0 × 10 −4 cm 3 (STP) / cm 2 · sec · cmHg or more, more preferably 5.0 × 10 −4 cm 3 (STP) / cm. in is a 2 · sec · cmHg or more, the ratio of hydrogen gas permeation rate (P 'H2) and nitrogen gas permeation rate (P' and N2) (P 'H2 / P ' N2) of 20 or more, more preferably 45 or more And the tensile elongation at break is 15% or more, particularly the tensile elongation at break as a hollow fiber membrane is 15% or more. Further, the helium gas transmission rate (P ′ He ) is 4.0 × 10 −4 cm 3 (STP) / cm 2 · sec · cmHg or more, more preferably 5.0 × 10 −4 cm 3 (STP) / cm. in is a 2 · sec · cmHg or more, helium gas permeation rate (P 'He) and nitrogen gas permeation rate (P' ratio of N2) (P 'He / P ' N2) of 20 or more, more preferably 45 or more And the tensile elongation at break is 15% or more, particularly the tensile elongation at break as a hollow fiber membrane is 15% or more.
If the tensile elongation at break as a hollow fiber is less than 15%, it is not practical because it cannot be modularized industrially because it is easily broken or damaged when the hollow fiber membrane is processed into a module. If the tensile elongation at break as a hollow fiber is 15% or more, it is practical because it becomes easy to modularize industrially. If the tensile elongation at break as a hollow fiber is less than 15%, the hollow fiber is likely to be cut during use (especially when high-pressure gas is supplied), and the use conditions are limited, which is not practical.
したがって、本発明の非対称中空糸ガス分離膜は、通常の方法でモジュール化して好適に用いることができる。通常のガス分離膜モジュールは、例えば、適当な長さの中空糸膜100〜200000本程度を束ね、その中空糸束の両端部を中空糸の端部が開口状態を保持した状態で熱硬化性樹脂などからなる管板で固着し、得られた中空糸束と管板などからなる中空糸膜エレメントを、少なくとも混合ガス導入口と透過ガス排出口と非透過ガス排出口とを備える容器内に、中空糸膜の内側に通じる空間と中空糸膜の外側へ通じる空間とが隔絶するように収納し取り付けることによって得られる。このようなガス分離膜モジュールでは、混合ガスが混合ガス導入口から中空糸膜の内側あるいは外側に接する空間へ供給され、中空糸膜に接して流れる間に混合ガス中の特定成分が選択的に膜を透過し、透過ガスが透過ガス排出口から、膜を透過しなかった非透過ガスが非透過ガス排出口からそれぞれ排出されることによって、ガス分離が行われる。 Therefore, the asymmetric hollow fiber gas separation membrane of the present invention can be suitably used after being modularized by an ordinary method. A normal gas separation membrane module is, for example, a bundle of about 100 to 200,000 hollow fiber membranes having an appropriate length, and both ends of the hollow fiber bundle are thermosetting with the ends of the hollow fibers kept open. The hollow fiber membrane element composed of a hollow fiber bundle and a tube sheet, which are fixed with a tube plate made of resin or the like, is placed in a container having at least a mixed gas inlet, a permeate gas outlet, and a non-permeate gas outlet. It is obtained by storing and attaching the space leading to the inside of the hollow fiber membrane and the space leading to the outside of the hollow fiber membrane so as to be separated from each other. In such a gas separation membrane module, a mixed gas is supplied from a mixed gas inlet to a space in contact with the inside or outside of the hollow fiber membrane, and specific components in the mixed gas are selectively selected while flowing in contact with the hollow fiber membrane. Gas separation is performed by allowing the permeate gas to permeate the membrane and the non-permeate gas that has not permeated the membrane to be discharged from the non-permeate gas outlet.
また、本発明のポリイミド非対称膜からなるガス分離膜は、以上のような高いガス透過性能と優れた機械的強度を有する実用的な高性能ガス分離膜であるから、水素ガスとメタンガスなどの炭化水素ガスとの分離、水素ガスと窒素ガスとの分離、ヘリウムガスと窒素ガスとの分離、炭酸ガスとメタンガスなどの炭化水素ガスとの分離、酸素ガスと窒素ガスとの分離などの用途に用いることができる。特に水素ガスとメタンガスなどの炭化水素ガスとの分離、水素ガスと窒素ガスとの分離、酸素ガスと窒素ガスとの分離などの用途に好適に用いることができる。 Further, the gas separation membrane comprising the polyimide asymmetric membrane of the present invention is a practical high performance gas separation membrane having the above high gas permeation performance and excellent mechanical strength. Used for separation of hydrogen gas, separation of hydrogen gas and nitrogen gas, separation of helium gas and nitrogen gas, separation of hydrocarbon gas such as carbon dioxide gas and methane gas, separation of oxygen gas and nitrogen gas be able to. In particular, it can be suitably used for applications such as separation of hydrogen gas and hydrocarbon gas such as methane gas, separation of hydrogen gas and nitrogen gas, separation of oxygen gas and nitrogen gas.
本発明において、重合度は、例えばゲルパーミエーションクロマトグラフィ(GPC)測定または赤外分光法などによるイミド化率の測定によってあらかじめ数平均重合度と溶液粘度との対応を調べておき、反応溶液の溶液粘度の測定によって数平均重合度を知ることができる。なお、イミド化率が90%以上のものが対象の場合には、GPC測定法によって求め、イミド化率が90%未満の場合には、赤外分光法によるイミド化率測定法から求めた。
本発明においてGPC測定は以下のようにして行った。日本分光工業株式会社製800シリーズHPLCシステムを用い、カラムはShodex KD−806Mを1本、カラム部温度は40℃、検出器は未知試料用としてインテリジェント紫外可視分光検出器(吸収波長350nm)、標準物質用として示差屈折計(標準物質はポリエチレングリコール)を使用した。溶媒は塩化リチウム及びリン酸を各々0.05モル/L含むN−メチル−2−ピロリドン溶液を使用し、溶媒の流速は0.5mL/分、サンプルの濃度は約0.1%とした。データの取り込み及びデータ処理はJASCO−JMBS/BORWINを用い行なった。データの取り込みは2回/秒行ない、試料のクロマトグラムを得た。一方、標準物質として分子量82,250、28,700、6,450、1,900のポリエチレングリコールを使用し、これらのクロマトグラムからピークを検出し、保持時間と分子量の関係を示す校正曲線を得た。未知試料の分子量解析は、校正曲線から各保持時間における分子量Miを各々求め、また、各保持時間におけるクロマトグラムの高さhiの合計に対する分率Wi=hi/Σhiを求め、それらをもとに数平均分子量Mnは1/{Σ(Wi/Mi)}から、重量平均分子量MwはΣ(Wi・Mi)から求めた。
数平均重合度Nは、重合時の仕込み割合に応じて平均化したモノマー単位分子量<m>で数平均分子量Mnを除して求めた。
In the present invention, the degree of polymerization is determined by checking the correspondence between the number average degree of polymerization and the solution viscosity in advance by, for example, gel permeation chromatography (GPC) measurement or measurement of imidization rate by infrared spectroscopy. The number average degree of polymerization can be known by measuring the viscosity. In addition, when the thing of 90% or more of imidation rate is object, it calculated | required by the GPC measuring method, and when the imidation rate was less than 90%, it calculated | required from the imidation rate measuring method by infrared spectroscopy.
In the present invention, GPC measurement was performed as follows. Using 800 series HPLC system manufactured by JASCO Corporation, the column is one Shodex KD-806M, the column temperature is 40 ° C, the detector is an intelligent UV-visible spectroscopic detector (absorption wavelength 350nm) for unknown samples, standard A differential refractometer (standard material is polyethylene glycol) was used for the substance. The solvent used was an N-methyl-2-pyrrolidone solution containing 0.05 mol / L of lithium chloride and phosphoric acid, the solvent flow rate was 0.5 mL / min, and the sample concentration was about 0.1%. Data acquisition and data processing were performed using JASCO-JMBS / BORWIN. Data acquisition was performed twice / second to obtain a chromatogram of the sample. On the other hand, polyethylene glycols having molecular weights of 82, 250, 28, 700, 6, 450, and 1,900 are used as standard substances, and peaks are detected from these chromatograms to obtain a calibration curve indicating the relationship between retention time and molecular weight. It was. Molecular weight analysis of an unknown sample, each calculated molecular weight M i in the retention time from the calibration curve, also determine the fraction W i = h i / Σh i to the sum of the height h i of the chromatogram at each holding time, Based on these, the number average molecular weight Mn was obtained from 1 / {Σ (W i / M i )} and the weight average molecular weight Mw was obtained from Σ (W i · M i ).
The number average degree of polymerization N was determined by dividing the number average molecular weight Mn by the monomer unit molecular weight <m> averaged according to the charge ratio at the time of polymerization.
赤外分光法によるイミド化率の測定はパーキンエルマー社製スペクトラムワンを用い、全反射吸収測定法−フーリエ変換赤外分光法(ATR−FTIR)によって行った。イミド化率pIの算出は、イミド結合のC−N伸縮振動(波数約1360cm-1)の吸光度Aを芳香核C=C面内振動(波数約1500cm-1)の吸光度AIを内部標準として規格化した値(A/AI)を、190℃にて5時間熱処理した後の試料について先と同様にして求めたC−N伸縮振動の吸光度ASを芳香核C=C面内振動の吸光度ASIを内部標準として規格化した値(AS/ASI)で除して求めた。 The imidation ratio was measured by infrared spectroscopy using Spectrum One manufactured by PerkinElmer Co., Ltd., by total reflection absorption measurement-Fourier transform infrared spectroscopy (ATR-FTIR). Calculation of imidization rate p I is the absorbance A I the internal standard C-N stretching vibration of an imide bond, an aromatic nucleus C = C-plane vibrations of the absorbance A of (wave number approximately 1360 cm -1) (a wave number of about 1500 cm -1) normalized value (a / a I) and 5 hours heat-treated samples for the previous and Similarly C-N stretching absorbance a S arom C = C-plane vibration of the vibration obtained after at 190 ° C. as The absorbance ASI was divided by a value normalized as an internal standard (A S / A SI ).
ここで得られたイミド化率の値から、さらに下記式により数平均重合度Nを求めた。
From the value of the imidization ratio obtained here, the number average degree of polymerization N was further determined by the following formula.
本発明において、フッ素原子含有ポリイミドが緻密層に存在する割合は、X線光電子分光(以下、XPSまたはESCAと略記する場合もある)で緻密層表面のフッ素原子濃度φSを調べることにより知ることができる。
ここで、特定元素jの原子濃度φjは、ポリイミドに含まれる検出可能な(水素原子とヘリウム原子は検出できない)各元素の原子数をNi(下付きの添え字は元素の種類を表す)とし、特定の元素jの原子数をNjとして、下記数式で表されるものである。
In the present invention, the ratio of fluorine atom-containing polyimide is present in the dense layer, X-rays photoelectron spectroscopy (hereinafter sometimes abbreviated as XPS or ESCA) by knowing by examining the fluorine atom concentration phi S of the dense layer surface Can do.
Here, the atomic concentration φ j of the specific element j represents the number of atoms of each element that can be detected in the polyimide (hydrogen atoms and helium atoms cannot be detected) N i (subscript indicates the type of element) ), And the number of atoms of the specific element j is N j and is represented by the following mathematical formula.
XPSの測定は、X線をポリイミド非対称膜の緻密層表面に照射し、ポリイミドに含まれる各々の元素の各軌道にある電子を真空中に放出させ、放出された電子(光電子)の運動エネルギーに対する光電子の強度(光電子スペクトル)を測定することによって行われる。本発明においては、照射するX線として、ポリイミド表面の損傷などを抑制するために、XPSに不必要なX線成分を除去した単色化AlKα線が好適に利用される。
また、光電子の運動エネルギーEkから電子の物質原子中における束縛エネルギーEbが、下記数式で求められる。
In the XPS measurement, the surface of the dense layer of the polyimide asymmetric film is irradiated with X-rays, the electrons in each orbit of each element contained in the polyimide are emitted into the vacuum, and the kinetic energy of the emitted electrons (photoelectrons) This is done by measuring the photoelectron intensity (photoelectron spectrum). In the present invention, monochromatic AlKα rays from which X-ray components unnecessary for XPS are removed are preferably used as the X-rays to be irradiated in order to suppress damage on the polyimide surface.
Further, the binding energy E b in the electron substance atom is obtained from the kinetic energy E k of the photoelectron by the following mathematical formula.
この束縛エネルギーの値は、元素と電子軌道によりほぼ決まった値をとるので、照射X線のエネルギーを適当に選択すれば、原理的には全元素の検出が可能なはずである。しかしながら、各軌道の電子がX線によって励起される確率(光イオン化断面積)が小さい水素とヘリウムに関しては、実際には観測できない。
ポリイミドに含まれる特定の元素jのl軌道からX線照射によって放出された光電子の強度Ijは下記数式で示される。
Since the value of the binding energy is almost determined by the element and the electron orbit, all elements should be detectable in principle if the energy of the irradiated X-ray is appropriately selected. However, in reality, hydrogen and helium, which have a small probability (photoionization cross section) that electrons in each orbit are excited by X-rays, cannot be observed.
The intensity I j of the photoelectrons emitted by the X-ray irradiation from the l orbital of the specific element j contained in the polyimide is expressed by the following formula.
光イオン化断面積σj l、非弾性散乱平均自由行程λj lの値は公知である。Aj lは装置と測定条件から決まる値である。Rの値はサンプルによって異なるが、強度比を取ると消える値であるため、後述する原子濃度の算出には必要ない。
The values of the photoionization cross section σ j l and the inelastic scattering mean free path λ j l are known. A j l is a value determined from the apparatus and measurement conditions. Although the value of R varies depending on the sample, it is a value that disappears when the intensity ratio is taken.
本発明において、ポリイミドに含まれる特定の元素jの原子濃度φjは、測定された光電子の強度Ijを用いて下記数式で求めた。 In the present invention, the atomic concentration φ j of the specific element j contained in the polyimide was determined by the following formula using the measured photoelectron intensity I j .
なお、相対感度Sjは原子濃度が既知である基準物質等を用いて別途決定することができる。相対感度Sjとして、XPSの装置メーカーなどから提供されている相対感度S’jを便宜的に用いることがあるが、本発明においては、単一組成からなる、換言すれば1種類のテトラカルボン酸成分と1種類のジアミン成分からなるホモポリイミド(原子濃度が既知)を用いて相対感度を決定した。
すなわち、単一組成のポリイミド(1種類のテトラカルボン酸成分と1種類のジアミン成分からなるホモポリイミド)からなるサンプルについては、表面原子濃度φs,jの値と該ポリイミドにおける平均の原子濃度の値fjがほぼ一致することが期待されるが、表面原子濃度φs,jを求める際に用いる相対感度Sjとして、XPSの装置メーカーなどから提供されている相対感度係数を装置関数で補正した相対感度S’jをそのまま用いた場合、φs,jとfjの間にしばしばズレが生じる。これは前記相対感度S’jが、ポリイミド以外の他の標準物質を用いて実験的に決められた値であることによる。このためポリイミド材料の表面原子濃度を求める際の相対感度Sjは、単一組成のホモポリイミドからなるサンプルを用いたときの表面原子濃度φs,jと平均の原子濃度fjが一致するように、S’jを補正した値を用いた。すなわち、本発明の相対感度Sjは、下記数式で示される。
The relative sensitivity S j can be separately determined using a reference material having a known atomic concentration. As the relative sensitivity S j , the relative sensitivity S ′ j provided by an XPS device manufacturer or the like may be used for convenience. In the present invention, the relative sensitivity S j consists of a single composition, in other words, one type of tetracarboxylic acid. Relative sensitivity was determined using a homopolyimide (atomic concentration known) consisting of an acid component and one diamine component.
That is, for a sample made of a single composition polyimide (homopolyimide composed of one kind of tetracarboxylic acid component and one kind of diamine component) , the value of the surface atomic concentration φ s, j and the average atomic concentration of the polyimide Although the values f j are expected to be substantially the same, the relative sensitivity coefficient provided by an XPS device manufacturer or the like is corrected by a device function as the relative sensitivity S j used when the surface atomic concentration φ s, j is obtained. When the relative sensitivity S ′ j is used as it is, a deviation often occurs between φ s, j and f j . This is because the relative sensitivity S ′ j is a value experimentally determined using a standard material other than polyimide. For this reason, the relative sensitivity S j when determining the surface atomic concentration of the polyimide material is such that the surface atomic concentration φ s, j and the average atomic concentration f j when a sample composed of a homopolyimide having a single composition is matched. A value obtained by correcting S ′ j was used. That is, the relative sensitivity S j of the present invention is expressed by the following mathematical formula.
本発明においては前記補正係数を元素ごとに測定して求め、その補正係数で補正した相対感度Sjを用いた。
本発明において、光電子の強度Ijは、XPS測定の結果得られる光電子スペクトルについて、光電子ピークの面積から求めた。光電子ピークのうち、比較的に光イオン化断面積の大きい遷移に関するものが好適に利用される。通常は光イオン化断面積の値が炭素1s軌道の値の10%より高い遷移に関する光電子ピークが好適に利用される。本発明では、フッ素に関しては1s軌道からの光電子ピークを好適に利用でき、例えば炭素に関しては1s軌道、窒素に関しては1s軌道、酸素に関しては1s軌道、硫黄に関しては2p軌道から放出された光電子ピークを好適に利用できた。
また、光電子スペクトルは、光電子が試料から真空中へ脱出する過程で非弾性散乱を起こすことにより生じたバックグラウンドを含んでいる。このため、原子濃度の決定に利用する各光電子ピークについて、前記のバックグラウンドを差し引いた後に求めた残りの面積をIjとした。
In the present invention, the correction coefficient is measured for each element, and the relative sensitivity S j corrected with the correction coefficient is used.
In the present invention, the photoelectron intensity I j was determined from the photoelectron peak area for the photoelectron spectrum obtained as a result of XPS measurement. Of the photoelectron peaks, those relating to transitions having a relatively large photoionization cross section are preferably used. Usually, a photoelectron peak relating to a transition in which the value of the photoionization cross section is higher than 10% of the value of the carbon 1s orbital is preferably used. In the present invention, the photoelectron peak from the 1s orbital can be suitably used for fluorine. For example, the photoelectron peak emitted from the 1s orbital for carbon, the 1s orbital for nitrogen, the 1s orbital for oxygen, and the 2p orbital for sulfur. It was possible to use it suitably.
The photoelectron spectrum includes a background generated by inelastic scattering in the process of photoelectrons escaping from the sample into the vacuum. For this reason, for each photoelectron peak used for determination of the atomic concentration, the remaining area obtained after subtracting the background was defined as I j .
更に、本発明のXPSの測定において、ポリイミド非対称膜が中空糸の場合、照射径を中空糸径より細く絞ったX線が使用される。中空糸径が30μm以上概略100μm程度以上であるため、照射径として100μmφ程度以下が好適に採用され、更に20μmφ程度が好適に採用された。
また、光電子の放出によりポリイミド表面が帯電するため、電子線照射などによる試料表面電荷の中和が好適に採用された。
XPSの測定においては、試料表面から測った光電子の取り出し角度(エミッション角)θに応じて、XPSで測定される厚みが変化する。XPSで検出される光電子の95%は試料表面から測った厚み3λj lsinθの範囲から放出されたものである。θの値には、測定が可能な範囲であれば特に制限はないが、45°などが好適に利用される。分析される厚みとしては試料表面から数nmの厚みの範囲となる。このためXPSで測定された原子濃度は表面から数nmの厚みの範囲における表面原子濃度φs,jである。
Furthermore, in the XPS measurement of the present invention, when the polyimide asymmetric membrane is a hollow fiber, X-rays whose irradiation diameter is narrower than the hollow fiber diameter are used. Since the hollow fiber diameter is 30 μm or more and about 100 μm or more, an irradiation diameter of about 100 μmφ or less is preferably adopted, and further about 20 μmφ is suitably adopted.
Moreover, since the polyimide surface is charged by the emission of photoelectrons, neutralization of the sample surface charge by electron beam irradiation or the like was suitably employed.
In the XPS measurement, the thickness measured by XPS changes according to the photoelectron take-off angle (emission angle) θ measured from the sample surface. 95% of the photoelectrons detected by XPS are emitted from the range of thickness 3λ j l sin θ measured from the sample surface. The value of θ is not particularly limited as long as it can be measured, but 45 ° or the like is preferably used. The thickness to be analyzed is in the range of several nm from the sample surface. For this reason, the atomic concentration measured by XPS is the surface atomic concentration φ s, j in a thickness range of several nm from the surface.
一方、膜全体を形成した多成分のポリイミドに含まれる元素jについての平均の原子濃度fjは下記数式で示される。 On the other hand, the average atomic concentration f j for the element j contained in the multi-component polyimide forming the entire film is expressed by the following mathematical formula.
本発明において、膜全体における平均のフッ素原子濃度(f)は、前記数式に基づいて算出されたものである。
In the present invention, the average fluorine atom concentration (f) in the entire film is calculated based on the above mathematical formula.
以下、本発明による多成分ポリイミドからなる非対称膜の製造方法、及び得られた非対称膜の特性について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, a method for producing an asymmetric membrane made of a multi-component polyimide according to the present invention and characteristics of the obtained asymmetric membrane will be described in detail. In addition, this invention is not limited to a following example.
本発明での各種測定方法について説明する。
(ポリイミドフィルムの作製)
ポリイミド溶液は、溶液粘度が100℃で50〜1000ポイズになるように調製し、400メッシュ金網を用いて濾過し、引き続き100℃で静置により脱泡した。このポリイミド溶液を50℃でガラス板上に0.5mmまたは0.2mmのドクターナイフを用いて流延し、オーブン中100℃で3時間加熱し溶媒を蒸発させ、更にオーブン中300℃で1時間加熱処理をおこないヘリウムガス透過係数の測定サンプルとなるポリイミドフィルムを得た。
(ヘリウムガス透過係数(PHe)、窒素ガス透過係数(PN2)、及びヘリウムガスと窒素ガスの透過係数比(PHe/PN2)の測定方法)
ヘリウムガス透過係数の測定は高真空タイムラグ法によりおこなった。即ち、前記ポリイミドフィルムを透過セルに装着し80℃にした後、真空ポンプにて10−5torrの高真空とし、その後フィルムの1次側にヘリウムガスで2.5kgf/cm2Gの圧力をかけ、透過したガスによる2次側圧力上昇の時間に対する変化を求め、フィルムの厚さ、有効面積、2次側体積、1次圧等からポリイミドフィルムのヘリウムガス透過係数(PHe)を算出した。窒素ガス透過係数(PN2)も同一のポリイミドフィルムを用い、同様の方法によってヘリウムガスの代わりに窒素ガスを用いて測定した。ヘリウムガスと窒素ガスの透過係数比(PHe/PN2)は、前記方法で求めたヘリウムガス透過係数(PHe)と窒素ガス透過係数(PN2)から算出した。
Various measurement methods in the present invention will be described.
(Preparation of polyimide film)
The polyimide solution was prepared so that the solution viscosity was 50 to 1000 poise at 100 ° C., filtered using a 400 mesh wire net, and then defoamed by standing at 100 ° C. This polyimide solution is cast on a glass plate at 50 ° C. using a 0.5 mm or 0.2 mm doctor knife, heated in an oven at 100 ° C. for 3 hours to evaporate the solvent, and further in an oven at 300 ° C. for 1 hour. Heat treatment was performed to obtain a polyimide film as a measurement sample of the helium gas permeability coefficient.
(Measurement method of helium gas permeability coefficient (P He ), nitrogen gas permeability coefficient (P N2 ), and permeability coefficient ratio of helium gas to nitrogen gas (P He / P N2 ))
The helium gas permeability coefficient was measured by the high vacuum time lag method. That is, after the polyimide film is mounted on a permeation cell and brought to 80 ° C., a high vacuum of 10 −5 torr is applied with a vacuum pump, and then a pressure of 2.5 kgf / cm 2 G is applied to the primary side of the film with helium gas. The change with time of the secondary pressure increase due to the permeated gas was obtained, and the helium gas permeability coefficient (P He ) of the polyimide film was calculated from the film thickness, effective area, secondary volume, primary pressure, etc. . The nitrogen gas permeability coefficient (P N2 ) was also measured by using the same polyimide film and using nitrogen gas instead of helium gas by the same method. The permeability coefficient ratio (P He / P N2 ) between helium gas and nitrogen gas was calculated from the helium gas permeability coefficient (P He ) and nitrogen gas permeability coefficient (P N2 ) determined by the above method.
(中空糸膜のヘリウムガス、窒素ガス透過性能の測定方法)
15本の中空糸膜と、ステンレスパイプと、エポキシ樹脂系接着剤とを使用して有効長が10cmの透過性能評価用のエレメントを作成し、これをステンレス容器に装着してペンシルモジュールとした。それに一定圧力のヘリウムガスを供給して透過流量を測定した。測定した透過ヘリウムガス量と供給圧力及び有効膜面積からヘリウムガスの透過速度を算出した。窒素ガスの透過速度も同様にして測定した。尚、これらの測定は80℃でおこなった。
(Measuring method of helium gas and nitrogen gas permeation performance of hollow fiber membrane)
Using 15 hollow fiber membranes, a stainless steel pipe, and an epoxy resin adhesive, an element for evaluating permeation performance having an effective length of 10 cm was prepared and mounted on a stainless steel container to form a pencil module. A permeate flow rate was measured by supplying helium gas at a constant pressure. The permeation rate of helium gas was calculated from the measured amount of permeated helium gas, supply pressure, and effective membrane area. The nitrogen gas permeation rate was also measured in the same manner. These measurements were made at 80 ° C.
(中空糸膜の引張強度と破断伸度の測定)
引張試験機を用いて有効長20mm、引張速度10mm/分で測定した。測定は23℃でおこなった。中空糸断面積は中空糸の断面を光学顕微鏡で観察し、光学顕微鏡像から寸法を測定して算出した。
(Measurement of tensile strength and breaking elongation of hollow fiber membrane)
Using a tensile tester, measurement was performed at an effective length of 20 mm and a tensile speed of 10 mm / min. The measurement was performed at 23 ° C. The cross-sectional area of the hollow fiber was calculated by observing the cross-section of the hollow fiber with an optical microscope and measuring the dimensions from the optical microscope image.
(回転粘度の測定方法)
ポリイミド溶液の溶液粘度は、回転粘度計(ローターのずり速度1.75sec−1)を用い温度100℃で測定した。
(Method for measuring rotational viscosity)
The solution viscosity of the polyimide solution was measured at a temperature of 100 ° C. using a rotational viscometer (shear rate of rotor: 1.75 sec −1 ).
(X線光電子分光による緻密層表面のフッ素原子濃度の測定)
X線光電子分光はPHI社製Quantum2000走査型X線光電子分光装置を用いて行った。照射X線として単色化したAlKα線を用いた。測定には照射径20μmφのX線を用いた。エミッション角は45°とし、試料表面の帯電を抑えるために電子中和銃を使用した。炭素1s軌道、窒素1s軌道、酸素1s軌道、フッ素1s軌道、硫黄2p軌道からの光電子ピークについて、バックグランドを除去した後にピーク面積を測定した。ピーク面積から原子濃度を求めるに当り、前記光電子ピークの処理や、原子濃度の算出にはPHI社製ソフトウェアMultipak version 6.1A(1999)を用いた。各光電子ピークについて、PHI社から提供された相対感度係数ASFjに、前記装置の装置関数(分光器の透過関数)による補正を行った相対感度S’jの値を下記表1に示す。なお、表中のS’jの値はフッ素1sに対する値を1として表示したものである。
(Measurement of fluorine atom concentration on dense layer surface by X-ray photoelectron spectroscopy)
X-ray photoelectron spectroscopy was performed using a Quantum 2000 scanning X-ray photoelectron spectrometer manufactured by PHI. A monochromatic AlKα ray was used as the irradiation X-ray. X-rays with an irradiation diameter of 20 μmφ were used for the measurement. The emission angle was 45 °, and an electron neutralizing gun was used to suppress charging of the sample surface. For the photoelectron peaks from the carbon 1s orbital, nitrogen 1s orbital, oxygen 1s orbital, fluorine 1s orbital, and sulfur 2p orbital, the peak area was measured after removing the background. In obtaining the atomic concentration from the peak area, PHI Corp. software Multipak version 6.1A (1999) was used for the processing of the photoelectron peak and the calculation of the atomic concentration. Table 1 below shows the values of the relative sensitivity S ′ j obtained by correcting the relative sensitivity coefficient ASF j provided by PHI for each photoelectron peak using the device function of the device (transmission function of the spectrometer). In addition, the value of S ′ j in the table is represented by 1 as the value for fluorine 1s.
(参考例1)
2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(以下、6FDAと略記することもある)12.44gと、ジメチル−3,7−ジアミノジベンゾチオフェン=5,5−ジオキシド(以下、TSNと略記することもある)4.92gと3,5−ジアミノ安息香酸(以下、DABAと略記することもある)1.64gを、溶媒のパラクロロフェノール(以下、PCPと略記することもある)102gと共にセパラブルフラスコ中にて反応温度190℃で31時間重合イミド化し、回転粘度が446ポイズ、ポリマー濃度が15重量%のポリイミド溶液を得た。
このポリイミド溶液から得られたポリイミドフィルムのヘリウムガスの透過係数(PHe)は1.1×10−8cm3(STP)・cm/cm2・sec・cmHgで、ヘリウムガスと窒素ガスとの透過係数比(PHe/PN2)は37であった。
(Reference Example 1)
12.44 g of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (hereinafter sometimes abbreviated as 6FDA), dimethyl-3,7-diaminodibenzothiophene = 5,5- Dioxide (hereinafter sometimes abbreviated as TSN) 4.92 g and 3,5-diaminobenzoic acid (hereinafter also abbreviated as DABA) 1.64 g were mixed with parachlorophenol (hereinafter abbreviated as PCP) as a solvent. In some cases, it was polymerized and imidized in a separable flask at a reaction temperature of 190 ° C. for 31 hours to obtain a polyimide solution having a rotational viscosity of 446 poise and a polymer concentration of 15% by weight.
The permeability coefficient (P He ) of the helium gas of the polyimide film obtained from this polyimide solution is 1.1 × 10 −8 cm 3 (STP) · cm / cm 2 · sec · cmHg, and helium gas and nitrogen gas The transmission coefficient ratio (P He / P N2 ) was 37.
(参考例2)
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、s−BPDAと略記することもある)12.36gと、TSN11.35gを、溶媒のPCP165gと共にセパラブルフラスコ中にて反応温度190℃で25時間重合イミド化し、回転粘度が600ポイズ、ポリマー濃度が11.8重量%のポリイミド溶液を得た。
このポリイミド溶液から得られたポリイミドフィルムのヘリウムガスの透過係数(PHe)は2.2×10−9cm3(STP)・cm/cm2・sec・cmHgで、ヘリウムガスと窒素ガスとの透過係数比(PHe/PN2)は110であった。またこのポリイミドフィルムの引張破断強度は260MPa、ヤング率5925MPa、破断伸び24%であった。
(Reference Example 2)
In a separable flask, 12.36 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as s-BPDA) and 11.35 g of TSN together with 165 g of PCP as a solvent Polymerization imidization was carried out at a reaction temperature of 190 ° C. for 25 hours to obtain a polyimide solution having a rotational viscosity of 600 poise and a polymer concentration of 11.8% by weight.
The permeability coefficient (P He ) of the helium gas of the polyimide film obtained from this polyimide solution is 2.2 × 10 −9 cm 3 (STP) · cm / cm 2 · sec · cmHg. The transmission coefficient ratio (P He / P N2 ) was 110. The polyimide film had a tensile strength at break of 260 MPa, Young's modulus of 5925 MPa, and elongation at break of 24%.
(非対称中空糸膜を製造する方法)
以下の例で用いた非対称中空糸膜の製造方法は、乾湿式紡糸法によっておこなった。具体的には、ポリイミド溶液、又はポリイミド混合溶液を、400メッシュの金網で濾過したあと、温度71℃で中空糸紡糸ノズル(円形開口部外径1000μm、円形開口部スリット幅200μm、芯部開口部外径400μm)から吐出させ、吐出した中空糸状体を窒素雰囲気中に通した後、0℃の75重量%エタノール水溶液からなる凝固液に浸漬し湿潤糸とした。これを50℃のエタノール中に2時間浸漬し脱溶媒処理を完了し、更に、70℃のイソオクタン中に3時間浸漬洗浄して溶媒を置換後、100℃絶乾状態で30分間乾燥し、その後300℃〜320℃の温度で1時間の熱処理を行った。更に、中空糸膜の表面の滑りを整えるためにシリコンオイルでオイリング処理を施し中空糸膜を製造した。得られた中空糸膜はいずれも、大略、外径寸法400μm、内径寸法200μm、膜厚100μmのものであった。
(Method for producing an asymmetric hollow fiber membrane)
The method for producing the asymmetric hollow fiber membrane used in the following examples was performed by a dry and wet spinning method. Specifically, after filtering a polyimide solution or a polyimide mixed solution through a 400 mesh wire mesh, a hollow fiber spinning nozzle (circular opening
(実施例1)
s−BPDA12.36gとTSN11.35g(酸二無水物1モル部に対してジアミンが0.985モル部、B/A=0.985)を、溶媒のPCP165gと共にセパラブルフラスコ中にて反応温度190℃で22時間重合イミド化し、ポリマー濃度が11.8重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、74であった。このポリイミド溶液へ6FDA12.44gとTSN5.21gとDABA1.73g(酸二無水物1モル部に対してジアミンが1.085モル部)を溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で8時間重合イミド化し、回転粘度が2046ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、41であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
Example 1
Reaction temperature of 12.36 g of s-BPDA and 11.35 g of TSN (0.985 mol part of diamine with respect to 1 mol part of acid dianhydride, B / A = 0.985) together with 165 g of solvent PCP in a separable flask Polymerization imidization was carried out at 190 ° C. for 22 hours to obtain a polyimide B solution having a polymer concentration of 11.8% by weight. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 74. To this polyimide solution, 12.44 g of 6FDA, 5.21 g of TSN, and 1.73 g of DABA (1.085 mol parts of diamine with respect to 1 mol part of acid dianhydride) were added together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 8 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 2046 poise and a polymer concentration of 18% by weight. It was 41 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measuring method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例2)
s−BPDA12.36gとTSN11.35gを、溶媒のPCP169gと共にセパラブルフラスコ中にて反応温度190℃で27時間重合イミド化し、ポリマー濃度が11.6重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、75であった。このポリイミド溶液へ6FDA12.44gとTSN4.17gと3,3’−ジアミノジフェニルスルホン(以下、MASNと略記することもある)3.77gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で8時間重合イミド化し、回転粘度が1693ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、41であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 2)
12.36 g of s-BPDA and 11.35 g of TSN were polymerized and imidized in a separable flask together with 169 g of the solvent at a reaction temperature of 190 ° C. for 27 hours to obtain a polyimide B solution having a polymer concentration of 11.6 wt%. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 75. To this polyimide solution, 12.44 g of 6FDA, 4.17 g of TSN, and 3.77 g of 3,3′-diaminodiphenylsulfone (hereinafter sometimes abbreviated as MASN) were added together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 8 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1693 poise and a polymer concentration of 18% by weight. It was 41 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measuring method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(比較例1)
s−BPDA12.71gと6FDA12.79gとTSN16.20gとMASN3.67g(酸二無水物1モル部に対してジアミンが1.025モル部)を、溶媒のPCP195gと共にセパラブルフラスコ中にて重合温度190℃で54時間重合イミド化し、回転粘度が1097ポイズ、ポリマー濃度が18重量%のポリイミド溶液を得た。このポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、45であった。
このポリイミド溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
この例は原料組成が実施例2とほぼ同じであるが、Φs/fが1.02であり、引張破断伸びは7%と低いものであった。
(Comparative Example 1)
Polymerization temperature of 12.71 g of s-BPDA, 12.79 g of 6FDA, 16.20 g of TSN and 3.67 g of MASN (1.025 mol part of diamine with respect to 1 mol part of acid dianhydride) together with 195 g of solvent PCP in a separable flask Polymerization imidization was carried out at 190 ° C. for 54 hours to obtain a polyimide solution having a rotational viscosity of 1097 poise and a polymer concentration of 18% by weight. It was 45 when the number average degree of polymerization of this polyimide was measured by the said GPC measuring method.
An asymmetric membrane was produced using this polyimide solution, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
In this example, the raw material composition was almost the same as in Example 2, but Φs / f was 1.02, and the tensile elongation at break was as low as 7%.
(実施例3)
s−BPDA6.36gと6FDA12.79gとTSN8.10gとMASN3.67gとDABA1.12gを、溶媒のPCP171gと共にセパラブルフラスコ中にて反応温度190℃で27時間重合イミド化し、ポリマー濃度が15.0重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、31であった。このポリイミド溶液へs−BPDA6.36gとTSN6.07gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で19時間重合イミド化し、回転粘度が1246ポイズ、ポリマー濃度が18重量%の多成分のポリイミド溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、46であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 3)
6.36 g of s-BPDA, 12.79 g of 6FDA, 8.10 g of TSN, 3.67 g of MASN, and 1.12 g of DABA were polymerized and imidized at a reaction temperature of 190 ° C. for 27 hours in a separable flask together with 171 g of a solvent, and the polymer concentration was 15.0. A weight% polyimide A solution was obtained. The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, it was 31. To this polyimide solution, 6.36 g of s-BPDA and 6.07 g of TSN were added together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 19 hours to obtain a multi-component polyimide solution having a rotational viscosity of 1246 poise and a polymer concentration of 18% by weight. It was 46 when the number average degree of polymerization of this multicomponent polyimide was measured by the said GPC measuring method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例4)
s−BPDA12.36gとTSN11.35gを、溶媒のPCP165gと共にセパラブルフラスコ中にて反応温度190℃で27時間重合イミド化し、ポリマー濃度が11.8重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、76であった。このポリイミド溶液へ6FDA12.44gとTSN2.08gとMASN3.77gとDABA1.16gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で30時間重合イミド化し、回転粘度が911ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、45であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
Example 4
12.36 g of s-BPDA and 11.35 g of TSN were polymerized and imidized in a separable flask together with 165 g of the solvent PCP at a reaction temperature of 190 ° C. for 27 hours to obtain a polyimide B solution having a polymer concentration of 11.8 wt%. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 76. To this polyimide solution, 12.44 g of 6FDA, 2.08 g of TSN, 3.77 g of MASN, and 1.16 g of DABA were added together with 20 g of PCP as a solvent. This mixed solution of multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 30 hours to obtain a mixed solution of multicomponent polyimide having a rotational viscosity of 911 poise and a polymer concentration of 18% by weight. It was 45 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例5)
s−BPDA12.71gとTSN12.15gを、溶媒のPCP171gと共にセパラブルフラスコ中にて反応温度190℃で27時間重合イミド化し、ポリマー濃度が12.0重量%のポリイミドB溶液を得た。このポリイミドの数平均重合度NBを前記GPC測定方法によって測定したところ、79であった。このポリイミド溶液へ6FDA12.79gとTSN2.02gとMASN3.67gとDABA1.12gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で10時間重合イミド化し、回転粘度が1767ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、73であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 5)
12.71 g of s-BPDA and 12.15 g of TSN were polymerized and imidized in a separable flask together with 171 g of a solvent at a reaction temperature of 190 ° C. for 27 hours to obtain a polyimide B solution having a polymer concentration of 12.0% by weight. The number average degree of polymerization N B of the polyimide was measured by the GPC measuring method, it was 79. To this polyimide solution, 12.79 g of 6FDA, 2.02 g of TSN, 3.67 g of MASN, and 1.12 g of DABA were added together with 20 g of PCP as a solvent. This mixed solution of multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 10 hours to obtain a mixed solution of multicomponent polyimide having a rotational viscosity of 1767 poise and a polymer concentration of 18% by weight. It was 73 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例6)
s−BPDA6.36gとTSN6.07gを、溶媒のPCP171gと共にセパラブルフラスコ中にて反応温度190℃で27時間重合イミド化し、ポリマー濃度が6.4重量%のポリイミドB溶液を得た。このポリイミドの数平均重合度NBを前記GPC測定方法によって測定したところ、57であった。このポリイミド溶液へs−BPDA6.36gと6FDA12.79gとTSN8.10gとMASN3.67gとDABA1.12gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で19時間重合イミド化し、回転粘度が1507ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、50であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 6)
6.36 g of s-BPDA and 6.07 g of TSN were polymerized and imidized in a separable flask together with 171 g of a solvent at a reaction temperature of 190 ° C. for 27 hours to obtain a polyimide B solution having a polymer concentration of 6.4% by weight. The number average degree of polymerization N B of the polyimide was measured by the GPC measuring method, it was 57. To this polyimide solution, 6.36 g of s-BPDA, 12.79 g of 6FDA, 8.10 g of TSN, 3.67 g of MASN, and 1.12 g of DABA were added together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 19 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1507 poise and a polymer concentration of 18% by weight. It was 50 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(比較例2)
s−BPDA12.71gと6FDA12.79gとTSN14.17gとMASN3.67gとDABA1.12gを、溶媒のPCP191gと共にセパラブルフラスコ中にて反応温度190℃で73時間重合イミド化し、回転粘度が1190ポイズ、ポリマー濃度が18重量%のポリイミド溶液を得た。このポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、49であった。
このポリイミド溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
この例は原料組成が実施例6とほぼ同じであるが、Φs/fが1.04であり、引張破断伸びは7%と低いものであった。
(Comparative Example 2)
12.71 g of s-BPDA, 12.79 g of 6FDA, 14.17 g of TSN, 3.67 g of MASN, and 1.12 g of DABA were polymerized and imidized in a separable flask with a solvent PCP of 191 g at a reaction temperature of 190 ° C. for 73 hours, and the rotational viscosity was 1190 poise. A polyimide solution having a polymer concentration of 18% by weight was obtained. It was 49 when the number average degree of polymerization of this polyimide was measured by the said GPC measuring method.
An asymmetric membrane was produced using this polyimide solution, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
In this example, the raw material composition was almost the same as in Example 6, but Φs / f was 1.04 and the tensile elongation at break was as low as 7%.
(実施例7)
6FDA12.44gとDABA4.37gを、溶媒のPCP155gと共にセパラブルフラスコ中にて重合温度120℃で2時間反応し、ポリマー濃度が9.8重量%のポリイミドA溶液を得た。この反応溶液の数平均重合度を求めるため、反応液の一部をスライドグラス上に流延しエタノールへ浸漬凝固させ、更に十分溶媒置換してPCPを除去し、室温にて真空乾燥を5時間行ない、FT−IR分析の試料とした。イミド化率の測定は上記の方法で行ない、0.63であった。更にこの値から数平均重合度NAを計算すると、2.7であった。
次に、この反応溶液へs−BPDA12.36gとTSN11.81gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに重合温度190℃で30時間重合し、回転粘度が1265ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、72であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 7)
12.44 g of 6FDA and 4.37 g of DABA were reacted in a separable flask together with 155 g of the solvent PCP at a polymerization temperature of 120 ° C. for 2 hours to obtain a polyimide A solution having a polymer concentration of 9.8 wt%. In order to obtain the number average degree of polymerization of this reaction solution, a part of the reaction solution was cast on a slide glass, immersed and solidified in ethanol, further substituted with a solvent to remove PCP, and vacuum-dried at room temperature for 5 hours. This was used as a sample for FT-IR analysis. The imidation ratio was measured by the above method and was 0.63. Still calculate the number average degree of polymerization N A from this value was 2.7.
Next, 12.36 g of s-BPDA and 11.81 g of TSN were added to the reaction solution together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized at a polymerization temperature of 190 ° C. for 30 hours to obtain a multi-component polyimide mixed solution having a rotational viscosity of 1265 poise and a polymer concentration of 18% by weight. It was 72 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例8)
6FDA12.44gとDABA4.37gを、溶媒のPCP155gと共にセパラブルフラスコ中にて重合温度120℃で1時間反応し、ポリマー濃度が9.8重量%のポリイミドA溶液を得た。この反応溶液の数平均重合度を求めるため、反応液の一部をスライドグラス上に流延しエタノールへ浸漬凝固させ、更に十分溶媒置換してPCPを除去し、室温にて真空乾燥を5時間行ない、FT−IR分析の試料とした。イミド化率の測定は上記の方法で行ない、0.52であった。更にこの値から数平均重合度NAを計算すると、2.1であった。
次に、この反応溶液へs−BPDA12.36gとTSN11.81gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに重合温度190℃で30時間重合し、回転粘度が1469ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、78であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 8)
12.44 g of 6FDA and 4.37 g of DABA were reacted with a solvent PCP of 155 g in a separable flask at a polymerization temperature of 120 ° C. for 1 hour to obtain a polyimide A solution having a polymer concentration of 9.8 wt%. In order to obtain the number average degree of polymerization of this reaction solution, a part of the reaction solution was cast on a slide glass, immersed and solidified in ethanol, further substituted with a solvent to remove PCP, and vacuum-dried at room temperature for 5 hours. This was used as a sample for FT-IR analysis. The imidation ratio was measured by the above method and was 0.52. Still calculate the number average degree of polymerization N A from this value was 2.1.
Next, 12.36 g of s-BPDA and 11.81 g of TSN were added to the reaction solution together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized at a polymerization temperature of 190 ° C. for 30 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1469 poise and a polymer concentration of 18% by weight. It was 78 when the number average degree of polymerization of this multicomponent polyimide was measured by the said GPC measuring method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例9)
6FDA23.10gとTSN3.66gとMASN6.62gとDABA2.03gを溶媒のPCP153gと共にセパラブルフラスコ中にて反応温度190℃で6時間重合イミド化し、ポリマー濃度が18重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、4.9であった。
s−BPDA21.18gとTSN20.25gを、溶媒のPCP177gと共にセパラブルフラスコ中にて反応温度190℃で6時間重合イミド化し、ポリマー濃度が18重量%のポリイミドB溶液を得た。このポリイミドの数平均重合度NBを前記GPC測定方法によって測定したところ、51であった。
次に前記ポリイミドA溶液88g及び前記ポリイミドB溶液110gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で13時間重合イミド化し、回転粘度が2232ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、62であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
Example 9
23.10 g of 6FDA, 3.66 g of TSN, 6.62 g of MASN, and 2.03 g of DABA were polymerized and imidized at a reaction temperature of 190 ° C. in a separable flask together with 153 g of PCP as a solvent to obtain a polyimide A solution having a polymer concentration of 18% by weight. . The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, it was 4.9.
21.18 g of s-BPDA and 20.25 g of TSN were polymerized and imidized at a reaction temperature of 190 ° C. for 6 hours in a separable flask together with 177 g of the solvent PCP to obtain a polyimide B solution having a polymer concentration of 18% by weight. The number average degree of polymerization N B of the polyimide was measured by the GPC measuring method, it was 51.
Next, 88 g of the polyimide A solution and 110 g of the polyimide B solution were weighed and mixed in a separable flask. The mixed solution of the multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 13 hours to obtain a mixed solution of the multicomponent polyimide having a rotational viscosity of 2232 poise and a polymer concentration of 18% by weight. It was 62 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例10)
s−BPDA21.18gとTSN20.25gを、溶媒のPCP177gと共にセパラブルフラスコ中にて反応温度190℃で0.5時間重合イミド化し、ポリマー濃度が18重量%のポリイミドB溶液を得た。このポリイミドの数平均重合度NBを前記GPC測定方法によって測定したところ、6.0であった。
次に前記ポリイミドB溶液110g及び実施例9で得られた数平均重合度4.9のポリイミドA溶液88gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で19時間重合イミド化し、回転粘度が1376ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、57であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 10)
21.18 g of s-BPDA and 20.25 g of TSN were polymerized and imidized in a separable flask together with 177 g of a solvent at a reaction temperature of 190 ° C. for 0.5 hours to obtain a polyimide B solution having a polymer concentration of 18% by weight. The number average degree of polymerization N B of the polyimide was measured by the GPC measuring method, it was 6.0.
Next, 110 g of the polyimide B solution and 88 g of the polyimide A solution having a number average polymerization degree of 4.9 obtained in Example 9 were weighed and mixed in a separable flask. This mixed solution of multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 19 hours to obtain a mixed solution of multicomponent polyimide having a rotational viscosity of 1376 poise and a polymer concentration of 18% by weight. It was 57 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例11)
6FDA23.10gとTSN3.66gとMASN6.62gとDABA2.03gを溶媒のPCP153gと共にセパラブルフラスコ中にて反応温度190℃で29時間重合イミド化し、ポリマー濃度が18重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、22であった。
s−BPDA21.18gとTSN20.25gを、溶媒のPCP177gと共にセパラブルフラスコ中にて反応温度190℃で0.25時間重合イミド化し、ポリマー濃度が18重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、4.5であった。
次に前記ポリイミド溶液A88g及び前記ポリイミド溶液B110gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で29時間重合イミド化し、回転粘度が1172ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、45であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 11)
23.10 g of 6FDA, 3.66 g of TSN, 6.62 g of MASN, and 2.03 g of DABA were polymerized and imidized at a reaction temperature of 190 ° C. in a separable flask together with 153 g of PCP as a solvent to obtain a polyimide A solution having a polymer concentration of 18% by weight. . The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, it was 22.
21.18 g of s-BPDA and 20.25 g of TSN were polymerized and imidized at a reaction temperature of 190 ° C. for 0.25 hours in a separable flask together with 177 g of the solvent PCP to obtain a polyimide B solution having a polymer concentration of 18% by weight. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 4.5.
Next, 88 g of the polyimide solution A and 110 g of the polyimide solution B were weighed and mixed in a separable flask. This mixed solution of multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 29 hours to obtain a mixed solution of multicomponent polyimide having a rotational viscosity of 1172 poise and a polymer concentration of 18% by weight. It was 45 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(実施例12)
6FDA23.10gとTSN3.66gとMASN6.62gとDABA2.03gを溶媒のPCP153gと共にセパラブルフラスコ中にて反応温度190℃で0.5時間重合イミド化し、ポリマー濃度が18重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、2.76であった。
s−BPDA21.18gとTSN20.25gを、溶媒のPCP177gと共にセパラブルフラスコ中にて反応温度190℃で0.2時間重合イミド化し、ポリマー濃度が18重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、3.1であった。
次に前記ポリイミド溶液A88g及び前記ポリイミド溶液B110gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で19時間重合イミド化し、回転粘度が1618ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、78であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 12)
23.10 g of 6FDA, 3.66 g of TSN, 6.62 g of MASN and 2.03 g of DABA were polymerized and imidized with a solvent of PCP153 in a separable flask at a reaction temperature of 190 ° C. for 0.5 hours, and a polyimide A solution having a polymer concentration of 18% by weight was obtained. Obtained. The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, was 2.76.
21.18 g of s-BPDA and 20.25 g of TSN were polymerized and imidized at a reaction temperature of 190 ° C. for 0.2 hours in a separable flask together with 177 g of the solvent PCP to obtain a polyimide B solution having a polymer concentration of 18% by weight. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 3.1.
Next, 88 g of the polyimide solution A and 110 g of the polyimide solution B were weighed and mixed in a separable flask. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 19 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1618 poise and a polymer concentration of 18% by weight. It was 78 when the number average degree of polymerization of this multicomponent polyimide was measured by the said GPC measuring method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(比較例3)
s−BPDA6.36gとTSN6.07gを、溶媒のPCP171gと共にセパラブルフラスコ中にて反応温度190℃で5時間重合イミド化し、ポリマー濃度が6.4重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、7.4であった。このポリイミド溶液へs−BPDA6.36gと6FDA12.79gとTSN8.10gとMASN3.67gとDABA1.12gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で23時間重合イミド化し、回転粘度が1079ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、49であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
この例はNAとNBが数式1を満たすNAとNBの組合せ範囲外(図4のA領域)にあるものであり、Φs/fが1.07であり、引張破断伸びは8%と低いものであった。
(Comparative Example 3)
6.36 g of s-BPDA and 6.07 g of TSN were polymerized and imidized at a reaction temperature of 190 ° C. for 5 hours in a separable flask together with 171 g of the solvent PCP to obtain a polyimide B solution having a polymer concentration of 6.4% by weight. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 7.4. To this polyimide solution, 6.36 g of s-BPDA, 12.79 g of 6FDA, 8.10 g of TSN, 3.67 g of MASN, and 1.12 g of DABA were added together with 20 g of PCP as a solvent. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 23 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1079 poise and a polymer concentration of 18% by weight. It was 49 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
This example is intended to have N A and N B is outside the combination range of N A and N B satisfying Equation 1 (A area in Figure 4), .PHI.s / f is 1.07, the tensile elongation at break 8 %.
(実施例13)
s−BPDA12.36gとTSN11.35gを、溶媒のPCP158gと共にセパラブルフラスコ中にて反応温度190℃で30時間重合イミド化し、ポリマー濃度が11.8重量%のポリイミドB溶液を得た。このポリイミドの数平均重合度NBを前記GPC測定方法によって測定したところ、75であった。このポリイミド溶液へ6FDA12.44gとMASN3.77gとMPD1.64gを溶媒のPCP20gと共に添加した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で6時間重合イミド化し、回転粘度が1432ポイズ、ポリマー濃度が18重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、101であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
(Example 13)
12.36 g of s-BPDA and 11.35 g of TSN were polymerized and imidized at a reaction temperature of 190 ° C. for 30 hours in a separable flask together with 158 g of the solvent PCP to obtain a polyimide B solution having a polymer concentration of 11.8 wt%. The number average degree of polymerization N B of the polyimide was measured by the GPC measuring method, it was 75. To this polyimide solution, 12.44 g of 6FDA, 3.77 g of MASN, and 1.64 g of MPD were added together with 20 g of PCP as a solvent. The mixed solution of the multicomponent polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 6 hours to obtain a mixed solution of the multicomponent polyimide having a rotational viscosity of 1432 poise and a polymer concentration of 18% by weight. It was 101 when the number average degree of polymerization of this multi-component polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
(比較例4)
6FDA21.32gとTSN8.44gとDABA2.81gを溶媒のPCP129gと共にセパラブルフラスコ中にて反応温度190℃で40時間重合イミド化し、ポリマー濃度が19.3重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、26であった。
s−BPDA27.41gとTSN22.22gとDADE1.80gを、溶媒のPCP210gと共にセパラブルフラスコ中にて反応温度190℃で40時間重合イミド化し、ポリマー濃度が18.7重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、47であった。
次に前記ポリイミドA溶液90g及び前記ポリイミドB溶液100gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに反応温度190℃で3時間重合イミド化し、回転粘度が1711ポイズ、ポリマー濃度が19重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、52であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
この例はNAとNBが数式1を満たすNAとNBの組合せ範囲外(図4のB領域)にあるものであり、Φs/fが1.82であり、水素ガス透過速度(P’H2)と窒素ガス透過速度(P’N2)との比(P’H2/P’N2)が11であった。
(Comparative Example 4)
21.32 g of 6FDA, 8.44 g of TSN and 2.81 g of DABA were polymerized and imidized together with 129 g of PCP as a solvent in a separable flask at a reaction temperature of 190 ° C. for 40 hours to obtain a polyimide A solution having a polymer concentration of 19.3% by weight. The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, it was 26.
s-BPDA (27.41 g), TSN (22.22 g) and DADE (1.80 g) were polymerized and imidized in a separable flask with a solvent PCP (210 g) at a reaction temperature of 190 ° C. for 40 hours to obtain a polyimide B solution having a polymer concentration of 18.7 wt%. It was. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 47.
Next, 90 g of the polyimide A solution and 100 g of the polyimide B solution were weighed and mixed in a separable flask. This mixed solution of multi-component polyimide was further polymerized and imidized at a reaction temperature of 190 ° C. for 3 hours to obtain a mixed solution of multi-component polyimide having a rotational viscosity of 1711 poise and a polymer concentration of 19% by weight. It was 52 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
In this example, N A and N B are outside the combination range of N A and N B satisfying Equation 1 (B region in FIG. 4), Φs / f is 1.82, and hydrogen gas permeation rate ( P 'H2) and nitrogen gas permeation rate (P' N2) ratio of (P 'H2 / P' N2 ) was 11.
(比較例5)
6FDA26.65gとTSN10.49gとDABA3.49gを溶媒のPCP161gと共にセパラブルフラスコ中にて反応温度190℃で40時間重合イミド化し、ポリマー濃度が19.3重量%のポリイミドA溶液を得た。このポリイミドAの数平均重合度NAを前記GPC測定方法によって測定したところ、44であった。
s−BPDA52.66gとTSN46.00gとDADE3.73gを、溶媒のPCP419gと共にセパラブルフラスコ中にて反応温度190℃で25時間重合イミド化し、ポリマー濃度が18.7重量%のポリイミドB溶液を得た。このポリイミドBの数平均重合度NBを前記GPC測定方法によって測定したところ、66であった。
次に前記ポリイミドA溶液90g及び前記ポリイミドB溶液100gをセパラブルフラスコに秤り取り混合した。この多成分ポリイミドの混合溶液を、さらに温度130℃で3時間攪拌混合し、回転粘度が2753ポイズ、ポリマー濃度が19重量%の多成分ポリイミドの混合溶液を得た。この多成分ポリイミドの数平均重合度を前記GPC測定方法によって測定したところ、56であった。
この多成分ポリイミドの混合溶液を用いて非対称膜を製造し、得られた非対称膜の特性を測定した。その結果を表3に示した。
この例はNAとNBが数式1を満たすNAとNBの組合せ範囲外(図4のB領域)にあり、且つ2種のポリイミド溶液を単に混合し重合イミド化反応は実質的に行わなかったものである。Φs/fが2.06であり、水素ガス透過速度(P’H2)と窒素ガス透過速度(P’N2)との比(P’H2/P’N2)が3であった。
(Comparative Example 5)
26.65 g of 6FDA, 10.49 g of TSN and 3.49 g of DABA were polymerized and imidized in a separable flask together with 161 g of the solvent PCP at a reaction temperature of 190 ° C. for 40 hours to obtain a polyimide A solution having a polymer concentration of 19.3% by weight. The number average degree of polymerization N A of the polyimide A was measured by the GPC measuring method, it was 44.
52.66 g of s-BPDA, 46.00 g of TSN and 3.73 g of DADE were polymerized and imidized in a separable flask together with 419 g of PCP at a reaction temperature of 190 ° C. for 25 hours to obtain a polyimide B solution having a polymer concentration of 18.7% by weight. It was. The number average degree of polymerization N B of the polyimide B was measured by the GPC measuring method, it was 66.
Next, 90 g of the polyimide A solution and 100 g of the polyimide B solution were weighed and mixed in a separable flask. This mixed solution of multicomponent polyimide was further stirred and mixed at a temperature of 130 ° C. for 3 hours to obtain a mixed solution of multicomponent polyimide having a rotational viscosity of 2753 poise and a polymer concentration of 19% by weight. It was 56 when the number average degree of polymerization of this multicomponent polyimide was measured by the GPC measurement method.
An asymmetric membrane was produced using the mixed solution of the multi-component polyimide, and the characteristics of the obtained asymmetric membrane were measured. The results are shown in Table 3.
In this example, N A and N B are outside the combination range of N A and N B satisfying Formula 1 (B region in FIG. 4), and the two polyimide solutions are simply mixed, and the polymerization imidation reaction is substantially It was not done. .Phi.s / f is 2.06, the ratio of hydrogen gas permeation rate (P 'H2) and nitrogen gas permeation rate (P' N2) (P ' H2 / P' N2) is 3.
本発明によって、緻密層と多孔質層とを有するポリイミド非対称膜であって、フッ素原子含有ポリイミドを含む多成分のポリイミドからなり、緻密層のフッ素原子含有ポリイミドの割合を好適に制御したポリイミド非対称膜を得ることができる。
このようなポリイミド非対称膜は、水素ガスとメタンガスなどの炭化水素ガスとの分離、水素ガスと窒素ガスとの分離、ヘリウムガスと窒素ガスとの分離、炭酸ガスとメタンガスなどの炭化水素ガスとの分離、酸素ガスと窒素ガスとの分離などを好適に行うことができる実用的な高性能ガス分離膜として好適である。
According to the present invention, a polyimide asymmetric film having a dense layer and a porous layer, comprising a multi-component polyimide containing a fluorine atom-containing polyimide, wherein the proportion of the fluorine atom-containing polyimide in the dense layer is suitably controlled Can be obtained.
Such a polyimide asymmetric membrane is separated from hydrogen gas and hydrocarbon gas such as methane gas, hydrogen gas and nitrogen gas, helium gas and nitrogen gas, carbon dioxide gas and methane gas such as methane gas. It is suitable as a practical high-performance gas separation membrane capable of suitably performing separation, separation of oxygen gas and nitrogen gas, and the like.
Claims (7)
(1)ポリイミド成分Aとポリイミド成分Bとを、NAとNBとが下記数式1を満たす組合せで混合して多成分ポリイミドの混合溶液を調製し、
(3)前記多成分ポリイミドの混合溶液を用いて相転換法によって非対称膜を得る、
ことを特徴とする多成分ポリイミドからなる非対称膜の製造方法。
ここで、NA及びNBは、ポリイミド原料である未反応のテトラカルボン酸成分とジアミン成分の重合度をそれぞれ0.5として算出する。 The polymerization and imidation reaction product of raw material components and / or the ingredients of the polyimide A and polyimide component A containing a fluorine atom in its chemical structure, the number average polymerization degree of the polyimide component A and N A, further, the polyimide B material component and / or the polymerization and imidation reaction product of the ingredients and the polyimide component B, and the number average polymerization degree of the polyimide component B is taken as N B,
(1) a polyimide components A and B, and the N A and N B to prepare a mixed solution of mixed and polyimide components in combination which satisfies the following formula 1,
(3) An asymmetric membrane is obtained by a phase conversion method using the mixed solution of the multi-component polyimide.
A method for producing an asymmetric membrane made of a multi-component polyimide.
Here, N A and N B calculates a degree of polymerization of the tetracarboxylic acid component and diamine component of the unreacted with polyimide material as 0.5, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014426A JP5119596B2 (en) | 2005-01-21 | 2006-01-23 | Method for producing polyimide asymmetric membrane made of multicomponent polyimide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005014498 | 2005-01-21 | ||
JP2005014498 | 2005-01-21 | ||
JP2006014426A JP5119596B2 (en) | 2005-01-21 | 2006-01-23 | Method for producing polyimide asymmetric membrane made of multicomponent polyimide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012011463A Division JP5240372B2 (en) | 2005-01-21 | 2012-01-23 | Method for producing polyimide asymmetric membrane made of multicomponent polyimide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006224097A true JP2006224097A (en) | 2006-08-31 |
JP5119596B2 JP5119596B2 (en) | 2013-01-16 |
Family
ID=36985909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006014426A Expired - Fee Related JP5119596B2 (en) | 2005-01-21 | 2006-01-23 | Method for producing polyimide asymmetric membrane made of multicomponent polyimide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5119596B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008013151A1 (en) * | 2006-07-23 | 2008-01-31 | Ube Industries, Ltd. | Polyimide film made of multicomponent polyimide and process for production thereof |
JP2008043945A (en) * | 2006-07-21 | 2008-02-28 | Ube Ind Ltd | Asymmetrical hollow fiber membrane for gas separation, method for gas separation and membrane module for gas separation |
WO2009091062A1 (en) | 2008-01-18 | 2009-07-23 | Ube Industries, Ltd. | Solvent-resistant asymmetric hollow fiber gas separation membrane, and method for production thereof |
WO2015147103A1 (en) * | 2014-03-27 | 2015-10-01 | 宇部興産株式会社 | Asymmetric gas separation membrane, and methods for separating and recovering gases |
US9321017B2 (en) | 2012-01-24 | 2016-04-26 | Nagoya Industrial Science Research Institute | Gas-separation membrane |
JP2018179465A (en) * | 2017-04-20 | 2018-11-15 | 株式会社新領域技術研究所 | Target gas treatment system |
JP2020509104A (en) * | 2017-02-06 | 2020-03-26 | キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー | Polyimide blends, their preparation and use |
CN113278152A (en) * | 2021-06-07 | 2021-08-20 | 吉林大学 | Sulfonated polyarylether compound and preparation method thereof, ion selective composite porous membrane and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03267130A (en) * | 1990-03-15 | 1991-11-28 | Ube Ind Ltd | Gas separation hollow-fiber membrane and its production |
JPH05508103A (en) * | 1990-04-03 | 1993-11-18 | ヘキスト・セラニーズ・コーポレーション | Gas separation membranes containing miscible blends of polyimide polymers |
JPH0671148A (en) * | 1992-08-25 | 1994-03-15 | Ube Ind Ltd | Polyimide separation film |
JPH07157560A (en) * | 1993-12-02 | 1995-06-20 | P I Zairyo Kenkyusho:Kk | Production of polyimide block copolymer and its solution composition |
JPH08257381A (en) * | 1995-03-14 | 1996-10-08 | Praxair Technol Inc | Fluid separation membrane prepared of blend of polyimide polymer |
JP2003024755A (en) * | 2001-07-16 | 2003-01-28 | Ube Ind Ltd | Method for manufacturing asymmetric hollow fiber gas separation membrane |
JP2006507939A (en) * | 2002-12-02 | 2006-03-09 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Polyimide blends for gas separation membranes |
-
2006
- 2006-01-23 JP JP2006014426A patent/JP5119596B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03267130A (en) * | 1990-03-15 | 1991-11-28 | Ube Ind Ltd | Gas separation hollow-fiber membrane and its production |
JPH05508103A (en) * | 1990-04-03 | 1993-11-18 | ヘキスト・セラニーズ・コーポレーション | Gas separation membranes containing miscible blends of polyimide polymers |
JPH0671148A (en) * | 1992-08-25 | 1994-03-15 | Ube Ind Ltd | Polyimide separation film |
JPH07157560A (en) * | 1993-12-02 | 1995-06-20 | P I Zairyo Kenkyusho:Kk | Production of polyimide block copolymer and its solution composition |
JPH08257381A (en) * | 1995-03-14 | 1996-10-08 | Praxair Technol Inc | Fluid separation membrane prepared of blend of polyimide polymer |
JP2003024755A (en) * | 2001-07-16 | 2003-01-28 | Ube Ind Ltd | Method for manufacturing asymmetric hollow fiber gas separation membrane |
JP2006507939A (en) * | 2002-12-02 | 2006-03-09 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Polyimide blends for gas separation membranes |
Non-Patent Citations (1)
Title |
---|
JPN6011061124; 川上浩良、丹羽基博、長岡昭二: '含フッ素ポリイミドブロック共重合体の気体透過特性' Fiber Preprints Vol.57, 20020522, Page.68, 社団法人 繊維学会 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008043945A (en) * | 2006-07-21 | 2008-02-28 | Ube Ind Ltd | Asymmetrical hollow fiber membrane for gas separation, method for gas separation and membrane module for gas separation |
WO2008013151A1 (en) * | 2006-07-23 | 2008-01-31 | Ube Industries, Ltd. | Polyimide film made of multicomponent polyimide and process for production thereof |
US8075824B2 (en) | 2006-07-23 | 2011-12-13 | Ube Industries, Ltd. | Polyimide film made of multicomponent polyimide and process of producing the same |
WO2009091062A1 (en) | 2008-01-18 | 2009-07-23 | Ube Industries, Ltd. | Solvent-resistant asymmetric hollow fiber gas separation membrane, and method for production thereof |
US8580012B2 (en) | 2008-01-18 | 2013-11-12 | Ube Industries, Ltd. | Solvent-resistant asymmetric hollow fiber gas separation membrane, and method for production thereof |
US9321017B2 (en) | 2012-01-24 | 2016-04-26 | Nagoya Industrial Science Research Institute | Gas-separation membrane |
WO2015147103A1 (en) * | 2014-03-27 | 2015-10-01 | 宇部興産株式会社 | Asymmetric gas separation membrane, and methods for separating and recovering gases |
CN106132522A (en) * | 2014-03-27 | 2016-11-16 | 宇部兴产株式会社 | Asymmetric gas separation membrane and the method for separation and recovery gas |
JPWO2015147103A1 (en) * | 2014-03-27 | 2017-04-13 | 宇部興産株式会社 | Asymmetric gas separation membrane and method for separating and recovering gas |
JP2020509104A (en) * | 2017-02-06 | 2020-03-26 | キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー | Polyimide blends, their preparation and use |
US11319439B2 (en) | 2017-02-06 | 2022-05-03 | King Abdullah University Of Science And Technology | Polyimide blends, methods of making each and methods of use |
JP2018179465A (en) * | 2017-04-20 | 2018-11-15 | 株式会社新領域技術研究所 | Target gas treatment system |
CN113278152A (en) * | 2021-06-07 | 2021-08-20 | 吉林大学 | Sulfonated polyarylether compound and preparation method thereof, ion selective composite porous membrane and preparation method and application thereof |
CN113278152B (en) * | 2021-06-07 | 2022-06-21 | 吉林大学 | Sulfonated polyarylether compound and preparation method thereof, ion selective composite porous membrane and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5119596B2 (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5240372B2 (en) | Method for producing polyimide asymmetric membrane made of multicomponent polyimide | |
JP5673728B2 (en) | Polyimide film comprising multi-component polyimide and method for producing the same | |
JP5119596B2 (en) | Method for producing polyimide asymmetric membrane made of multicomponent polyimide | |
JP5423400B2 (en) | Solvent resistant asymmetric hollow fiber gas separation membrane and method for producing the same | |
Qiao et al. | Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol | |
JP7053605B2 (en) | Improved method for making carbon molecular sieve hollow fiber membranes | |
US7803214B2 (en) | Asymmetric hollow-fiber gas separation membrane, gas separation method and gas separation membrane module | |
JPH03267130A (en) | Gas separation hollow-fiber membrane and its production | |
JPH0568859A (en) | Gas separation hollow-fiber membrane and its production | |
JP5119597B2 (en) | Polyimide asymmetric membrane made of multi-component polyimide, gas separation membrane, and gas separation method | |
JPH05146651A (en) | Manufacture of gas separation membrane | |
JP2684582B2 (en) | Polyimide separation membrane | |
JP5358903B2 (en) | Asymmetric hollow fiber gas separation membrane, gas separation method, and gas separation membrane module | |
JP5114912B2 (en) | Asymmetric membrane, gas separation membrane, and gas separation method formed of Si atom-containing polyimide | |
EP3124108A1 (en) | Asymmetric gas separation membrane, and methods for separating and recovering gases | |
Kononova et al. | Phase-inversion gradient-porous films on the basis of polyamidoimides derived from phthalimidobenzenedicarbonyl dichloride and various diamines | |
JP2009191121A (en) | Method for producing molded body having improved solvent resistance | |
JP2020530811A (en) | Improved method for making carbon molecular sieve hollow fiber membranes | |
JP2004018751A (en) | Hydrophilic porous polyimide film and method for producing the same | |
JP6866730B2 (en) | Gas separation membrane | |
JP2007211256A (en) | Hydrophilic polyimide porous membrane and its preparation process | |
JP2009227953A (en) | Method for producing molding improved in solvent resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5119596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |