JP2006224069A - Dropping undiluted solution preparation apparatus - Google Patents

Dropping undiluted solution preparation apparatus Download PDF

Info

Publication number
JP2006224069A
JP2006224069A JP2005044544A JP2005044544A JP2006224069A JP 2006224069 A JP2006224069 A JP 2006224069A JP 2005044544 A JP2005044544 A JP 2005044544A JP 2005044544 A JP2005044544 A JP 2005044544A JP 2006224069 A JP2006224069 A JP 2006224069A
Authority
JP
Japan
Prior art keywords
stock solution
solution preparation
dripping
dropping
dripping stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044544A
Other languages
Japanese (ja)
Other versions
JP4536545B2 (en
Inventor
Kazutoshi Okubo
和俊 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005044544A priority Critical patent/JP4536545B2/en
Publication of JP2006224069A publication Critical patent/JP2006224069A/en
Application granted granted Critical
Publication of JP4536545B2 publication Critical patent/JP4536545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dropping undiluted solution preparation apparatus supplying the dropping undiluted solution containing no bubbles into ammonia water. <P>SOLUTION: This dropping undiluted solution preparation apparatus is provided with a dropping undiluted solution preparation tank, an agitator agitating the preparation tank, and a vacuum pump decompressing the preparation tank. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、滴下原液調製装置に関し、さらに詳しくは、気泡を含まない滴下原液をアンモニア水中に供給することのできる滴下原液調製装置に関する。   The present invention relates to a dripping stock solution preparation device, and more particularly to a dripping stock solution preparation device capable of supplying a dripping stock solution free of bubbles into ammonia water.

非特許文献1〜5によると、高温ガス炉用燃料は、一般的に以下のような工程を経て製造される。まず、酸化ウランの粉末を硝酸に溶かして、硝酸ウラニル原液とする。次に、この硝酸ウラニル原液に純水及び増粘剤等を添加し、攪拌して滴下原液とする。調製された滴下原液は、所定の温度に冷却され、粘度を調製した後、細径の滴下ノズルを用いてアンモニア水溶液に滴下される。   According to Non-Patent Documents 1 to 5, HTGR fuel is generally manufactured through the following steps. First, uranium oxide powder is dissolved in nitric acid to obtain a uranyl nitrate stock solution. Next, pure water, a thickener and the like are added to the uranyl nitrate stock solution and stirred to obtain a dropping stock solution. The prepared dropping undiluted solution is cooled to a predetermined temperature to adjust the viscosity, and then dropped into an aqueous ammonia solution using a small-diameter dropping nozzle.

このアンモニア水溶液に滴下された液滴は、アンモニア水溶液表面に達するまでの間に、アンモニアガスを吹きかけられる。このアンモニアガスによって、液滴表面がゲル化され、これにより、アンモニア水溶液表面到達時における変形が防止される。アンモニア水溶液中における硝酸ウラニルは、アンモニアと十分に反応し、重ウラン酸アンモニウム粒子(以下、「ADU粒子」と略する場合がある。)となる。   The droplets dropped on the aqueous ammonia solution are sprayed with ammonia gas before reaching the surface of the aqueous ammonia solution. The surface of the droplet is gelled by the ammonia gas, thereby preventing deformation when reaching the surface of the aqueous ammonia solution. Uranyl nitrate in the aqueous ammonia solution sufficiently reacts with ammonia to form ammonium heavy uranate particles (hereinafter sometimes abbreviated as “ADU particles”).

このADU粒子は、洗浄、乾燥された後、大気中で焙焼され、三酸化ウラン粒子となる。さらに、三酸化ウラン粒子は、還元及び焼結されることにより、高密度のセラミックス状の二酸化ウラン粒子となる。この二酸化ウラン粒子をふるい分け、すなわち分級して、所定の粒子径を有する燃料核微粒子を得る。   The ADU particles are washed and dried and then roasted in the air to become uranium trioxide particles. Furthermore, the uranium trioxide particles are reduced and sintered to become high-density ceramic-like uranium dioxide particles. The uranium dioxide particles are screened, that is, classified to obtain fuel core fine particles having a predetermined particle size.

以上のようにして得られた燃料核微粒子の表面に、低密度炭素層、高密度炭素層、SiC層および高密度炭素層を、この順に被覆して、被覆燃料粒子を得る。   The surface of the fuel core fine particles obtained as described above is coated with a low density carbon layer, a high density carbon layer, a SiC layer and a high density carbon layer in this order to obtain coated fuel particles.

S.Kato ”Fabrication of HTTR First Loading fuel”,IAEA-TECDOC-1210,187 (2001)S. Kato "Fabrication of HTTR First Loading fuel", IAEA-TECCDOC-1210, 187 (2001) N.Kitamura ”Present status of initial core fuel fabrication for the HTTR” IAEA−TECDOC−988,373(1997)N. Kitamura "Present status of initial core fuel fabrication for the HTTR" IAEA-TECCDOC-988, 373 (1997) 林 君夫、”高温工学試験研究炉の設計方針、製作性及び総合的健全性評価”JAERI−M 89−162(1989)Kimio Hayashi, “High Temperature Engineering Test Reactor Design Policy, Manufacturability and Comprehensive Soundness Evaluation” JAERI-M 89-162 (1989) 湊 和生、”高温ガス炉燃料製造の高度技術の開発”JAERI−Reseach 98−070(1998)Kazuo Tsuji, “Development of Advanced Technology for HTGR Fuel Production” JAERI-Research 98-070 (1998) 長谷川正義、三島良績 監修「原子炉材料ハンドブック」昭和52年10月31日発行 221−247頁、日刊工業新聞社Hasegawa Masayoshi, Mishima Yoshimi supervision "Reactor Material Handbook", published on October 31, 1977, pages 221-247, Nikkan Kogyo Shimbun

しかし、滴下原液を調製する際に攪拌操作をすると、滴下原液中に気泡が含まれてしまうことがある。しかも、滴下原液は、増粘剤を含有しているので、粘度が高くなっている。従って、滴下原液中に気泡が含まれてしまうと、その気泡を除去することは困難である。このように気泡を含んだ滴下原液をアンモニア水中に滴下すると、図2に示す様に内部に気泡22を有する重ウラン酸アンモニウム粒子21が形成されてしまうという問題がある。   However, if a stirring operation is performed when preparing the dropping stock solution, bubbles may be contained in the dropping stock solution. And since the dripping stock solution contains the thickener, the viscosity is high. Therefore, if bubbles are included in the dropping stock solution, it is difficult to remove the bubbles. When the dropping stock solution containing bubbles is dropped into ammonia water in this way, there is a problem that ammonium heavy uranate particles 21 having bubbles 22 inside are formed as shown in FIG.

本発明は、前記問題を解決するため、気泡を含まない滴下原液をアンモニア水中に供給することのできる滴下原液調製装置を提供することにある。   In order to solve the above-mentioned problem, the present invention is to provide a dripping stock solution preparation device capable of supplying a dripping stock solution containing no bubbles into ammonia water.

前記課題を解決するための本発明の手段として、
請求項1は、滴下原液調製槽と、前記滴下原液調製槽内を攪拌可能な攪拌手段と、前記滴下原液調製槽内を減圧にする真空ポンプとを備えることを特徴とする滴下原液調製装置であり、
請求項2は、前記滴下原液調製槽内の圧力が、0.133〜1.33Paである前記請求項1に記載の滴下原液調製装置である。
As means of the present invention for solving the above problems,
Claim 1 is a dripping stock solution preparation device comprising a dripping stock solution preparation tank, a stirring means capable of stirring the inside of the dripping stock solution preparation tank, and a vacuum pump for reducing the pressure inside the dripping stock solution preparation tank. Yes,
Claim 2 is the dripping stock solution preparation device according to claim 1, wherein the pressure in the dripping stock solution preparation tank is 0.133 to 1.33 Pa.

本発明によれば、滴下原液調製槽内部を減圧にするような真空ポンプを備えることによって、攪拌手段により発生した気泡を滴下原液中から取り除くことにより、気泡を含まない滴下原液をアンモニア水中に滴下することができる。そして、内部に気泡を有しない重ウラン酸アンモニウム粒子を製造することができる。   According to the present invention, by providing a vacuum pump that depressurizes the inside of the dripping stock solution preparation tank, by removing bubbles generated by the stirring means from the dripping stock solution, the dripping stock solution containing no bubbles is dropped into the ammonia water. can do. And the ammonium heavy uranate particle | grains which do not have a bubble inside can be manufactured.

以下、図1を参照しながら本発明の滴下原液調製装置について述べる。なお、本発明における滴下原液調製装置は、図1に示される滴下原液調製装置に限られることはなく、適宜設計変更等をしてもよい。   Hereinafter, the dripping stock solution preparation apparatus of the present invention will be described with reference to FIG. In addition, the dripping stock solution preparation apparatus in this invention is not restricted to the dripping stock solution preparation apparatus shown by FIG. 1, You may change a design etc. suitably.

図1に示される滴下原液調製装置1は、滴下原液調製槽2と、攪拌機3と、ガス排出路4と、真空ポンプ5と、滴下原液供給路6とを備えて成る。   A dripping stock solution preparation device 1 shown in FIG. 1 includes a dripping stock solution preparation tank 2, a stirrer 3, a gas discharge path 4, a vacuum pump 5, and a dripping stock solution supply path 6.

前記滴下原液調製槽2は、調製された滴下原液を貯留する槽である。本発明における滴下原液調製槽で扱われる滴下原液は、酸化ウランと硝酸とを混合して得られる硝酸ウラニル原液に水溶性ポリマーを添加し、次いで純水を添加することにより粘度を調節して調製される。   The dripping stock solution preparation tank 2 is a tank for storing the prepared dripping stock solution. The dripping stock solution handled in the dripping stock solution preparation tank in the present invention is prepared by adjusting the viscosity by adding a water-soluble polymer to a uranyl nitrate stock solution obtained by mixing uranium oxide and nitric acid, and then adding pure water. Is done.

前記酸化ウランとしては、二酸化ウラン、三酸化ウランまたは八酸化三ウラン等を挙げることができ、特に八酸化三ウランが好ましい。   Examples of the uranium oxide include uranium dioxide, uranium trioxide, and triuranium octoxide, and uranium trioxide is particularly preferable.

前記硝酸ウラニル原液の調製の際には、ウランと硝酸とのモル比(硝酸のモル数/ウランのモル数)が2.1〜2.6になるように、酸化ウランと硝酸とを混合するのが好ましく、特に前記モル比が2.3〜2.5になるように、酸化ウランと硝酸とを混合するのが好ましい。前記モル比が2.1よりも小さいと、酸化ウランが完全に溶解せず、硝酸ウラニル原液中に残渣として残ることがある。また、前記モル比が2.6よりも大きいと、硝酸の使用量および反応後の廃液処理のための中和剤の使用量が多くなってしまい、その結果、硝酸ウラニルの製造コストが高くなり、ひいては、重ウラン酸アンモニウム粒子の製造コストが高くなってしまうことがある。   In preparing the uranyl nitrate stock solution, uranium oxide and nitric acid are mixed so that the molar ratio of uranium to nitric acid (moles of nitric acid / moles of uranium) is 2.1 to 2.6. In particular, it is preferable to mix uranium oxide and nitric acid so that the molar ratio is 2.3 to 2.5. If the molar ratio is less than 2.1, uranium oxide may not be completely dissolved and may remain as a residue in the uranyl nitrate stock solution. On the other hand, if the molar ratio is larger than 2.6, the amount of nitric acid used and the amount of neutralizing agent used for the treatment of the waste liquid after the reaction increase, resulting in an increase in the production cost of uranyl nitrate. As a result, the production cost of ammonium heavy uranate particles may increase.

前記水溶性ポリマーとしては、ポリビニルアルコール(以下、PVAと略する。)、ポリアクリル酸ナトリウム及びポリエチレンオキシド等の合成ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、及びエチルセルロース等のセルロース系ポリマー、可溶性でんぷん、及びカルボキシメチルでんぷん等のでんぷん系ポリマー、デキストリン、及びガラクタン等の水溶性天然高分子等を挙げることができる。これら各種の水溶性ポリマーは、その一種を単独で使用されても、また、それらの二種以上が併用されていても良い。これらの中でも、水溶性ポリマーとして前記合成ポリマーが好ましく、特にポリビニルアルコールが好ましい。前記水溶性ポリマーの添加量としては、滴下原液全体の15〜20体積%であるのが好ましい。   Examples of the water-soluble polymer include polyvinyl alcohol (hereinafter abbreviated as PVA), synthetic polymers such as sodium polyacrylate and polyethylene oxide, cellulose polymers such as carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, and ethyl cellulose, soluble starch, And starch-based polymers such as carboxymethyl starch, water-soluble natural polymers such as dextrin, and galactan. One of these various water-soluble polymers may be used alone, or two or more thereof may be used in combination. Among these, the synthetic polymer is preferable as the water-soluble polymer, and polyvinyl alcohol is particularly preferable. The addition amount of the water-soluble polymer is preferably 15 to 20% by volume based on the whole dropping stock solution.

前記純水の添加量としては、15℃における滴下原液の粘度が4.0×10−2〜6.5×10−2Pa・sになるような量であるのが好ましい。 The addition amount of the pure water is preferably an amount such that the viscosity of the dropping stock solution at 15 ° C. is 4.0 × 10 −2 to 6.5 × 10 −2 Pa · s.

前記滴下原液調製槽2としては耐熱性、耐腐食性の槽であれば、その容積およびその形状については特に制限はなく、例えば、円筒状の槽を挙げることができる。   As long as the dripping stock solution preparation tank 2 is a heat-resistant and corrosion-resistant tank, the volume and shape thereof are not particularly limited, and examples thereof include a cylindrical tank.

攪拌機3は、前記滴下原液調製槽2内を攪拌可能であればよい。前記攪拌機3としては、滴下原液中の気泡を上方向に移行させるような攪拌翼3Aを有する装置であれば特に制限はなく、公知のものを用いることができる。   The stirrer 3 should just be able to stir the said dripping stock solution preparation tank 2. FIG. The stirrer 3 is not particularly limited as long as it is a device having a stirring blade 3A that moves bubbles in the dropping stock solution upward, and a known one can be used.

前記攪拌機3の回転数としては、30〜250rpmであるのが好ましい。前記回転数が30rpmよりも少ないと、滴下原液中から気泡を除去する時間が長くなり、その結果、重ウラン酸アンモニウム粒子の製造効率が悪くなることがある。前記回転数が250rpmよりも多いと、真空ポンプ5の吸引によって除去される気泡の量よりも、攪拌することに伴って滴下原液中に取り込まれる気泡の量が多くなってしまうことがある。   The rotation speed of the stirrer 3 is preferably 30 to 250 rpm. When the rotational speed is less than 30 rpm, the time for removing bubbles from the dropping stock solution becomes long, and as a result, the production efficiency of ammonium heavy uranate particles may deteriorate. If the rotational speed is higher than 250 rpm, the amount of bubbles taken into the dropping stock solution may increase with stirring, rather than the amount of bubbles removed by suction of the vacuum pump 5.

前記ガス排出路4は、前記滴下原液調製槽2の上部に設けられ、滴下原液中の気泡が滴下原液調製槽2内の上部空間に移行して溜まったガスを前記滴下原液調製槽2外に案内する排出路である。   The gas discharge path 4 is provided in the upper part of the dripping stock solution preparation tank 2, and the gas accumulated in the dripping stock solution moving to the upper space in the dripping stock solution preparation tank 2 is collected outside the dripping stock solution preparation tank 2. It is a discharge route to guide.

前記ガス排出路4の形状および材質については、特に制限はないが、耐腐食性の排出路であるのが好ましい。このガス排出路4には、前記滴下原液調製槽2内を減圧にし、前記滴下原液調製槽2内上部のガスを滴下原液調製槽2外へ排出する真空ポンプ5が介装される。前記真空ポンプ5としては、例えば、ロータリーポンプ、クライオポンプ、ドライポンプまたはブースターポンプ等を挙げることができる。   Although there is no restriction | limiting in particular about the shape and material of the said gas exhaust path 4, It is preferable that it is a corrosion-resistant exhaust path. The gas discharge passage 4 is provided with a vacuum pump 5 for reducing the pressure in the dropping stock solution preparation tank 2 and discharging the gas in the upper part of the dropping stock solution preparation tank 2 to the outside of the dropping stock solution preparation tank 2. Examples of the vacuum pump 5 include a rotary pump, a cryopump, a dry pump, and a booster pump.

前記真空ポンプ5により減圧された滴下原液調製槽2内の圧力としては、滴下原液中に存在する気泡を確実に除去することができる限り制限はないが、特に0.133〜1.33Paであるのが好ましい。前記圧力が、1.33Paよりも高いと、滴下原液中に存在する気泡を除去するのに時間がかかり、効率的に気泡を除去することができないことがあり、前記圧力が0.133Paよりも低いと、水分等の揮発が生じ、滴下原液の濃度及び粘度が変化してしまうということがある。   The pressure in the dropping stock solution preparation tank 2 decompressed by the vacuum pump 5 is not particularly limited as long as air bubbles present in the dropping stock solution can be surely removed, but is particularly 0.133 to 1.33 Pa. Is preferred. If the pressure is higher than 1.33 Pa, it may take time to remove the bubbles present in the dropping stock solution, and the bubbles may not be efficiently removed. The pressure is more than 0.133 Pa. If it is low, volatilization of moisture or the like occurs, and the concentration and viscosity of the dropping stock solution may change.

前記真空ポンプ5により吸引されたガスは、ガス排出路4を通り、ガス排出路4に設けられたガス浄化装置(図示せず)を通って大気中に放出される。   The gas sucked by the vacuum pump 5 passes through the gas discharge path 4 and is released into the atmosphere through a gas purification device (not shown) provided in the gas discharge path 4.

前記ガス浄化装置(図示せず)は、ガス中に含まれる有害物質を除去することができれば、特に制限はなく、酸やアルカリ水溶液に有害物質を吸収させる吸収装置または活性炭を内部に装填し、活性炭に有害物質を吸着させる活性炭吸着装置等を挙げることができる。特に、有機化合物も効率的に除去することができる活性炭吸着装置が好ましい。   The gas purification device (not shown) is not particularly limited as long as it can remove harmful substances contained in the gas, and is loaded with an absorption device or activated carbon that absorbs harmful substances in acid or alkaline aqueous solution, Examples thereof include an activated carbon adsorption device that adsorbs harmful substances on activated carbon. In particular, an activated carbon adsorption device that can also efficiently remove organic compounds is preferable.

前記滴下原液供給路6は、前記滴下原液調製槽2の下部に設けられ、前記滴下原液調製槽2内で気泡が取り除かれた滴下原液を、滴下原液供給路6の他端に設けられた滴下ノズル(図示せず)に案内する供給路である。この滴下原液供給路6には、開閉弁が設けられ、開閉弁の開閉操作により、気泡が除去された滴下原液を滴下ノズルへ供給する。   The dripping stock solution supply path 6 is provided in the lower part of the dripping stock solution preparation tank 2, and the dripping stock solution from which bubbles are removed in the dripping stock solution preparation tank 2 is dropped at the other end of the dropping stock solution supply path 6. It is a supply path which guides to a nozzle (not shown). The dripping stock solution supply path 6 is provided with an on-off valve, and the dripping stock solution from which bubbles are removed is supplied to the dropping nozzle by opening / closing the on-off valve.

具体的には、滴下原液から気泡を除去している間は、開閉弁を閉じたままにしておき、滴下原液から気泡を除去した後に、閉じられている開放弁を開けて、滴下原液を滴下ノズルへ供給する。   Specifically, while removing bubbles from the dripping stock solution, keep the on-off valve closed, and after removing bubbles from the dripping stock solution, open the closed open valve to drop the dripping stock solution. Supply to the nozzle.

滴下原液調製槽2内で気泡が取り除かれた滴下原液は、前記滴下原液調製槽2に接続する滴下原液供給路6を通って、滴下原液供給路6の他端に設けられた滴下ノズル(図示せず)から反応槽(図示せず)に貯留されたアンモニア水中に滴下される。   The dripping stock solution from which bubbles have been removed in the dripping stock solution preparation tank 2 passes through the dropping stock solution supply path 6 connected to the dripping stock solution preparation tank 2, and a dropping nozzle (see FIG. (Not shown) is dropped into ammonia water stored in a reaction tank (not shown).

以上のように本発明の滴下原液調製装置で気泡が除去された滴下原液を反応槽内のアンモニア水に滴下すると、内部に気泡を含まない重ウラン酸アンモニウム粒子が形成される。   As described above, when the dripping stock solution from which bubbles are removed by the dripping stock solution preparation apparatus of the present invention is dropped into the ammonia water in the reaction tank, ammonium deuterated uranate particles that do not contain bubbles are formed inside.

図1は、本発明の滴下原液調製装置の一例を示す図である。FIG. 1 is a diagram showing an example of a dripping stock solution preparation apparatus according to the present invention. 図2は、内部に気泡を有する重ウラン酸アンモニウム粒子の概略図である。FIG. 2 is a schematic view of ammonium deuterated uranate particles having bubbles inside.

符号の説明Explanation of symbols

1 滴下原液調製装置
2 滴下原液調製槽
3 攪拌機
3A 攪拌翼
4 ガス排出路
5 真空ポンプ
6 滴下原液供給路
21 重ウラン酸アンモニウム粒子
22 気泡
DESCRIPTION OF SYMBOLS 1 dripping stock solution preparation apparatus 2 dripping stock solution preparation tank 3 stirrer 3A stirring blade 4 gas discharge path 5 vacuum pump 6 dripping stock solution supply path 21 heavy ammonium uranate particle 22 bubble

Claims (2)

滴下原液調製槽と、前記滴下原液調製槽内を攪拌可能な攪拌手段と、前記滴下原液調製槽内を減圧にする真空ポンプとを備えることを特徴とする滴下原液調製装置。   A dripping stock solution preparing apparatus comprising: a dripping stock solution preparing tank; stirring means capable of stirring the inside of the dripping stock solution preparing tank; and a vacuum pump for reducing the pressure in the dropping stock solution preparing tank. 前記滴下原液調製槽内の圧力が、0.133〜1.33Paである前記請求項1に記載の滴下原液調製装置。

The dripping stock solution preparation apparatus according to claim 1, wherein the pressure in the dripping stock solution preparation tank is 0.133 to 1.33 Pa.

JP2005044544A 2005-02-21 2005-02-21 Drip stock solution preparation equipment Expired - Fee Related JP4536545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044544A JP4536545B2 (en) 2005-02-21 2005-02-21 Drip stock solution preparation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044544A JP4536545B2 (en) 2005-02-21 2005-02-21 Drip stock solution preparation equipment

Publications (2)

Publication Number Publication Date
JP2006224069A true JP2006224069A (en) 2006-08-31
JP4536545B2 JP4536545B2 (en) 2010-09-01

Family

ID=36985885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044544A Expired - Fee Related JP4536545B2 (en) 2005-02-21 2005-02-21 Drip stock solution preparation equipment

Country Status (1)

Country Link
JP (1) JP4536545B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066431A (en) * 2000-09-01 2002-03-05 Fuji Photo Film Co Ltd Method and apparatus for preparing and defoaming coating liquid
JP2002274952A (en) * 2001-03-16 2002-09-25 Hitachi Metals Ltd Vacuum deaerator and slurry deaeration process
JP2004143036A (en) * 2002-08-30 2004-05-20 Ngk Insulators Ltd Method for manufacturing lithium titanate minute sphere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066431A (en) * 2000-09-01 2002-03-05 Fuji Photo Film Co Ltd Method and apparatus for preparing and defoaming coating liquid
JP2002274952A (en) * 2001-03-16 2002-09-25 Hitachi Metals Ltd Vacuum deaerator and slurry deaeration process
JP2004143036A (en) * 2002-08-30 2004-05-20 Ngk Insulators Ltd Method for manufacturing lithium titanate minute sphere

Also Published As

Publication number Publication date
JP4536545B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
CN108855132A (en) Multi-stage porous cerium zirconium oxide supported spinel-type palladium cobalt composite oxide catalyst
CN103894194A (en) Loading type catalyst for removing formaldehyde under room temperature
CN106492790A (en) A kind of low temperature SCR denitration catalyst and preparation method thereof
JP2015501715A (en) Method for removing CO2 and NOx from waste gas using catalyst
CN106861676A (en) A kind of anti-sulfur dioxide is suitable to denitrating catalyst that low temperature is used and preparation method thereof
JP4536545B2 (en) Drip stock solution preparation equipment
Sodeinde Preparation of a locally produced activated carbon from coconut shells and its use in reducing hexamine cobalt (III)
CN109999901A (en) A kind of porous graphene-molecular sieve complex carries denitrating catalyst and preparation method thereof
CN101343571B (en) Method for preparing nano-composite zirconium-manganese based oxide mesoporous desulphurizing agent
CN107321343A (en) One kind is without vanadium denitration catalyst and preparation method thereof
EP1714943B1 (en) Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution
CN108236950A (en) A kind of preparation method of the Pd-B/C powder as formaldehyde remover
CN108097038A (en) A kind of application of transition metal two-dimensional nano piece
JP2006327871A (en) Apparatus and method for generating hydrogen
EP3813998A1 (en) Pellets of sorbent suitable for carbon dioxide capture
CN110102286B (en) Doped nano manganese dioxide-graphene/Al2O3Preparation method of catalyst, catalyst and application
CN105709572B (en) One kind reduces SO2The device and method poisoned to SCR catalyst
CN105664958A (en) Photocatalytic material and method for preparing same
JP2009121940A (en) Method for immobilizing radioactive waste
JP2006143520A (en) Uranyl nitrate solution preparation device and uranyl nitrate solution preparation method
CN107213890A (en) One kind reduction SO2Oxygenation efficiency is without vanadium denitration catalyst and preparation method thereof
JP4498183B2 (en) Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas
CN110124669A (en) Dioxin in waste incineration flue gas selectively removing catalyst and preparation method thereof
Tian et al. Electro-assisted catalytic oxidation of flue gas desulfurization-derived magnesium sulfite using cobalt ferrite as catalyst under moderate condition
CN107185520A (en) One kind reduction SO2Oxygenation efficiency honeycomb fashion is without vanadium catalyst for denitrating flue gas and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees