JP3857373B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP3857373B2
JP3857373B2 JP04045297A JP4045297A JP3857373B2 JP 3857373 B2 JP3857373 B2 JP 3857373B2 JP 04045297 A JP04045297 A JP 04045297A JP 4045297 A JP4045297 A JP 4045297A JP 3857373 B2 JP3857373 B2 JP 3857373B2
Authority
JP
Japan
Prior art keywords
flow
cylindrical
cylindrical surface
wall
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04045297A
Other languages
Japanese (ja)
Other versions
JPH10239124A (en
Inventor
豊 田中
俊彦 宮本
徳行 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP04045297A priority Critical patent/JP3857373B2/en
Publication of JPH10239124A publication Critical patent/JPH10239124A/en
Application granted granted Critical
Publication of JP3857373B2 publication Critical patent/JP3857373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波流量計の改良に関する。
【0002】
【従来の技術】
超音波流量計の測定原理の基本方式は、ドップラ方式と伝播時間測定方式の2方式に分かれる。
【0003】
又、伝播時間測定方式には時間差法、時間逆数差法及び位相差法の3つの方法がある。そして、伝播時間測定方式における超音波パスを通す方式として送受波器(振動子)を配管に対して斜めに対向して通すシングルパス方式と、配管内で1回反射させて通すシングルリフレクション方式(反射方式)が周知である。
【0004】
はシングルパス方式、図はシングルリフレクション方式で、Tuは上流に配設した送受波器、Tdは下流に配設した送受波器である。
時間差法は伝播時間測定方式の基本的な考え方で流体中の音波の伝播速度が上流から下流に向かう時、下流から上流に向かう時では異なるという原理に基づいており、超音波の送受信を交互に切り換え、その伝播時間の差から流速を測定する。
【0005】
において、上流の送受波器Tuから下流の送受波器に向かう音波の伝播時間tdは、
td=L/(C+Vcosθ) ・・・(1)
で、下流の送受波器Tdから上流の送受波器Tuに向かう音波の伝播時間tuは、
tu=L/(C−Vcosθ) ・・・(2)
である。
【0006】
Lは両送受波器間の距離、Cは静止流体中の音速、Vは流速、θは超音波伝播軸と管路1の中心軸の角度である。
伝播時間差Δtはtu−tdであり、通常の条件では、
(Vcosθ)2 ≪C2 ・・・(3)
であるので、これらよりΔtは、
Δt=2VLcosθ/{C2 +(Vcosθ)2 }・・・(4)
従って、
Δt=2VLcosθ/C2 ・・・(5)
となり、流速Vを、
V=C2 Δt/2Lcosθ ・・・(6)
として求めている。
【0007】
なお、図でDは円筒形管路1の内径、つまり流路径である。
(3)式の条件が成立するように、流速Vが音速Cよりもかなり小さい0〜30m/sの流速範囲で計測可能である。流速が30m/sを越えると(4)式の(Vcosθ)2 の項を無視したことによる(6)式の計算誤差や気体の圧縮性の影響による誤差が大きくなるからである。
【0008】
また、流量は(流速)×(流路断面積)であるので、流量に応じた流断面積が必要となる。
【0009】
【発明が解決しようとする課題】
従って、管内流速を安定化して正確な測定をするために、流量計測部の長さ(管路の軸方向の長さ)を仮に10Dとすれば、それなりに当然全長も長くなり、超音波送受波器間の距離Lも大きくなる。
【0010】
そのため、計測する最大流量が大きくなると、それに応じて流量計全体が大きくなり、それに対応して上下流に必要な直管部の長さも大きくなって、流量計測に大きなスペースが必要になって設置に関しての制約が多いという問題があった。
【0011】
また、前述のように超音波送受波器間の距離Lが大きくなることによって送受波器駆動電力が大きくなり、流量計の消費電力が増大するという問題点があった。
【0012】
そこで、本発明はこれらの問題点を解消できる超音波流量計を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、
流速計測部の流路(4)を構成する2つの壁面(2)(3)が、同軸状の円筒面からなり、一方の壁面(2)はケーシング(5)に形成された円筒面で構成され、他方の壁面(3)は流路(4)の中央部に配設されたほぼ砲弾形の部材(6)の大径部外周に形成され、
前記2つの壁面(2)(3)が前記両円筒面の半径方向に間隔(H)をおいて互いに対向し、これらの2つの壁面(2)(3)で挟まれた流速計側部(4)を流体が前記円筒面の母線方向に直線状に流れると共に、前記両壁面(2)(3)が前記両円筒面の円周方向(Y)に間隔(H)の大きさよりも大きく延在しており、
かつ、ケーシング(5)に形成された円筒面で構成される一方の壁面(2)の上流部と下流部は小径となっていて、流速計側部への流体の入口と出口を形成し、入口部、出口部に向かって小径となる径変化部の途中に、入口側には上流側送受波器(Tu)を、出口側には下流側送受波器(Td)を設置したことを特徴とする超音波流量計である。
【0014】
本発明では、安定した流線、流速分布となるコンパクトな構造のものとなり、かつ流路全体として均一の流速分布となる
【0015】
そして、流路壁面を形成する2つの円筒面の半径方向の短い間隔(H)により安定流速となる。
【0017】
【発明の実施の形態】
次に図1(a)(b)に従って本発明の流速計測部の概略について説明する。
【0018】
間隔Hをおいて互いに同軸的に配設された2つの円筒形の壁面(円筒面)2と3に挟まれた円筒形の流速計測部の流路4内を、被計測流体が同図(b)に太い矢印で示すように左方から右方に流れる。この流れ方向は同図(b)で符号Zで示す図示左右方向で、両円筒面2,3の母線方向に相当し、同図(a)では紙面に直角な方向となる。
【0019】
従って、両円筒面(壁面)2,3は円筒面同士の半径方向の間隔Hの方向と、この半径方向Hに対して直角な流れ方向即ち母線方向Zに対して3の方向即ち円周方向Yに間隔Hの大きさよりも大きな寸法で延在する互いに対向する曲面で形成されている。L1 は直管部の長さである。
【0020】
もっとも、両壁面2,3は互いに同軸に配設された円筒面であるので、請求項1では両壁面2,3が間隔Hをおいて互いに対向すると表現してある。
【0021】
ところで、図2(a)(b)に示すように円管の管路1を用いる従来技術では、直管部の長さL0 が直径φD0 の10倍(仮)以上の時に定常流となると考えられ、φD0 が大きければ流量計の全長はかなりの長さになる。例えば、φD0=φ60とすると、L0 =600となる。
【0022】
図1(a)(b)の本発明の場合には、流路断面積を図2の従来技術と同じにするために、
0 2 =D1 2 −d 2
とする。そして、壁面(円筒面)2と壁面(円筒面)3との間隔Hによって流速分布が形成されるので、L1 =10Hで定常流となる。仮にH=15とするとL1 は150mmで定常流となり、図2の場合に比べて数分の1の長さでも定常流になる。また、導入出流路を適当に構築すれば上流下流の影響を受けにくい計測部となる。
【0023】
また、間隔Hと長さL1 の値をある程度の範囲に限定すれば、流量計の最大流量の大小にかかわらず全長が単一となり、かつ超音波送受波器関係の電子回路が共有化できる。
【0024】
〔実施例1〕
図3(a)(b)の実施例は、図1(a)(b)説明した円筒面からなる2つの壁面2,3に挟まれる流路4を備えたものである。
【0025】
壁面2はケーシング5に形成された円筒面で構成されている。また、壁面3は流路4の中央部に配設されたほぼ砲弾形の部材6の大径部外周に形成された円筒面で構成されている。
【0026】
超音波送受波器TuとTdはケーシング5において、流路4の上流と下流に図示のように対向設置されて、シングルパス方式を構成している。
【0027】
円筒面2の上流部と下流部は符号2Aと2Bで示すように小径となっていて、流速計測部への流体の入口と出口を形成する。
上述の説明で明らかなように、この図3の実施例では、図1同様に流路4が2重円管状(ドーナツ状)となり、半径方向の間隔Hの短巾により安定流速とすることができる。
【0028】
【発明の効果】
本発明の超音波流量計は上述のように構成されていて、短い距離で定常流が得られるため、全長を短くしてコンパクトにできる。また、流速計測部の流路断面形状から、上流下流の影響を受けにくい。
【0029】
して、大流量用の流量計でも間隔(H)が短巾ということで送受波器間の距離を小さくできるため、送波器としての駆動電力を低減できる。また、間隔(短巾)(H)を、流量計の口径の違いによらず一定とすれば、最大流量によらず同じ超音波送受波器を共用化できる利点がある。
【図面の簡単な説明】
【図1】 本発明の流速計測部の流路形状を示す図で、(a)は正断面図、(b)は側断面図である。
【図2】 従来技術の流路形状を示す図で、(a)は正断面図、(b)は側断面図である。
【図3】 本発明の第1実施例で、(a)は縦断面図、(b)は(a)のA−A線横断面図である。
【図4】 従来技術のシングルパス方式を示す図である。
【図5】 従来技術のシングルリフレクション方式を示す図である。
【図6】 従来技術のシングルパス方式の原理を説明する図である。
【符号の説明】
1 管路
2 壁面
3 壁面
4 流路
H 間隔
Y,Z 方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an ultrasonic flow meter.
[0002]
[Prior art]
The basic method of the measurement principle of the ultrasonic flowmeter is divided into two methods, a Doppler method and a propagation time measurement method.
[0003]
There are three propagation time measurement methods: a time difference method, a time reciprocal difference method, and a phase difference method. In addition, as a method of passing an ultrasonic path in the propagation time measurement method, a single pass method in which a transducer (vibrator) is passed diagonally opposite to a pipe and a single reflection method in which the light is reflected once in the pipe ( The reflection method is well known.
[0004]
4 shows a single path system, FIG. 5 shows a single reflection system, Tu is a transducer disposed upstream, and Td is a transducer disposed downstream.
The time difference method is a basic idea of the propagation time measurement method and is based on the principle that the propagation speed of sound waves in a fluid is different when going from upstream to downstream and when going from downstream to upstream. Switch and measure the flow velocity from the difference in propagation time.
[0005]
In FIG. 6 , the propagation time td of the sound wave from the upstream transducer Tu to the downstream transducer is
td = L / (C + V cos θ) (1)
The propagation time tu of the sound wave from the downstream transducer Td to the upstream transducer Tu is
tu = L / (C−V cos θ) (2)
It is.
[0006]
L is the distance between the transducers, C is the speed of sound in the static fluid, V is the flow velocity, and θ is the angle between the ultrasonic wave propagation axis and the central axis of the pipe 1.
The propagation time difference Δt is tu−td. Under normal conditions,
(Vcos θ) 2 << C 2 (3)
Therefore, from these, Δt is
Δt = 2VL cos θ / {C 2 + (V cos θ) 2 } (4)
Therefore,
Δt = 2VL cos θ / C 2 (5)
And the flow velocity V is
V = C 2 Δt / 2L cos θ (6)
Asking.
[0007]
In FIG. 6 , D is the inner diameter of the cylindrical pipe line 1, that is, the flow path diameter.
Measurement can be performed in a flow velocity range of 0 to 30 m / s where the flow velocity V is considerably smaller than the sound velocity C so that the condition of the expression (3) is satisfied. This is because, when the flow velocity exceeds 30 m / s, the calculation error of the equation (6) due to ignoring the term (Vcos θ) 2 of the equation (4) and the error due to the influence of the compressibility of the gas increase.
[0008]
Further, since the flow rate is (flow rate) × (flow path cross-sectional area), the flow path cross-sectional area in response to the flow rate is required.
[0009]
[Problems to be solved by the invention]
Therefore, in order to stabilize the flow velocity in the pipe and perform accurate measurement, if the length of the flow rate measurement unit (the length in the axial direction of the pipe line) is set to 10D, the total length naturally becomes longer, and ultrasonic transmission / reception is performed. The distance L between the corrugators also increases.
[0010]
Therefore, if the maximum flow rate to be measured increases, the entire flow meter will increase accordingly, and the length of the straight pipe section required upstream and downstream will correspondingly increase, requiring a large space for flow measurement. There was a problem that there were many restrictions regarding.
[0011]
Further, as described above, there is a problem that the transmitter / receiver driving power is increased by increasing the distance L between the ultrasonic transducers and the power consumption of the flowmeter is increased.
[0012]
Accordingly, an object of the present invention is to provide an ultrasonic flowmeter that can solve these problems.
[0013]
[Means for Solving the Problems]
In order to achieve the object, the invention of claim 1
The two wall surfaces (2) and (3) constituting the flow path (4) of the flow velocity measuring unit are formed of a coaxial cylindrical surface, and the one wall surface (2) is configured by a cylindrical surface formed on the casing (5). The other wall surface (3) is formed on the outer periphery of the large diameter portion of the substantially bullet-shaped member (6) disposed in the central portion of the flow path (4),
The two wall surfaces (2) and (3) are opposed to each other with an interval (H) in the radial direction between the two cylindrical surfaces, and the velocimeter side portion sandwiched between these two wall surfaces (2) and (3) ( 4), the fluid flows linearly in the generatrix direction of the cylindrical surface, and both the wall surfaces (2) and (3) extend in the circumferential direction (Y) of both the cylindrical surfaces larger than the size of the interval (H). Exist,
And the upstream part and downstream part of one wall surface (2) comprised by the cylindrical surface formed in the casing (5) have a small diameter, and form the inlet and outlet of the fluid to the current meter side part, An upstream-side transducer (Tu) is installed on the entrance side and a downstream-side transducer (Td) is installed on the exit side in the middle of the diameter-changing portion that becomes smaller in diameter toward the entrance and exit. It is an ultrasonic flowmeter.
[0014]
In this invention, it becomes a thing of the compact structure used as a stable streamline and flow velocity distribution, and becomes uniform flow velocity distribution as the whole flow path .
[0015]
Then, ing a stable flow rate by radially short distance between the two cylindrical surfaces forming the flow path wall surface (H).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, an outline of the flow velocity measuring unit of the present invention will be described with reference to FIGS.
[0018]
A fluid to be measured passes through the flow path 4 of the cylindrical flow velocity measuring unit sandwiched between two cylindrical wall surfaces (cylindrical surfaces) 2 and 3 disposed coaxially with each other at an interval H (see FIG. It flows from left to right as shown by the thick arrow in b). This flow direction is the left-right direction shown by the symbol Z in FIG. 4B and corresponds to the generatrix direction of both cylindrical surfaces 2 and 3, and in FIG.
[0019]
Therefore, the direction of both the cylindrical surface (wall) 2,3 interval H in the radial direction between the cylindrical surface, the third direction with respect to the perpendicular flow Direction immediate Chi generatrix direction Z with respect to the radial direction H That is, they are formed by curved surfaces facing each other extending in the circumferential direction Y with a dimension larger than the size of the interval H. L 1 is the length of the straight pipe portion.
[0020]
However, both wall surfaces 2 and 3 cylindrical surface der as they may disposed coaxially with each other, we claim 1, both walls 2 and 3 are to each other in pairs towards Then expressed at intervals H.
[0021]
By the way, as shown in FIGS. 2A and 2B, in the conventional technique using the circular pipe 1, when the length L 0 of the straight pipe portion is 10 times (provisional) or more of the diameter φD 0 , If φD 0 is large, the total length of the flow meter becomes considerably long. For example, if φD 0 = φ60, L 0 = 600.
[0022]
In the case of the present invention shown in FIGS. 1 (a) and 1 (b), in order to make the channel cross-sectional area the same as that of the prior art of FIG.
D 0 2 = D 1 2 -d 1 2
And Since the flow velocity distribution is formed by the distance H between the wall surface (cylindrical surface) 2 and the wall surface (cylindrical surface) 3, a steady flow is obtained when L 1 = 10H. If H = 15, L 1 becomes a steady flow at 150 mm, and even if it is a fraction of the length of FIG. Further, if the introduction / exit flow path is appropriately constructed, the measurement section is less susceptible to upstream and downstream influences.
[0023]
Further, if the values of the interval H and the length L 1 are limited to a certain range, the total length is single regardless of the maximum flow rate of the flow meter, and the electronic circuit related to the ultrasonic transducer can be shared. .
[0024]
[Example 1]
The embodiment of FIG. 3 (a) (b) are those having the FIGS. 1 (a) passage 4 which is sandwiched between two walls 2 and 3 consisting of a cylindrical surface as described in (b).
[0025]
The wall surface 2 is composed of a cylindrical surface formed in the casing 5. The wall surface 3 is formed of a cylindrical surface formed on the outer periphery of the large-diameter portion of a substantially bullet-shaped member 6 disposed in the central portion of the flow path 4.
[0026]
The ultrasonic transducers Tu and Td are disposed opposite to each other in the casing 5 upstream and downstream of the flow path 4 as shown in the figure to constitute a single-pass system.
[0027]
The upstream portion and the downstream portion of the cylindrical surface 2 have a small diameter as indicated by reference numerals 2A and 2B, and form an inlet and an outlet for fluid to the flow velocity measuring portion.
As is clear from the above description, in the embodiment of FIG. 3, the flow path 4 has a double circular tube shape (doughnut shape) as in FIG. 1 , and a stable flow velocity is achieved by a short width H in the radial direction. Can do.
[0028]
【The invention's effect】
Since the ultrasonic flowmeter of the present invention is configured as described above and a steady flow can be obtained at a short distance, the total length can be shortened to be compact. Moreover, it is hard to receive the influence of upstream and downstream from the flow-path cross-sectional shape of a flow velocity measurement part.
[0029]
Their to, the interval in the flow meter for large flow rate (H) can reduce the distance between the transducer in that Tanhaba can reduce the driving power of the transmitters. Further, if the interval (short width) (H) is constant regardless of the difference in the diameter of the flow meter, there is an advantage that the same ultrasonic transducer can be shared regardless of the maximum flow rate.
[Brief description of the drawings]
1A and 1B are diagrams showing a flow channel shape of a flow velocity measuring unit according to the present invention, in which FIG. 1A is a front sectional view and FIG. 1B is a side sectional view;
FIGS. 2A and 2B are diagrams showing the shape of a flow channel according to the prior art, in which FIG. 2A is a front sectional view and FIG. 2B is a side sectional view;
3A is a longitudinal sectional view of the first embodiment of the present invention, and FIG. 3B is a transverse sectional view taken along line AA of FIG. 3A.
FIG. 4 is a diagram illustrating a conventional single-pass method.
FIG. 5 is a diagram illustrating a conventional single reflection method.
FIG. 6 is a diagram for explaining the principle of a conventional single-pass method.
[Explanation of symbols]
1 Pipe line 2 Wall surface 3 Wall surface 4 Flow path H Interval Y, Z direction

Claims (1)

流速計測部の流路(4)を構成する2つの壁面(2)(3)が、同軸状の円筒面からなり、一方の壁面(2)はケーシング(5)に形成された円筒面で構成され、他方の壁面(3)は流路(4)の中央部に配設されたほぼ砲弾形の部材(6)の大径部外周に形成され、
前記2つの壁面(2)(3)が前記両円筒面の半径方向に間隔(H)をおいて互いに対向し、これらの2つの壁面(2)(3)で挟まれた流速計側部(4)を流体が前記円筒面の母線方向に直線状に流れると共に、前記両壁面(2)(3)が前記両円筒面の円周方向(Y)に間隔(H)の大きさよりも大きく延在しており、
かつ、ケーシング(5)に形成された円筒面で構成される一方の壁面(2)の上流部と下流部は小径となっていて、流速計側部への流体の入口と出口を形成し、入口部、出口部に向かって小径となる径変化部の途中に、入口側には上流側送受波器(Tu)を、出口側には下流側送受波器(Td)を設置したことを特徴とする超音波流量計。
The two wall surfaces (2) and (3) constituting the flow path (4) of the flow velocity measuring unit are formed of a coaxial cylindrical surface, and the one wall surface (2) is configured by a cylindrical surface formed on the casing (5). The other wall surface (3) is formed on the outer periphery of the large diameter portion of the substantially bullet-shaped member (6) disposed in the central portion of the flow path (4),
The two wall surfaces (2) and (3) are opposed to each other with an interval (H) in the radial direction between the two cylindrical surfaces, and the velocimeter side portion sandwiched between these two wall surfaces (2) and (3) ( 4), the fluid flows linearly in the generatrix direction of the cylindrical surface, and both the wall surfaces (2) and (3) extend in the circumferential direction (Y) of both the cylindrical surfaces larger than the size of the interval (H). Exist,
And the upstream part and downstream part of one wall surface (2) comprised by the cylindrical surface formed in the casing (5) have a small diameter, and form the inlet and outlet of the fluid to the current meter side part, An upstream-side transducer (Tu) is installed on the entrance side and a downstream-side transducer (Td) is installed on the exit side in the middle of the diameter-changing portion that becomes smaller in diameter toward the entrance and exit. Ultrasonic flow meter.
JP04045297A 1997-02-25 1997-02-25 Ultrasonic flow meter Expired - Fee Related JP3857373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04045297A JP3857373B2 (en) 1997-02-25 1997-02-25 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04045297A JP3857373B2 (en) 1997-02-25 1997-02-25 Ultrasonic flow meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006145009A Division JP4188386B2 (en) 2006-05-25 2006-05-25 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH10239124A JPH10239124A (en) 1998-09-11
JP3857373B2 true JP3857373B2 (en) 2006-12-13

Family

ID=12581039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04045297A Expired - Fee Related JP3857373B2 (en) 1997-02-25 1997-02-25 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3857373B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791421B2 (en) 2002-01-23 2006-06-28 キヤノンスター株式会社 Intraocular lens insertion device
JP4943815B2 (en) * 2006-10-30 2012-05-30 愛知時計電機株式会社 Ultrasonic flow meter
CN103983316B (en) * 2014-06-03 2016-11-02 威海市天罡仪表股份有限公司 Bullet type flow straightener

Also Published As

Publication number Publication date
JPH10239124A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US4365518A (en) Flow straighteners in axial flowmeters
US3906791A (en) Area averaging ultrasonic flowmeters
JP3283519B2 (en) Flowmeter
US4140012A (en) Small pipe flowmeter
JPH10122923A (en) Ultrasonic flow meter
GB2299860A (en) Ultrasonic flowmeter
US8505391B1 (en) Flange mounted ultrasonic flowmeter
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
JPH109914A (en) Ultrasonic flowmeter
US6338277B1 (en) Flowmeter for attenuating acoustic propagations
JPS5995425A (en) Ultrasonic measuring device
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2002520583A (en) Multi-code flow meter
JPH06249690A (en) Ultrasonic flowmeter
JP3857373B2 (en) Ultrasonic flow meter
WO2009074162A1 (en) Ultrasonic type fluid flow measurement apparatus
KR100311855B1 (en) Fluid flow meter
US3204457A (en) Ultrasonic flowmeter
JP4188386B2 (en) Ultrasonic flow meter
JP2005091332A (en) Ultrasonic flowmeter
CN112629604A (en) Fluid measuring device
JP2956804B2 (en) Ultrasonic flow meter
RU2517996C1 (en) Ultrasonic flowmeter sensor
RU2277700C2 (en) Cut in section of ultrasound flowmeter
JP4485648B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees