JP2006220402A - Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method - Google Patents

Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method Download PDF

Info

Publication number
JP2006220402A
JP2006220402A JP2005064581A JP2005064581A JP2006220402A JP 2006220402 A JP2006220402 A JP 2006220402A JP 2005064581 A JP2005064581 A JP 2005064581A JP 2005064581 A JP2005064581 A JP 2005064581A JP 2006220402 A JP2006220402 A JP 2006220402A
Authority
JP
Japan
Prior art keywords
heat
collection pipe
underground
heat collection
loop portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064581A
Other languages
Japanese (ja)
Inventor
Tadahiko Ogawa
忠彦 小川
Takeshi Morikubo
剛 森久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH RESOURCES KK
Original Assignee
EARTH RESOURCES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH RESOURCES KK filed Critical EARTH RESOURCES KK
Priority to JP2005064581A priority Critical patent/JP2006220402A/en
Publication of JP2006220402A publication Critical patent/JP2006220402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burying method for a heat collection pipe used for an underground heat system allowing low-cost construction even in a dense residential area or a narrow area, and capable of performing efficient heat exchange. <P>SOLUTION: In this burying method for the heat collection pipe 7 used for the underground heat system connected with a heat exchanger 5, feeding a cooling medium heat-exchanged by the heat exchanger 5 into the ground 6 to perform the heat exchange, a pit 20 allowing vertical burying of the heat collection pipe 7 wound in a loop state is dug out in land, and the heat collection pipe 7 is buried in the dug-out pit 20 in a state that a loop portion 7C of the heat collection pipe 7 is held such that the loop portion 7c is horizontally shifted and comes into a vertical state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地中熱システムに用いる採熱管の埋設方法に関する。  The present invention relates to a method for burying a heat collecting tube used in a geothermal system.

地中に掘削した熱交換井あるいは埋設した鋼管杭の中に採熱管を導入し、導入した採熱管に熱交換機を接続し、熱交換機で熱交換された冷却媒体を地中に搬送して吸熱または採熱する地中熱システムが種々提案されている。このような地中熱システムにおいては、採熱管を導入する熱交換井の掘削や鋼管杭の埋設に費用を要してしまうので、システムが高価になってしまう。そこで、地中に穴を掘削し、掘削した穴の内部に採熱管をループ状に巻いて水平に埋設する方法が提案されている。  A heat collection pipe is introduced into a heat exchanging well excavated in the ground or an embedded steel pipe pile, a heat exchanger is connected to the introduced heat collection pipe, and the cooling medium heat exchanged by the heat exchanger is conveyed into the ground to absorb heat. Various geothermal systems that collect heat have been proposed. In such a geothermal system, costs are required for excavation of a heat exchange well into which a heat collecting pipe is introduced and for the embedding of steel pipe piles, so that the system becomes expensive. Therefore, a method has been proposed in which a hole is excavated in the ground, and a heat collecting tube is wound in a loop shape inside the excavated hole and buried horizontally.

しかしながら、採熱管を水平ループ状に埋設する方法においては、穴を掘削するに際し、水平方向への空間が必要であり、住宅密集地や狭小地においては穴を掘削するのが困難であり、施工することができなかった。採熱管を潰すことなくループを形成するためには、採熱管の材質によってループ径が必然的に定まってしまう。また、採熱管による熱交換効率を高めるためには、同心円状に埋設するよりも、ループを水平方向にずらして埋設する方が地中内に接する表面積が大きく稼げるので好ましい。このため、掘削する穴の水平方向への面積は、少なくともループ径を許容する幅とループをずらしたときの採熱管長を許容する長さが必要となる。採熱管から地中への放熱、あるいは採熱管による吸熱を効率よく行うとともに、採熱管の保護を図るためには、地表面からある程度の深度に採熱管を埋設し、埋設した採熱管の上部に、ある程度の土砂を積層する必要があり、自ずと掘削する量が多くなる。このため、掘り起こした土砂(発生土)の置き場も必然的に広さを要するとともに、その処理にも費用がかかりコストアップとなってしまう。
本発明は、住宅密集地や狭小地でも低コストで埋設施工でき、かつ効率的な熱交換を行える地中熱システムに用いる採熱管の埋設方法及びこの方法を用いた地中熱システムを提供することを、その目的とする。
However, in the method of burying the heat collection tubes in a horizontal loop shape, a space in the horizontal direction is required when excavating the holes, and it is difficult to excavate holes in densely populated or confined areas. I couldn't. In order to form a loop without crushing the heat collecting tube, the loop diameter is inevitably determined by the material of the heat collecting tube. Further, in order to increase the heat exchange efficiency by the heat collecting tube, it is preferable to embed the loop in the horizontal direction rather than embed it concentrically because the surface area in contact with the ground can be increased. For this reason, the area of the hole to be excavated in the horizontal direction requires at least a width that allows the loop diameter and a length that allows the heat collection tube length when the loop is shifted. In order to efficiently dissipate heat from the heat collection pipe to the ground or absorb heat from the heat collection pipe, and to protect the heat collection pipe, bury the heat collection pipe at a certain depth from the ground surface and place it on the upper part of the buried heat collection pipe. Therefore, it is necessary to stack a certain amount of earth and sand, and the amount of excavation naturally increases. For this reason, the storage place for the excavated earth and sand (generated soil) inevitably requires a large area, and the processing is also expensive, resulting in an increase in cost.
The present invention provides a method of burying a heat collecting pipe used in a geothermal system that can be embedded at low cost even in densely populated houses and narrow spaces, and can perform efficient heat exchange, and a geothermal system using this method. That is the purpose.

上記目的を達成するため、本発明は、熱交換機と接続され、この熱交換機で熱交換された冷却媒体を地中へ搬送して熱交換する地中熱システムに用いる採熱管の埋設方法において、採熱管をループ状に巻いて垂直に埋設可能な穴を前記地中に掘削し、この掘削した穴に、採熱管のループ部分を水平方向にずらし、かつ当該ループ部分が垂直状態となるように採熱管を埋設することを特徴としている。
本発明にかかる地中熱システムは、上記埋設方法で埋設された採熱管を有することを特徴としている。
In order to achieve the above object, the present invention is a method of burying a heat collecting pipe used in a ground heat system that is connected to a heat exchanger and transports a cooling medium heat exchanged by the heat exchanger to the ground to exchange heat. A hole that can be buried vertically by wrapping a heat collection tube in a loop shape is excavated in the ground, and the loop portion of the heat collection tube is shifted horizontally in the excavated hole, and the loop portion is in a vertical state. It is characterized by burying heat collecting tubes.
The underground heat system according to the present invention is characterized by having a heat collection pipe embedded by the above-described embedding method.

本発明によれば、採熱管をループ状に巻いて垂直に埋設可能な穴を地中に設け、この掘削した穴に、採熱管のループ部分を水平方向にずらし、かつループ部分が垂直状態となるように採熱管を埋設するので、掘削する穴の幅が、ループをずらして埋設した採熱管の厚さ方向の幅で済むので、水平方向への空間が少ない住宅密集地や狭小地においても採熱管を埋設する穴が掘削可能となり、採熱管の埋設施工が行える。また、掘り起こした土砂(発生土)の置き場も狭く、かつその処理量の少なくなり、よりコスト低減を図ることができる。  According to the present invention, a hole that can be embedded vertically by winding a heat collection tube in a loop shape is provided in the ground, and the loop portion of the heat collection tube is shifted horizontally in the excavated hole, and the loop portion is in a vertical state. Since the heat collection pipe is buried so that the width of the hole to be excavated is the width in the thickness direction of the heat collection pipe buried by shifting the loop, even in densely populated areas and narrow areas where there is little space in the horizontal direction The hole for burying the heat collection tube can be excavated, and the heat collection tube can be buried. Moreover, the place where the excavated earth and sand (generated soil) is stored is narrow and the amount of processing is reduced, so that the cost can be further reduced.

以下、本発明の実施の形態について図を用いて説明する。図1において、符号1は地中熱システムを示す。この地中熱システム1は、室内2に設置される空調機器3、ヒートポンプ4、ヒートポンプ4の水冷式の熱交換機5と接続され、この熱交換機5で熱交換された冷却媒体としての冷却水を地中6へ搬送して熱交換する採熱管7を備えている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the code | symbol 1 shows a geothermal system. The underground heat system 1 is connected to an air conditioner 3 installed in a room 2, a heat pump 4, and a water-cooled heat exchanger 5 of the heat pump 4, and uses cooling water as a cooling medium heat-exchanged by the heat exchanger 5. A heat collecting tube 7 is provided for exchanging heat by transferring it to the underground 6.

ヒートポンプ4は、水冷式の熱交換機5と空冷式の熱交換機8とを備えている。ヒートポンプ4には、空調機器3と接続されて熱交換媒体の循環経路を構成する媒体流路9が接続されている。この媒体流路9を循環する熱交換媒体としては、CFC系、HCFC系、のHFC系等の周知の科学冷媒、あるいは冷水や温水等が挙げられる。ヒートポンプ4は、その運転状況に応じて図示しない電磁バルブを切換えることで、水冷式の熱交換機5と空冷式の熱交換機8とに熱交換媒体を選択的に案内して水冷と空冷により熱交換する。本形態では冷却水として不凍液を用いている。本形態では、ヒートポンプ4として水冷式の熱交換機5と空冷式の熱交換機8を備えたハイブリッド方式のものを例示したが、水冷式の熱交換機5のみを備えた周知の水冷式ヒートポンプであってもよい。  The heat pump 4 includes a water-cooled heat exchanger 5 and an air-cooled heat exchanger 8. The heat pump 4 is connected to a medium flow path 9 that is connected to the air conditioner 3 and constitutes a heat exchange medium circulation path. Examples of the heat exchange medium circulating in the medium flow path 9 include well-known scientific refrigerants such as CFC, HCFC, and HFC systems, or cold water and hot water. The heat pump 4 switches the electromagnetic valve (not shown) according to the operation status, thereby selectively guiding the heat exchange medium to the water-cooled heat exchanger 5 and the air-cooled heat exchanger 8 to exchange heat by water cooling and air cooling. To do. In this embodiment, an antifreeze is used as the cooling water. In this embodiment, the heat pump 4 is exemplified by a hybrid system having a water-cooled heat exchanger 5 and an air-cooled heat exchanger 8, but is a known water-cooled heat pump having only the water-cooled heat exchanger 5. Also good.

採熱管7上には、冷却水を採熱管7で循環させる循環ポンプ10と、採熱管7内を流れる冷却水の流量を測定する流量計11と、採熱管7内を流れる冷却水の流量を調整する流量調整弁12と、冷却水の温度変化による増減を許容する膨張タンク13とを備えている。採熱管7の一端7aは水冷式の熱交換機5を介して循環ポンプ10の吸入側に接続され、他端7bは膨張タンク13、流量調整弁12、流量計11を介して循環ポンプ10の吐出側に接続されている。図1において、符号70は水冷式の熱交換機5で熱交換された冷却水を地中6内に入れる流路を示し、符71は地中6内で熱交換された冷却水を水冷式の熱交換機5へ戻す流路を示す。本形態において、採熱管7と循環ポンプ10を含む流路系は密閉回路として構成したが、開放回路としてもよい。  On the heat collecting pipe 7, a circulation pump 10 that circulates the cooling water in the heat collecting pipe 7, a flow meter 11 that measures the flow rate of the cooling water flowing in the heat collecting pipe 7, and the flow rate of the cooling water that flows in the heat collecting pipe 7. A flow rate adjusting valve 12 to be adjusted and an expansion tank 13 that allows increase and decrease due to a temperature change of the cooling water are provided. One end 7 a of the heat collection pipe 7 is connected to the suction side of the circulation pump 10 via the water-cooled heat exchanger 5, and the other end 7 b is discharged from the circulation pump 10 via the expansion tank 13, the flow rate adjustment valve 12, and the flow meter 11. Connected to the side. In FIG. 1, reference numeral 70 indicates a flow path for introducing the cooling water heat-exchanged by the water-cooled heat exchanger 5 into the underground 6, and reference numeral 71 indicates the water-cooled cooling water heat-exchanged in the underground 6. The flow path returning to the heat exchanger 5 is shown. In this embodiment, the flow path system including the heat collecting pipe 7 and the circulation pump 10 is configured as a closed circuit, but may be an open circuit.

地中熱システム1では、空調機器3の電源が投入されると、最初、循環ポンプ10が駆動されて、水冷式の熱交換機5を用いた熱交換が行われる。そして所定の条件となると、図示しない電磁バルブにより回路が切換えられ、空冷式の熱交換機8へと熱交換媒体が導入され、空冷により熱交換媒体が熱交換される。電磁バルブによる回路切換は、空冷式の熱交換機8に熱交換媒体を導入し、所定の条件となると水冷式の熱交換機5に導入するように切換えてもよい。  In the underground heat system 1, when the air conditioner 3 is powered on, the circulation pump 10 is first driven to perform heat exchange using the water-cooled heat exchanger 5. When predetermined conditions are met, the circuit is switched by an electromagnetic valve (not shown), the heat exchange medium is introduced into the air-cooled heat exchanger 8, and the heat exchange medium is heat-exchanged by air cooling. The circuit switching by the electromagnetic valve may be switched so that a heat exchange medium is introduced into the air-cooled heat exchanger 8 and introduced into the water-cooled heat exchanger 5 when a predetermined condition is met.

採熱管7はポリエチレン、架橋ポリエチレン等の樹脂製であり、地上において直径1メートル程度のループ状に巻かれ、そのループ状を水平方向にずらされている。ループ部分7Cは、図示しない拘束部材によって水平方向へのずれた状態が保持されている。  The heat collection tube 7 is made of a resin such as polyethylene or cross-linked polyethylene, and is wound in a loop shape having a diameter of about 1 meter on the ground, and the loop shape is shifted in the horizontal direction. The loop portion 7C is held in a state shifted in the horizontal direction by a restraining member (not shown).

地中熱システム1を導入する敷地内の土地には、ループ部分7Cをずらした状態で保持された採熱管7を垂直に埋設可能な穴20が掘削されている。この穴20には、採熱管7のループ部分7Cが垂直状態となるように埋設されている。埋設されたループ部分7Cの周囲には、ループ部分7Cの熱交換効率を高めるために、穴20の底部20aからループ部分7Cが埋まるまでの高さH1を有する、砂等を埋めて第1の層31を形成している。第1の層31の上部には、砂等を埋めて第2の高さH2を有する第2の層32、第2の層32から地表面までは掘削した際に発生した発生土を埋め戻すことで形成される高さH3を有する第3の層33が積層されている。穴20の全長Lは、ループ部分7C全体が収納できる長さとされている。穴20の全幅Wは、図2に示すように、ループ部分7Cが厚さW1をよりも幾分幅広く形成されている。  In the land in the site where the geothermal system 1 is introduced, a hole 20 in which the heat collecting pipe 7 held with the loop portion 7C being shifted is vertically embedded is excavated. In the hole 20, the loop portion 7C of the heat collecting tube 7 is embedded so as to be in a vertical state. Around the embedded loop portion 7C, in order to increase the heat exchange efficiency of the loop portion 7C, the first portion is filled with sand or the like having a height H1 from the bottom 20a of the hole 20 until the loop portion 7C is filled. Layer 31 is formed. The upper part of the first layer 31 is filled with sand or the like to fill the second layer 32 having the second height H2 and the generated soil generated when excavating from the second layer 32 to the ground surface. A third layer 33 having a height H3 is formed. The total length L of the hole 20 is set to a length that can accommodate the entire loop portion 7C. As shown in FIG. 2, the entire width W of the hole 20 is such that the loop portion 7C is formed to be somewhat wider than the thickness W1.

このような構成の地中熱システム1において、室内機器3の電源が投入されると、室内機器3が作動するとともに循環ポンプ10が作動する。室内機器3が作動すると、熱交換媒体が媒体流路9を介して水冷式の熱交換機器5との間で循環され、冷房または暖房が行われる。循環ポンプ10が作動すると、冷却水が採熱管7内を移動して水冷式の熱交換機器5へと案内される。そして、水冷式の熱交換機器5で熱交換媒体との間で熱交換が行われる。熱交換された冷却水は、地中6内に埋設されたループ部分7Cに案内され、地中内で吸熱または放熱されて熱交換され、水冷式の熱交換機器5に戻される。地中熱システム1が所定の条件となると、図示しない電磁バルブが作動して水冷式の熱交換機器5へ導入されていた熱交換媒体が、空冷式の熱交換機8へと導入され、空冷によって熱交換される。  In the geothermal system 1 having such a configuration, when the power of the indoor device 3 is turned on, the indoor device 3 operates and the circulation pump 10 operates. When the indoor device 3 operates, the heat exchange medium is circulated between the water-cooled heat exchange device 5 through the medium flow path 9 and cooling or heating is performed. When the circulation pump 10 is operated, the cooling water moves through the heat collection pipe 7 and is guided to the water-cooled heat exchange device 5. Then, heat exchange is performed with the heat exchange medium by the water-cooled heat exchange device 5. The heat-exchanged cooling water is guided to the loop portion 7 </ b> C embedded in the underground 6, is heat-absorbed or dissipated in the underground and is heat-exchanged, and is returned to the water-cooled heat exchange device 5. When the underground heat system 1 is in a predetermined condition, the heat exchange medium introduced into the water-cooled heat exchange device 5 by operating an electromagnetic valve (not shown) is introduced into the air-cooled heat exchanger 8, Heat exchanged.

地下6に掘削した穴20が、ループ状に巻かれた採熱管7のループ部分7Cが垂直に埋設可能に掘削された穴としたので、掘削する穴20の幅Wが採熱管7の厚さ方向の幅W1+αで済み、掘削面積や掘り起こす土砂の量が少なくなる。このため、水平方向への空間が少ない住宅密集地や狭小地においても採熱管7を埋設する施工を行えるので、低コストな地中熱システム1を提供することができる。また、掘り起こす土砂の量が少なくなることで、掘り起こした土砂(発生土)の置き場も狭くてよく、よりコスト低減を図ることができる。  Since the hole 20 excavated in the underground 6 is a hole excavated so that the loop portion 7C of the heat collecting tube 7 wound in a loop shape can be embedded vertically, the width W of the hole 20 to be excavated is the thickness of the heat collecting tube 7. The direction width W1 + α is sufficient, and the excavation area and the amount of earth and sand to be dug are reduced. For this reason, since the construction which embeds the heat collecting pipe 7 can be performed even in a densely populated area or a narrow area where there is little space in the horizontal direction, the low-cost underground heat system 1 can be provided. In addition, since the amount of earth and sand to be dug is reduced, the place for the earth and sand to be dug (generated earth) may be narrow, and the cost can be further reduced.

次の条件で採熱管のループ部分を水平に埋設する場合と、垂直に埋設する場合の埋め戻し土(発生土)の量について説明する。図3(a)は採熱管のループ部分を水平に埋設する穴30を示し、図3(b)は採熱管のループ部分を垂直に埋設する穴20をそれぞれ示す。
採熱管の直径 25mm
ループ直径 1000mm
ループのピッチ 200mm
ループ数 26巻き
ループ部分の全長 6050mm
穴の全長 6100mm
厚方向の幅W1 250mm
第2の層の高さ 500mm
第3の層の高さ 500mm
The amount of backfill soil (generated soil) in the case where the loop portion of the heat collecting tube is buried horizontally and the case where it is buried vertically will be described under the following conditions. FIG. 3A shows a hole 30 for horizontally embedding the loop portion of the heat collecting tube, and FIG. 3B shows a hole 20 for embedding the loop portion of the heat collecting tube vertically.
Diameter of heat collection tube 25mm
Loop diameter 1000mm
Loop pitch 200mm
Number of loops 26 windings Overall length of loop part 6050mm
Total length of hole 6100mm
Thickness width W1 250mm
Second layer height 500mm
Third layer height 500mm

(水平埋設の場合)
図3(a)に示すように、穴30の底部30aからループ部分が埋まるまでの第1の層の高さH1を300mmとすると、穴30の深さ30Hは第1の層から第3の層の合計である1300mmとなり、発生土量T1は式1で求められる。
T1=全長6100mm×幅1000mm×深さ1300mm・・・式1
よって、T1=7.93m
(For horizontal burial)
As shown in FIG. 3 (a), when the height H1 of the first layer from the bottom 30a of the hole 30 until the loop portion is filled is 300 mm, the depth 30H of the hole 30 is increased from the first layer to the third level. The sum of the layers is 1300 mm, and the amount of generated soil T1 is obtained by Equation 1.
T1 = total length 6100 mm × width 1000 mm × depth 1300 mm Formula 1
Therefore, T1 = 7.93 m 3

(垂直埋設の場合)
図3(b)に示すように、穴20の底部20aからのループ部分が埋まるまでの第1の層の高さH1を1000mmとすると、穴の深さ20Hは第1の層から第3の層の合計である2000mmとなり、発生土量T2は式2で求められる。
T2=全長6100mm×幅300mm×深さ2000mm・・・式2
よって、T2=3.66m
(For vertical burial)
As shown in FIG. 3B, assuming that the height H1 of the first layer until the loop portion from the bottom 20a of the hole 20 is filled is 1000 mm, the depth 20H of the hole is the third depth from the first layer. The sum of the layers is 2000 mm, and the generated soil amount T2 is obtained by Equation 2.
T2 = total length 6100 mm × width 300 mm × depth 2000 mm. Formula 2
Therefore, T2 = 3.66 m 3

すなわち、採熱管7を埋設するに際し、ループ部分7Cを水平に埋設するか垂直に埋設するかで、掘り起こす土砂(発生土)の量に7.93m−3.66m=4.27mの差があり、凡そ2.2倍の差が発生する。この差が、そのまま掘り起こした土砂の置き場の大きさの差となる。That is, upon embedding the Tonetsukan 7, in either a loop portion 7C buried or vertically embedded horizontally, dig up earth and sand amount of 7.93m 3 -3.66m 3 = 4.27m 3 of (waste soil) There is a difference, and a difference of about 2.2 times occurs. This difference is the difference in the size of the soil that has been dug up.

次に、第1の層31、第2の層32に用いられる砂の量について説明する。砂の量は第1の層32におけるループ部分7Cの容積は考慮しないで算出する。
(水平埋設の場合)
第1の層と第2の層に用いられる砂等の量T3は、式3で求められる。
T3=全長6100mm×幅1000mm×深さ800mm・・・式3
よって、T3=4.88m
(垂直埋設の場合)
第1の層と第2の層に用いられる砂の量T4は、式4で求められる。
T3=全長6100mm×幅300mm×深さ1500mm・・・式4
よって、T2=2.75m
Next, the amount of sand used for the first layer 31 and the second layer 32 will be described. The amount of sand is calculated without considering the volume of the loop portion 7C in the first layer 32.
(For horizontal burial)
The amount T3 of sand or the like used for the first layer and the second layer is obtained by Equation 3.
T3 = total length 6100 mm × width 1000 mm × depth 800 mm ... Equation 3
Therefore, T3 = 4.88 m 3
(For vertical burial)
The amount T4 of sand used for the first layer and the second layer is obtained by Equation 4.
T3 = total length 6100 mm × width 300 mm × depth 1500 mm ... Equation 4
Therefore, T2 = 2.75 m 3

すなわち、採熱管7を埋設するに際し、ループ部分7Cを水平に埋設するか垂直に埋設するかで、第1の層31、第2の層32に使用する砂の量に、4.88m−2.75m=2.13mの差があり、凡そ1.8倍の差が発生する。この差が、そのままコスト差となって現れる。That is, when the heat collecting tube 7 is embedded, whether the loop portion 7C is embedded horizontally or vertically, the amount of sand used for the first layer 31 and the second layer 32 is 4.88 m 3 −. There is a difference of 2.75 m 3 = 2.13 m 3 and a difference of about 1.8 times occurs. This difference appears as a cost difference as it is.

次に、第3の層に埋め戻す発生土の量について説明する。
(水平埋設の場合)
第3の層に埋め戻す発生土の量T5は、式5で求められる。
T5=全長6100mm×幅1000mm×探さ500mm・・・式5
T3=3.05m
掘り起こした発生土の総量は7.93mであるので、
7.93m−3.05m=4.88mの発生土が残土となる。
Next, the amount of generated soil to be backfilled in the third layer will be described.
(For horizontal burial)
The amount T5 of the generated soil to be backfilled in the third layer is obtained by Expression 5.
T5 = Overall length 6100 mm × Width 1000 mm × Search 500 mm Formula 5
T3 = 3.05m 3
Since the total amount of soil dug up is 7.93 m 3 ,
The generated soil of 7.93 m 3 −3.05 m 3 = 4.88 m 3 becomes the remaining soil.

(垂直埋設の場合)
第3の層に埋め戻す発生土の量T6は、式6で求められる。
T5=全長6100mm×幅300mm×深さ500mm・・・・式6
T3=0.915m
掘り起こした発生土の総量は3.66mであるので、
3.66m−0.915m=約2.75mの発生土が残土となる。
(For vertical burial)
The amount T6 of the generated soil to be backfilled in the third layer is obtained by Expression 6.
T5 = total length 6100 mm × width 300 mm × depth 500 mm...
T3 = 0.915m 3
Since the total amount of soil dug up is 3.66 m 3 ,
3.66m 3 -0.915m 3 = occurrence soil of about 2.75m 3 is the residual soil.

すなわち、採熱管7を埋設するに際し、ループ部分7Cを水平に埋設するか垂直に埋設するかで、残土量に4.88m−2.75m=2.13mの差があり、凡そ1.8倍の差が発生する。この差が、そのまま残土の処理コストの差となる。That is, upon embedding the Tonetsukan 7, in either a loop portion 7C buried or vertically embedded horizontally, there is a difference of 4.88m 3 -2.75m 3 = 2.13m 3 to residual soil amount, approximately 1 A difference of 8 times occurs. This difference is the difference in the processing cost of the remaining soil as it is.

本発明の一形態である地中熱システムと、このシステムに用いる採熱管の埋設方法を示す概略構成図である。  It is a schematic block diagram which shows the underground heat system which is one form of this invention, and the embedding method of the heat collection pipe | tube used for this system. 地中熱システムと、地中に埋設された採熱管の状態を平面視した概略図である。  It is the schematic which planarly viewed the state of the underground heat system and the heat collecting pipe embed | buried under the ground. (a)は採熱管を水平に埋設する穴を示し、(b)は採熱管を垂直に埋設する穴を示す図である。  (A) shows the hole which embeds a heat collecting pipe horizontally, (b) is a figure showing the hole which embeds a heat collecting pipe vertically.

符号の説明Explanation of symbols

1 地中熱システム
5 熱交換機
6 地中
7 採熱管
7C 採熱管のループ部分
20 穴
DESCRIPTION OF SYMBOLS 1 Geothermal system 5 Heat exchanger 6 Underground 7 Heat collection pipe 7C Loop part 20 of a heat collection pipe

Claims (2)

熱交換機と接続され、この熱交換機で熱交換された冷却媒体を地中へ搬送して熱交換する地中熱システムに用いる採熱管の埋設方法において、
前記採熱管をループ状に巻いて垂直に埋設可能な穴を土地に掘削し、この掘削した穴に、前記採熱管のループ部分を水平方向にずらし、かつ当該ループ部分が垂直状態となるように前記採熱管を埋設することを特徴とする地中熱システムに用いる採熱管埋設方法。
In the method of burying the heat collecting pipe used in the underground heat system connected to the heat exchanger and transporting the cooling medium heat exchanged by the heat exchanger to the ground to exchange heat,
The heat collection tube is wound in a loop shape to excavate a hole that can be embedded vertically, and the loop portion of the heat collection tube is shifted horizontally in the excavated hole so that the loop portion is in a vertical state. A heat collecting pipe burying method used in a geothermal system, wherein the heat collecting pipe is buried.
熱交換機と接続され、この熱交換機で熱交換された冷却媒体を採熱管で地中へ搬送して熱交換する地中熱システムにおいて、
前記採熱管を請求項1記載の埋設方法で埋設したことを特徴とする地中熱システム。
In the underground heat system that is connected to the heat exchanger and exchanges heat by transporting the cooling medium heat exchanged by this heat exchanger to the ground with a heat collection pipe,
An underground heat system, wherein the heat collection tube is embedded by the burying method according to claim 1.
JP2005064581A 2005-02-08 2005-02-08 Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method Pending JP2006220402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064581A JP2006220402A (en) 2005-02-08 2005-02-08 Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064581A JP2006220402A (en) 2005-02-08 2005-02-08 Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method

Publications (1)

Publication Number Publication Date
JP2006220402A true JP2006220402A (en) 2006-08-24

Family

ID=36982844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064581A Pending JP2006220402A (en) 2005-02-08 2005-02-08 Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method

Country Status (1)

Country Link
JP (1) JP2006220402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033233A (en) * 2009-07-30 2011-02-17 Sumitomo Fudosan Kk Underground heat using air conditioning system
JP2013036687A (en) * 2011-08-08 2013-02-21 Inoac Housing & Construction Materials Co Ltd Heat exchanger and method of installing the same
JP2013079748A (en) * 2011-10-03 2013-05-02 Inoac Housing & Construction Materials Co Ltd Method of installing heat exchanger
JP2017146004A (en) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 Heat exchanger unit for underground heat and heat conveyance device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033233A (en) * 2009-07-30 2011-02-17 Sumitomo Fudosan Kk Underground heat using air conditioning system
JP2013036687A (en) * 2011-08-08 2013-02-21 Inoac Housing & Construction Materials Co Ltd Heat exchanger and method of installing the same
JP2013079748A (en) * 2011-10-03 2013-05-02 Inoac Housing & Construction Materials Co Ltd Method of installing heat exchanger
JP2017146004A (en) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 Heat exchanger unit for underground heat and heat conveyance device using the same

Similar Documents

Publication Publication Date Title
JP4859560B2 (en) Heat pump device using wells
US20100294456A1 (en) Geothermal heat pump system
JP2008292044A (en) Natural heat hybrid soil thermal storage system
KR101166684B1 (en) Thermal storage of underground rock using heat utilizing system
JP2009257737A (en) Underground heat utilization heat pump system
JP2006349295A (en) Method of burying pipe for heat exchange
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2006220402A (en) Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method
JP5363399B2 (en) Construction method of underground heat exchanger
JP2002235957A (en) Terrestrial heat exchange equipment in landslide dangerous area
KR101584095B1 (en) Shift driving system for ground-loop heat exchanger
JP4136847B2 (en) Buried pipe for heat exchange
JP2004101115A (en) Underground heat exchange system using underground continuous wall
KR20160065502A (en) Geothermal heat exchange system using heat storage-tank of vertical pipe
JP2007017138A (en) Method of forming heat exchange well, and underground thermal system
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
JP6087711B2 (en) Hot water supply exhaust heat utilization air conditioning system
JP2002013105A (en) Heat source facility using drainage and its construction method
JP2015148415A (en) Groundwater resource recovery system
KR20070091487A (en) Heating exchanging system using the ground source
JP2014115025A (en) Geothermal utilization heat exchange structure and heat pump system using the same
KR20100128371A (en) Individual lead-in equipment in machine room of earth tube heat exchanger
JP2007127397A (en) Geothermal heat utilization system of house in cold area
KR101092058B1 (en) A method for controlling uniform flow amounts of Geothermal heat exchanger
JP5638111B2 (en) Construction method of underground heat exchanger

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061010