JP2006222004A - Microwave generation device - Google Patents

Microwave generation device Download PDF

Info

Publication number
JP2006222004A
JP2006222004A JP2005035609A JP2005035609A JP2006222004A JP 2006222004 A JP2006222004 A JP 2006222004A JP 2005035609 A JP2005035609 A JP 2005035609A JP 2005035609 A JP2005035609 A JP 2005035609A JP 2006222004 A JP2006222004 A JP 2006222004A
Authority
JP
Japan
Prior art keywords
voltage
microwave
ground
microwave generator
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035609A
Other languages
Japanese (ja)
Other versions
JP4479526B2 (en
Inventor
Nobuo Shirokawa
信夫 城川
Shinichi Sakai
伸一 酒井
Hideaki Moriya
英明 守屋
Haruo Suenaga
治雄 末永
Manabu Kinoshita
学 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005035609A priority Critical patent/JP4479526B2/en
Publication of JP2006222004A publication Critical patent/JP2006222004A/en
Application granted granted Critical
Publication of JP4479526B2 publication Critical patent/JP4479526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave generation device preventing a high voltage diode or a magnetron from thermal breakdown by detecting non-load operation of the magnetron by a current flowing through the high voltage diode, and reducing power, or stopping operation. <P>SOLUTION: The microwave generation device, surely preventing the high voltage diodes 203, 204 from breakdown caused by temperature increase thereof, can be provided by detecting the current flowing through the high voltage diodes 203, 204 directly related with the temperature increase thereof, and by controlling an output of the magnetron. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子レンジなどのようにマグネトロンを用いたマイクロ波発生装置に関するもので、特にインバータに用いられている高圧ダイオードの過熱保護を行うための検出方法に関するものである。   The present invention relates to a microwave generator using a magnetron such as a microwave oven, and more particularly to a detection method for overheating protection of a high voltage diode used in an inverter.

図4は従来の電子レンジのマグネトロン駆動電源の構成図である。   FIG. 4 is a configuration diagram of a conventional magnetron driving power source of a microwave oven.

図において、商用電源11からの交流は整流回路13によって直流に整流され、整流回路13の出力側のチョークコイル14と平滑コンデンサ15で平滑され、インバータ16の入力側に与えられる。直流はインバータ16の中の半導体スイッチング素子のオン・オフにより所望の高周波(20〜40kHz)に変換される。インバータ16は、直流を高速でスイッチングするIGBT(Insulated Gate Bipolar Transistor)とこのIGBTを駆動制御するインバータ制御回路161によって制御され、昇圧トランス18の1次側を流れる電流が高速でオン/オフにスイッチングされる。   In the figure, the alternating current from the commercial power supply 11 is rectified to a direct current by the rectifier circuit 13, smoothed by the choke coil 14 and the smoothing capacitor 15 on the output side of the rectifier circuit 13, and given to the input side of the inverter 16. The direct current is converted to a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element in the inverter 16. The inverter 16 is controlled by an IGBT (Insulated Gate Bipolar Transistor) that switches DC at high speed and an inverter control circuit 161 that drives and controls the IGBT, and the current flowing through the primary side of the step-up transformer 18 is switched on / off at high speed. Is done.

制御回路161の入力信号は整流回路13の1次側電流をCT17で検出し、その検出電流はインバータ制御回路161に入力され、インバータ16の制御に用いられる。また、IGBTを冷やす放熱フィンに温度センサ(サーミスタ)9’を取り付けてこの温度センサによる検出温度情報をインバータ制御回路161に入力して、インバータ16の制御に用いている。   The input signal of the control circuit 161 detects the primary side current of the rectifier circuit 13 with the CT 17, and the detected current is input to the inverter control circuit 161 and used for controlling the inverter 16. Further, a temperature sensor (thermistor) 9 ′ is attached to a heat radiating fin for cooling the IGBT, and temperature information detected by the temperature sensor is input to the inverter control circuit 161 and used for controlling the inverter 16.

昇圧トランス18では1次巻線181にインバータ16の出力である高周波電圧が加えられ、2次巻線182に巻線比に応じた高圧電圧が得られる。また、昇圧トランス18の2次側に巻回数の少ない巻線183が設けられマグネトロン12のフィラメント121の加熱用に用いられている。昇圧トランス18の2次巻線182はその出力を整流する倍電圧半波整流回路19を備えている。倍電圧半波整流回路19は高圧コンデンサ191及び2個の高圧ダイオード192,193により構成される。   In the step-up transformer 18, a high-frequency voltage that is the output of the inverter 16 is applied to the primary winding 181, and a high-voltage voltage corresponding to the winding ratio is obtained in the secondary winding 182. A winding 183 with a small number of turns is provided on the secondary side of the step-up transformer 18 and is used for heating the filament 121 of the magnetron 12. The secondary winding 182 of the step-up transformer 18 includes a voltage doubler half-wave rectifier circuit 19 that rectifies its output. The voltage doubler half wave rectifier circuit 19 includes a high voltage capacitor 191 and two high voltage diodes 192 and 193.

ところで、このような電子レンジは加熱物を加熱室内に入れないまたは軽負荷の状態で運転するとマイクロ波のはね返りによってマグネトロンアノード電流が増大し、マグネトロンや高圧ダイオードが通常より大きく温度上昇してしまう、よって家具の中の上下左右奥の5面にくっつけて置いたりして電子レンジの給排気口が塞がれてしまうといった非常に悪い設置条件時や、あるいは電子レンジの冷却ファンのモータコイル部が断線してしまい、冷却ファンが動作不能となるといったトラブル発生時、しばしば高圧ダイオードやマグネトロンが温度破壊してしまう事がある。   By the way, when such a microwave oven does not put a heated object in the heating chamber or is operated in a light load state, the magnetron anode current increases due to the rebound of the microwave, and the temperature of the magnetron and the high voltage diode rises more than usual. Therefore, it is attached to the top, bottom, left, and right five sides in the furniture and the air supply / exhaust port of the microwave oven is blocked, or the motor coil part of the cooling fan of the microwave oven is When a trouble such as disconnection occurs and the cooling fan becomes inoperable, the high-voltage diode or magnetron often breaks down.

このような時において、これらの部品の熱破壊を防ぐ方法として、従来より、マグネトロンサーミスタや温度スイッチまたは高圧ダイオードやマグネトロンの温度上昇に相関があるIGBTの近傍に載置しIGBTの温度上昇を検知できるようにしているチップサーミスタを用いてこれら高圧ダイオードやマグネトロンの熱破壊前に停止させて温度上昇を防いでいた。   In such a case, as a method of preventing thermal destruction of these parts, it is conventionally placed near the IGBT that correlates with the temperature rise of the magnetron thermistor, temperature switch, high voltage diode or magnetron, and detects the temperature rise of the IGBT. A chip thermistor that can be used was stopped before the thermal breakdown of these high-voltage diodes and magnetrons to prevent temperature rise.

この場合、サーミスタ9’を取り付けて温度を検出する方法としては、
1)メガネ端子付きのサーミスタリードセンUにてパッケージと友締めする方法があった。
In this case, as a method of detecting the temperature by attaching the thermistor 9 ′,
1) There was a method of fastening the package with a thermistor lead sen U with glasses terminals.

しかし、パッケージ部への友締め方法には、人による作業でしか実現できないので工数が増え、したがってコスト高となった。   However, since the method of tightening the package part can be realized only by human work, the number of man-hours is increased and the cost is increased accordingly.

2)また、サーミスタを放熱フィンに別途ビス締めして放熱フィンより検出する方法もあった(例えば、特許文献1参照)。   2) There is also a method in which the thermistor is separately screwed to the heat dissipating fin and detected from the heat dissipating fin (see, for example, Patent Document 1).

また、マグネトロンにとりつけたサーミスタを用いて高圧ダイオードやマグネトロンの熱破壊前に停止させて温度上昇を防ぐ方法や、IGBTの近傍に載置したチップサーミスタを用いてこれら高圧ダイオードやマグネトロンの熱破壊前に停止させて温度上昇を防ぐ方法もあるがこれも特に高圧ダイオードについては検出温度が直接の温度ではなくマグネトロンやIGBTの近傍の温度であるため温度検出精度および感度が共に悪いという欠点があった。   In addition, a thermistor attached to the magnetron is used to stop the high voltage diode or magnetron before thermal destruction to prevent temperature rise, or a chip thermistor placed near the IGBT is used to prevent the high voltage diode or magnetron from being destroyed. There is also a method to prevent the temperature from rising, but this also has the disadvantage that both the high temperature diode has a low temperature detection accuracy and sensitivity because the detection temperature is not a direct temperature but a temperature in the vicinity of the magnetron or IGBT. .

3)さらに、ラジアルサーミスタをプリント基板のIGBT8の近傍に取り付ける方法等があった(例えば、特許文献2参照)。
特開平2−312182号公報 特許第2892454号公報
3) Furthermore, there was a method of attaching a radial thermistor in the vicinity of the IGBT 8 on the printed circuit board (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 2-312182 Japanese Patent No. 2892454

図5(a)は特許文献1記載の取り付け法を示す図で、サーミスタを放熱フィンにビス締めした状態を示す図である。   Fig.5 (a) is a figure which shows the attachment method of patent document 1, and is a figure which shows the state which screwed the thermistor to the radiation fin.

図において、6はプリント基板、7は放熱フィン、8はIGBT、9’はサーミスタである。   In the figure, 6 is a printed circuit board, 7 is a radiation fin, 8 is an IGBT, and 9 'is a thermistor.

高熱を発するIGBT8の放熱部は放熱フィン7に固定されて、その3本の脚がプリント基板のスルーホールに挿入され反対側において半田づけされている。サーミスタ9’は同じく放熱フィン7にビス締めされて、その放熱フィンの温度情報を取り出している。   The heat radiating part of the IGBT 8 that generates high heat is fixed to the heat radiating fins 7, and its three legs are inserted into the through holes of the printed circuit board and soldered on the opposite side. The thermistor 9 ′ is also screwed to the radiating fin 7 and takes out temperature information of the radiating fin.

ところがこのような放熱フィンへのビス締め方法にも、同じく工数が増し、コスト高となり、しかも検出温度が高圧ダイオードの直接の温度ではなくIGBTを取り付けた放熱フィンの温度であるため高圧ダイオードとIGBTの温度上昇はある程度互いに相関性があるものの温度検出精度および感度が共に悪いという欠点があった。   However, such a screw fastening method to the heat radiating fin also increases the man-hours and the cost, and the detection temperature is not the direct temperature of the high voltage diode, but the temperature of the heat radiating fin with the IGBT attached. Although there is a certain degree of correlation between the temperature rises, the temperature detection accuracy and sensitivity are both poor.

図5(b)は特許文献2記載の取り付け法を示す図でである。   FIG. 5B is a view showing the attachment method described in Patent Document 2.

図において、6はプリント基板、7は放熱フィン、8はIGBT、9’はサーミスタである。この方法はプリント基板の近傍に後付けとなり、手で取り付けていたので工数が増し、また冷却風の影響を直に受けるのでサーミスタの熱時定数が悪くなるという欠点があった。またこれについても検出温度が高圧ダイオードの直接の温度ではなくIGBTを取り付けた放熱フィンの温度であるため高圧ダイオードとIGBTの温度上昇はある程度互いに相関性があるものの温度検出精度および感度が共に悪いという欠点があった。   In the figure, 6 is a printed circuit board, 7 is a radiation fin, 8 is an IGBT, and 9 'is a thermistor. This method is retrofitted in the vicinity of the printed circuit board, and has the disadvantage that the man-hour increases because it is attached by hand, and the thermal time constant of the thermistor deteriorates because it is directly affected by the cooling air. Also in this case, since the detection temperature is not the direct temperature of the high voltage diode but the temperature of the radiation fin with the IGBT attached, the temperature rise of the high voltage diode and the IGBT is correlated to some extent, but the temperature detection accuracy and sensitivity are both poor. There were drawbacks.

さらに、サーミスタ9’をIGBT8の脚部近傍Aに取り付けることも行われていたが、これにも同じくプリント基板の近傍に後付けとなり、手で取り付けていたので工数が増し、また冷却風の影響を直に受けるのでサーミスタの熱時定数が悪くなるという欠点があった。またこれについても検出温度が高圧ダイオードの直接の温度ではなくIGBTを取り付けた放熱フィンの温度であるため高圧ダイオードとIGBTの温度上昇はある程度互いに相関性があるものの温度検出精度および感度が共に悪いという欠点があった。   Furthermore, the thermistor 9 'was also attached to the vicinity A of the leg portion of the IGBT 8, but this was also retrofitted to the vicinity of the printed circuit board, and it was attached by hand, which increased man-hours and the effect of cooling air. Since it was received directly, there was a drawback that the thermal time constant of the thermistor deteriorated. Also in this case, since the detection temperature is not the direct temperature of the high voltage diode but the temperature of the radiation fin with the IGBT attached, the temperature rise of the high voltage diode and the IGBT is correlated to some extent, but the temperature detection accuracy and sensitivity are both poor. There were drawbacks.

いずれにせよ高圧ダイオードについては検出温度が直接の温度ではなくIGBTやマグネトロンの温度であるため温度検出精度および感度が共に悪いという欠点があった、
また、前述のように加熱物を加熱室内に入れないまたは軽負荷の状態で運転した時、マグネトロンや高圧ダイオードの温度上昇値が他の構成部品の温度上昇値より大きくなり温度上昇検知が部品破壊に間にあわないという欠点もあった。
In any case, the high-temperature diode has the disadvantage that both the temperature detection accuracy and sensitivity are poor because the detection temperature is not the direct temperature but the temperature of the IGBT or magnetron.
In addition, as described above, when the heated object is not placed in the heating chamber or when it is operated under a light load, the temperature rise value of the magnetron or high-voltage diode is greater than the temperature rise value of other components, and the temperature rise detection is a component destruction. There was also a drawback that it was not in time.

そこで本発明は、これらの課題を解決するもので、手で取り付ける必要のない、また冷却風の影響を受け難い、高圧ダイオードの温度上昇をより正確に検出し高圧ダイオードの温度上昇による破壊をより確実に防止するマイクロ波発生装置を提供する。   Therefore, the present invention solves these problems, and does not need to be attached by hand, is not easily affected by cooling air, and more accurately detects the temperature rise of the high-voltage diode, so that the breakdown due to the temperature rise of the high-voltage diode can be further improved. Provided is a microwave generator that reliably prevents the generation.

本発明は、上記課題を解決するためになされたもので、高圧ダイオードのカソード側とアース間に抵抗を挿入し、前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えた構成にし直接高圧ダイオードに流れる電流の大きさを検出できるようにしたことを特徴とするもので、手で取り付ける必要のない、また冷却風の影響を受け難い、高圧ダイオードの温度上昇をより正確にかつ安全に検出し高圧ダイオードの温度上昇による破壊をより確実に防止するマイクロ波発生装置を提供できる。   The present invention has been made to solve the above-described problems, and includes a detection control circuit that inserts a resistor between the cathode side of the high-voltage diode and the ground and detects and measures a voltage generated between the resistor and the ground. In addition, it is possible to detect the magnitude of the current that flows directly to the high-voltage diode, and it is not necessary to install it by hand, and it is difficult to be affected by the cooling air. It is possible to provide a microwave generator that can detect safely and more reliably prevent destruction of the high-voltage diode due to temperature rise.

本発明によれば、高圧ダイオードの温度上昇度に直接関係する高圧ダイオードに流れる電流を検出し出力制御をする構成なので、高圧ダイオードの温度上昇をより正確に検出し高圧ダイオードの温度上昇による破壊をより確実に防止するマイクロ波発生装置を提供できる。   According to the present invention, the current control is performed by detecting the current flowing through the high-voltage diode, which is directly related to the temperature rise of the high-voltage diode. It is possible to provide a microwave generator that can prevent more reliably.

また、高圧ダイオードのカソード側とアース間に抵抗を挿入し 前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えた構成にするが前記抵抗が故障しオープンになった時でも危険な状態を回避でき安全性が高い。また複数抵抗にてまた異なる種類の抵抗で構成するのですべての抵抗が故障オープンになること自体なくすことができこの点でも非常に安全性が高い。   In addition, a resistor is inserted between the cathode side of the high voltage diode and the ground, and a detection control circuit is provided to detect and measure the voltage generated between the resistor and the ground, but it is dangerous even if the resistor fails and becomes open. It is safe and can avoid the situation. In addition, since it is composed of a plurality of resistors and different types of resistors, it is possible to eliminate all the resistors themselves from being in a failure open state, and this point is also very safe.

従来のようにサーミスタを手で取り付ける必要がなく生産工場で非常につくりやすい、また冷却風の影響を受け難いIGBTの温度での間接的な検出方法を使ってないのでこの点でも高圧ダイオードの温度上昇をより正確にかつ安全に検出し高圧ダイオードの温度上昇による破壊をより確実に防止するマイクロ波発生装置を提供できる。   It is not necessary to install a thermistor by hand as in the past, and it is very easy to produce at the production plant. In addition, the indirect detection method at the IGBT temperature is not used. It is possible to provide a microwave generator that can detect the rise more accurately and safely and more reliably prevent the breakdown due to the temperature rise of the high-voltage diode.

第1の発明は、高圧ダイオードのカソード側とアース間に抵抗を挿入し 前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えた構成にし直接高圧ダイオードに流れる電流の大きさを検出できるようにしたことを特徴とする。   In the first invention, a resistance is inserted between the cathode side of the high voltage diode and the ground, and a detection control circuit for detecting and measuring a voltage generated between the resistance and the ground is provided. It is made to be able to detect.

第2の発明は、第1の発明のマイクロ波発生装置において、前記抵抗とアース間に発生する電圧によりマイクロ波発生の電力を変えられるよう制御できる構成としたことを特徴とする。   According to a second aspect of the present invention, in the microwave generator according to the first aspect of the present invention, the microwave generation power can be controlled so as to be changed by a voltage generated between the resistor and the ground.

第3の発明は、第1または2の発明のマイクロ波発生装置において、前記抵抗とアース間に発生する電圧によりマイクロ波発生の電力を変えられるよう制御する具体的な方法を示したことを特徴とする。   According to a third aspect of the present invention, in the microwave generator of the first or second aspect, a specific method for controlling the power generated by the microwave to be changed by the voltage generated between the resistor and the ground is shown. And

第4の発明は、第1〜3のいずれか1つの発明のマイクロ波発生装置において、前記抵抗とアース間に発生する電圧によりマイクロ波発生の電力を変えられるよう制御する具体的な方法を示したことを特徴とする。   4th invention shows the concrete method which controls so that the electric power of microwave generation can be changed with the voltage which generate | occur | produces between the said resistance and earth | ground in the microwave generator of any one of 1st-3rd invention. It is characterized by that.

第5の発明は、第1〜4のいずれか1つの発明のマイクロ波発生装置において、前記抵抗とアース間に発生する電圧によりマイクロ波発生の電力を変えられるよう制御する具体的な方法を示しているが安全のために加熱停止機能を設けたことを特徴とする。   5th invention shows the concrete method which controls so that the electric power of microwave generation can be changed with the voltage which generate | occur | produces between the said resistance and earth | ground in the microwave generator of any one invention of 1-4. However, a heat stop function is provided for safety.

第6の発明は、第1〜5のいずれか1つの発明のマイクロ波発生装置において、高圧ダイオードのカソード側とアース間に抵抗を挿入し、前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えた構成にするが前記抵抗が故障しオープンになった時つまりアースから回路全体が高圧のまま浮いた状態になりたいへん危険な状態になってしまうので高圧ダイオードのカソード側とアース間の抵抗を複数個設けることにより前記抵抗のオープン故障に対しより安全性を高めたことを特徴とする。   According to a sixth aspect of the present invention, in the microwave generator according to any one of the first to fifth aspects, a resistor is inserted between the cathode side of the high-voltage diode and the ground, and a voltage generated between the resistor and the ground is detected and measured. Although it has a configuration equipped with a detection control circuit, when the resistor fails and becomes open, that is, the entire circuit floats from the ground while maintaining a high voltage, which is very dangerous. By providing a plurality of resistors in between, safety against open failures of the resistors is further improved.

第7の発明は、第1〜6のいずれか1つの発明のマイクロ波発生装置において、検出制御回路の電圧検出をA/Dコンバータ内臓のマイクロコンピュータで行うことを特徴とする。   According to a seventh invention, in the microwave generator according to any one of the first to sixth inventions, the voltage of the detection control circuit is detected by a microcomputer with a built-in A / D converter.

第8の発明は、第1〜7のいずれか1つの発明のマイクロ波発生装置において、検出制御回路において該回路入力―アース間に前記高圧ダイオードのカソード側−アース間抵抗とは別の異なる検出側安全抵抗を1個または複数設けることを特徴とするもので、安全性を高める方法を用いたことを特徴とする。   According to an eighth aspect of the present invention, in the microwave generator according to any one of the first to seventh aspects, in the detection control circuit, the detection is different from the resistance between the cathode side of the high-voltage diode and the ground between the circuit input and the ground. One or a plurality of side safety resistances are provided, and a method for improving safety is used.

第9の発明は、第1〜8のいずれか1つの発明のマイクロ波発生装置において、抵抗と、検出側安全抵抗とは異なるプリント基板上に載置されることを特徴とする。   According to a ninth invention, in the microwave generator according to any one of the first to eighth inventions, the resistor and the detection-side safety resistor are mounted on different printed boards.

第10の発明は、第7のマイクロ波発生装置において、検出制御回路からマイクロコンピュータへの出力回路とマイクロコンピューター電源間に保護ダイオードを設けることを特徴とする。   According to a tenth aspect of the present invention, in the seventh microwave generator, a protective diode is provided between the output circuit from the detection control circuit to the microcomputer and the microcomputer power supply.

以下、本発明の高圧ダイオードのカソード側とアース間に抵抗を挿入し 前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えた構成にし直接高圧ダイオードに流れる電流の大きさを検出できるようにしたマイクロ波発生装置について図面を参照に詳細に説明する。   Hereinafter, a resistance is inserted between the cathode side of the high voltage diode of the present invention and the ground, and a detection control circuit for detecting and measuring the voltage generated between the resistance and the ground is provided, and the magnitude of the current flowing directly to the high voltage diode is detected. A microwave generator that can be used will be described in detail with reference to the drawings.

(実施の形態1)
図1は本発明に係るマグネトロン駆動電源の構成図である。図において、商用電源11からの交流は整流回路13によって直流に整流され、整流回路13の出力側のチョークコイル14と平滑コンデンサ15で平滑され、インバータ16の入力側に与えられる。直流はインバータ16の中の半導体スイッチング素子IGBTのオン・オフにより所望の高周波(20〜40kHz)に変換される。インバータ16は、直流を高速でスイッチングするIGBT16aとこのIGBT16aを制御するインバータ制御回路161によって駆動され、昇圧トランス18の1次側を流れる電流が高速でオン/オフにスイッチングされる。
(Embodiment 1)
FIG. 1 is a configuration diagram of a magnetron driving power source according to the present invention. In the figure, the alternating current from the commercial power supply 11 is rectified to a direct current by the rectifier circuit 13, smoothed by the choke coil 14 and the smoothing capacitor 15 on the output side of the rectifier circuit 13, and given to the input side of the inverter 16. The direct current is converted to a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element IGBT in the inverter 16. The inverter 16 is driven by an IGBT 16a that switches DC at high speed and an inverter control circuit 161 that controls the IGBT 16a, and the current flowing through the primary side of the step-up transformer 18 is switched on / off at high speed.

昇圧トランス18では1次巻線181にインバータ16の出力である高周波電圧が加えられ、2次巻線182に巻線比に応じた高圧電圧が得られる。また、昇圧トランス18の2次側に巻回数の少ない巻線183が設けられマグネトロン12のフィラメント121の加熱用に用いられている。昇圧トランス18の2次巻線182はその出力を整流する倍電圧全波整流回路20を備えている。倍電圧全波整流回路20は高圧コンデンサ201、202及び2個の高圧ダイオード203,204により構成される。   In the step-up transformer 18, a high-frequency voltage that is the output of the inverter 16 is applied to the primary winding 181, and a high-voltage voltage corresponding to the winding ratio is obtained in the secondary winding 182. A winding 183 with a small number of turns is provided on the secondary side of the step-up transformer 18 and is used for heating the filament 121 of the magnetron 12. The secondary winding 182 of the step-up transformer 18 includes a voltage doubler full wave rectification circuit 20 that rectifies its output. The voltage doubler full-wave rectifier circuit 20 includes high-voltage capacitors 201 and 202 and two high-voltage diodes 203 and 204.

本発明によると、高圧ダイオード204のカソード側とアース間に抵抗211を挿入し、抵抗211に発生する電圧をコネクタ24を介して別のプリント基板25上に構成される検出制御回路26に伝えられる。   According to the present invention, the resistor 211 is inserted between the cathode side of the high-voltage diode 204 and the ground, and the voltage generated in the resistor 211 is transmitted to the detection control circuit 26 formed on another printed circuit board 25 via the connector 24. .

次に、検出制御回路26上の各回路動作を説明する。コネクタ24を介して伝えられた発生電圧は入力抵抗221を通してマイクロコンピューター27のA/Dコンバータ機能を備えた入力に電気的に接続される、また発生電圧はコネクタ24の出たポイントで検出回路側安全抵抗23でアースと接続される、検出回路側安全抵抗23は高圧ダイオード204側の抵抗211が異常な状態たとえば断線などでオープンになった場合、検出制御回路26側に高圧が入力され故障または危険な状況になるのを防止するために設けられている。   Next, each circuit operation on the detection control circuit 26 will be described. The generated voltage transmitted through the connector 24 is electrically connected to the input having the A / D converter function of the microcomputer 27 through the input resistor 221, and the generated voltage is the detection circuit side at the point where the connector 24 comes out. When the resistance 211 on the high-voltage diode 204 side is opened due to an abnormal state such as disconnection, the detection circuit-side safety resistor 23 connected to the ground by the safety resistor 23 is broken due to a high voltage being input to the detection control circuit 26 side. It is provided to prevent a dangerous situation.

また、検出回路側安全抵抗23は安全をより確実にするため複数個(例えば3つ231,232,233)としている、マイクロコンピューター27のA/Dコンバータ入力側にはノイズ誤動作およびマイクロコンピューター27保護の目的で保護ダイオード28をマイクロコンピューター27の正電源側に接続する、また平滑コンデンサ29をアースとA/Dコンバータ入力側間に接続し発生電圧を平滑化して誤検出防止や精度よい検出ができるようにする。   Further, a plurality of detection circuit side safety resistors 23 (for example, three 231, 232, and 233) are provided in order to ensure safety. On the A / D converter input side of the microcomputer 27, noise malfunction and microcomputer 27 protection For this purpose, the protective diode 28 is connected to the positive power supply side of the microcomputer 27, and the smoothing capacitor 29 is connected between the ground and the A / D converter input side to smooth the generated voltage, thereby preventing erroneous detection and detecting with high accuracy. Like that.

電子レンジ動作時、マグネトロン12に高電圧が昇圧トランス18などからなる駆動回路20より印加されマイクロ波が出力されるこの時高圧ダイオード204にはアノード電流が流れている。このダイオード電流は電子レンジ高周波出力が大きいほど大きくなり、また電子レンジの加熱室内の負荷が軽ければ軽いほどマイクロ波の反射が大きくなるため電流値が大きくなることがわかっている。即ち、高圧ダイオード204の温度上昇は電子レンジ高周波出力が大きいほどまた電子レンジの加熱室内の負荷が軽いほど高くなることを意味する。また高圧ダイオード204に流れる電流値は直列接続された抵抗211に流れる電流値と同じ値であるので電流値が大きくなれば抵抗211とアース間に発生する電圧(発生電圧)も大きくなる、この発生電圧はコネクタ24を通して別のプリント基板25上に構成された検出制御回路26に伝えられる、直接的には該発生電圧は入力抵抗221を介してマイクロコンピューター27のA/Dコンハ゛ーター入力端子に入力される。 このA/Dコンバータ入力端子に入力される発生電圧(高圧ダイオード204の温度上昇と相関がある入力情報)をもとにマイクロコンピューター27は高圧ダイオード204などの部品破壊を防止するための制御を行う。   During the microwave operation, a high voltage is applied to the magnetron 12 from the drive circuit 20 including the step-up transformer 18 and a microwave is output. At this time, an anode current flows through the high-voltage diode 204. It is known that this diode current increases as the microwave high-frequency output increases, and that the lighter the load in the heating chamber of the microwave oven, the greater the reflection of microwaves, resulting in a larger current value. That is, the temperature rise of the high-voltage diode 204 means that the higher the microwave high-frequency output, the higher the lighter the load in the heating chamber of the microwave oven. Further, since the current value flowing through the high voltage diode 204 is the same value as the current value flowing through the resistor 211 connected in series, the voltage (generated voltage) generated between the resistor 211 and the ground increases as the current value increases. The voltage is transmitted to the detection control circuit 26 configured on another printed circuit board 25 through the connector 24. The generated voltage is directly input to the A / D converter input terminal of the microcomputer 27 through the input resistor 221. The On the basis of the generated voltage (input information correlated with the temperature rise of the high voltage diode 204) input to the A / D converter input terminal, the microcomputer 27 performs control for preventing destruction of components such as the high voltage diode 204. .

前述したように、電子レンジは加熱物を加熱室内に入れないまたは軽負荷の状態で運転するとマイクロ波のはね返りによってマグネトロンアノード電流が増大し、マグネトロンや高圧ダイオードが通常より大きく温度上昇してしまう、さらに家具の中の上下左右奥の5面にくっつけて置いたりして電子レンジの給排気口が塞がれてしまうといった非常に悪い設置条件が重なった場合、あるいは電子レンジの冷却ファンのモータコイル部が断線してしまい、冷却ファンが動作不能となるといったトラブル発生時、しばしば高圧ダイオード204が温度上昇のリミットを越えてしまい部品破壊してしまう事がある。   As described above, when the microwave oven is not put into the heating chamber or is operated in a light load state, the magnetron anode current increases due to the rebound of the microwave, and the temperature of the magnetron and the high voltage diode rises more than usual. In addition, if the installation conditions are very poor, such as when the furniture is placed on the top, bottom, left, or right side of the furniture and the air supply / exhaust port of the microwave oven is blocked, or the motor coil of the cooling fan of the microwave oven When a trouble occurs such that the part is disconnected and the cooling fan becomes inoperable, the high voltage diode 204 often exceeds the temperature rise limit, and the parts may be destroyed.

図3は検出制御回路の制御を示したシーケンス図である、電子レンジ運転すると高圧ダイオードが温度上昇しこれにしたがって発生電圧も大きくなる、発生電圧が低い間はすなわち発生電圧が第1しきい値より低い値の時は高圧ダイオードの温度上昇も低く温度破壊することはないので出力制限なくあらかじめ設定された出力の100%でマイクロ波を出力し電子レンジ加熱を実行する。   FIG. 3 is a sequence diagram showing the control of the detection control circuit. When the microwave oven is operated, the temperature of the high voltage diode rises and the generated voltage increases accordingly. While the generated voltage is low, the generated voltage is the first threshold value. When the value is lower, since the temperature rise of the high-voltage diode is low and the temperature is not destroyed, microwaves are output at 100% of the preset output without output limitation, and microwave heating is executed.

前述のような軽い負荷の時やちょっと悪い設置条件の時は発生電圧も第1しきい値を超えてしまうのでその時は初めて出力制限を加えあらかじめ設定された出力の80%でマイクロ波を出力し電子レンジ加熱を実行する。また、さらに悪い加熱条件で運転されると第2しきい値を超えてしまうことがあるその時はさらに大きい出力制限を加えあらかじめ設定された出力の50%でマイクロ波を出力し電子レンジ加熱を実行する。また、さらに悪い加熱条件で運転すると例えば無負荷で長時間運転するとか冷却ファンモータが故障した時など異常使用時または他の部品故障時は第2しきい値を超えてさらにMAXしきい値を超えてしまい、その時は加熱を停止する。   When the load is light as described above or when the installation conditions are slightly bad, the generated voltage will also exceed the first threshold value. At that time, the output is limited for the first time and the microwave is output at 80% of the preset output. Perform microwave heating. In addition, the second threshold value may be exceeded when operated under worse heating conditions. At that time, a larger output limit is applied and microwaves are output at 50% of the preset output to execute microwave heating. To do. Also, when operating under worse heating conditions, for example, when operating for a long time with no load or when the cooling fan motor fails, or when other parts fail, the second threshold is exceeded and the MAX threshold is further increased. At that time, heating is stopped.

マイクロコンピューター27は入力される発生電圧の情報により電圧分離かつ情報伝達するためのフォトカプラ30を介してインバータ制御回路161に電子レンジの出力制御情報を伝える、インバータ制御回路161は出力制限指示をマイクロコンピューター27から伝えられるとIGBT16へのオンオフ時間を制御することにより電子レンジの出力制御を実行する。   The microcomputer 27 transmits the output control information of the microwave oven to the inverter control circuit 161 through the photocoupler 30 for voltage separation and information transmission according to the information of the generated voltage that is input. When notified from the computer 27, the output control of the microwave oven is executed by controlling the on / off time to the IGBT 16.

高圧ダイオード204は抵抗211や検出回路側安全抵抗23でアースと接続されるがこれら抵抗211や検出回路側安全抵抗23がすべて異常な状態たとえば断線などでオープンになった場合 検出制御回路26側に高圧が入力され故障または危険な状況になる 、検出回路側安全抵抗23は安全をより確実にするため複数個(例えば3つ231,232,233)としているし、抵抗211がオープンになった場合は第2図発生電圧がMAXしきい値をはるかに超えた値になり前述のように電子レンジ出力を停止するので安全である。   The high-voltage diode 204 is connected to the ground by the resistor 211 and the detection circuit side safety resistor 23. However, when the resistance 211 and the detection circuit side safety resistor 23 are all opened in an abnormal state such as disconnection, the detection control circuit 26 side When a high voltage is input and a failure or a dangerous situation occurs, a plurality of detection circuit side safety resistors 23 (for example, three 231, 232, 233) are provided to ensure safety, and the resistor 211 is opened. 2 is safe because the generated voltage becomes a value far exceeding the MAX threshold value and the microwave output is stopped as described above.

一般的に納入部品やものづくり工程は同じロットで不良が集中して発生することが多いので抵抗211や検出回路側安全抵抗23はすべて異なるタイプの抵抗および異なる工程たとえばアキシャル抵抗、ラジアル抵抗、表面実装タイプの抵抗、手挿入タイプの抵抗といったそれぞれ異なる工程で構成した方が全部オープンになるチャンスが低くできる。   In general, delivered parts and manufacturing processes often have defects concentrated in the same lot, so the resistance 211 and the detection circuit side safety resistance 23 are all different types of resistance and different processes such as axial resistance, radial resistance, surface mounting. The chances of opening all will be lower if they are made up of different processes such as type resistors and manual insertion type resistors.

以上のように、本発明にかかるマイクロ波発生装置は、高圧ダイオードの温度上昇度に直接関係する高圧ダイオードに流れる電流を検出し出力制御をする構成なので、高圧ダイオードの温度上昇をより正確に検出し高圧ダイオードの温度上昇による破壊をより確実に防止することができ、電子レンジに限らず種々のマイクロ波発生装置に適用できる。   As described above, the microwave generator according to the present invention is configured to detect the current flowing through the high voltage diode, which is directly related to the temperature increase degree of the high voltage diode, and to control the output, so that the temperature increase of the high voltage diode can be detected more accurately. However, it is possible to more reliably prevent the high-voltage diode from being destroyed due to a temperature rise, and it can be applied not only to a microwave oven but also to various microwave generators.

本発明に係るマイクロ波発生装置の構成図Configuration of microwave generator according to the present invention 本発明に係るマイクロ波発生装置の抵抗がオープン時の安全停止の説明図Explanatory drawing of the safe stop when the resistance of the microwave generator according to the present invention is open 本発明に係る検出制御回路の制御を示したシーケンス図Sequence diagram showing the control of the detection control circuit according to the present invention 従来のサーミスタ付きマイクロ波発生装置の構成図Configuration of conventional microwave generator with thermistor (a)特許文献1記載のサーミスタ付きプリント基板の正面図(b)は特許文献2記載のサーミスタ付きプリント基板の斜視図(A) Front view of printed circuit board with thermistor described in Patent Document 1 (b) Perspective view of printed circuit board with thermistor described in Patent Document 2

符号の説明Explanation of symbols

12 マグネトロン
13 整流回路
18 昇圧トランス
201,201 高圧コンデンサ
203、204 高圧ダイオード
211 抵抗
221 入力抵抗
23 検出回路側安全抵抗
231、232、233 複数個を構成する各検出回路側安全抵抗
25 プリント基板
26 検出制御回路
27 マイクロコンピューター
28 保護ダイオード
12 magnetron 13 rectifier circuit 18 step-up transformer 201, 201 high voltage capacitor 203, 204 high voltage diode 211 resistance 221 input resistance 23 detection circuit side safety resistance 231, 232, 233 each detection circuit side safety resistance 25 printed circuit board 26 detection Control circuit 27 Microcomputer 28 Protection diode

Claims (10)

高圧を発生させる昇圧トランスと該昇圧トランスから発生する2次側の高電圧を整流倍電圧する高圧ダイオードおよび高圧コンデンサと前記高電圧を印加することによりマイクロ波を発生させるマグネトロンを備えたマイクロ波発生装置において、前記高圧ダイオードのカソード側とアース間に抵抗を挿入し、前記抵抗とアース間に発生する電圧を検出測定する検出制御回路を備えたマイクロ波発生装置。 Microwave generation comprising a step-up transformer for generating a high voltage, a high-voltage diode for rectifying a secondary high voltage generated from the step-up transformer, a high-voltage capacitor, and a magnetron for generating a microwave by applying the high voltage The microwave generator provided with the detection control circuit which inserts resistance between the cathode side of the said high voltage | pressure diode and earth | ground, and detects and measures the voltage which generate | occur | produces between the said resistance and earth | ground in the apparatus. 前記抵抗とアース間に発生する電圧によりマイクロ波発生の電力を変えられるよう制御できる構成とした請求項1記載のマイクロ波発生装置。 The microwave generator according to claim 1, wherein the microwave generator can be controlled so that the electric power generated by the microwave can be changed by a voltage generated between the resistor and the ground. 前記抵抗とアース間に発生する電圧を検出測定する検出制御回路はこの抵抗とアース間に発生する電圧があらかじめ設定されたしきい値以上になった時マイクロ波発生の電力を減じるよう制御する構成とした請求項1または2記載のマイクロ波発生装置。 The detection control circuit for detecting and measuring the voltage generated between the resistor and the ground is configured to control so as to reduce the power generated by the microwave when the voltage generated between the resistor and the ground exceeds a preset threshold value. The microwave generator according to claim 1 or 2. 前記あらかじめ設定されたしきい値は複数個設けられており 前記抵抗とアース間に発生する電圧がどのしきい値間にあるかに応じてマイクロ波発生の電力を変えられるよう制御できる構成とした請求項1〜3のいずれか1項に記載のマイクロ波発生装置。 A plurality of the preset threshold values are provided, and the power generated for the microwave generation can be controlled according to which threshold voltage between the resistor and the ground is between. The microwave generator of any one of Claims 1-3. 前記あらかじめ設定されたしきい値は複数個設けられており 前記抵抗とアース間に発生する電圧が最大値に設定されたしきい値を超えた場合マイクロ波発生の電力を停止する構成とした請求項1〜4のいずれか1項に記載のマイクロ波発生装置。 A plurality of the preset threshold values are provided, and the power generated by the microwave is stopped when the voltage generated between the resistor and the ground exceeds a threshold value set to the maximum value. Item 5. The microwave generator according to any one of Items 1 to 4. 前記高圧ダイオードのカソード側とアース間に挿入する抵抗を複数個備えた請求項1〜5のいずれか1項に記載のマイクロ波発生装置。 The microwave generator according to any one of claims 1 to 5, comprising a plurality of resistors inserted between the cathode side of the high-voltage diode and the ground. 検出制御回路の電圧検出をA/Dコンバータ内臓のマイクロコンピュータで行うことを特徴とする請求項1〜6のいずれか1項に記載のマイクロ波発生装置。 The microwave generator according to any one of claims 1 to 6, wherein voltage detection of the detection control circuit is performed by a microcomputer with a built-in A / D converter. 検出制御回路において 該回路入力―アース間に前記高圧ダイオードのカソード側−アース間抵抗とは別の異なる検出側安全抵抗を1個または複数設けることを特徴とする請求項1〜7のいずれか1項に記載のマイクロ波発生装置。 8. The detection control circuit according to claim 1, wherein one or more different detection-side safety resistors different from the cathode-side resistance of the high-voltage diode are provided between the circuit input and the ground. The microwave generator according to item. 抵抗と、検出側安全抵抗とは異なるプリント基板上に載置されることを特徴とする請求項1〜8のいずれか1項に記載のマイクロ波発生装置。 The microwave generator according to claim 1, wherein the resistor and the detection-side safety resistor are mounted on different printed boards. 検出制御回路からマイクロコンピュータへの出力回路とマイクロコンピューター電源間に保護ダイオードを設けることを特徴とする請求項7に記載のマイクロ波発生装置。 8. The microwave generator according to claim 7, wherein a protection diode is provided between an output circuit from the detection control circuit to the microcomputer and a microcomputer power supply.
JP2005035609A 2005-02-14 2005-02-14 Microwave generator Active JP4479526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035609A JP4479526B2 (en) 2005-02-14 2005-02-14 Microwave generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035609A JP4479526B2 (en) 2005-02-14 2005-02-14 Microwave generator

Publications (2)

Publication Number Publication Date
JP2006222004A true JP2006222004A (en) 2006-08-24
JP4479526B2 JP4479526B2 (en) 2010-06-09

Family

ID=36984161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035609A Active JP4479526B2 (en) 2005-02-14 2005-02-14 Microwave generator

Country Status (1)

Country Link
JP (1) JP4479526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074843A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
JP2007335376A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus
JP2007335375A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074843A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
US7863887B2 (en) 2005-12-26 2011-01-04 Panasonic Corporation State detection device for detecting abnormal operation of a high-frequency magnetron heating apparatus
US7960966B2 (en) 2005-12-26 2011-06-14 Panasonic Corporation State detection device for detecting operation state of high-frequency heating apparatus
US8026713B2 (en) 2005-12-26 2011-09-27 Panasonic Corporation State detection device for detecting operation state of high-frequency heating apparatus
JP2007335376A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus
JP2007335375A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus

Also Published As

Publication number Publication date
JP4479526B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US8324541B2 (en) High-frequency heating device
US8624170B2 (en) Inverter controller and high-frequency dielectric heating apparatus
JP4639950B2 (en) Inverter device
CN110350844B (en) Motor drive device and abnormal heat detection method for motor drive device
JP2011023163A (en) Rice cooker
KR20020004817A (en) Power source device
JP4479526B2 (en) Microwave generator
JP2007173171A (en) Condition detection device for detecting operating condition of high-frequency heating device
KR101004113B1 (en) High-frequency dielectric heating device and printed board with thermistor
JP4001564B2 (en) Printed circuit board with thermistor
JP5151247B2 (en) State detection device that detects the operating state of the high-frequency heating device
JP4001563B2 (en) High frequency dielectric heating device
KR20180097357A (en) Power transforming apparatus having thermal protection function and air conditioner including the same
JP2007280628A (en) High-frequency heating device
JP2009081100A (en) Induction heating cooker
CN112714528B (en) Control method and control device of frequency converter circuit and magnetron driving circuit
JP4344542B2 (en) Inverter power control circuit for high frequency heating equipment
JP5974965B2 (en) Induction heating cooker
KR101978962B1 (en) Printed circuit board, printed circuit board module and method for controlling printed circuit board module
KR100393012B1 (en) Temperature detecting device for high-power electric system
JP2010107110A (en) Electronic oven
JP2007192545A (en) High frequency heating device
JP2001110561A (en) High frequency heating apparatus
KR20200122851A (en) Microwave oven having improved fault display structure
KR100794600B1 (en) Overvoltage protection apparatus of oven range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4