JP2006220983A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2006220983A
JP2006220983A JP2005035180A JP2005035180A JP2006220983A JP 2006220983 A JP2006220983 A JP 2006220983A JP 2005035180 A JP2005035180 A JP 2005035180A JP 2005035180 A JP2005035180 A JP 2005035180A JP 2006220983 A JP2006220983 A JP 2006220983A
Authority
JP
Japan
Prior art keywords
conductive film
opening
light
optical element
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005035180A
Other languages
Japanese (ja)
Inventor
Yukari Aoki
由香里 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005035180A priority Critical patent/JP2006220983A/en
Publication of JP2006220983A publication Critical patent/JP2006220983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element having high transmission efficiency with respect to the optical element wherein intensity of light transmitted through a fine aperture is reinforced. <P>SOLUTION: In the optical element which has first and second surfaces, at least one aperture penetrating from the first surface to the second surface and a conductive film having a regularly changed shape on at least one of the first and the second surfaces and wherein light made incident in at least one surface of the conductive film having the regularly changed shape interacts with a surface plasmon mode on at least one surface of the conductive film to reinforce intensity of light transmitted through the aperture, the conductive film is provided at a side wall part in the aperture. Light transmitted through the aperture is reinforced by forming the conductive film having the same quality as the conductive film formed on the surface also at the side wall part in the aperture. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小開口を通じて伝送される強度を増強する光学素子に関する。   The present invention relates to an optical element that enhances the intensity transmitted through a minute aperture.

高密度な情報記録装置として、光ディスクドライブや光磁気ディスクドライブ、ハードディスクドライブ(HDD)等、各種の記録媒体及び記録装置が実用化されている。近年、動画像のデジタル化の動き、装置の小型化への動きと相俟って、これらの記録媒体の記録密度を高めて更に大容量化する要求が高まっている。   As a high-density information recording apparatus, various recording media and recording apparatuses such as an optical disk drive, a magneto-optical disk drive, and a hard disk drive (HDD) have been put into practical use. In recent years, coupled with the trend toward digitization of moving images and the trend toward miniaturization of apparatuses, there has been an increasing demand for higher recording density and higher capacity of these recording media.

一般に、光記録媒体の線記録密度は、再生光学系のレーザ光の波長及び対物レンズの開口数NAに大きく依存する。即ち、再生光学系のレーザ光の波長λと対物レンズの開口数NAが決まることでビームウェスト径が決定するため、信号再生可能な記録ピットの空間周波数は2NA/λ程度が限界となってしまう。従って、従来の光ディスクでの高密度化はレーザ光の回折限界で制限されてしまう。   In general, the linear recording density of an optical recording medium greatly depends on the wavelength of the laser beam of the reproducing optical system and the numerical aperture NA of the objective lens. That is, since the beam waist diameter is determined by determining the wavelength λ of the laser beam of the reproducing optical system and the numerical aperture NA of the objective lens, the spatial frequency of recording pits capable of signal reproduction is limited to about 2 NA / λ. . Therefore, the density increase in the conventional optical disk is limited by the diffraction limit of the laser beam.

回折限界を打破する方法として、エバネッセント波を利用する、いわゆる近接場光技術が注目を集めている。金属フィルムに開けられた波長以下の径の開口を透過する波長の短いエバネッセント波を光記録/再生しに利用しようとするものである。   As a method for overcoming the diffraction limit, so-called near-field light technology using an evanescent wave has attracted attention. An evanescent wave having a short wavelength that passes through an opening having a diameter equal to or smaller than the wavelength opened in the metal film is to be used for optical recording / reproducing.

ところが、このような金属フィルム内の単純開口を透過する光の伝送効率は開口の直径に依存し、開口直径が開口を透過する光の波長未満の場合、透過率は(d/λ)に比例する。従って、微小開口を介した光の伝送は厳しい減衰を受けるため、読み出し用には低過ぎる信号対雑音比と、書き込みに必要な充分な光強度が得られないという問題がある。結果として、近接場光学系を使用する実用的な光記録/再生ヘッドは、今までに得られていない。 However, the transmission efficiency of light transmitted through a simple aperture in such a metal film depends on the diameter of the aperture. When the aperture diameter is less than the wavelength of light transmitted through the aperture, the transmittance is (d / λ) 4 . Proportional. Therefore, since transmission of light through a minute aperture is severely attenuated, there is a problem that a signal-to-noise ratio that is too low for reading and a sufficient light intensity necessary for writing cannot be obtained. As a result, a practical optical recording / reproducing head using a near-field optical system has not been obtained so far.

一方、例えば特許文献1〜7及び非特許文献1には、金属フィルムに照射された光が金属フィルムに設けた波長以下の直径を有する1つ以上の開口を透過する強度は、開口を周期的な配列で配置することにより、又は少なくとも1つの開口と連係して金属フィルム上に周期的な表面形状を設けることにより、周期的な開口や表面形状がない場合に比べて、大幅に増加させることができるという技術が開示されている。   On the other hand, for example, in Patent Documents 1 to 7 and Non-Patent Document 1, the intensity at which light irradiated to a metal film passes through one or more openings having a diameter equal to or smaller than the wavelength provided on the metal film is periodic. By arranging in a simple arrangement, or by providing a periodic surface shape on the metal film in conjunction with at least one opening, it can be significantly increased compared to when there is no periodic opening or surface shape A technique that can be performed is disclosed.

開口列を透過する光の透過率の強化は、金属フィルムに入射する光が表面プラズモンモードと共振的に相互作用する時に生ずる。表面プラズモンモード(以下、単に「表面プラズモン」と称する)は金属と隣接する誘電性媒体との界面に存在する集合的な電子の励起状態である。開口列が規則的に配置された構造は表面プラズモンモードと入射光の結合(共振的相互作用)を可能とする。従来の開口列付き光学素子においては、開口配列は光を伝送する開口としてのみ特徴付けられていた。   The enhancement of the transmittance of light transmitted through the aperture array occurs when light incident on the metal film interacts with the surface plasmon mode in a resonant manner. The surface plasmon mode (hereinafter, simply referred to as “surface plasmon”) is an excited state of collective electrons existing at the interface between a metal and an adjacent dielectric medium. The structure in which the aperture array is regularly arranged enables coupling (resonant interaction) between the surface plasmon mode and the incident light. In a conventional optical element with an aperture array, the aperture array has been characterized only as an aperture for transmitting light.

しかし、光ディスクの記録/再生のような用途においては、開口列に示されるような高次伝送を、単一の開口又は小さなセットの開口により実現することが望まれる。又、開口列の伝送を更に増加することも望ましいことである。しかし、今日まで充分な伝送効率を示す波長未満径の開口デバイスは実現されていない。又、少なくとも1つの開口と連係して金属フィルム上に周期的な表面形状を設けることで表面プラズモンを利用した高効率光伝送においても、従来の作製法においては充分な光伝送効率は得られていない。   However, in applications such as optical disk recording / reproduction, it is desirable to achieve higher order transmission as shown in the aperture row with a single aperture or a small set of apertures. It is also desirable to further increase the transmission of the aperture row. However, an aperture device with a diameter less than a wavelength showing sufficient transmission efficiency has not been realized until now. In addition, even in high-efficiency optical transmission using surface plasmons by providing a periodic surface shape on a metal film in association with at least one opening, sufficient optical transmission efficiency is obtained in the conventional manufacturing method. Absent.

又、特許文献7においては、光伝送効率の減少の主たる要因は“ランダムに存在する表面凹凸により表面プラズモンが散乱されること”であると考え、プラズモン効果による光伝送効率を改善するために、周期的な表面形状以外のランダムに存在する表面凹凸を小さくする方法が提案されている。即ち、波長以下の開口と周期的な表面形状とを有する導電性フィルムを有し、表面プラズモンとの相互作用により開口を通る透過光が増幅される光学素子において、表面凹凸を改善する効果のある中間層を挿入することで、プラズモン効果による光伝送効率の減少を改善するという光学素子が開示されている。   In Patent Document 7, it is considered that the main factor of the decrease in the light transmission efficiency is “surface plasmons are scattered by the surface irregularities present at random”, and in order to improve the light transmission efficiency due to the plasmon effect, There has been proposed a method of reducing surface irregularities present at random other than the periodic surface shape. That is, in an optical element having a conductive film having an opening of a wavelength less than that and a periodic surface shape, and transmitting light passing through the opening by interaction with the surface plasmon, there is an effect of improving surface unevenness. An optical element is disclosed that improves the reduction in light transmission efficiency due to the plasmon effect by inserting an intermediate layer.

特開平11−72607号公報Japanese Patent Laid-Open No. 11-72607 特開2000−111851号公報JP 2000-1111851 A 特開2000−171763号公報JP 2000-171763 A 特開2001−133618号公報JP 2001-133618 A 米国特許第6236033号明細書US Pat. No. 6,236,033 米国特許第6285020号明細書US Pat. No. 6,285,020 特開2003−287656号公報JP 2003-287656 A “Extraordinary optical transmission through sub−wavelength hole arrays”、Nature、巻391、頁667−669、(2月12日1998年))“Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, Vol. 391, pp. 667-669 (February 12, 1998))

上述したように、特許文献7(特開2003−287656号公報)に開示されている光学素子においては、表面凹凸を改善する効果のある中間層を有することで、透過光の伝送効率は改善されるが、本発明者らは、前記従来例の構造においては、図6に示すように開口内側壁部66に中間層67が露出するため、光の伝送効率に悪影響を及ぼすという、新規な課題を発見した。又、光ディスクにおける高速の記録/再生を考えると、更なる高伝送効率が必要とされる。   As described above, in the optical element disclosed in Patent Document 7 (Japanese Patent Laid-Open No. 2003-287656), the transmission efficiency of transmitted light is improved by having an intermediate layer that has an effect of improving the surface unevenness. However, in the structure of the conventional example, since the intermediate layer 67 is exposed on the inner wall portion 66 of the opening as shown in FIG. 6, the present inventors have a novel problem of adversely affecting the light transmission efficiency. I found Further, considering high-speed recording / reproduction on an optical disc, higher transmission efficiency is required.

本発明は、上記従来の問題点に鑑みなされたもので、その目的は高伝送効率の光学素子を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide an optical element with high transmission efficiency.

上記目的を達成するため、本発明は、第1の表面と第2の表面を有し、第1の表面から第2の表面を貫通する少なくとも1つの開口を有し、第1の表面と第2の表面の少なくとも1つに規則的に変化する形状を有した導電性膜を有し、前記規則的に変化する形状を有した導電性膜の少なくとも1つの表面に入射する光が、前記導電性膜の少なくとも1つの表面上の表面プラズモンモードと相互作用し、それによって、前記開口を通じて伝送される光の強度が増強される光学素子として、前記開口内の側壁部に導電性膜を有することを特徴とする。   In order to achieve the above object, the present invention has a first surface and a second surface, has at least one opening extending from the first surface to the second surface, and the first surface and the second surface. A conductive film having a regularly changing shape on at least one of the two surfaces, and light incident on at least one surface of the conductive film having the regularly changing shape is the conductive film. A conductive film on the side wall in the opening as an optical element that interacts with the surface plasmon mode on at least one surface of the conductive film, thereby enhancing the intensity of light transmitted through the opening It is characterized by.

本発明によれば、開口内の側壁部にも、表面上に形成された導電性膜と同質な導電性膜を形成することで、前記開口を通じて伝送される光が増強される。   According to the present invention, the light transmitted through the opening is enhanced by forming a conductive film of the same quality as the conductive film formed on the surface of the side wall in the opening.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<実施の形態1>
図1(a)は本発明による光学素子の模式的構成図、図1(b)は開口部の模式的断面図を示す。図1(a)に示すように本発明の光学素子は、第1の表面1と第2の表面2を有し、第1の表面1から第2の表面2を貫通する少なくとも1つの開口3を有し、第1の表面と第2の表面少なくとも1つの表面に導電性膜4を有し、少なくとも1つの導電性膜4は規則的に変化する形状5を有し、導電性膜と隣接して導電性膜とは異なった材質からなる中間層6を有し、開口内側壁部7に導電性膜4を有する。本発明は貫通する開口3の開口部側壁7に導電性膜を有することが特徴である。これによって、開口3を通じて伝送される光が増強される
第1の表面と、第2の表面の少なくとも1つの表面を構成する導電性膜の材料は、全ての金属又はドープ処理をした半導体のように導電性材料で、Al、Ag、Au、Pt、Cr等或はこれらを含む合金等が望ましい。
<Embodiment 1>
1A is a schematic configuration diagram of an optical element according to the present invention, and FIG. 1B is a schematic cross-sectional view of an opening. As shown in FIG. 1A, the optical element of the present invention has a first surface 1 and a second surface 2, and at least one opening 3 penetrating from the first surface 1 to the second surface 2. The first surface and the second surface have a conductive film 4 on at least one surface, and the at least one conductive film 4 has a regularly changing shape 5 and is adjacent to the conductive film. Thus, the intermediate layer 6 made of a material different from that of the conductive film is provided, and the conductive film 4 is provided on the inner wall 7 of the opening. The present invention is characterized by having a conductive film on the opening side wall 7 of the opening 3 that penetrates. As a result, the light transmitted through the opening 3 is enhanced. The material of the conductive film constituting at least one of the first surface and the second surface is like all metals or doped semiconductors. Further, a conductive material such as Al, Ag, Au, Pt, Cr, or an alloy containing these is desirable.

中間層6を構成する材料は、規則的に変化する形状5以外の表面性を改善する効果のある材料が望ましい。詳しくは、積層又は合金化した時に、結晶化を阻害する材料が望ましい。更に詳しくは、Cu,W,Mo,Nd,Y,Pt,Ti,Ta,Si,Cr,Zr,Nb,C,Ge,CoZr系合金、SiO,Al,Ta,NiO,TiO、ZrO,NbO等、又は導電性膜4を構成する材料と表面性を改善する効果のある材料との多層構造、又は導電性膜4を構成する材料と表面性を改善する効果のある材料との合金等であることが望ましい。 The material constituting the intermediate layer 6 is preferably a material having an effect of improving surface properties other than the regularly changing shape 5. Specifically, a material that inhibits crystallization when laminated or alloyed is desirable. More specifically, Cu, W, Mo, Nd, Y, Pt, Ti, Ta, Si, Cr, Zr, Nb, C, Ge, CoZr alloy, SiO 2 , Al 2 O 3 , Ta 2 O 5 , NiO , TiO 2 , ZrO 2 , NbO 3 , or the like, or a multilayer structure of a material constituting the conductive film 4 and a material having an effect of improving the surface property, or a material constituting the conductive film 4 and a surface property are improved. An alloy with an effective material is desirable.

上記第1の表面と、第2の表面の少なくとも1つの表面を構成する導電性膜4と中間層6のトータルの厚さとしては、光学的に不透明であることが望ましい。即ち、入射光の表皮厚さ(skin depth 電磁場の強さが1/eになるような厚さ)より大きいことが望ましい。但し、第1の表面と、第2の表面の少なくとも1つの表面を構成する導電性膜4の厚さを限定するものではない。第1の表面と、第2の表面の少なくとも1つの表面を構成する導電性膜4の厚さとしては、最適な特性が得られる膜厚を選ぶことが望ましい。更に望ましくは、表皮厚さ以上であることが望ましい。   The total thickness of the conductive film 4 and the intermediate layer 6 constituting at least one of the first surface and the second surface is desirably optically opaque. That is, it is desirable to be larger than the skin thickness of incident light (thickness such that the intensity of the skin depth electromagnetic field is 1 / e). However, the thickness of the conductive film 4 constituting at least one of the first surface and the second surface is not limited. As the thickness of the conductive film 4 constituting at least one of the first surface and the second surface, it is desirable to select a film thickness that provides optimum characteristics. More desirably, the thickness is not less than the skin thickness.

開口内側壁部7に形成される導電性膜4としては、前記第1の表面と、第2の表面の少なくとも1つの面を構成する導電性膜4と同様の材料を用いることが望ましい。開口内側壁部7に形成される導電性膜4の厚さとしては、入射光の表皮厚さ以上であることが望ましい。更に望ましくは、入射光の表皮厚さの2倍以上であることが望ましい。   As the conductive film 4 formed on the inner wall portion 7 of the opening, it is desirable to use the same material as the conductive film 4 constituting at least one of the first surface and the second surface. The thickness of the conductive film 4 formed on the inner wall 7 of the opening is preferably equal to or greater than the skin thickness of incident light. More preferably, it is more than twice the skin thickness of the incident light.

規則的に変化する形状5は、持ち上げられた領域及び/又は押し下げられた領域を有し、このような領域が規則性を持って配列している。第1の表面と、第2の表面の少なくとも1つの表面を構成する導電性膜4及び中間層6のトータルの膜厚を貫通しないで持ち上げられた領域及び/又は押し下げられた領域を、規則的に変化する形状なる用語で定義する。前記規則的に変化する形状5により導電性膜4と表面プラズモンモードが入射光と強烈に結合できる。それにより開口は、規則的に変化する形状5の周期に依存した波数保存則に従って光を高効率で伝送する。詳細は特開2000−111851号公報、特開2000−171763号公報、特開2003−287656号公報、米国特許第6236033号明細書、米国特許第6285020号明細書に開示されている。   The regularly changing shape 5 has raised areas and / or depressed areas, and these areas are arranged with regularity. A region which is lifted and / or pushed down without penetrating the total thickness of the first surface and the conductive film 4 and the intermediate layer 6 constituting at least one surface of the second surface is regularly arranged. It is defined by the term shape that changes. The conductive film 4 and the surface plasmon mode can be strongly coupled to the incident light by the regularly changing shape 5. As a result, the aperture transmits light with high efficiency according to a wave number conservation law that depends on the period of the regularly changing shape 5. Details are disclosed in JP-A No. 2000-111181, JP-A No. 2000-171663, JP-A No. 2003-287656, US Pat. No. 6,236,033 and US Pat. No. 6,285,020.

規則的に変化する形状5が無い場合の同じ大きさ、同じ数の開口を介した光の伝送に比べて、光の伝送度合いが遥かに大きい。上記の例示的な規則的に変化する形状5は単なる実施例であり、本発明を制限するものではない。より正確に言えば、規則的に変化する形状5は他の構成も可能であり、最適な特性が得られる形状を選ぶことができる。例えば、図2に規則的に変化する形状が溝の同心円周期配列の実施形態、図3(a)に規則的に変化する形状が窪み又は突起8の周期配列の場合の実施形態を、図3(b)に規則的に変化する形状が溝38bの一次元周期配列の場合の実施形態を、図3(c)に規則的に変化する形状が溝38cの二次元周期配列の場合の実施形態をそれぞれ示す。規則的に変化する形状5は、本発明の範囲から逸脱することなく、表面プラズモンモードが入射光と強烈に結合できるような、如何なる形状も選ぶことができる。   Compared with the transmission of light through the same size and the same number of apertures when there is no regularly changing shape 5, the degree of light transmission is much greater. The above exemplary regularly changing shape 5 is merely an example and does not limit the invention. More precisely, the regularly changing shape 5 can have other configurations, and a shape that provides optimum characteristics can be selected. For example, FIG. 2 shows an embodiment in which the regularly changing shape is a concentric periodic array of grooves, and FIG. 3A shows an embodiment in which the regularly changing shape is a periodic array of depressions or protrusions 8. FIG. 3B shows an embodiment in which the regularly changing shape is a one-dimensional periodic array of grooves 38b, and FIG. 3C shows an embodiment in which the regularly changing shape is a two-dimensional periodic array of grooves 38c. Respectively. The regularly varying shape 5 can be chosen to be any shape that allows the surface plasmon mode to be strongly coupled to incident light without departing from the scope of the present invention.

前記規則的に変化する形状以外の表面形状は、入射光の波長の1/10以下であることが望ましい。更に望ましくは入射光の波長の1/100以下であることが望ましい。   The surface shape other than the regularly changing shape is preferably 1/10 or less of the wavelength of the incident light. More desirably, it is 1/100 or less of the wavelength of incident light.

開口は、円形、長方形、楕円形、或は光記憶媒体のトラックピッチ及び最少ピット長に適合する他の形状、或はスリット形状でも良い。開口サイズは、開口に入射する光の波長以下であることが望ましい。スリット形状の場合、スリット幅(スリットの最も短い寸法の幅である)は、アパーチャーに入射する光の波長以下であることが望ましい。上記の開口の形状は単なる実施例であり、本発明を制限するものではなく、最適な特性が得られる形状を選ぶことができる。更に開口は複数であっても良い。   The aperture may be circular, rectangular, elliptical, or any other shape that fits the track pitch and minimum pit length of the optical storage medium, or a slit shape. The aperture size is desirably equal to or less than the wavelength of light incident on the aperture. In the case of the slit shape, it is desirable that the slit width (the width of the shortest dimension of the slit) is equal to or less than the wavelength of the light incident on the aperture. The shape of the opening described above is merely an example, and does not limit the present invention, and a shape that provides optimum characteristics can be selected. Further, there may be a plurality of openings.

次に、具体的な例をもって本発明の実施の形態を詳細に説明するが、本発明はその主旨を逸脱しない限りにおいて以下の実施例に限定されるものではない。   Next, embodiments of the present invention will be described in detail with specific examples, but the present invention is not limited to the following examples without departing from the gist thereof.

図2(a)は本実施の形態の第1の表面1側の規則的に変化する形状25を示す平面図である。本実施形態の規則的に変化する形状25は、直径aの開口23と、周期b、幅cである同心円状の溝を有する。直径aは開口に入射する光の波長以下であることが望ましい。   FIG. 2A is a plan view showing a regularly changing shape 25 on the first surface 1 side of the present embodiment. The regularly changing shape 25 of the present embodiment has an opening 23 having a diameter a, and a concentric groove having a period b and a width c. The diameter a is preferably equal to or less than the wavelength of light incident on the opening.

実施例において、開口の直径とは、図2(b)に示すように、導電性膜も含む出射側の開口直径aと定義する。図2(b)は本実施例の構成を示す模式的断面図である。本実施例では、第1の表面21及び第2の表面22に、互いに同位相の規則的に変化する形状を有する第1の導電性膜24a及び第2の導電性膜24bを有する。但し、この構成に限定するものではなく、第1の表面と第2の表面の内の1つの表面のみに、規則的に変化する形状25を有する導電性膜を有しても良い。又、第1の表面及び第2の表面に互いに異なった形状の規則的に変化する形状を有しても良い。層構成として、石英基板20上に、第1の導電性膜24a、中間層26、第2の導電性膜24bが順次積層されている。更に、開口内側壁部に導電性膜29が形成されている。   In the embodiment, the diameter of the opening is defined as an opening-side opening diameter a including a conductive film, as shown in FIG. FIG. 2B is a schematic cross-sectional view showing the configuration of this embodiment. In the present embodiment, the first surface 21 and the second surface 22 are provided with a first conductive film 24a and a second conductive film 24b having shapes that regularly change in phase with each other. However, the present invention is not limited to this configuration, and a conductive film having a regularly changing shape 25 may be provided on only one of the first surface and the second surface. In addition, the first surface and the second surface may have regularly changing shapes different from each other. As a layer configuration, a first conductive film 24 a, an intermediate layer 26, and a second conductive film 24 b are sequentially stacked on the quartz substrate 20. Further, a conductive film 29 is formed on the inner wall portion of the opening.

実施例1では、同心円状の溝構造の周期は340nm、溝幅は170nm、溝深さは50nm、中心の開口は50nmとした。導電性膜層24aとしてAlを20nm、中間層26としてCを100nm、導電性膜24bとしてAlを20nm形成した。開口内側壁部の導電性膜29としてAlを3nm形成した。   In Example 1, the period of the concentric groove structure was 340 nm, the groove width was 170 nm, the groove depth was 50 nm, and the central opening was 50 nm. 20 nm of Al was formed as the conductive film layer 24a, 100 nm of C was formed as the intermediate layer 26, and 20 nm of Al was formed as the conductive film 24b. 3 nm of Al was formed as the conductive film 29 on the inner wall of the opening.

次に、本実施例1の作成方法を示す。   Next, a creation method of the first embodiment will be described.

石英基板を収束イオンビーム(FIB)装置にセットし、1 ×10−5Pa以下の真空条件において、最小のビーム径を用いて同心円状の溝構造を加工する。その後、石英基板を分子線蒸着成膜装置にセットし、1 ×10−8Pa以下の真空条件において、第1の導電性膜、中間層、を積層して成膜する。再び、FIB装置にセットし1×10−5Pa以下の真空条件において、最小のビーム径を用いて、同心円の溝構造の中心に開口を加工する。 A quartz substrate is set in a focused ion beam (FIB) apparatus, and a concentric groove structure is processed using a minimum beam diameter under a vacuum condition of 1 × 10 −5 Pa or less. Thereafter, the quartz substrate is set in a molecular beam deposition film forming apparatus, and a first conductive film and an intermediate layer are stacked and formed under a vacuum condition of 1 × 10 −8 Pa or less. Again, it is set in the FIB apparatus, and an opening is processed at the center of the concentric groove structure using the minimum beam diameter under a vacuum condition of 1 × 10 −5 Pa or less.

その後、成膜装置に戻し、第2の導電性膜を成膜する。このとき、開口内側壁部の導電性膜29も同時に成膜される。第1の表面側の開口石英上に導電性膜が積層されてしまうので、再度、FIB装置にセットし、1×10−5Pa以下の真空条件において、最小のビーム径を用いて、同心円の溝構造の中心に開口を加工する。開口内側壁部の導電性膜29の膜厚は、第1の導電性膜及び中間層に形成する開口の側壁部の角度、第2の導電性膜の成膜条件、再度第2の導電性膜成膜後に開口を加工する際の加工条件を変えることで調整することができる。第2の導電性膜の上に積層して適当な保護膜が成膜されても良い。 Thereafter, the film is returned to the film formation apparatus, and a second conductive film is formed. At this time, the conductive film 29 on the inner wall portion of the opening is also formed at the same time. Since the conductive film is stacked on the first surface side opening quartz, it is set again in the FIB apparatus, and the concentric circle is used with the minimum beam diameter under the vacuum condition of 1 × 10 −5 Pa or less. An opening is machined in the center of the groove structure. The film thickness of the conductive film 29 on the inner wall part of the opening is determined by the angle of the side wall part of the opening formed in the first conductive film and the intermediate layer, the film forming condition of the second conductive film, and the second conductive film again. It can be adjusted by changing the processing conditions when the opening is processed after film formation. An appropriate protective film may be deposited on the second conductive film.

実施例2では、側壁部の導電性膜の膜厚を6nmとした以外は、実施例1のサンプルと同様の構成である。   In Example 2, the configuration is the same as that of the sample of Example 1 except that the thickness of the conductive film on the side wall is set to 6 nm.

実施例3では、側壁部の導電性膜の膜厚を2nmとした以外は、実施例1のサンプルと同様の構成である。
[比較例1]
比較例1では膜構成は、側壁部の導電性膜の膜厚を0nmとした以外は、実施例1のサンプルと同様の構成である。図4に本比較例1の構成を示す模式的断面図を示す。開口内側壁部47に中間層6が露出している。
Example 3 has the same configuration as the sample of Example 1 except that the thickness of the conductive film on the side wall is 2 nm.
[Comparative Example 1]
In Comparative Example 1, the film configuration is the same as that of the sample of Example 1 except that the thickness of the conductive film on the side wall is set to 0 nm. FIG. 4 is a schematic cross-sectional view showing the configuration of the first comparative example. The intermediate layer 6 is exposed on the inner wall portion 47 of the opening.

次に、本比較例1の作成方法を示す。石英基板を収束イオンビーム(FIB)装置にセットし、1×10−5Pa以下の真空条件において、最小のビーム径を用いて同心円状の溝構造を加工する。その後、石英基板を分子線蒸着成膜装置にセットし、1×10−8Pa以下の真空条件において、第1の導電膜性、中間層、第2の導電性膜を積層して成膜する。このとき導電性材料の上に積層して適当な保護膜が成膜されても良い。再び、FIB装置にセットし、1×10−5Pa以下の真空条件において、最小のビーム径を用いて同心円の溝構造の中心に開口を加工する。 Next, a production method of this comparative example 1 will be shown. A quartz substrate is set in a focused ion beam (FIB) apparatus, and a concentric groove structure is processed using a minimum beam diameter under a vacuum condition of 1 × 10 −5 Pa or less. Thereafter, the quartz substrate is set in a molecular beam deposition film forming apparatus, and a first conductive film, an intermediate layer, and a second conductive film are stacked and formed under a vacuum condition of 1 × 10 −8 Pa or less. . At this time, an appropriate protective film may be deposited on the conductive material. Again, it is set in the FIB apparatus, and an opening is processed at the center of the concentric groove structure using the minimum beam diameter under a vacuum condition of 1 × 10 −5 Pa or less.

Figure 2006220983
表1に、実施例1、実施例2、実施例3、比較例1の各サンプルにおける波長400nm近傍の光に対する透過率を測定し、比較例1の透過効率を基準にした光透過効率の増幅率を示す。光透過効率は以下の式により算出した。
Figure 2006220983
Table 1 shows the transmittance of light in the vicinity of a wavelength of 400 nm in each sample of Example 1, Example 2, Example 3, and Comparative Example 1, and amplification of light transmission efficiency based on the transmission efficiency of Comparative Example 1 Indicates the rate. The light transmission efficiency was calculated by the following formula.

(光透過効率の増幅率)=(各サンプルの開口から出射される光強度)/(比較例1のサンプルから出射される光強度)×100
この結果から、開口の側壁部に導電性膜を形成することで、光透過率を増加させることが可能となることが分かる。又、波長405nm程度の光に対するAlの表皮厚さは約3nmである。このことから、特に、開口の側壁部に導電性膜の膜厚が表皮厚さ以上であると光透過率の増加度が強いことが分かる。
(Amplification factor of light transmission efficiency) = (light intensity emitted from the opening of each sample) / (light intensity emitted from the sample of Comparative Example 1) × 100
From this result, it can be seen that the light transmittance can be increased by forming a conductive film on the side wall of the opening. The Al skin thickness for light having a wavelength of about 405 nm is about 3 nm. From this, it can be seen that the degree of increase in light transmittance is particularly strong when the thickness of the conductive film on the side wall of the opening is equal to or greater than the skin thickness.

同心円状の溝構造の周期は600nm、溝幅は300nm、溝深さは200nm、中心の開口は100nmとした。第1の導電性膜としてAgを100nm、中間層としてCを100nm、第2の導電性膜としてAg100nm成膜した。側壁部の導電性膜の膜厚は3nmとした。作成方法は実施例1と同様である   The period of the concentric groove structure was 600 nm, the groove width was 300 nm, the groove depth was 200 nm, and the central opening was 100 nm. As the first conductive film, Ag was formed to 100 nm, as the intermediate layer, C was formed to 100 nm, and as the second conductive film, Ag was formed to 100 nm. The thickness of the conductive film on the side wall was 3 nm. The creation method is the same as in Example 1.

実施例5では、側壁部の導電性膜の膜厚を5nmとした以外は、実施例4のサンプルと同様の構成である。
[比較例2]
膜構成を、側壁部の導電性膜の膜厚を0nmとした以外は、比較例1のサンプルと同様である。作成方法は比較例1と同様である。
Example 5 has the same configuration as that of the sample of Example 4 except that the thickness of the conductive film on the side wall is set to 5 nm.
[Comparative Example 2]
The film configuration is the same as that of the sample of Comparative Example 1 except that the thickness of the conductive film on the side wall is set to 0 nm. The creation method is the same as in Comparative Example 1.

Figure 2006220983
表2に、波長620nm近傍の光に対する透過率を測定し、比較例2の光透過率を100としたときの光透過率の増減率を示す。波長620nmにおいても、開口の側壁部に導電性膜を形成することで、光透過率を増加させることが可能となることが分かる。又、波長620nm程度の光に対するAgの表皮厚さは約2. 5nmである。このことから、波長620nmにおいても、開口の側壁部に導電性膜を形成することで光透過率を増加させることが可能となることが分かる。
Figure 2006220983
Table 2 shows the increase / decrease rate of the light transmittance when the transmittance for light in the vicinity of a wavelength of 620 nm is measured and the light transmittance of Comparative Example 2 is 100. It can be seen that even at a wavelength of 620 nm, the light transmittance can be increased by forming a conductive film on the side wall of the opening. The skin thickness of Ag for light having a wavelength of about 620 nm is about 2.5 nm. From this, it can be seen that even at a wavelength of 620 nm, the light transmittance can be increased by forming a conductive film on the side wall of the opening.

<実施の形態2>
次に、本発明の光学素子を用い、回転する光記憶媒体上を浮上して、高密度に情報を書き込み/読み出す光ヘッドの実施の形態について説明する。
<Embodiment 2>
Next, an embodiment of an optical head that uses the optical element of the present invention and floats on a rotating optical storage medium to write / read information at high density will be described.

本実施形態の説明において使用される「光記憶媒体」は、光を使用してデータが書き込まれ及び/又は読み取られる任意の媒体を意味し、DVD及びCD−ROMのような光ディスク並びに光テープ或は光磁気材料のような他の形式の光媒体で使用されるような相変化媒体を含むが、相変化媒体に制限されるものではない(光磁気材料の場合には、書き込みのみが光学的に行われ、読み出しは磁気的に行われる)。   The “optical storage medium” used in the description of the present embodiment means any medium on which data is written and / or read using light, such as an optical disk such as a DVD and a CD-ROM and an optical tape, or Includes phase change media as used in other types of optical media such as magneto-optical materials, but is not limited to phase change media (in the case of magneto-optical materials, only writing is optical And reading is performed magnetically).

更に、本実施形態の説明において使用される「光ヘッド」は、光記憶媒体にデータを蓄積する(「書き込み」)及び/又は光記憶媒体に蓄積されたデータを取り出す(「読み出し」)デバイスを意味する。本発明における光ヘッドは、読み出しのみ、書き込みのみ、或は読み出し及び書き込みの両方を行うことができるものが含まれる。   Furthermore, the “optical head” used in the description of the present embodiment is a device that accumulates data on an optical storage medium (“write”) and / or retrieves data stored on an optical storage medium (“read”). means. The optical head in the present invention includes one that can perform only reading, only writing, or both reading and writing.

図5に本発明の光学素子を用いて作製した光ヘッドの概略図を示す。   FIG. 5 shows a schematic view of an optical head manufactured using the optical element of the present invention.

光ヘッド57は、光記憶媒体56の回転により光ヘッドを所定の高さに浮上させるためのスライダー形状の上に形成されている。レーザ55を出射するレーザ光は光ファイバ50を介して導入され、マイクロレンズから成るコリメータレンズ51を配置することによりコリメートした。更に、コリメートされた光は全反射ミラー54により直角方向に光路を変え、更にその下に置かれたフォーカスレンズ52により、本発明に記載の光学素子53に導かれる。このとき、光学素子上の開口を中心とした光の照射範囲は、規則的に変化する形状における周期として3個から10個分の領域となっており、光の利用効率を考慮して設計されることが望ましい。このとき、光学素子における開口径は20nmから200nmとした。   The optical head 57 is formed on a slider shape for causing the optical head to fly to a predetermined height by the rotation of the optical storage medium 56. Laser light emitted from the laser 55 was introduced through an optical fiber 50 and collimated by arranging a collimator lens 51 made of a microlens. Further, the collimated light changes its optical path in the direction perpendicular to the total reflection mirror 54 and is guided to the optical element 53 according to the present invention by the focus lens 52 placed therebelow. At this time, the light irradiation range centered on the opening on the optical element is a region of 3 to 10 as a period in a regularly changing shape, and is designed in consideration of light use efficiency. It is desirable. At this time, the aperture diameter in the optical element was set to 20 nm to 200 nm.

光記憶媒体に記録された情報を再生するためには、図5の光ヘッドにおいて、光学素子53の第2の表面の開口付近にフォトディテクタを形成することによって、媒体からの反射光を読み出すことができる。又、光記憶媒体として光磁気記録媒体を用い、媒体からの漏れ磁束を磁気抵抗効果を用いたヘッドで再生することもできる。この光ヘッドより、開口径と同程度の大きさの記録パターンが光記憶媒体上に形成され、読み取りは光の反射或は磁気再生何れも良好なSN比の再生波形を得ることが可能であった。   In order to reproduce the information recorded on the optical storage medium, the reflected light from the medium can be read out by forming a photodetector near the opening on the second surface of the optical element 53 in the optical head of FIG. it can. Further, a magneto-optical recording medium can be used as the optical storage medium, and the leakage magnetic flux from the medium can be reproduced by a head using a magnetoresistive effect. From this optical head, a recording pattern having the same size as the aperture diameter is formed on the optical storage medium, and it is possible to obtain a reproduced waveform with a good S / N ratio for both light reflection and magnetic reproduction. It was.

又、本発明の光学素子を利用することによって、集光器や走査型近接場顕微鏡装置を構成することができる。又、上記の光学素子の実施例では、光ディスクへの記録/再生への利用を目的としているため、開口が1つの場合を説明したが、開口を複数周期配列させると、波長選択光学フィルター(特に紫外線、可視光線、近赤外波長用)及びフォトリソグラフィーマスク等の他の光学部品を構成することもできる。   Further, by using the optical element of the present invention, a condenser or a scanning near-field microscope apparatus can be configured. In addition, since the embodiment of the optical element described above is intended for use in recording / reproducing on an optical disk, the case where there is one aperture has been described. However, if a plurality of apertures are arranged periodically, a wavelength selective optical filter (particularly, Other optical components such as UV, visible light, near infrared wavelengths) and photolithography masks can also be constructed.

本発明の光学素子を示す模式的構成図である。It is a typical block diagram which shows the optical element of this invention. 本発明の実施例の光学素子を示す模式的構成図である。It is a typical block diagram which shows the optical element of the Example of this invention. 規則的に変化する形状の例を示す図である。It is a figure which shows the example of the shape which changes regularly. 本発明の比較例1、比較例2の光学素子を示す模式的構成図である。It is a typical block diagram which shows the optical element of the comparative example 1 and the comparative example 2 of this invention. 本発明の光学素子を用いて作製した光ヘッドの概略図である。It is the schematic of the optical head produced using the optical element of this invention. 従来例の光学素子を示す模式的断面図である。It is typical sectional drawing which shows the optical element of a prior art example.

符号の説明Explanation of symbols

1 第1の表面
2 第2の表面
3 開口
4 導電性膜
5 規則的に変化する形状
6 中間層
7 開口内側壁部
DESCRIPTION OF SYMBOLS 1 1st surface 2 2nd surface 3 Opening 4 Conductive film 5 Shape which changes regularly 6 Intermediate layer 7 Opening inner wall part

Claims (4)

第1の表面と第2の表面を有し、第1の表面から第2の表面を貫通する少なくとも1つの開口を有し、第1の表面と第2の表面の少なくとも1つに規則的に変化する形状を有した導電性膜を有し、前記規則的に変化する形状を有した導電性膜の少なくとも1つの表面に入射する光が、前記導電性膜の少なくとも1つの表面上の表面プラズモンモードと相互作用し、それによって、前記開口を通じて伝送される光の強度が増強される光学素子であって、
前記開口内の側壁部に導電性膜を有することを特徴とする光学素子。
Having a first surface and a second surface, having at least one opening from the first surface through the second surface, and regularly on at least one of the first surface and the second surface A surface plasmon on the at least one surface of the conductive film, wherein the light incident on the at least one surface of the conductive film having the regularly changing shape has a conductive film having a changing shape. An optical element that interacts with a mode and thereby enhances the intensity of light transmitted through the aperture,
An optical element comprising a conductive film on a side wall portion in the opening.
第1の表面と第2の表面を有し、第1の表面から第2の表面を貫通する少なくとも1つの開口を有し、第1の表面と第2の表面の少なくとも1つに規則的に変化する形状を有した導電性膜を有し、前記導電性膜と隣接して前記導電性膜とは異なった材質から成る中間層を有し、前記規則的に変化する形状を有した導電性膜の少なくとも1つの表面に入射する光が、前記導電性膜の少なくとも1つの表面上の表面プラズモンモードと相互作用し、それによって、前記開口を通じて伝送される光の強度が増強される光学素子であって、前記開口内の側壁部に導電性膜を有することを特徴とする請求項1記載の光学素子。   Having a first surface and a second surface, having at least one opening from the first surface through the second surface, and regularly on at least one of the first surface and the second surface A conductive film having a changing shape, and having an intermediate layer made of a material different from the conductive film adjacent to the conductive film, and having the regularly changing shape. An optical element in which light incident on at least one surface of the film interacts with a surface plasmon mode on at least one surface of the conductive film, thereby enhancing the intensity of light transmitted through the aperture. 2. The optical element according to claim 1, further comprising a conductive film on a side wall portion in the opening. 前記開口内の側壁部の導電性膜は、膜厚が入射光の表皮厚さ以上であることを特徴とする請求項1記載の光学素子。   The optical element according to claim 1, wherein the conductive film on the side wall in the opening has a film thickness equal to or greater than a skin thickness of incident light. 前記開口内の側壁部の導電性膜は、膜厚が入射光の表皮厚さの2倍以上であることを特徴とする請求項1記載の光学素子。   2. The optical element according to claim 1, wherein the conductive film on the side wall in the opening has a film thickness that is at least twice the skin thickness of incident light.
JP2005035180A 2005-02-10 2005-02-10 Optical element Withdrawn JP2006220983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035180A JP2006220983A (en) 2005-02-10 2005-02-10 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035180A JP2006220983A (en) 2005-02-10 2005-02-10 Optical element

Publications (1)

Publication Number Publication Date
JP2006220983A true JP2006220983A (en) 2006-08-24

Family

ID=36983347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035180A Withdrawn JP2006220983A (en) 2005-02-10 2005-02-10 Optical element

Country Status (1)

Country Link
JP (1) JP2006220983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928334B1 (en) 2008-02-29 2009-11-26 재단법인서울대학교산학협력재단 Interconnect and optical transmission method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928334B1 (en) 2008-02-29 2009-11-26 재단법인서울대학교산학협력재단 Interconnect and optical transmission method

Similar Documents

Publication Publication Date Title
JP3932944B2 (en) Optical element and optical head using the same
JP5676349B2 (en) Optical element
JP3956939B2 (en) Optical element, optical head and optical recording / reproducing apparatus using the same
KR100508418B1 (en) Optical Heads and Optical Disc Devices
US6848115B2 (en) Optical recording medium using scattering bodies to enhance modulation
US20070253051A1 (en) Optical Device
KR100734641B1 (en) Optical Recording Medium, Optical Recording/Reproducing Apparatus, Optical Recording Apparatus and Optical Reproducing Apparatus, Data Recording/Reproducing Method for Optical Recording Medium, and Data Recording Method and Data Reproducing Method
US6324129B1 (en) Near field magneto-optical head having read and write pinhole apertures
JP2000331302A (en) Recording/reproducing head, recording/reproducing disk device, and manufacture of magnetic sensor
JP2007538346A (en) Super-resolution near-field structure recording medium, and reproducing method and apparatus thereof
JP4345268B2 (en) Optical module, optical head, and optical storage / reproduction device
JP4230087B2 (en) Optical reproduction recording method and optical apparatus
WO2011010447A1 (en) Information recording medium, optical information recording and playback apparatus, optical information recording and playback method and manufacturing method of information recording medium
JP4200795B2 (en) Optical element, optical head, and optical recording / reproducing apparatus
JP2003006913A (en) Near-field optical head
JP2006220983A (en) Optical element
JP3873521B2 (en) Optical head and disk device
JP4099943B2 (en) Optical head, magneto-optical head, disk device, and method of manufacturing optical head
JP4129002B2 (en) Light irradiation head and information storage device
JP2006048807A (en) Optical memory device
JP2004127389A (en) Recording/reproducing head, and recording/reproducing device
JP2006079706A (en) Optical head and optical recording and reproducing device
JP2006323993A (en) Optical storage medium
JP3521771B2 (en) Optical head, optical disk device, and method of manufacturing optical head
JP4949313B2 (en) Information recording medium, information recording apparatus, information recording method, and method for manufacturing the information recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513