JP2006220670A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2006220670A
JP2006220670A JP2006145009A JP2006145009A JP2006220670A JP 2006220670 A JP2006220670 A JP 2006220670A JP 2006145009 A JP2006145009 A JP 2006145009A JP 2006145009 A JP2006145009 A JP 2006145009A JP 2006220670 A JP2006220670 A JP 2006220670A
Authority
JP
Japan
Prior art keywords
flow
wall surfaces
interval
ultrasonic
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006145009A
Other languages
Japanese (ja)
Other versions
JP4188386B2 (en
Inventor
Yutaka Tanaka
豊 田中
Toshihiko Miyamoto
俊彦 宮本
Noriyuki Nabeshima
徳行 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2006145009A priority Critical patent/JP4188386B2/en
Publication of JP2006220670A publication Critical patent/JP2006220670A/en
Application granted granted Critical
Publication of JP4188386B2 publication Critical patent/JP4188386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase flexibility in the installation position of an ultrasonic transducer by reducing the total length for miniaturization, reducing power consumption, and sharing the ultrasonic transducer even if an aperture or the maximum flow rate differs. <P>SOLUTION: Fluid flowing in from an inlet 2A flows downstream along a channel 4 having a rectangular section, and flows out of an outlet 2B. The channel 4 is formed by wall surfaces 2, 3 that oppose each other with a small interval H, and creates a stable steady flow. Ultrasonic transducers Tu and Td installed at the boss section measure the flow rate in a single-path system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超音波流量計の改良に関する。   The present invention relates to an improvement in an ultrasonic flow meter.

超音波流量計の測定原理の基本方式は、ドップラ方式と伝播時間測定方式の2方式に分かれる。   The basic method of the measurement principle of the ultrasonic flowmeter is divided into two methods, a Doppler method and a propagation time measurement method.

又、伝播時間測定方式には時間差法、時間逆数差法及び位相差法の3つの方法がある。そして、伝播時間測定方式における超音波パスを通す方式として送受波器(振動子)を配管に対して斜めに対向して通すシングルパス方式と、配管内で1回反射させて通すシングルリフレクション方式(反射方式)が周知である。   There are three propagation time measurement methods: a time difference method, a time reciprocal difference method, and a phase difference method. In addition, as a method of passing an ultrasonic path in the propagation time measurement method, a single pass method in which a transducer (vibrator) is passed diagonally opposite to a pipe and a single reflection method in which the light is reflected once in the pipe ( The reflection method is well known.

図4はシングルパス方式、図5はシングルリフレクション方式で、Tuは上流に配設した送受波器、Tdは下流に配設した送受波器である。   4 shows a single path system, FIG. 5 shows a single reflection system, Tu is a transducer disposed upstream, and Td is a transducer disposed downstream.

時間差法は伝播時間測定方式の基本的な考え方で流体中の音波の伝播速度が上流から下流に向かう時、下流から上流に向かう時では異なるという原理に基づいており、超音波の送受信を交互に切り換え、その伝播時間の差から流速を測定する。   The time difference method is a basic idea of the propagation time measurement method and is based on the principle that the propagation speed of sound waves in a fluid is different when going from upstream to downstream and when going from downstream to upstream. Switch and measure the flow velocity from the difference in propagation time.

図6において、上流の送受波器Tuから下流の送受波器Tdに向かう音波の伝播時間tdは、
td=L/(C+Vcosθ)・・・(1)
で、下流の送受波器Tdから上流の送受波器Tuに向かう音波の伝播時間tuは、
tu=L/(C−Vcosθ)・・・(2)
である。
In FIG. 6, the propagation time td of the sound wave from the upstream transducer Tu to the downstream transducer Td is
td = L / (C + V cos θ) (1)
The propagation time tu of the sound wave from the downstream transducer Td to the upstream transducer Tu is
tu = L / (C−V cos θ) (2)
It is.

Lは両送受波器間の距離、Cは静止流体中の音速、Vは流速、θは超音波伝播軸と管路1の中心軸の角度である。   L is the distance between the transducers, C is the speed of sound in the static fluid, V is the flow velocity, and θ is the angle between the ultrasonic wave propagation axis and the central axis of the pipe 1.

伝播時間差Δtはtu−tdであり、通常の条件では、
(Vcosθ)2 ≪C2 ・・・(3)
であるので、これらよりΔtは、
Δt=2VLcosθ/{C2 +(Vcosθ)2 }・・・(4)
従って、
Δt=2VLcosθ/C2 ・・・(5)
となり、流速Vを、
V=C2 Δt/2Lcosθ・・・(6)
として求めている。
The propagation time difference Δt is tu−td. Under normal conditions,
(Vcos θ) 2 << C 2 (3)
Therefore, from these, Δt is
Δt = 2VL cos θ / {C 2 + (V cos θ) 2 } (4)
Therefore,
Δt = 2VL cos θ / C 2 (5)
And the flow velocity V is
V = C 2 Δt / 2L cos θ (6)
Asking.

なお、図6でDは円筒形管路1の内径、つまり流路径である。
(3)式の条件が成立するように、流速Vが音速Cよりもかなり小さい0〜30m/sの流速範囲で計測可能である。流速が30m/sを越えると(4)式の(Vcosθ)2 の項を無視したことによる(6)式の計算誤差や気体の圧縮性の影響による誤差が大きくなるからである。
In FIG. 6, D is the inner diameter of the cylindrical pipe line 1, that is, the flow path diameter.
Measurement can be performed in a flow velocity range of 0 to 30 m / s where the flow velocity V is considerably smaller than the sound velocity C so that the condition of the expression (3) is satisfied. This is because, when the flow velocity exceeds 30 m / s, the calculation error of the equation (6) due to ignoring the term (Vcos θ) 2 of the equation (4) and the error due to the influence of the compressibility of the gas increase.

また、流量は(流速)×(流路断面積)であるので、流量に応じた流路断面積が必要となる。   Further, since the flow rate is (flow velocity) × (channel cross-sectional area), a channel cross-sectional area corresponding to the flow rate is required.

従って、管内流速を安定化して正確な測定をするために、流量計測部の長さ(管路の軸方向の長さ)を仮に10Dとすれば、それなりに当然全長も長くなり、超音波送受波器間の距離Lも大きくなる。   Therefore, in order to stabilize the flow velocity in the pipe and perform accurate measurement, if the length of the flow rate measurement unit (the length in the axial direction of the pipe line) is set to 10D, the total length naturally becomes longer as it is, and ultrasonic transmission / reception is performed. The distance L between the corrugators also increases.

そのため、計測する最大流量が大きくなると、それに応じて流量計全体が大きくなり、それに対応して上下流側に必要な直管部の長さも大きくなって、流量計測に大きなスペースが必要になって設置に関しての制約が多いという問題があった。   Therefore, if the maximum flow rate to be measured increases, the entire flow meter increases accordingly, and the length of the straight pipe section required on the upstream and downstream sides accordingly increases, requiring a large space for flow measurement. There was a problem that there were many restrictions on installation.

また、前述のように超音波送受波器間の距離Lが大きくなることによって送受波器駆動電力が大きくなり、流量計の消費電力が増大するという問題点があった。   Further, as described above, there is a problem that the transmitter / receiver driving power is increased by increasing the distance L between the ultrasonic transducers and the power consumption of the flowmeter is increased.

そこで、本発明はこれらの問題点を解消できる超音波流量計を提供することを目的とする。   Accordingly, an object of the present invention is to provide an ultrasonic flowmeter that can solve these problems.

本発明は、フランジ(7)の入口(2A)とフランジ(8)の出口(2B)を有し、入口(2A)から流入した流体は、流路断面が矩形の流路(4)に流入して流路(4)内を直線状に流れ、出口(2B)から流出することを最も主要な特徴とする。   The present invention has an inlet (2A) of the flange (7) and an outlet (2B) of the flange (8), and the fluid flowing from the inlet (2A) flows into the channel (4) having a rectangular channel cross section. Thus, the main feature is that it flows linearly in the flow path (4) and flows out from the outlet (2B).

そこで、前記目的を達成するために、請求項1の発明は、流速計測部の流路(4)を構成する壁面が、間隔(H)をおいて互いに対向する少なくとも2つの壁面(2)(3)を有し、少なくともこれら2つの壁面(2)(3)で挟まれた流速計測部の流路(4)を流体が直線状に流れると共に、前記両壁面(2)(3)が前記間隔(H)方向に対して直角な流れ方向(Z)と、間隔(H)方向と流れ方向(Z)に対して直角な第3の方向(Y)に間隔(H)の大きさよりも大きく延在し、
2つの壁面(2)(3)が平行な平面で形成され、流れ方向(Z)に直角な流路断面が矩形であって、該矩形の長辺が2つの壁面(2)(3)に形成されると共に、矩形の短辺の長さが間隔(H)と同じ寸法であるとともに、
フランジ(7)の入口(2A)とフランジ(8)の出口(2B)を有し、入口(2A)から流入した流体は矩形断面の流路(4)に流入し出口(2B)から流出することを特徴とする超音波流量計である。
Therefore, in order to achieve the above object, the invention of claim 1 is characterized in that the wall surface constituting the flow path (4) of the flow velocity measuring unit has at least two wall surfaces (2) (2) facing each other at an interval (H). 3), fluid flows in a straight line through the flow path (4) of the flow velocity measuring unit sandwiched between at least these two wall surfaces (2) and (3), and the both wall surfaces (2) and (3) are The flow direction (Z) perpendicular to the interval (H) direction and the third direction (Y) perpendicular to the interval (H) direction and the flow direction (Z) are larger than the size of the interval (H). Extended,
The two wall surfaces (2) and (3) are formed in parallel planes, the flow channel cross section perpendicular to the flow direction (Z) is rectangular, and the long side of the rectangle is on the two wall surfaces (2) and (3). And the length of the short side of the rectangle is the same as the distance (H),
It has an inlet (2A) of the flange (7) and an outlet (2B) of the flange (8), and the fluid flowing in from the inlet (2A) flows into the rectangular cross-section channel (4) and flows out from the outlet (2B). This is an ultrasonic flowmeter.

請求項2の発明は、請求項1の超音波流量計において、ボス部を有し、該ボス部に超音波送受波器を設置したことを特徴とするものである。   According to a second aspect of the present invention, in the ultrasonic flowmeter according to the first aspect of the present invention, the ultrasonic flowmeter has a boss portion, and an ultrasonic transducer is installed on the boss portion.

請求項3の発明は、請求項2の超音波流量計において、流路(4)を流れる流体の流速は、シングルパス方式で計測されることを特徴とするものである。   According to a third aspect of the present invention, in the ultrasonic flowmeter according to the second aspect, the flow velocity of the fluid flowing through the flow path (4) is measured by a single-pass method.

本発明の超音波流量計は上述のように構成されていて、安定した流線、流速分布となるコンパクトな構造のものとなり、かつ、矩形流路全体として均一の流速分布となる。また、流路(4)の壁面を形成する2つの平行な壁面(2)(3)の間隔(H)、即ち矩形流路の短辺(2´)(3´)により安定流速となる。こうして、短い距離で定常流が得られるため、全長を短くしてコンパクトにできる。また、流速計測部の流路断面形状から、上流下流の影響を受けにくい。   The ultrasonic flowmeter of the present invention is configured as described above, has a compact structure with stable streamlines and flow velocity distribution, and has a uniform flow velocity distribution as a whole rectangular channel. Further, a stable flow velocity is obtained by an interval (H) between two parallel wall surfaces (2) and (3) forming the wall surface of the channel (4), that is, the short sides (2 'and 3') of the rectangular channel. Thus, since a steady flow can be obtained at a short distance, the overall length can be shortened to be compact. Moreover, it is hard to receive the influence of upstream and downstream from the flow-path cross-sectional shape of a flow velocity measurement part.

また、入口部や出口部の流路断面積を矩形流路部の流路断面積とほぼ同じにすることが可能で、圧力損失を小さくできる。また入口部、出口部をフランジとすることで、配管との接続が容易となる。   In addition, the channel cross-sectional area of the inlet and outlet portions can be made substantially the same as the channel cross-sectional area of the rectangular channel, and the pressure loss can be reduced. Moreover, connection with piping becomes easy by making an entrance part and an exit part into a flange.

そして、大流量用の流量計でも間隔(H)が短巾ということで送受波器間の距離を小さくできるため、送波器としての駆動電力を低減できる。また、間隔(短巾)(H)を、流量計の口径の違いによらず一定とすれば、最大流量によらず同じ超音波送受波器を共用化できる利点がある。   And since the distance (H) has a short width | variety also in the flowmeter for large flow rates, since the distance between transducers can be made small, the drive electric power as a transmitter can be reduced. Further, if the interval (short width) (H) is constant regardless of the difference in the diameter of the flow meter, there is an advantage that the same ultrasonic transducer can be shared regardless of the maximum flow rate.

請求項2の発明では、超音波送受波器を流路外壁に限らず、ボス部に設置できるため送受波器の設置場所の自由度が多い。   In the invention of claim 2, since the ultrasonic transducer can be installed not only on the outer wall of the flow path but also on the boss portion, the flexibility of the installation location of the transducer is large.

また、2つの超音波送受波器間の距離を大きくとれる。従って、超音波の伝播時間を大きくできるため、測定精度が向上する。   Further, the distance between the two ultrasonic transducers can be increased. Therefore, since the propagation time of the ultrasonic wave can be increased, the measurement accuracy is improved.

請求項3の発明では、流路壁面での反射による超音波の減衰が無いため、受信波の信号レベルが大きくなり、そのぶんS/Nを大きくでき、流量計測の精度を向上させることが可能となる。   In the invention of claim 3, since there is no attenuation of the ultrasonic wave due to reflection on the wall surface of the flow path, the signal level of the received wave is increased, so that the S / N can be increased, and the accuracy of the flow rate measurement can be improved. It becomes.

次に本発明を実施するための最良の形態を図の実施例に基づいて説明する。
〔実施例1〕
図1(a)(b)(c)において、流速計測部の流路4の断面は矩形で、該矩形の2つの短辺は互いに平行な壁面2´,3´で形成され、2つの長辺は互いに平行な壁面2,3で形成されている。壁面2と3の間隔はHで短巾に決められている。
Next, the best mode for carrying out the present invention will be described based on the embodiments shown in the drawings.
[Example 1]
1 (a), (b), and (c), the flow path 4 of the flow velocity measuring section has a rectangular cross section, and the two short sides of the rectangle are formed by parallel wall surfaces 2 'and 3'. The sides are formed by wall surfaces 2 and 3 parallel to each other. The distance between the wall surfaces 2 and 3 is determined to be short by H.

フランジ7の入口2Aから流入した流体は流速計測部の矩形断面の流路4へ矢印のように流入し、フランジ8の出口2Bから流出する。流路4を流れる流体の流速は、ボス部に対向設置した超音波送受波器TuとTdによってシングルパス方式で計測される。
〔対照例〕
次に図2(a)(b)に従って、超音波流量計の全長について説明する。なお、図2(a)(b)の対照例は、本発明の請求範囲に含まれない。
The fluid that has flowed in from the inlet 2A of the flange 7 flows into the flow path 4 having a rectangular cross section of the flow velocity measuring section as indicated by an arrow, and flows out from the outlet 2B of the flange 8. The flow velocity of the fluid flowing through the flow path 4 is measured by a single-pass method using ultrasonic transducers Tu and Td that are installed opposite to the boss portion.
[Control example]
Next, the total length of the ultrasonic flowmeter will be described with reference to FIGS. 2A and 2B is not included in the claims of the present invention.

図2では、間隔Hをおいて互いに同軸的に配設された2つの円筒形の壁面(円筒面)2と3に挟まれた円筒形の流速計測部の流路4内を、被計測流体が同図(b)に太い矢印で示すように左方から右方に流れる。この流れ方向は同図(b)で符号Zで示す図示左右方向で、両円筒面2,3の母線方向に相当し、同図(a)では紙面に直角な方向となる。   In FIG. 2, a fluid to be measured is flown in a flow path 4 of a cylindrical flow velocity measuring unit sandwiched between two cylindrical wall surfaces (cylindrical surfaces) 2 and 3 that are coaxially arranged with a distance H. Flows from the left to the right as shown by the thick arrows in FIG. This flow direction is the left-right direction shown by the symbol Z in FIG. 4B and corresponds to the generatrix direction of both cylindrical surfaces 2 and 3, and in FIG.

従って、両円筒面(壁面)2,3は円筒面同士の半径方向の間隔Hの方向に対して直角な流れ方向Zと、間隔即ち半径方向Hと流れ方向即ち母線方向Zに対して第3の方向即ち円周方向Yに間隔Hの大きさよりも大きな寸法で延在する曲面で形成されている。L1 は直管部の長さである。 Accordingly, the cylindrical surfaces (wall surfaces) 2 and 3 are third in the flow direction Z perpendicular to the direction of the radial interval H between the cylindrical surfaces, and in the interval or radial direction H and the flow direction or bus direction Z. In other words, it is formed of a curved surface extending in a direction larger than the distance H in the circumferential direction Y. L 1 is the length of the straight pipe portion.

ところで、図3(a)(b)に示すように円管の管路1を用いる従来技術では、直管部の長さL0 が直径φD0 の10倍(仮)以上の時に定常流となると考えられ、φD0 が大きければ流量計の全長はかなりの長さになる。例えば、φD0=φ60とすると、L0 =600となる。 Incidentally, as shown in FIGS. 3 (a) and 3 (b), in the conventional technique using the circular pipe line 1, when the length L 0 of the straight pipe portion is 10 times (provisional) or more of the diameter φD 0 , If φD 0 is large, the total length of the flow meter becomes considerably long. For example, if φD 0 = φ60, L 0 = 600.

図2(a)(b)の対照例の場合には、流路断面積を図3の従来技術と同じにするために、
0 2 =D1 2 −d1 2
とする。そして、壁面(円筒面)2と壁面(円筒面)3との間隔Hによって流速分布が形成されるので、L1 =10Hで定常流となる。仮にH=15とするとL1 は150mmで定常流となり、図3の場合に比べて数分の1の長さでも定常流になる。また、導入出流路を適当に構築すれば上流下流の影響を受けにくい計測部となる。このことは上記実施例1に示す本発明の場合も同じである。
In the case of the control example shown in FIGS.
D 0 2 = D 1 2 -d 1 2
And Since the flow velocity distribution is formed by the distance H between the wall surface (cylindrical surface) 2 and the wall surface (cylindrical surface) 3, a steady flow is obtained when L 1 = 10H. If H = 15, L 1 becomes a steady flow at 150 mm, and even if it is a fraction of the length of FIG. 3, it becomes a steady flow. Further, if the introduction / exit flow path is appropriately constructed, the measurement section is less susceptible to upstream and downstream influences. The same applies to the case of the present invention shown in the first embodiment.

また、間隔Hと長さL1 の値をある程度の範囲に限定すれば、流量計の最大流量の大小にかかわらず全長が単一となり、かつ超音波送受波器関係の電子回路が共有化できる。 Further, if the values of the interval H and the length L 1 are limited to a certain range, the total length is single regardless of the maximum flow rate of the flow meter, and the electronic circuit related to the ultrasonic transducer can be shared. .

本発明の第1実施例で、(a)は平断面図、(b)は縦断側面図、(c)は(b)のB−B線横断面図である。In the first embodiment of the present invention, (a) is a plan sectional view, (b) is a longitudinal side view, and (c) is a cross-sectional view taken along the line BB of (b). 対照例の流路形状を示す図で、(a)は正断面図、(b)は側断面図である。It is a figure which shows the flow-path shape of a control example, (a) is a front sectional view, (b) is a sectional side view. 従来技術の流路形状を示す図で、(a)は正断面図、(b)は側断面図である。It is a figure which shows the flow-path shape of a prior art, (a) is a front sectional view, (b) is a sectional side view. 従来技術のシングルパス方式を示す図である。It is a figure which shows the single path | pass system of a prior art. 従来技術のシングルリフレクション方式を示す図である。It is a figure which shows the single reflection system of a prior art. 従来技術のシングルパス方式の原理を説明する図である。It is a figure explaining the principle of the single pass system of a prior art.

符号の説明Explanation of symbols

1 管路
2 壁面
3 壁面
2′ 壁面
3′ 壁面
4 流路
H 間隔
Y,Z 方向
1 Pipe line 2 Wall surface 3 Wall surface 2 'Wall surface 3' Wall surface 4 Channel H interval Y, Z direction

Claims (3)

流速計測部の流路(4)を構成する壁面が、間隔(H)をおいて互いに対向する少なくとも2つの壁面(2)(3)を有し、少なくともこれら2つの壁面(2)(3)で挟まれた流速計測部の流路(4)を流体が直線状に流れると共に、前記両壁面(2)(3)が前記間隔(H)方向に対して直角な流れ方向(Z)と、間隔(H)方向と流れ方向(Z)に対して直角な第3の方向(Y)に間隔(H)の大きさよりも大きく延在し、
2つの壁面(2)(3)が平行な平面で形成され、流れ方向(Z)に直角な流路断面が矩形であって、該矩形の長辺が2つの壁面(2)(3)に形成されると共に、矩形の短辺の長さが間隔(H)と同じ寸法であるとともに、
フランジ(7)の入口(2A)とフランジ(8)の出口(2B)を有し、入口(2A)から流入した流体は矩形断面の流路(4)に流入し出口(2B)から流出することを特徴とする超音波流量計。
The wall surface constituting the flow path (4) of the flow velocity measuring unit has at least two wall surfaces (2) and (3) facing each other with an interval (H), and at least these two wall surfaces (2) and (3) The fluid flows in a straight line through the flow path (4) of the flow velocity measurement unit sandwiched between the two wall surfaces (2) and (3), and the flow direction (Z) perpendicular to the interval (H) direction, Extending in a third direction (Y) perpendicular to the interval (H) direction and the flow direction (Z) to be greater than the size of the interval (H),
The two wall surfaces (2) and (3) are formed in parallel planes, the flow channel cross section perpendicular to the flow direction (Z) is rectangular, and the long side of the rectangle is on the two wall surfaces (2) and (3). And the length of the short side of the rectangle is the same as the distance (H),
It has an inlet (2A) of the flange (7) and an outlet (2B) of the flange (8), and the fluid flowing in from the inlet (2A) flows into the rectangular cross-section channel (4) and flows out from the outlet (2B). An ultrasonic flowmeter characterized by that.
ボス部を有し、該ボス部に超音波送受波器を設置したことを特徴とする請求項1記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, further comprising a boss portion, and an ultrasonic transducer installed in the boss portion. 流路(4)を流れる流体の流速は、シングルパス方式で計測されることを特徴とする請求項2記載の超音波流量計。 The ultrasonic flowmeter according to claim 2, wherein the flow velocity of the fluid flowing through the flow path (4) is measured by a single-pass method.
JP2006145009A 2006-05-25 2006-05-25 Ultrasonic flow meter Expired - Fee Related JP4188386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145009A JP4188386B2 (en) 2006-05-25 2006-05-25 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145009A JP4188386B2 (en) 2006-05-25 2006-05-25 Ultrasonic flow meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04045297A Division JP3857373B2 (en) 1997-02-25 1997-02-25 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2006220670A true JP2006220670A (en) 2006-08-24
JP4188386B2 JP4188386B2 (en) 2008-11-26

Family

ID=36983069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145009A Expired - Fee Related JP4188386B2 (en) 2006-05-25 2006-05-25 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4188386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531648B1 (en) * 2013-09-24 2015-06-25 에스엠시 가부시키가이샤 Ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531648B1 (en) * 2013-09-24 2015-06-25 에스엠시 가부시키가이샤 Ultrasonic flow meter

Also Published As

Publication number Publication date
JP4188386B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US4365518A (en) Flow straighteners in axial flowmeters
WO2010070891A1 (en) Ultrasonic flowmeter
JP2008134267A (en) Ultrasonic flow measurement method
GB2299860A (en) Ultrasonic flowmeter
CN103270396A (en) Ultrasonic flowmeter
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
JPH06249690A (en) Ultrasonic flowmeter
Raišutis Investigation of the flow velocity profile in a metering section of an invasive ultrasonic flowmeter
JP5816831B2 (en) Ultrasonic flow meter
US7845240B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
WO2009074162A1 (en) Ultrasonic type fluid flow measurement apparatus
JP4188386B2 (en) Ultrasonic flow meter
EP2278280B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JP3857373B2 (en) Ultrasonic flow meter
CN112629604A (en) Fluid measuring device
JP2000065613A (en) Ultrasonic flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor
RU2277700C2 (en) Cut in section of ultrasound flowmeter
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP4485648B2 (en) Ultrasonic flow meter
JP2022109347A (en) Ultrasonic flowmeter
JP2008014833A (en) Ultrasonic flowmeter
KR101119998B1 (en) Clamp-on type Ultrasonic Transducer using a multi-path
KR100993617B1 (en) Clamp on typed multi-path ultrasonic flowmeter
JPWO2005064289A1 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees