JP2004143036A - Method for manufacturing lithium titanate minute sphere - Google Patents
Method for manufacturing lithium titanate minute sphere Download PDFInfo
- Publication number
- JP2004143036A JP2004143036A JP2003208594A JP2003208594A JP2004143036A JP 2004143036 A JP2004143036 A JP 2004143036A JP 2003208594 A JP2003208594 A JP 2003208594A JP 2003208594 A JP2003208594 A JP 2003208594A JP 2004143036 A JP2004143036 A JP 2004143036A
- Authority
- JP
- Japan
- Prior art keywords
- lithium titanate
- tio
- microspheres
- solution
- sphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】本発明は、リチウムタイタネート(Li2TiO3)微小球の製造方法に関し、特に使用済みリチウムタイタネート微小球からのLiリサイクルに好適なリチウムタイタネート微小球の製造方法に関するものである。
【0002】
【従来の技術】核融合炉内では、天然にはほとんど存在しないトリチウムを、以下に示すように中性子とLiを反応させて、増殖させている。このようなトリチウム増殖材としてはLi含有セラミックス、例えば、Li2O, LiAlO2, Li2TiO3等が用いられ、これらは主に微小球の形態で使用される。
6Li +1n→ 4He +3T+ 4.8 MeV(発熱)
【0003】上記したようなLi含有セラミックス微小球の製造方法の一例として、特許文献1には、リチウムタイタネート(Li2TiO3)微小球を間接湿式法で製造する技術が開示されている。この方法では、原料としてのリチウムタイタネート粉末をポリビニルアルコールの水溶液中に分散させて滴下原液とし、この滴下原液をノズルからアセトン中に滴下し、ゲル化させて湿潤ゲル球体とし、乾燥後、仮焼してポリビニルアルコールを取り除いたのち、焼結して最終的にリチウムタイタネート微小球を得ている。
【0004】上述したトリチウム増殖材として使用されるLi含有セラミックスは、その中のLiが稀少資源であるため、使用済みのトリチウム増殖材、例えば使用済みのリチウムタイタネート微小球からリチウムタイタネート微小球を再製造して、Liをリサイクル使用することが望まれる。
この観点から、上述した特許文献1に開示されたリチウムタイタネート微小球の製造方法を、使用済みリチウムタイタネート微小球からリチウムタイタネート微小球を再製造するために適用した場合には、以下に述べるような問題があった。
【0005】すなわち、使用済みのリチウムタイタネート微小球をそのまま原料として使用できないため、使用済みのリチウムタイタネート微小球を溶液化し、Li2CO3粉末としてLiを回収後、TiO2粉末と仮焼等により反応させてLi2TiO3の単相としたものを、ポリビニルアルコール水溶液中に分散させて滴下原液とする必要があった。そのため、従来の転動造粒法等に比べると良好な性状のリチウムタイタネート微小球が得られるとはいうものの、製造工程が増えるため、結果として製造コストで嵩むという問題があった。
【0006】この問題を解消するために、使用済みリチウムタイタネート微小球を直接溶解して微小球を得ようとする試みが、非特許文献1に開示されている。しかしながら、この方法では、リチウムタイタネート微小球を直接溶解してはいるものの、溶解した溶液から原料粉末を作製し、従来と同様の転動造粒法により作製した原料粉末から微小球を得ているため、やはり製造工程が多く、結果として製造コストの増大が免れ得なかった。
【0007】この点、発明者らは先に、上記の問題を解決するものとして、「原料となるリチウムタイタネート粉末を溶液化し、それを濃縮してリチウムタイタネート濃縮溶液を得る溶液調整工程と;溶液調整工程で得たリチウムタイタネート濃縮溶液をゲル化溶媒中に滴下させ液滴の形状のままゲル化し、その後熟成して湿潤ゲル球を得、得られた湿潤ゲル球を、前記ゲル化溶媒よりも高い表面張力を有する置換溶媒中に浸漬させて湿潤ゲル球の細孔において前記ゲル化溶媒を前記置換溶媒で置換させる溶媒交換を行い、溶媒交換後の湿潤ゲル球を乾燥させてゲル球を形成させるゲル球形成工程と;ゲル球形成工程で得たゲル球を焼成してリチウムタイタネートの微小球を得る微小球焼成工程と;からなるリチウムタイタネート微小球の製造方法」を開発し、特許文献2において開示した。
上記の技術により、良好な性状のリチウムタイタネート微小球を比較的簡単な製造工程で得ることができ、製造コストの有利な低減が可能となった。
【0008】
【特許文献1】
特開平10−265222号公報
【特許文献2】
特開2001−278623号公報
【非特許文献1】
C.Alvani, S.Casadio et. al.,”Reprocessing and PreparaTion of Li2TiO3 Pebbles Through Li−Ti−Peroxocomplexes Wet GranulaTion Method”, The Seventh InternaTional Workshop on CERAMIC BREEDER BLANKETINTERACTIONS,Petten,Netherlands,(1998)
【0009】
【発明が解決しようとする課題】しかしながら、上記した特許文献2に開示の技術では、得られるリチウムタイタネート微小球の密度が50%T.D.以下と低いところに問題を残していた。また、微小球表面にクラックが生じ易いところにも問題を残していた。
【0010】本発明は、上記の問題を有利に解決するもので、微小球の密度が80%T.D.以上と極めて高く、かつ微小球表面にクラックが生じることのないリチウムタイタネート微小球の有利な製造方法を提案することを目的とする。
また、本発明は、上掲特許文献2に開示の技術のように、ゲル化溶媒を置換溶媒で置換させる溶媒交換工程が必要なく、従ってより省工程、省コストを達成することができるリチウムタイタネート微小球の製造方法を提案することを目的とする。
【0011】すなわち、本発明の要旨構成は次のとおりである。
1.リチウムタイタネート(Li2TiO3)の粉末または微小球を、60℃以上の過酸化水素水中に供給して、その95%以上を溶解する工程、
上記の溶解液を、60〜80℃に保持し、脱水、脱酸等により、Li2TiO3濃度が15〜30mass%のリチウムタイタネート濃縮液を得る工程、
上記の濃縮溶液を、アセトン中に滴下して湿潤ゲル球を得る工程、
得られた湿潤ゲル球を、乾燥後、150〜250℃の温度で仮焼する工程、
仮焼して得たゲル球を、700℃まで10〜100℃/hの速度で昇温し、700℃から焼結温度までは100〜200℃/hの速度で昇温したのち、所定の焼結温度で焼結する工程
の結合になることを特徴とするリチウムタイタネート微小球の製造方法。
【0012】2.原料であるリチウムタイタネート(Li2TiO3)粉末または微小球中に、高温特性向上材料として酸化物の粉末を1〜20 mol%の範囲で添加配合したことを特徴とする上記1記載のリチウムタイタネート微小球の製造方法。
【0013】3.上記酸化物が、TiO,Ti2O3,TiO2,NbO,Nb2O3,NbO2,Nb2O5,VO,V2O3,VO2,Y2O3,Al2O3,Cr2O3,MnO,Mn3O4,MoO2,BeO,CaO,Gd2O3,ZrO2および NiOのうちから選んだ一種または二種以上であることを特徴とする上記2記載のリチウムタイタネート微小球の製造方法。
【0014】
【発明の実施の形態】以下、本発明を具体的に説明する。
図1に、本発明のリチウムタイタネート微小球の製造工程をフローチャートで示す。
同図に示したとおり、本発明の製造工程は、大きく分けて溶液調整工程、ゲル球形成工程および微小球焼成工程の3つの工程に分割される。以下、各工程ごとに具体的に説明する。
【0015】さて、まず、溶液調整工程において、リチウムタイタネート(Li2TiO3)の粉末または微小球を過酸化水素水中に溶解するわけであるが、この溶解の際に、溶液である過酸化水素水の温度を60℃以上に保持することが重要である。というのは、過酸化水素水の温度が60℃に満たないとLi2TiO3の溶解反応が極めて緩慢となり、不溶解残渣差も多くなるからである。
なお、この溶解に際しては、マグネティックスターラー等を用いた攪拌下に行うのが好適である。攪拌時間は、1〜8時間程度で十分であり、かくして添加したリチウムタイタネート粉末の95%以上を溶解することができる。
【0016】ついで、この溶解液を濃縮するが、この濃縮は、溶解液を60〜80℃に保持することによって行う。すなわち、上記溶解液を60〜80℃に保持しておくと、脱水や脱酸が効果的に進行して溶解液の濃縮が効果的に進行するのである。
そしてこの濃縮により、Li2TiO3濃度が15〜30mass%のリチウムタイタネート濃縮液を得る。
【0017】ついで、この濃縮溶液を、ノズル等を用いてアセトン中に滴下して湿潤ゲル球を得る。この際、ノズル径や一滴当りの供給量を変えることにより、ゲル球の大きさを適宜変更することができる。
なお、濃縮溶液の液滴をそのままアセトンに滴下すると、液面から容器の底面まで沈降する間に、液滴が変形してしまうおそれがある場合には、例えばテフロン(登録商標)製の滑り台のような傾斜を持たせたガイドをアセトンの液面から容器の底面に設置し、この傾斜を利用して液滴を底面まで転がすあるいは滑らすことは、球形のゲル球を得る上で好適である。
【0018】ついで、得られた湿潤ゲル球を、乾燥後、仮焼する。
この乾燥は、70〜150℃の温度範囲で3〜5時間程度行うのが好適である。
また、仮焼は、150〜250℃の温度範囲で2〜5時間程度行う。この仮焼に際しては、一定温度で処理してもかまわないが、徐々に温度を上昇させる段階的処理とすることは一層有利である。
かくして、球状の乾燥ゲル球が得られる。
【0019】ついで、得られた乾燥ゲル球に焼結処理を施す。
この焼成処理に際しては、700℃までの昇温速度を10〜100℃/hの範囲および700℃から焼結温度までの昇温速度を100〜200℃/hの範囲に制御することが重要である。
というのは、700℃までの昇温速度が10℃/hに満たないと焼結に時間がかかりすぎ、一方100℃/hを超えると残留ガス放出による割れ等が生じるからである。また、700℃から焼結温度までの昇温速度が100℃/hに満たないと、昇温中にも焼結が進行するため結晶粒径の制御が困難となり、一方200℃/hを超えるとリチウムの飛散等が生じるからである。
なお、焼結温度は900〜1400℃程度、また焼結時間は0.2〜4時間程度とするのが好適である。
【0020】また、本発明では、原料であるリチウムタイタネート(Li2TiO3)粉末または微小球中に、耐熱性向上材料として酸化物の粉末を1〜20 mol%の範囲で添加配合することは有利である。
かかる酸化物としては、TiO,Ti2O3,TiO2,NbO,Nb2O3,NbO2,Nb2O5,VO,V2O3,VO2,Y2O3,Al2O3,Cr2O3,MnO,Mn3O4,MoO2,BeO,CaO,Gd2O3,ZrO2および NiOのうちから選んだ一種または二種以上が有利に適合し、かかる酸化物を1〜20 mol%の範囲で添加配合することにより、900〜1100℃程度の高温で長時間使用する際の微小球の特性、すなわち高温特性の有利な向上を図ることができる。
【0021】
【実施例】以下、本発明の実施例について説明する。なお、本発明が、この実施例のみに限定されるものではないことは言うまでもない。
実施例1
まず、溶液調整工程において、30mass%の過酸化水素水:50cm3をビーカーに入れ、原料であるLi2TiO3粉末:4gを投入し、時計皿で蓋をした。これを、60℃以上になるように調節したヒーター付きウォーターバス中に置き、マグネティックスターラーを用いて攪拌しながら溶解した。このまま、4時間以上攪拌することにより、Li2TiO3をほぼ完全に溶解する(95%)ことができた。
【0022】溶解後、溶液を、約60℃に保持することにより、溶液中の不純物ガスの脱ガスを行ったのち、この溶液を室温まで冷却した。なお、この冷却により、溶液中に沈殿物が生じた。
ついで、溶解液の温度を60±1℃に調整し、攪拌しながら、Li2TiO3濃度が23mass%となるまで濃縮した。
濃縮した溶液を、乳鉢に移し、溶液中に沈殿した沈殿物を混練することにより、沈殿物の微細化を行った。さらに、超音波加振および流動化脱気を行い、滴下原液とした。
【0023】ゲル球形成工程では、滴下操作として、濃縮した滴下原液を20℃のアセトン中に滴下した。滴下した液滴は、完全に固化するまで1時間程度そのまま静置し、熟成させた。
熟成後のゲル球は、電気炉に移し、90℃,3時間および110℃,1時間の条件で乾燥し、乾燥ゲル球とした。
【0024】ついで、上記のようにして得られた乾燥ゲル球を、170℃,1時間、185℃,1時間および200℃,0.5時間の条件で仮焼した。
その後、700℃まで40℃/hの速度で昇温後、700℃から焼結温度である1200℃までは170℃/hの速度で昇温したのち、1200℃,4時間の焼結を行い、Li2TiO3微小球を得た。
かくして得られたLi2TiO3微小球の密度は85%T.D.と十分に高く、また微小球表面におけるクラックの発生は皆無であった。
【0025】実施例2
Li2TiO3粉末中に、表1に示す種々の割合で酸化物粉末を配合した混合粉を、原料として用いること以外は、実施例1と同様に処理して、Li2TiO3微小球を得た。
かくして得られたLi2TiO3微小球の密度、微小球表面におけるクラックの発生の有無および高温特性について調べた結果を、表1に併記する。
ここに、高温特性は次のようにして評価した。
すなわち、1100℃で100時間保持した時の結晶粒の成長を調べ、その程度が2μm 以下の場合を○、2μm超、5μm以下の場合を△、5μm 超の場合を×で評価した。なお、微小球の結晶粒の成長程度は、走査型電子顕微鏡観察によって調査した。
【0026】
【表1】
【0027】同表から明らかなように、Li2TiO3粉末中に種々の酸化物粉末を配合した場合には、Li2TiO3粉末単味の場合に比べて、高温特性の一層の向上を図ることができた。
【0028】
【発明の効果】かくして、本発明によれば、密度が80%T.D.以上と極めて高く、また微小球の表面にクラックの発生がないリチウムタイタネート微小球を、安定して得ることができる。
【図面の簡単な説明】
【図1】本発明に従うリチウムタイタネート微小球の製造方法の一例を示すフローチャートである。[0001]
The present invention relates to a method for producing lithium titanate (Li 2 TiO 3 ) microspheres, and more particularly to a method for producing lithium titanate microspheres suitable for recycling Li from used lithium titanate microspheres. It is about.
[0002]
2. Description of the Related Art In a nuclear fusion reactor, tritium, which hardly exists in nature, is propagated by reacting neutrons and Li as described below. As such a tritium breeding material, Li-containing ceramics, for example, Li 2 O, LiAlO 2 , Li 2 TiO 3 and the like are used, and these are mainly used in the form of microspheres.
6 Li + 1 n → 4 He + 3 T + 4.8 MeV ( exothermic)
As an example of a method for producing the above-described Li-containing ceramic microspheres, Patent Literature 1 discloses a technique for producing lithium titanate (Li 2 TiO 3 ) microspheres by an indirect wet method. In this method, lithium titanate powder as a raw material is dispersed in an aqueous solution of polyvinyl alcohol to form a dripping stock solution, and this dripping stock solution is dropped from a nozzle into acetone, gelled to form a wet gel sphere, dried, and then temporarily dried. After baking to remove the polyvinyl alcohol, sintering is performed to finally obtain lithium titanate microspheres.
In the above-mentioned Li-containing ceramics used as a tritium breeding material, since Li is a scarce resource, the used tritium breeding material, for example, from used lithium titanate microspheres to lithium titanate microspheres is used. It is desired that Li be recycled and Li be recycled.
From this viewpoint, when the method for producing lithium titanate microspheres disclosed in Patent Document 1 described above is applied to remanufacture lithium titanate microspheres from used lithium titanate microspheres, There was a problem as described.
That is, since the used lithium titanate microspheres cannot be used as a raw material, the used lithium titanate microspheres are converted into a solution, Li is recovered as Li 2 CO 3 powder, and then calcined with TiO 2 powder. For example, it was necessary to disperse a single phase of Li 2 TiO 3 by reacting in a polyvinyl alcohol aqueous solution to obtain a dropping stock solution. For this reason, although lithium titanate microspheres having better properties can be obtained as compared with the conventional rolling granulation method or the like, the number of manufacturing steps is increased, resulting in a problem that the manufacturing cost is increased.
To solve this problem, Non-Patent Document 1 discloses an attempt to directly dissolve used lithium titanate microspheres to obtain microspheres. However, in this method, although lithium titanate microspheres are directly dissolved, a raw material powder is produced from the dissolved solution, and microspheres are obtained from the raw material powder produced by the same conventional rolling granulation method. Therefore, the number of manufacturing steps is large, and as a result, an increase in manufacturing cost cannot be avoided.
[0007] In this regard, the present inventors have previously solved the above-mentioned problem by providing a solution adjusting step of obtaining a lithium titanate concentrated solution by converting a raw material lithium titanate powder into a solution and concentrating the solution. The lithium titanate concentrated solution obtained in the solution adjusting step is dropped into a gelling solvent to gel in the form of droplets, and then aged to obtain wet gel spheres. A solvent exchange is performed by immersing in a substitution solvent having a higher surface tension than the solvent to replace the gelling solvent with the substitution solvent in the pores of the wet gel sphere, and drying the wet gel sphere after the solvent exchange to form a gel. Producing a lithium titanate microsphere comprising: a gel sphere forming step of forming a sphere; and a microsphere firing step of firing the gel sphere obtained in the gel sphere forming step to obtain lithium titanate microspheres. We developed a method "disclosed in the patent document 2.
According to the above technology, lithium titanate microspheres having good properties can be obtained in a relatively simple manufacturing process, and the manufacturing cost can be advantageously reduced.
[0008]
[Patent Document 1]
JP-A-10-265222 [Patent Document 2]
JP 2001-278623 A [Non-Patent Document 1]
C. Alvani, S .; Casadio et. al. , "Reprocessing and PreparaTion of Li 2 TiO 3 Pebbles Through Li-Ti-Peroxocomplexes Wet GranulaTion Method", The Seventh InternaTional Workshop on CERAMIC BREEDER BLANKETINTERACTIONS, Petten, Netherlands, (1998)
[0009]
However, according to the technique disclosed in Patent Document 2, the density of the obtained lithium titanate microspheres is 50% T.P. D. The problem remained in the low places below. In addition, a problem remains in a place where cracks easily occur on the surface of the microsphere.
The present invention advantageously solves the above-mentioned problems, and has a microsphere density of 80% T.D. D. It is an object of the present invention to propose an advantageous method for producing lithium titanate microspheres which is extremely high and does not cause cracks on the microsphere surface.
In addition, the present invention does not require a solvent exchange step of replacing a gelling solvent with a substitution solvent as in the technique disclosed in Patent Document 2 mentioned above, and therefore, a lithium titer that can achieve more steps and cost savings An object of the present invention is to propose a method for producing nate microspheres.
That is, the gist of the present invention is as follows.
1. Supplying lithium titanate (Li 2 TiO 3 ) powder or microspheres to a hydrogen peroxide solution at 60 ° C. or higher to dissolve 95% or more thereof;
A step of maintaining the solution at 60 to 80 ° C. to obtain a lithium titanate concentrate having a Li 2 TiO 3 concentration of 15 to 30 mass% by dehydration, deoxidation, or the like;
Step of obtaining the wet gel spheres by dropping the concentrated solution into acetone,
A step of calcining the obtained wet gel spheres at a temperature of 150 to 250 ° C. after drying,
The gel balls obtained by calcining are heated up to 700 ° C. at a rate of 10 to 100 ° C./h, and from 700 ° C. to a sintering temperature at a rate of 100 to 200 ° C./h. A method for producing lithium titanate microspheres, which is a combination of steps of sintering at a sintering temperature.
2. 2. The lithium according to the above item 1, wherein an oxide powder as a high temperature property improving material is added to and mixed with lithium titanate (Li 2 TiO 3 ) powder or microsphere as a raw material in a range of 1 to 20 mol%. A method for producing titanate microspheres.
3. The oxide is TiO, Ti 2 O 3 , TiO 2 , NbO, Nb 2 O 3 , NbO 2 , Nb 2 O 5 , VO, V 2 O 3 , VO 2 , Y 2 O 3 , Al 2 O 3 , cr 2 O 3, MnO, Mn 3 O 4, MoO 2, BeO, CaO, Li above 2, wherein a is Gd 2 O 3, selected from among the ZrO 2 and NiO one or two or more A method for producing titanate microspheres.
[0014]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically.
FIG. 1 is a flowchart showing a process for producing the lithium titanate microspheres of the present invention.
As shown in the figure, the manufacturing process of the present invention is roughly divided into three steps of a solution adjusting step, a gel sphere forming step, and a microsphere firing step. Hereinafter, each step will be specifically described.
First, in a solution adjusting step, lithium titanate (Li 2 TiO 3 ) powder or microspheres are dissolved in a hydrogen peroxide solution. It is important to maintain the temperature of the hydrogen water at 60 ° C. or higher. This is because if the temperature of the hydrogen peroxide solution is lower than 60 ° C., the dissolution reaction of Li 2 TiO 3 becomes extremely slow, and the difference in the insoluble residue also increases.
In addition, it is preferable to perform this dissolution under stirring using a magnetic stirrer or the like. A stirring time of about 1 to 8 hours is sufficient, and 95% or more of the lithium titanate powder thus added can be dissolved.
Next, the solution is concentrated, and the concentration is performed by maintaining the solution at 60 to 80 ° C. That is, when the solution is maintained at 60 to 80 ° C., dehydration and deacidification proceed effectively, and concentration of the solution proceeds effectively.
And this concentration, Li 2 TiO 3 concentrations to obtain a 15~30Mass% lithium titanate concentrate.
Next, the concentrated solution is dropped into acetone using a nozzle or the like to obtain wet gel spheres. At this time, the size of the gel sphere can be appropriately changed by changing the nozzle diameter or the supply amount per drop.
If the droplet of the concentrated solution is dropped on acetone as it is, the droplet may be deformed while settling from the liquid surface to the bottom of the container. For example, if the droplet is deformed, a Teflon (registered trademark) slide may be used. It is preferable to obtain a spherical gel sphere by installing a guide having such an inclination on the bottom surface of the container from the liquid surface of acetone and using this inclination to roll or slide the droplet to the bottom surface.
Next, the obtained wet gel spheres are dried and calcined.
This drying is preferably performed in a temperature range of 70 to 150 ° C. for about 3 to 5 hours.
The calcination is performed in a temperature range of 150 to 250 ° C. for about 2 to 5 hours. In this calcination, the treatment may be performed at a constant temperature, but it is more advantageous to use a stepwise treatment in which the temperature is gradually increased.
Thus, spherical dry gel spheres are obtained.
Next, the obtained dried gel sphere is subjected to a sintering treatment.
In the firing treatment, it is important to control the rate of temperature rise from 700 ° C. to a range of 10 to 100 ° C./h and the rate of temperature rise from 700 ° C. to a sintering temperature to a range of 100 to 200 ° C./h. is there.
This is because if the heating rate up to 700 ° C. is less than 10 ° C./h, it takes too much time for sintering, while if it exceeds 100 ° C./h, cracks and the like occur due to residual gas release. If the rate of temperature increase from 700 ° C. to the sintering temperature is less than 100 ° C./h, sintering proceeds during the temperature increase, making it difficult to control the crystal grain size, while exceeding 200 ° C./h. This is because scattering of lithium or the like occurs.
Preferably, the sintering temperature is about 900 to 1400 ° C., and the sintering time is about 0.2 to 4 hours.
Further, in the present invention, an oxide powder as a heat resistance improving material is added to lithium titanate (Li 2 TiO 3 ) powder or microsphere as a raw material in a range of 1 to 20 mol%. Is advantageous.
Such oxides, TiO, Ti 2 O 3, TiO 2, NbO, Nb 2 O 3, NbO 2, Nb 2 O 5, VO, V 2 O 3, VO 2, Y 2 O 3, Al 2 O 3 , Cr 2 O 3 , MnO, Mn 3 O 4 , MoO 2 , BeO, CaO, Gd 2 O 3 , ZrO 2, and NiO are advantageously suitable. By adding and blending in the range of 2020 mol%, the characteristics of the microspheres when used at a high temperature of about 900 to 1100 ° C. for a long time, that is, the high-temperature characteristics can be advantageously improved.
[0021]
Embodiments of the present invention will be described below. It goes without saying that the present invention is not limited only to this embodiment.
Example 1
First, in a solution adjusting step, 30 mass% of a hydrogen peroxide solution: 50 cm 3 was put into a beaker, and Li 2 TiO 3 powder as a raw material: 4 g was charged, followed by covering with a watch glass. This was placed in a water bath with a heater adjusted to 60 ° C. or higher, and dissolved while stirring using a magnetic stirrer. With stirring for 4 hours or more, Li 2 TiO 3 could be almost completely dissolved (95%).
After the dissolution, the solution was kept at about 60 ° C. to degas the impurity gas in the solution, and then the solution was cooled to room temperature. In addition, a precipitate was generated in the solution by this cooling.
Next, the temperature of the solution was adjusted to 60 ± 1 ° C., and the solution was concentrated with stirring until the Li 2 TiO 3 concentration became 23 mass%.
The concentrated solution was transferred to a mortar, and the precipitate precipitated in the solution was kneaded to refine the precipitate. Furthermore, ultrasonic vibration and fluidization deaeration were performed to obtain a dripping stock solution.
In the gel sphere forming step, as a dropping operation, a concentrated dropping stock solution was dropped into acetone at 20 ° C. The dropped droplets were allowed to stand for about 1 hour until completely solidified, and aged.
The gel balls after aging were transferred to an electric furnace and dried at 90 ° C. for 3 hours and at 110 ° C. for 1 hour to obtain dried gel balls.
Next, the dried gel spheres obtained as described above were calcined under the conditions of 170 ° C., 1 hour, 185 ° C., 1 hour, and 200 ° C., 0.5 hour.
Thereafter, the temperature is raised to 700 ° C. at a rate of 40 ° C./h, and then from 700 ° C. to a sintering temperature of 1200 ° C. at a rate of 170 ° C./h, followed by sintering at 1200 ° C. for 4 hours. , Li 2 TiO 3 microspheres were obtained.
The density of the Li 2 TiO 3 microspheres thus obtained is 85% T.D. D. High enough, and no cracks occurred on the surface of the microspheres.
Embodiment 2
The same treatment as in Example 1 was carried out except that the mixed powder in which the oxide powder was mixed in the Li 2 TiO 3 powder at various ratios shown in Table 1 as a raw material was used to convert the Li 2 TiO 3 microspheres. Obtained.
Table 1 also shows the results of examining the density of the Li 2 TiO 3 microspheres thus obtained, the presence or absence of cracks on the microsphere surface, and the high-temperature characteristics.
Here, the high temperature characteristics were evaluated as follows.
That is, the growth of the crystal grains at 100 ° C. for 100 hours was examined, and when the degree was 2 μm or less, ○ was evaluated when it was more than 2 μm and 5 μm or less, and Δ when it was more than 5 μm was evaluated. The degree of growth of the crystal grains of the microsphere was examined by scanning electron microscope observation.
[0026]
[Table 1]
As is apparent from the table, when incorporated various oxides powder Li 2 TiO 3 powder, as compared to the case of Li 2 TiO 3 powder plain, to further improve the high temperature properties I was able to plan.
[0028]
Thus, according to the present invention, the density is 80% T. D. Thus, lithium titanate microspheres which are extremely high and have no cracks on the surface of the microspheres can be stably obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method for producing lithium titanate microspheres according to the present invention.
Claims (3)
上記の溶解液を、60〜80℃に保持し、脱水、脱酸等により、Li2TiO3濃度が15〜30mass%のリチウムタイタネート濃縮液を得る工程、
上記の濃縮溶液を、アセトン中に滴下して湿潤ゲル球を得る工程、
得られた湿潤ゲル球を、乾燥後、150〜250℃の温度で仮焼する工程、
仮焼して得たゲル球を、700℃まで10〜100℃/hの速度で昇温し、700℃から焼結温度までは100〜200℃/hの速度で昇温したのち、所定の焼結温度で焼結する工程
の結合になることを特徴とするリチウムタイタネート微小球の製造方法。Supplying lithium titanate (Li 2 TiO 3 ) powder or microspheres to a hydrogen peroxide solution at 60 ° C. or higher to dissolve 95% or more thereof;
A step of maintaining the solution at 60 to 80 ° C. to obtain a lithium titanate concentrate having a Li 2 TiO 3 concentration of 15 to 30 mass% by dehydration, deoxidation, or the like;
Step of obtaining the wet gel spheres by dropping the above concentrated solution into acetone,
Calcining the obtained wet gel spheres at a temperature of 150 to 250 ° C. after drying,
The gel balls obtained by calcining are heated up to 700 ° C. at a rate of 10 to 100 ° C./h, and from 700 ° C. to a sintering temperature at a rate of 100 to 200 ° C./h. A method for producing lithium titanate microspheres, which is a combination of steps of sintering at a sintering temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208594A JP4336752B2 (en) | 2002-08-30 | 2003-08-25 | Method for producing lithium titanate microspheres |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002253283 | 2002-08-30 | ||
JP2003208594A JP4336752B2 (en) | 2002-08-30 | 2003-08-25 | Method for producing lithium titanate microspheres |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004143036A true JP2004143036A (en) | 2004-05-20 |
JP4336752B2 JP4336752B2 (en) | 2009-09-30 |
Family
ID=32472834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003208594A Expired - Fee Related JP4336752B2 (en) | 2002-08-30 | 2003-08-25 | Method for producing lithium titanate microspheres |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4336752B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006021984A (en) * | 2004-07-09 | 2006-01-26 | Japan Atom Energy Res Inst | Method of recovering and reusing lithium titanate |
JP2006224069A (en) * | 2005-02-21 | 2006-08-31 | Nuclear Fuel Ind Ltd | Dropping undiluted solution preparation apparatus |
KR100784637B1 (en) | 2006-12-19 | 2007-12-12 | 한국원자력연구원 | Synthetic method of lithium titanate spinel oxide material using a li based molten salt |
JP2009249216A (en) * | 2008-04-04 | 2009-10-29 | Japan Atomic Energy Agency | Method for producing powder for producing lithium granulated body, lithium ceramics microsphere produced by using the method, and rolling granulation device for producing lithium ceramics microsphere |
CN101857442A (en) * | 2010-05-28 | 2010-10-13 | 北京科技大学 | Preparation method of lithium-based ceramic microsphere |
-
2003
- 2003-08-25 JP JP2003208594A patent/JP4336752B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006021984A (en) * | 2004-07-09 | 2006-01-26 | Japan Atom Energy Res Inst | Method of recovering and reusing lithium titanate |
JP4695368B2 (en) * | 2004-07-09 | 2011-06-08 | 独立行政法人 日本原子力研究開発機構 | Method for recovering and reusing lithium titanate |
JP2006224069A (en) * | 2005-02-21 | 2006-08-31 | Nuclear Fuel Ind Ltd | Dropping undiluted solution preparation apparatus |
JP4536545B2 (en) * | 2005-02-21 | 2010-09-01 | 原子燃料工業株式会社 | Drip stock solution preparation equipment |
KR100784637B1 (en) | 2006-12-19 | 2007-12-12 | 한국원자력연구원 | Synthetic method of lithium titanate spinel oxide material using a li based molten salt |
JP2009249216A (en) * | 2008-04-04 | 2009-10-29 | Japan Atomic Energy Agency | Method for producing powder for producing lithium granulated body, lithium ceramics microsphere produced by using the method, and rolling granulation device for producing lithium ceramics microsphere |
CN101857442A (en) * | 2010-05-28 | 2010-10-13 | 北京科技大学 | Preparation method of lithium-based ceramic microsphere |
CN101857442B (en) * | 2010-05-28 | 2013-05-01 | 北京科技大学 | Preparation method of lithium-based ceramic microsphere |
Also Published As
Publication number | Publication date |
---|---|
JP4336752B2 (en) | 2009-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1476413A (en) | Production of fine-grained particles | |
Wang et al. | A comparative study of small-size ceria–zirconia microspheres fabricated by external and internal gelation | |
CN108840683A (en) | It is used to prepare the technique and zirconium nitride ceramic microsphere of zirconium nitride ceramic microsphere | |
CN108751975A (en) | Preparation method of tritium-proliferated ceramic pellets in fusion reactor solid blanket | |
JP2010105892A (en) | Zirconia fine particle and method for producing the same | |
CN114133240B (en) | Method for preparing scandium-cerium-ytterbium-doped zirconia superfine powder by hydrolysis-hydrothermal method | |
JP4336752B2 (en) | Method for producing lithium titanate microspheres | |
CN104477977A (en) | Method for synthesizing Dy2TiO5 powder by molten-salt growth method | |
JP2001354428A (en) | Cobalt oxide powder, method for manufacturing the same and lithium cobaltate | |
JP4336751B2 (en) | Method for producing lithium titanate microspheres | |
CN109336590A (en) | Magnesia partial stabilized zirconia, magnesia partial stabilized zirconia ceramic and its preparation method and application | |
JP2003342075A (en) | Process for synthesizing heat-shrinkable ceramic | |
CN110380022A (en) | A kind of high voltage monocrystalline nickel-cobalt-manganternary ternary anode material and preparation method | |
JP4312286B2 (en) | Method for producing α-lithium aluminate | |
WO2018108043A1 (en) | Method for recycling lithium manganate dust | |
CN101428850A (en) | Method for producing barium titanate | |
CN105798317B (en) | A kind of preparation method of polyhedron Sub-micron Tungsten Powder | |
Gong et al. | Enhancing the density and crush load of Li2TiO3 tritium breeding ceramic pebbles by adding LiNO3-Li2CO3 | |
CN114122348A (en) | Lithium titanate battery material, preparation method and application thereof | |
CN114243094A (en) | Method for preparing LAGP solid electrolyte based on coprecipitation method | |
JP2002321921A (en) | Method for manufacturing lithium cobalt oxide | |
JPH09227212A (en) | Production of ni/ysz cermet raw material | |
CN110563339A (en) | Preparation method of anhydrous lithium borate fluxing agent | |
JP3867971B2 (en) | Tritium breeding material for high temperature | |
CN109776040B (en) | Cement composite material, preparation method thereof and peanut shell graphene grinding aid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060228 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4336752 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |