JP4001564B2 - Printed circuit board with thermistor - Google Patents

Printed circuit board with thermistor Download PDF

Info

Publication number
JP4001564B2
JP4001564B2 JP2003117073A JP2003117073A JP4001564B2 JP 4001564 B2 JP4001564 B2 JP 4001564B2 JP 2003117073 A JP2003117073 A JP 2003117073A JP 2003117073 A JP2003117073 A JP 2003117073A JP 4001564 B2 JP4001564 B2 JP 4001564B2
Authority
JP
Japan
Prior art keywords
thermistor
switching element
circuit board
printed circuit
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003117073A
Other languages
Japanese (ja)
Other versions
JP2004327124A (en
Inventor
英明 守屋
治雄 末永
伸一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003117073A priority Critical patent/JP4001564B2/en
Priority to KR1020057019929A priority patent/KR101004113B1/en
Priority to EP04728689.3A priority patent/EP1616463B1/en
Priority to US10/553,155 priority patent/US7312427B2/en
Priority to PCT/JP2004/005727 priority patent/WO2004095886A1/en
Priority to CNB2004800109704A priority patent/CN100518418C/en
Publication of JP2004327124A publication Critical patent/JP2004327124A/en
Application granted granted Critical
Publication of JP4001564B2 publication Critical patent/JP4001564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子レンジなどのようにマグネトロンを用いた高周波誘電加熱に関するもので、特にインバータに用いられている半導体スイッチング素子の過熱保護を行うサーミスタに関するものである。
【0002】
【従来の技術】
図4は従来のマグネトロン駆動電源の構成図である。
図において、商用電源11からの交流は整流回路13によって直流に整流され、整流回路13の出力側のチョークコイル14と平滑コンデンサ15で平滑され、インバータ16の入力側に与えられる。直流はインバータ16の中の半導体スイッチング素子のオン・オフにより所望の高周波(20〜40kHz)に変換される。インバータ16は、直流を高速でスイッチングするIGBT(Insulated Gate Bipolar Transistor)とこのIGBTを駆動制御するインバータ制御回路161によって制御され、昇圧トランス18の1次側を流れる電流が高速でオン/オフにスイッチングされる。
【0003】
制御回路161の入力信号は整流回路13の1次側電流をCT17で検出した検出電流で、その検出電流はインバータ制御回路161に入力され、インバータ16の制御に用いられる。また、IGBTを冷やす放熱フィンに温度センサ(サーミスタ)9’を取り付けてこの温度センサによる検出温度情報をインバータ制御回路161に入力して、インバータ16の制御に用いている。
【0004】
昇圧トランス18では1次巻線181にインバータ16の出力である高周波電圧が加えられ、2次巻線182に巻線比に応じた高圧電圧が得られる。また、昇圧トランス18の2次側に巻回数の少ない巻線183が設けられマグネトロン12のフィラメント121の加熱用に用いられている。昇圧トランス18の2次巻線182はその出力を整流する倍電圧半波整流回路19を備えている。倍電圧半波整流回路19は高圧コンデンサ191及び2個の高圧ダイオード192,193により構成される。
【0005】
【発明が解決しようとする課題】
ところで、このような電子レンジを家具の中の上下左右奥の5面にくっつけて置いたりして電子レンジの給排気口が塞がれてしまうといった設置条件や、あるいは電子レンジの冷却ファンのモータコイル部が断線してしまい、冷却ファンが動作不能となるといったトラブルが発生することがある。
このような時において、インバータ電源のスイッチングを司るIGBTの熱破壊を防ぐ方法として、従来より、前記サーミスタ9’を用いて半導体IGBTの熱破壊前に停止させて温度上昇を防いでいた。
【0006】
この場合、サーミスタ9’を取り付けて温度を検出する方法としては、
(1)メガネ端子付きのサーミスタリードセンUにてIGBT16aのパッケージ部と共締めする方法があった。
しかし、パッケージ部への締め方法には、人による作業でしか実現できないので工数が増え、したがってコスト高となった。
【0007】
2)また、サーミスタを放熱フィンに別途ビス締めして放熱フィンより検出する方法もあった(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平2−312182号公報
【特許文献2】
特許第2892454号公報
【0009】
図5(a)は特許文献1記載の取り付け法を示す図で、サーミスタを放熱フィンにビス締めした状態を示す図である。
図において、6はプリント基板、7は放熱フィン、8はIGBT、9’はサーミスタである。
高熱を発するIGBT8の放熱部は放熱フィン7に固定されて、その3本の脚がプリント基板のスルーホールに挿入され反対側において半田づけされている。サーミスタ9’は同じく放熱フィン7にビス締めされて、その放熱フィンの温度情報を取り出している。
ところがこのような放熱フィンへのビス締め方法にも、同じく工数が増し、コスト高となり、しかも検出温度がIGBTの直接の温度ではなく放熱フィンの温度であるため温度検出精度および感度が共に悪いという欠点があった。
【0010】
3)さらに、ラジアルサーミスタをプリント基板のIGBT8の近傍に取り付ける方法等があった(例えば、特許文献2参照)。
図5(b)は特許文献2記載の取り付け法を示す図でである。
図において、6はプリント基板、7は放熱フィン、8はIGBT、9’はサーミスタである。この方法はプリント基板の近傍に後付けとなり、手で取り付けていたので工数が増し、また冷却風の影響を直に受けるのでサーミスタの熱時定数が悪くなるという欠点があった。
【0011】
さらに、サーミスタ9’をIGBT8の脚部近傍Aに取り付けることも行われていたが、これにも同じくプリント基板の近傍に後付けとなり、手で取り付けていたので工数が増し、また冷却風の影響を直に受けるのでサーミスタの熱時定数が悪くなるという欠点があった。
そこで本発明の課題は、これらの課題を解決するもので、手で取り付ける必要のない、また冷却風の影響を受け難い、サーミスタの熱時定数が小さいサーミスタ付きプリント基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、請求項1記載のサーミスタ付きプリント基板の発明は、直流を半導体スイッチング素子(16a)でスイッチングして所定周波数の交流に変換するインバータ部(16)と、前記半導体スイッチング素子の制御端子にスイッチング電圧を出力するインバータ制御回路(161)と、前記スイッチング素子(16a)の温度を検出するサーミスタ(9)と抵抗(163)との直列接続されて成る直列回路と、前記半導体スイッチング素子(16a)を取り付けて該スイッチング素子(16a)から出る熱を放熱する放熱フィン(7)と、を搭載して半田付けして成るプリント基板において、前記サーミスタ(9)と抵抗(163)との前記直列回路が前記インバータ制御回路(161)の両端に接続され、前記直列回路のサーミスタ(9)と抵抗(163)との接続点電位が前記インバータ制御回路(161)に入力され、前記サーミスタ(9)の他端および前記インバータ制御回路(161)の一端が前記半導体スイッチング素子(16a)のエミッタ脚に直接接続され、前記スイッチング素子(16a)の前記プリント基板半田面側に露出した前記半導体スイッチング素子(16a)のエミッタ脚部近傍の同電位パターンに直接前記サーミスタ(9)を半田付けし、前記サーミスタ(9)の抵抗値変化によって生じる電位変化を前記インバータ制御回路(161)に直接入力することにより前記半導体スイッチング素子(16a)のスイッチングを制御することを特徴とする。
請求項2記載の発明は、請求項1記載のサーミスタ付きプリント基板において、前記半導体スイッチング素子がIGBT(Insulated Gate Bipolar Transistor)であることを特徴とする。
請求項3記載の発明は、請求項1または2記載のサーミスタ付きプリント基板において、前記サーミスタがチップサーミスタであることを特徴とする。
請求項4記載の高周波誘電加熱装置の発明は、インバータ部と放熱フィンとサーミスタとを搭載して成るプリント基板と、前記インバータ部の出力電圧を昇圧する昇圧トランスと、前記昇圧トランスの出力電圧を倍電圧整流する高圧整流部と、前記高圧整流部の出力をマイクロ波として放射するマグネトロン、とから成るマイクロ波出力部と、被加熱物を収容する加熱調理室と、を備え、前記マグネトロンから放射されるマイクロ波を前記加熱調理室に供給して前記被加熱物を加熱処理する高周波誘電加熱装置において、前記プリント基板として請求項1〜3のいずれか1項記載のサーミスタ付きプリント基板を使用したことを特徴とする。
【0013】
以上の発明によれば、サーミスタがチップ部品なので自動機で素早く実装が可能となり、また、このサーミスタはIGBT脚部に流れる電流を直接受けるのでIGBTのジャンクション温度に近い値を検出できることとなる。
さらに、サーミスタが取り付けられるのは放熱フィン側ではなく、プリント基板裏の半田面なので冷却風の影響を受けない。しかも従来方法のようなコストアップにはならない。
【0014】
【発明の実施の形態】
以下、本発明のIGBT保護サーミスタ付きプリント基板について図面を参照して詳細に説明する。
図1は本発明に係るマグネトロン駆動電源の構成図である。
図において、商用電源11からの交流は整流回路13によって直流に整流され、整流回路13の出力側のチョークコイル14と平滑コンデンサ15で平滑され、インバータ16の入力側に与えられる。直流はインバータ16の中の半導体スイッチング素子IGBTのオン・オフにより所望の高周波(20〜40kHz)に変換される。インバータ16は、直流を高速でスイッチングするIGBT16aとこのIGBT16aを制御するインバータ制御回路161によって駆動され、昇圧トランス18の1次側を流れる電流が高速でオン/オフにスイッチングされる。
【0015】
昇圧トランス18では1次巻線181にインバータ16の出力である高周波電圧が加えられ、2次巻線182に巻線比に応じた高圧電圧が得られる。また、昇圧トランス18の2次側に巻回数の少ない巻線183が設けられマグネトロン12のフィラメント121の加熱用に用いられている。昇圧トランス18の2次巻線182はその出力を整流する倍電圧全波整流回路20を備えている。倍電圧全波整流回路20は高圧コンデンサ201、202及び2個の高圧ダイオード203,204により構成される。
【0016】
本発明によると、IGBT16aの温度を検出するサーミスタ9を従来のIGBT16aのパッケージ部や放熱フィン部ではなくて、直接、IGBT(16a)のエミッタ脚に、それも放熱フィン側ではなくてプリント基板6の裏の半田面において半田付けし、さらに用いるサーミスタがチップサーミスタであるのが特徴である。
このサーミスタの温度情報(抵抗値)はIGBT(16a)の温度上昇と共に抵抗163との接続点電位を下降させ、この接続点電位がインバータ制御回路161に入力され、加熱を抑える働きをする。
【0017】
図2はチップサーミスタが本発明に係る取り付けをされたプリント基板を示している。図において、6はプリント基板、7は放熱フィン、8はIGBT、9はチップサーミスタである。
高熱を発するIGBT8の放熱部は放熱フィン7に固定されて、その3本の脚がプリント基板のスルーホールに挿入され反対側(裏側、半田側)において半田づけされている。サーミスタ9にはチップサーミスタを使用し、これを放熱フィン側ではなくてプリント基板6の裏の半田面のIGBT16aの脚部の近傍(同パターン電位)に直接半田付けしているのが見られる。
【0018】
このような構成にすることにより、サーミスタがチップ部品なので自動機で素早く実装が可能となり、また、このサーミスタはIGBT脚部に流れる電流を直接受けるのでIGBTのジャンクション温度に近い値を検出できることとなる。さらに、サーミスタが取り付けられるのは放熱フィン側ではなく、プリント基板裏の半田面なので冷却風の影響を受けない。しかも従来方法のようなコストアップにはならない。
【0019】
図3はサーミスタをダイオードブリッジの脚部近傍に置いた場合(a)とIGBTの脚部近傍に置いた本発明の場合(b)のIGBTのパワー制御波形と、それぞれのIGBTの温度制御波形(c)を示す線図である。
図(a)および(b)で、縦軸は入力電流、横軸は時間である。図(c)で、縦軸はIGBTの温度、横軸は時間、T0はIGBTの目標(基準)温度、T1とT1’は本発明による図3(b)の温度制御波形の最高値と最低値、T2とT2’は図3(a)の場合の温度制御波形の最高値と最低値をそれぞれ示している。
【0020】
図(c)において、IGBTに電流を流してインバータ動作をさせると、IGBTの温度は上昇してゆき、やがて時間toで目標温度T0に達する。
(イ):サーミスタをダイオードブリッジ脚部近傍に置いた場合は、IGBTの温度が目標温度T0に達してもサーミスタへの熱伝導が悪くサーミスタはこれを即検知できない。そして時間t2でようやく目標温度に達したことを検知し(このときのIGBTの温度は大きく上がってT2となっている。)、IGBTに流す電流を小さくする(図(a)のt2)。この時点からIGBTの温度は下降し始め、目標温度T0を下回った温度T2’でようやくサーミスタは目標温度T0以下に下がったことを検知し(このときのIGBTの温度は大きく下がってT2’となっている。)、入力電流を大きくする。以下、これを繰り返す。このように従来法の温度検知方法よれば、検出温度は最高温度T2と最低温度T2’の広い範囲内で変動することとなり、したがってIGBTのパワー制御の間隔も大きくなり(図a参照)、入力電流のきめ細かな制御が困難であった。
(ロ):一方、本発明によってサーミスタがIGBTの脚部近傍に置かれた場合は、IGBTの温度はサーミスタに熱伝導よく、感度よく伝わり、その直後の時間t1でサーミスタは目標温度T0に達したことを検知し(このときのIGBTの温度は若干上がってT1となっている。)、入力電流を小さくする(図(b)のt1)。この時点からIGBTの温度は下降し始め、目標温度T0を下回った温度T1’でサーミスタはこれをすばやく検知し(このときのIGBTの温度は若干下がってT1’)、入力電流を大きくする。以下、これを短い周期で繰り返す(図(b)参照)。
このように本発明によってIGBTの脚部近傍に置かれたサーミスタによる温度検知方法によれば、IGBTの温度は最高温度T1と最低温度T1’のわずかな範囲内に維持されることができる。
【0021】
このようにIGBTのエミッタ端子側近傍にサーミスタを配置することにより、IGBTの温度変化に即応した温度検知をするので、同電位であるダイオードブリッジの脚元にサーミスタを配置する場合に比べて温度検知が正確となり、温度検知レベルをIGBTのギリギリの温度に設定することが可能である。
また、正確で早くIGBTの温度を検出できるので、IGBTのパワー制御をきめ細かくでき、パワーダウン期間をより短くし、インバータ出力をできるだけ安定させることが可能である。したがって、IGBT温度を感度よくモニタできることで、図(c)の目標温度を正確に掴め、それにしたがって図(b)のパワー制御も図(a)の場合と比べきめ細かくできることとなる。こうすることにより、図(c)の(ロ)のIGBT温度線図のようにIGBTの温度が安定し、パワー制御もし易くなり、調理性能への影響も少なくなってくる。
【0022】
【発明の効果】
以上のように、本発明によれば、直流をIGBTでスイッチングして所定周波数の交流に変換するインバータ回路と、前記IGBTを取り付けて該IGBTから出る熱を放熱する放熱フィンと、前記IGBTの温度を検出するサーミスタとを搭載して半田付けして成るプリント基板において、前記IGBTの前記プリント基板半田面側に露出した脚部又は脚部近傍に前記サーミスタを半田付けすることにより、サーミスタがIGBT脚部に流れる電流を直接受けるのでIGBTのジャンクション温度に近い値を検出でき、さらにサーミスタが取り付けられるのが放熱フィン側ではなく、プリント基板裏の半田面なので冷却風の影響を受けないため正確なIGBT温度が検出できることになる。
また、取り付け場所がIGBTのエミッタ脚であるので高絶縁が必要でなく、サーミスタが安価で超小型のチップサーミスタであるので自動機で素早く実装が可能となり、従来のようなコストアップにはならないという効果もある。
【図面の簡単な説明】
【図1】本発明によるサーミスタ付きマグネトロン駆動電源の構成図である。
【図2】本発明に係るサーミスタ付きプリント基板の正面図である。
【図3】サーミスタをダイオードブリッジの脚部近傍に置いた場合(a)とIGBTの脚部近傍に置いた本発明の場合(b)の入力電流制御波形と、それぞれのIGBTの温度制御波形(c)を示す線図である。
【図4】従来のサーミスタ付きマグネトロン駆動電源の構成図である。
【図5】サーミスタの取り付け状態を示す従来のプリント基板の図で、(a)は特許文献1記載のサーミスタ付きプリント基板の正面図で、(b)は特許文献2記載のサーミスタ付きプリント基板の斜視図である。
【符号の説明】
7 放熱フィン
8 IGBT
9 サーミスタ
11 商用電源
12 マグネトロン
13 整流回路
14 チョークコイル
15 平滑コンデンサ
16 インバータ
161 インバータ制御回路
18 昇圧トランス
181 1次巻線
182 2次巻線
183 フィラメント加熱用巻線
19 半波整流回路
20 全波整流回路
201,201 高圧コンデンサ
203、204 高圧ダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-frequency dielectric heating using a magnetron such as a microwave oven, and more particularly to a thermistor that performs overheat protection of a semiconductor switching element used in an inverter.
[0002]
[Prior art]
FIG. 4 is a configuration diagram of a conventional magnetron driving power source.
In the figure, the alternating current from the commercial power supply 11 is rectified to a direct current by the rectifier circuit 13, smoothed by the choke coil 14 and the smoothing capacitor 15 on the output side of the rectifier circuit 13, and given to the input side of the inverter 16. The direct current is converted to a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element in the inverter 16. The inverter 16 is controlled by an IGBT (Insulated Gate Bipolar Transistor) that switches DC at high speed and an inverter control circuit 161 that drives and controls the IGBT, and the current flowing through the primary side of the step-up transformer 18 is switched on / off at high speed. Is done.
[0003]
The input signal of the control circuit 161 is a detected current obtained by detecting the primary current of the rectifier circuit 13 with the CT 17 , and the detected current is input to the inverter control circuit 161 and used for controlling the inverter 16. Further, a temperature sensor (thermistor) 9 ′ is attached to a heat radiating fin for cooling the IGBT, and temperature information detected by this temperature sensor is input to the inverter control circuit 161 and used for controlling the inverter 16.
[0004]
In the step-up transformer 18, a high-frequency voltage that is the output of the inverter 16 is applied to the primary winding 181, and a high-voltage voltage corresponding to the winding ratio is obtained in the secondary winding 182. A winding 183 with a small number of turns is provided on the secondary side of the step-up transformer 18 and is used for heating the filament 121 of the magnetron 12. The secondary winding 182 of the step-up transformer 18 includes a voltage doubler half-wave rectifier circuit 19 that rectifies its output. The voltage doubler half wave rectifier circuit 19 includes a high voltage capacitor 191 and two high voltage diodes 192 and 193.
[0005]
[Problems to be solved by the invention]
By the way, installation conditions such as placing microwave ovens on the top, bottom, left and right sides of the furniture and closing the air supply / exhaust port of the microwave oven, or the motor for the cooling fan of the microwave oven There may be a problem that the coil portion is disconnected and the cooling fan becomes inoperable.
In such a case, as a method for preventing the thermal breakdown of the IGBT that controls the switching of the inverter power supply, conventionally, the thermistor 9 ′ is used to stop the semiconductor IGBT before the thermal breakdown to prevent the temperature rise.
[0006]
In this case, as a method of detecting the temperature by attaching the thermistor 9 ′,
(1) There was a method of fastening together with the package portion of the IGBT 16a with a thermistor lead sensor U with glasses terminals.
However, the co- fastening method for the package part can be realized only by human work, so the number of man-hours is increased and the cost is increased accordingly.
[0007]
2) There is also a method in which the thermistor is separately screwed to the heat dissipating fin and detected from the heat dissipating fin (see, for example, Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-312182 [Patent Document 2]
Japanese Patent No. 28922454 [0009]
Fig.5 (a) is a figure which shows the attachment method of patent document 1, and is a figure which shows the state which screwed the thermistor to the radiation fin.
In the figure, 6 is a printed circuit board, 7 is a radiation fin, 8 is an IGBT, and 9 'is a thermistor.
The heat radiating part of the IGBT 8 that generates high heat is fixed to the heat radiating fins 7, and its three legs are inserted into the through holes of the printed circuit board and soldered on the opposite side. The thermistor 9 ′ is also screwed to the radiating fin 7 and takes out temperature information of the radiating fin.
However, such a screw fastening method to the heat radiating fins also increases man-hours and costs, and because the detection temperature is not the direct temperature of the IGBT but the temperature of the heat radiating fins, both the temperature detection accuracy and sensitivity are poor. There were drawbacks.
[0010]
3) Furthermore, there was a method of attaching a radial thermistor in the vicinity of the IGBT 8 on the printed circuit board (for example, see Patent Document 2).
FIG. 5B is a view showing the attachment method described in Patent Document 2.
In the figure, 6 is a printed circuit board, 7 is a radiation fin, 8 is an IGBT, and 9 'is a thermistor. This method is retrofitted in the vicinity of the printed circuit board, and has the disadvantage that the man-hour increases because it is attached by hand, and the thermal time constant of the thermistor deteriorates because it is directly affected by the cooling air.
[0011]
Furthermore, the thermistor 9 'was also attached to the vicinity A of the leg portion of the IGBT 8, but this was also retrofitted to the vicinity of the printed circuit board, and it was attached by hand, which increased man-hours and the effect of cooling air. Since it was received directly, there was a drawback that the thermal time constant of the thermistor deteriorated.
Accordingly, an object of the present invention is to solve these problems and to provide a printed circuit board with a thermistor which does not need to be attached by hand and is hardly affected by cooling air and has a small thermistor thermal time constant.
[0012]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the invention of the printed circuit board with thermistor according to claim 1 is directed to an inverter unit that converts direct current into alternating current of a predetermined frequency by switching with a semiconductor switching element (16a). (16), an inverter control circuit (161) for outputting a switching voltage to the control terminal of the semiconductor switching element, and a thermistor (9) for detecting the temperature of the switching element (16a) and a resistor (163) connected in series a series circuit formed by the semiconductor switching element radiating fins (7) (16a) and attached to radiate heat from the switching element (16a), the printed circuit board formed by soldered mounted, the The series circuit of the thermistor (9) and the resistor (163) is connected to the inverter control circuit (161). The junction point potential between the thermistor (9) and the resistor (163) of the series circuit is input to the inverter control circuit (161), and the other end of the thermistor (9) and the inverter control circuit (161) ) Is directly connected to the emitter leg of the semiconductor switching element (16a), and is exposed to the same potential near the emitter leg of the semiconductor switching element (16a) exposed to the printed circuit board solder surface side of the switching element (16a). The semiconductor thermistor (9a) is directly soldered to the pattern, and the potential change caused by the resistance value change of the thermistor (9) is directly input to the inverter control circuit (161), thereby switching the semiconductor switching element (16a). It is characterized by controlling .
According to a second aspect of the present invention, in the printed circuit board with a thermistor according to the first aspect, the semiconductor switching element is an IGBT (Insulated Gate Bipolar Transistor).
According to a third aspect of the present invention, in the printed circuit board with thermistor according to the first or second aspect, the thermistor is a chip thermistor.
According to a fourth aspect of the present invention, there is provided a high frequency dielectric heating device comprising: a printed circuit board including an inverter unit, heat radiation fins and a thermistor; a step-up transformer for boosting an output voltage of the inverter unit; and an output voltage of the step-up transformer. A microwave output unit comprising a high voltage rectification unit for voltage rectification, a magnetron that radiates the output of the high voltage rectification unit as a microwave, and a heating cooking chamber that accommodates an object to be heated, and radiates from the magnetron in the high-frequency dielectric heating apparatus by supplying microwaves into the cooking chamber for heating the object to be heated that is, using a thermistor with a printed circuit board of any one of claims 1 to 3 as the printed circuit board It is characterized by that.
[0013]
According to the above invention, since the thermistor is a chip component, it can be quickly mounted by an automatic machine. Further, since this thermistor directly receives the current flowing through the IGBT leg, a value close to the junction temperature of the IGBT can be detected.
Furthermore, since the thermistor is attached not to the heat radiating fin side but to the solder surface on the back of the printed circuit board, it is not affected by cooling air. Moreover, the cost is not increased as in the conventional method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a printed circuit board with an IGBT protection thermistor according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a magnetron driving power source according to the present invention.
In the figure, the alternating current from the commercial power supply 11 is rectified to a direct current by the rectifier circuit 13, smoothed by the choke coil 14 and the smoothing capacitor 15 on the output side of the rectifier circuit 13, and given to the input side of the inverter 16. The direct current is converted to a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element IGBT in the inverter 16. The inverter 16 is driven by an IGBT 16a that switches DC at high speed and an inverter control circuit 161 that controls the IGBT 16a, and the current flowing through the primary side of the step-up transformer 18 is switched on / off at high speed.
[0015]
In the step-up transformer 18, a high-frequency voltage that is the output of the inverter 16 is applied to the primary winding 181, and a high-voltage voltage corresponding to the winding ratio is obtained in the secondary winding 182. A winding 183 with a small number of turns is provided on the secondary side of the step-up transformer 18 and is used for heating the filament 121 of the magnetron 12. The secondary winding 182 of the step-up transformer 18 includes a voltage doubler full wave rectification circuit 20 that rectifies its output. The voltage doubler full-wave rectifier circuit 20 includes high-voltage capacitors 201 and 202 and two high-voltage diodes 203 and 204.
[0016]
According to the present invention, the thermistor 9 for detecting the temperature of the IGBT 16a is not directly placed on the emitter leg of the IGBT (16a), but on the printed circuit board 6 instead of on the emitter fin side of the IGBT 16a, instead of the package portion or the heat radiating fin portion of the conventional IGBT 16a. The thermistor used for soldering is soldered on the solder surface on the back of the chip, and the thermistor used is a chip thermistor.
The temperature information (resistance value) of this thermistor lowers the potential at the connection point with the resistor 163 as the temperature of the IGBT (16a) rises, and this potential at the connection point is input to the inverter control circuit 161 to function to suppress heating.
[0017]
FIG. 2 shows a printed circuit board to which a chip thermistor is attached according to the present invention. In the figure, 6 is a printed circuit board, 7 is a radiation fin, 8 is an IGBT, and 9 is a chip thermistor.
The heat radiating part of the IGBT 8 that emits high heat is fixed to the heat radiating fin 7, and its three legs are inserted into through holes of the printed circuit board and soldered on the opposite side (back side, solder side). It can be seen that a chip thermistor is used as the thermistor 9 and is soldered directly to the vicinity of the leg portion of the IGBT 16a (the same pattern potential) on the solder surface on the back side of the printed circuit board 6 instead of the radiating fin side.
[0018]
By adopting such a configuration, since the thermistor is a chip component, it can be quickly mounted by an automatic machine, and since this thermistor directly receives the current flowing through the IGBT leg, a value close to the junction temperature of the IGBT can be detected. . Furthermore, since the thermistor is attached not to the heat radiating fin side but to the solder surface on the back of the printed circuit board, it is not affected by cooling air. Moreover, the cost is not increased as in the conventional method.
[0019]
FIG. 3 shows the power control waveform of the IGBT in the case where the thermistor is placed near the legs of the diode bridge (a) and the case of the present invention placed in the vicinity of the legs of the IGBT, and the temperature control waveform of each IGBT ( It is a diagram showing c).
In the diagrams (a) and (b), the vertical axis represents the input current, and the horizontal axis represents the time. In FIG. 3C, the vertical axis is the IGBT temperature, the horizontal axis is the time, T0 is the target (reference) temperature of the IGBT, T1 and T1 ′ are the maximum and minimum values of the temperature control waveform of FIG. 3B according to the present invention. The values T2 and T2 ′ indicate the maximum value and the minimum value of the temperature control waveform in the case of FIG.
[0020]
In FIG. 3C, when an inverter is operated by passing a current through the IGBT, the temperature of the IGBT rises and eventually reaches the target temperature T0 at time to.
(A): When the thermistor is placed in the vicinity of the diode bridge leg, even if the IGBT temperature reaches the target temperature T0, heat conduction to the thermistor is poor and the thermistor cannot immediately detect this. Then, it is finally detected that the target temperature is reached at time t2 (at this time, the temperature of the IGBT is greatly increased to T2), and the current flowing through the IGBT is reduced (t2 in FIG. 1A). At this time, the temperature of the IGBT starts to decrease, and finally the thermistor detects that the temperature has decreased below the target temperature T0 at a temperature T2 ′ that is lower than the target temperature T0 (at this time, the temperature of the IGBT greatly decreases to T2 ′). ) Increase the input current. This is repeated below. As described above, according to the temperature detection method of the conventional method, the detected temperature fluctuates within a wide range between the maximum temperature T2 and the minimum temperature T2 ′. Therefore, the power control interval of the IGBT becomes large (see FIG. A), and the input It was difficult to finely control the current.
(B) On the other hand, when the thermistor is placed in the vicinity of the leg portion of the IGBT according to the present invention, the temperature of the IGBT is transferred to the thermistor with good thermal conductivity and sensitivity, and the thermistor reaches the target temperature T0 at the time t1 immediately after that. (The IGBT temperature at this time has risen slightly to T1), and the input current is reduced (t1 in FIG. 4B). At this time, the temperature of the IGBT starts to fall, and the thermistor quickly detects this at a temperature T1 ′ that is lower than the target temperature T0 (at this time, the temperature of the IGBT slightly drops to T1 ′), and increases the input current. Hereinafter, this is repeated in a short cycle (see FIG. 5B).
As described above, according to the temperature detection method using the thermistor placed in the vicinity of the leg portion of the IGBT according to the present invention, the temperature of the IGBT can be maintained within a slight range between the maximum temperature T1 and the minimum temperature T1 ′.
[0021]
By arranging the thermistor in the vicinity of the emitter terminal of the IGBT in this way, the temperature is detected in response to the temperature change of the IGBT, so the temperature is detected compared to the case where the thermistor is arranged at the base of the diode bridge at the same potential. Becomes accurate, and the temperature detection level can be set to the last minute temperature of the IGBT.
Moreover, since the temperature of the IGBT can be detected accurately and quickly, the power control of the IGBT can be made fine, the power down period can be shortened, and the inverter output can be stabilized as much as possible. Therefore, since the IGBT temperature can be monitored with high sensitivity, the target temperature in FIG. (C) can be accurately grasped, and accordingly, the power control in FIG. (B) can be made finer than in the case of FIG. By doing so, the temperature of the IGBT is stabilized as shown in the (b) IGBT temperature diagram of FIG. 7C, power control is facilitated, and the influence on cooking performance is reduced.
[0022]
【The invention's effect】
As described above, according to the present invention, an inverter circuit that switches direct current with an IGBT and converts it into alternating current of a predetermined frequency, a heat dissipating fin that attaches the IGBT and dissipates heat emitted from the IGBT, and a temperature of the IGBT In a printed circuit board that is mounted and soldered with a thermistor for detecting the thermistor, the thermistor is soldered to an IGBT leg by soldering the thermistor to or near the leg exposed on the printed circuit board solder surface side of the IGBT. Because the current flowing through the part is directly received, a value close to the junction temperature of the IGBT can be detected, and the thermistor is not mounted on the heat dissipation fin side but the solder surface on the back of the printed circuit board, so it is not affected by cooling air, so it is an accurate IGBT The temperature can be detected.
In addition, since the mounting location is the IGBT emitter leg, high insulation is not required, and the thermistor is an inexpensive and ultra-compact chip thermistor that can be quickly mounted by an automatic machine and does not increase the cost as in the past. There is also an effect.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a magnetron drive power supply with a thermistor according to the present invention.
FIG. 2 is a front view of a printed circuit board with a thermistor according to the present invention.
FIG. 3 shows an input current control waveform when the thermistor is placed in the vicinity of the leg of the diode bridge (a) and in the case of the present invention placed near the leg of the IGBT, and a temperature control waveform of each IGBT ( It is a diagram showing c).
FIG. 4 is a configuration diagram of a conventional magnetron drive power supply with a thermistor.
5A is a front view of a printed circuit board with thermistor described in Patent Document 1, and FIG. 5B is a front view of the printed circuit board with thermistor described in Patent Document 2. FIG. It is a perspective view.
[Explanation of symbols]
7 Radiation fin 8 IGBT
9 Thermistor 11 Commercial power supply 12 Magnetron 13 Rectifier circuit 14 Choke coil 15 Smoothing capacitor 16 Inverter 161 Inverter control circuit 18 Step-up transformer 181 Primary winding 182 Secondary winding 183 Filament heating winding 19 Half-wave rectification circuit 20 Full-wave rectification Circuits 201 and 201 High-voltage capacitors 203 and 204 High-voltage diode

Claims (4)

直流を半導体スイッチング素子でスイッチングして所定周波数の交流に変換するインバータ部と、前記半導体スイッチング素子の制御端子にスイッチング電圧を出力するインバータ制御回路と、前記スイッチング素子の温度を検出するサーミスタと抵抗との直列接続されて成る直列回路と、前記半導体スイッチング素子を取り付けて該スイッチング素子から出る熱を放熱する放熱フィンと、を搭載して半田付けして成るプリント基板において、
前記サーミスタと抵抗との前記直列回路が前記インバータ制御回路の両端に接続され、前記直列回路のサーミスタと抵抗との接続点電位が前記インバータ制御回路に入力され、前記サーミスタの他端および前記インバータ制御回路の一端が前記半導体スイッチング素子のエミッタ脚に直接接続され、前記スイッチング素子の前記プリント基板半田面側に露出した前記半導体スイッチング素子のエミッタ脚部近傍の同電位パターンに直接前記サーミスタを半田付けし、前記サーミスタの抵抗値変化によって生じる電位変化を前記インバータ制御回路に直接入力することにより前記半導体スイッチング素子のスイッチングを制御することを特徴とするサーミスタ付きプリント基板。
An inverter unit for switching direct current with a semiconductor switching element to convert it into alternating current of a predetermined frequency, an inverter control circuit for outputting a switching voltage to a control terminal of the semiconductor switching element, a thermistor and a resistor for detecting the temperature of the switching element In a printed circuit board formed by mounting and soldering a series circuit formed by serial connection and a heat radiation fin for dissipating heat emitted from the switching element by attaching the semiconductor switching element,
The series circuit of the thermistor and a resistor is connected to both ends of the inverter control circuit, and a connection point potential between the thermistor and the resistor of the series circuit is input to the inverter control circuit, and the other end of the thermistor and the inverter control One end of the circuit is directly connected to the emitter leg of the semiconductor switching element, and the thermistor is soldered directly to the same potential pattern in the vicinity of the emitter leg of the semiconductor switching element exposed on the printed circuit board solder surface side of the switching element. A printed circuit board with a thermistor, wherein the switching of the semiconductor switching element is controlled by directly inputting a potential change caused by a change in resistance value of the thermistor to the inverter control circuit .
前記半導体スイッチング素子がIGBT(InsulatedGate Bipolar Transistor)であることを特徴とする請求項1記載のサーミスタ付きプリント基板。2. The printed circuit board with a thermistor according to claim 1, wherein the semiconductor switching element is an IGBT (Insulated Gate Bipolar Transistor). 前記サーミスタがチップサーミスタであることを特徴とする請求項1または2記載のサーミスタ付きプリント基板。3. The printed circuit board with thermistor according to claim 1, wherein the thermistor is a chip thermistor. インバータ部と放熱フィンとサーミスタとを搭載して成るプリント基板と、前記インバータ部の出力電圧を昇圧する昇圧トランスと、前記昇圧トランスの出力電圧を倍電圧整流する高圧整流部と、前記高圧整流部の出力をマイクロ波として放射するマグネトロン、とから成るマイクロ波出力部と、
被加熱物を収容する加熱調理室と、を備え、前記マグネトロンから放射されるマイクロ波を前記加熱調理室に供給して前記被加熱物を加熱処理する高周波誘電加熱装置において、前記プリント基板として請求項1〜3のいずれか1項記載のサーミスタ付きプリント基板を使用したことを特徴とする高周波誘電加熱装置。
A printed circuit board comprising an inverter unit, heat radiation fins, and a thermistor, a step-up transformer that boosts the output voltage of the inverter unit, a high-voltage rectifier unit that rectifies the output voltage of the boost transformer, and the high-voltage rectifier unit A microwave output unit composed of a magnetron that radiates the output of
A high-frequency dielectric heating apparatus that heats the object to be heated by supplying microwaves radiated from the magnetron to the heating cooking room, and as the printed board. Item 4. A high-frequency dielectric heating apparatus using the printed circuit board with thermistor according to any one of items 1 to 3.
JP2003117073A 2003-04-22 2003-04-22 Printed circuit board with thermistor Expired - Lifetime JP4001564B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003117073A JP4001564B2 (en) 2003-04-22 2003-04-22 Printed circuit board with thermistor
KR1020057019929A KR101004113B1 (en) 2003-04-22 2004-04-21 High-frequency dielectric heating device and printed board with thermistor
EP04728689.3A EP1616463B1 (en) 2003-04-22 2004-04-21 High-frequency dielectric heating device and printed board with thermistor
US10/553,155 US7312427B2 (en) 2003-04-22 2004-04-21 High-frequency dielectric heating device and printed board with thermistor
PCT/JP2004/005727 WO2004095886A1 (en) 2003-04-22 2004-04-21 High-frequency dielectric heating device and printed board with thermistor
CNB2004800109704A CN100518418C (en) 2003-04-22 2004-04-21 High-frequency dielectric heating device and printed board with thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117073A JP4001564B2 (en) 2003-04-22 2003-04-22 Printed circuit board with thermistor

Publications (2)

Publication Number Publication Date
JP2004327124A JP2004327124A (en) 2004-11-18
JP4001564B2 true JP4001564B2 (en) 2007-10-31

Family

ID=33497088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117073A Expired - Lifetime JP4001564B2 (en) 2003-04-22 2003-04-22 Printed circuit board with thermistor

Country Status (2)

Country Link
JP (1) JP4001564B2 (en)
CN (1) CN100518418C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207873A1 (en) 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
DE102020215494A1 (en) 2020-12-08 2022-06-09 Wilhelm Bruckbauer Device for heating food

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200530566A (en) * 2004-03-05 2005-09-16 Hitachi Ind Equipment Sys Method for detecting temperature of semiconductor element and semiconductor power converter
US8368384B2 (en) * 2008-09-11 2013-02-05 Abb Oy Reduction of semiconductor stresses
JP5514785B2 (en) 2010-10-29 2014-06-04 京セラドキュメントソリューションズ株式会社 Fixing apparatus and image forming apparatus having the fixing apparatus
TWI445441B (en) * 2011-04-13 2014-07-11 Cyntec Co Ltd Driving circuit of light emitting diodes having at least one bypass circuit, and driving method thereof
JP5737252B2 (en) * 2012-09-25 2015-06-17 株式会社村田製作所 Circuit device and manufacturing method thereof
JP7275247B1 (en) 2021-12-28 2023-05-17 Apb株式会社 Secondary battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207873A1 (en) 2017-05-12 2018-11-15 Jfeスチール株式会社 Oriented magnetic steel sheet and method for manufacturing same
DE102020215494A1 (en) 2020-12-08 2022-06-09 Wilhelm Bruckbauer Device for heating food

Also Published As

Publication number Publication date
JP2004327124A (en) 2004-11-18
CN100518418C (en) 2009-07-22
CN1778145A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US8624170B2 (en) Inverter controller and high-frequency dielectric heating apparatus
KR101887067B1 (en) Power transforming apparatus and air conditioner including the same
JP4001564B2 (en) Printed circuit board with thermistor
JP4015598B2 (en) High frequency heating device
KR101004113B1 (en) High-frequency dielectric heating device and printed board with thermistor
JP3986462B2 (en) High frequency heating device
JP4001563B2 (en) High frequency dielectric heating device
JP4479526B2 (en) Microwave generator
KR20060002976A (en) High frequency heating apparatus
EP3461229B1 (en) Induction cooking hob
JP2009081100A (en) Induction heating cooker
JP5151247B2 (en) State detection device that detects the operating state of the high-frequency heating device
JP3257421B2 (en) Induction heating cooker
JP2008242018A (en) Power supply device and projector
JPH0645058A (en) Induction heating cooker
JP4015597B2 (en) High frequency heating device
JP3656565B2 (en) Induction heating cooker
JPS6269485A (en) Cooking device
JP3918615B2 (en) High frequency heating device
JPH05326130A (en) Electromagnetic cooker
JP2011249196A (en) Induction heating apparatus
JP2007280628A (en) High-frequency heating device
JPH0665150B2 (en) High frequency heating device
JP2001110561A (en) High frequency heating apparatus
JPH06101380B2 (en) High frequency heating device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

EXPY Cancellation because of completion of term