JP2011033233A - Underground heat using air conditioning system - Google Patents

Underground heat using air conditioning system Download PDF

Info

Publication number
JP2011033233A
JP2011033233A JP2009177857A JP2009177857A JP2011033233A JP 2011033233 A JP2011033233 A JP 2011033233A JP 2009177857 A JP2009177857 A JP 2009177857A JP 2009177857 A JP2009177857 A JP 2009177857A JP 2011033233 A JP2011033233 A JP 2011033233A
Authority
JP
Japan
Prior art keywords
heat
geothermal
air conditioning
building
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177857A
Other languages
Japanese (ja)
Other versions
JP5389565B2 (en
Inventor
Takashi Saito
隆 齋藤
Masaki Abe
政樹 阿部
Masaaki Sasayama
雅暢 笹山
Yasushi Masui
靖 増井
Kaku Murayama
格 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Realty and Development Co Ltd
Original Assignee
Sumitomo Realty and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Realty and Development Co Ltd filed Critical Sumitomo Realty and Development Co Ltd
Priority to JP2009177857A priority Critical patent/JP5389565B2/en
Publication of JP2011033233A publication Critical patent/JP2011033233A/en
Application granted granted Critical
Publication of JP5389565B2 publication Critical patent/JP5389565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground heat using air conditioning system enabled in more efficient heat exchange even if a distance from a building is increased. <P>SOLUTION: In a range of L<SB>2</SB>=5-20 m from a quay 1 as a bank protection structure, underground heat exchange wells 2 are excavated at 1-2 m of intervals, and reciprocation underground heat exchange pipes 3 are installed in the underground heat exchange wells 2 to exchange heat with the ground around the underground heat exchange wells 2. A distance to the building 6 as an air conditioning target is set to be approximately L<SB>1</SB>=50-1,000 m. Liquid such as an antifreeze solution serving as a heating medium is circulated in piping 4, and thermal energy obtained by the heat exchange in the positions of the underground heat exchange wells 2 is used for cooling in the building in summer and heating and hot water supply in the building in winter via a heat pump 5 or directly without the interposition of the heat pump 5. In the vicinity of the quay 1, by being affected by a high tide and a low tide of the sea, the fluctuation of the underground water level is more remarkable compared to other sections, and thus, the retention of heat is small so as to enable highly efficient heat exchange. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷暖房等の空調に用いられる地中熱利用空調システムに関するものであり、併せて給湯や融雪等にも利用することができる。   The present invention relates to a geothermal air conditioning system used for air conditioning such as air conditioning, and can also be used for hot water supply, snow melting, and the like.

建物(工場や倉庫などを含む)の空調や給湯等を目的として、少ない電力で運用でき、地球温暖化につながるCO2の削減やヒートアイランド現象の緩和に効果のある地中熱利用技術が注目されている。 For the purpose of air conditioning and hot water supply for buildings (including factories and warehouses), geothermal heat utilization technology that can be operated with low power and is effective in reducing CO 2 and mitigating the heat island phenomenon that lead to global warming ing.

地中熱利用技術の一つとして、地中熱を利用した空調システムがあり、地盤内に掘削した地熱交換井から得られる地中熱を熱源とし、地熱交換井内に挿入した地熱交換パイプ内を循環させる熱媒体(水、不凍液、あるいは気体など)との間で熱交換を行い、熱媒体を介して得られた地中熱を建物の空調に利用している。   As one of the geothermal heat utilization technologies, there is an air conditioning system that uses geothermal heat. The geothermal heat obtained from the geothermal exchange well excavated in the ground is used as the heat source, and the inside of the geothermal exchange pipe inserted into the geothermal exchange well is Heat is exchanged with a circulating heat medium (water, antifreeze liquid, gas, etc.), and the underground heat obtained through the heat medium is used for air conditioning of the building.

さらに、ヒートポンプを介在させ、地中熱のみで冷暖房や給湯を行うこともできる。ヒートポンプは、蒸発、圧縮、凝縮、膨張のサイクルを利用したものであり、ヒートポンプ内は、代替フロンやイソブタンなどの低沸点の冷媒が熱移動媒体として循環している。   Furthermore, air conditioning and hot water supply can be performed only by underground heat by interposing a heat pump. The heat pump uses a cycle of evaporation, compression, condensation, and expansion, and a low-boiling point refrigerant such as alternative chlorofluorocarbon or isobutane is circulated as a heat transfer medium in the heat pump.

地中熱利用において、さらにヒートポンプを用いる場合、例えば、暖房時は、ヒートポンプ内の液状の冷媒が、地熱交換パイプより循環してきた熱媒体から熱を吸収し、蒸発器で気化し、気化した冷媒は圧縮器で加圧され、約70℃以上に昇温され、昇温したガス状の冷媒は熱交換器に移動し、そこで熱を受けた空気が約40℃となって室内へ供給される。空気に熱を奪われた冷媒はガスから液体に戻り、膨張弁で冷却され、蒸発器に戻る。冷房時は、暖房と逆サイクルとなる。   When using a heat pump in geothermal heat utilization, for example, during heating, the liquid refrigerant in the heat pump absorbs heat from the heat medium circulated from the geothermal exchange pipe, vaporizes in the evaporator, and evaporates. Is pressurized by a compressor and heated to about 70 ° C. or more, and the heated gaseous refrigerant moves to the heat exchanger, where the heated air becomes about 40 ° C. and is supplied indoors. . The refrigerant deprived of heat by the air returns from the gas to the liquid, is cooled by the expansion valve, and returns to the evaporator. During cooling, the cycle is reverse to that of heating.

また、ヒートポンプを介さない空調においては、例えば地熱交換パイプからの配管を空調設備の給気口部分に導き、コイル状に巻回させた配管部分で熱交換を行うようにし、冬は地中熱により暖められた熱媒体の熱を利用して冷たい外気を数℃昇温させて給気し、夏は逆に地中で冷やされた熱媒体の冷熱を利用して暖かい空気を数℃降温させて給気することで、冷暖房における電力負荷を低減させることができる。   In air conditioning that does not involve a heat pump, for example, piping from a geothermal exchange pipe is led to the air inlet of the air conditioning equipment, and heat is exchanged in the coiled coiled part. Using the heat of the heat medium warmed by the air, the cold outside air is heated up by several degrees Celsius, and in the summer the temperature of the warm air is lowered by several degrees Celsius using the heat of the heat medium cooled in the ground. By supplying air, it is possible to reduce the power load in the air conditioning.

非特許文献1〜3には、地中熱利用技術の原理と、現在、実用化されているシステムおよび装置や地熱交換パイプ等が紹介されている。   Non-Patent Documents 1 to 3 introduce the principle of geothermal heat utilization technology, and systems and devices currently in practical use, geothermal exchange pipes, and the like.

その他、特許文献1には、熱交換効率および施工性に優れた地熱交換システムとして、地熱交換井に挿入された地熱交換パイプを、セメントに骨材と共に粘性材を配合した良熱伝導性および良流動性の材料からなるグラウト材で覆ったものが記載されている。   In addition, in Patent Document 1, as a geothermal exchange system excellent in heat exchange efficiency and workability, a geothermal exchange pipe inserted into a geothermal exchange well is blended with cement and a viscous material together with an aggregate and has good thermal conductivity and good performance. A material covered with a grout material made of a fluid material is described.

また、特許文献2には、ヒートポンプを通して得た熱と、ヒートポンプを通さずに地中から採取した熱を同時に供給できるようにした地中熱利用冷暖房システムが記載されている。   Patent Document 2 describes a geothermal heating / cooling system that can simultaneously supply heat obtained through a heat pump and heat collected from the ground without passing through the heat pump.

また、特許文献3には、施工コストをかけずに、実用的に十分な地中熱を利用して冷暖房が行えるようにすることを目的として、地熱交換パイプを地盤内に地表面から0.2〜2mの深さで水平方向に沿って埋設するものが記載されている。   Further, Patent Document 3 discloses that a geothermal exchange pipe is placed in the ground from the ground surface in order to be able to perform air conditioning with practically sufficient geothermal heat without incurring construction costs. What is embedded along the horizontal direction at a depth of 2 to 2 m is described.

特開2004−169985号公報JP 2004-169985 A 特開2006−084149号公報JP 2006-084149 A 特開2006−207919号公報JP 2006-207919 A

地中熱利用促進協会ホームページ、[online]、地中熱利用促進協会、[平成21年7月19日検索]、インターネット<URL:http://www.geohpaj.org/index.htm>Geothermal Utilization Promotion Association homepage, [online], Geothermal Utilization Promotion Association, [searched July 19, 2009], Internet <URL: http://www.geohpaj.org/index.htm> “地中熱利用のすすめ”、[online]、株式会社 ワイビーエム、[平成21年7月19日検索]、インターネット<URL:http://www.ybm.jp/newtech/chichunetsu/chichunetsu4.htm>“Recommendation of using geothermal heat”, [online], WB, Inc., [searched on July 19, 2009], Internet <URL: http://www.ybm.jp/newtech/chichunetsu/chichunetsu4.htm > “地中熱利用システムとは”、[online]、三菱マテリアルテクノ株式会社、[平成21年7月19日検索]、インターネット<URL:http://www.mmtec.co.jp/0305/1.html>“What is a geothermal heat utilization system?”, [Online], Mitsubishi Materials Techno Corporation, [searched on July 19, 2009], Internet <URL: http://www.mmtec.co.jp/0305/1 .html>

地中熱を利用する利点は、一般的に地中の温度が1年を通じて安定しており、周囲との温度差により熱交換を行うことにより、夏は冷房、冬は暖房、給湯等が効率良く低いランニングコストで可能となる点にある。   The advantage of using geothermal heat is that the underground temperature is generally stable throughout the year. By exchanging heat due to the temperature difference from the surroundings, cooling is effective in summer, heating and hot water supply are efficient in winter. This is possible at a good and low running cost.

このような地中熱利用技術において、地熱交換井と空調等の対象となる建物との間で熱媒体を循環させる地熱交換パイプや配管の敷設費用、熱効率等を考えると、一見、できるだけ空調の対象となる建物の近くにある地中熱を利用することが経済的であり、かつ効率的であるように思われる。   In such a geothermal heat utilization technology, considering the installation cost, thermal efficiency, etc. of the geothermal exchange pipe and piping that circulates the heat medium between the geothermal exchange well and the building to be air-conditioned, etc. It seems economical and efficient to use geothermal heat in the vicinity of the target building.

しかしながら、地熱交換井において、例えば夏場に温度の高い熱媒体が送られてくる地熱交換パイプとの間で熱交換が行われることで、地熱交換井の周囲が徐々に熱を吸収し温まるため、すなわち熱がこもることで熱交換の効率が落ち、地熱利用の意義が損なわれてしまうことになる。冬場も逆の現象により、地熱交換井における熱交換の効率が落ち、その意義が損なわれる。   However, in the geothermal exchange well, for example, by performing heat exchange with a geothermal exchange pipe to which a high-temperature heat medium is sent in summer, the surroundings of the geothermal exchange well gradually absorbs heat and warms up. In other words, heat accumulation reduces the efficiency of heat exchange and impairs the significance of geothermal use. Due to the reverse phenomenon in winter, the efficiency of heat exchange in the geothermal exchange well is reduced and its significance is lost.

また、地中熱利用に代え、熱交換パイプを、海中や河川に導いて熱交換を行うようにすれば、熱こもりの問題はなくなるが、その場合、海洋生物の付着などにより、熱交換パイプのメンテナンスが困難になるといった問題があり、実用的でない。   In addition, if the heat exchange pipe is led to the sea or river to perform heat exchange instead of using geothermal heat, there will be no problem of heat accumulation. There is a problem that it becomes difficult to maintain, and it is not practical.

本発明は、このような課題に対し、一般的には移動速度が極わずか(種々の条件によって異なるが、例えば、1日に数cm)である地下水の流速が、特定の条件においてははるかに速い流れとなり、その流速を利用することで地熱交換井近傍での熱のこもりを緩和し、高効率の熱交換が可能となることに着目したものであり、建物からの距離が大きくなっても、より高効率の熱交換が可能な地中熱利用空調システムを提供することを目的としている。   In the present invention, the flow rate of groundwater with a very small moving speed (varies depending on various conditions, for example, several centimeters a day) is much higher under certain conditions. Focusing on the fact that the flow becomes fast and the heat flow in the vicinity of the geothermal exchange well is reduced by using the flow velocity, enabling highly efficient heat exchange, even if the distance from the building increases. It aims to provide an underground air-conditioning air conditioning system capable of more efficient heat exchange.

本願の請求項1に係る発明は、地盤内に掘削した地熱交換井から得られる地中熱を熱源とし、該地熱交換井内に挿入した地熱交換パイプ内を循環する熱媒体との間で熱交換を行い、前記熱媒体を介して得られた地中熱を建物の空調に利用する地中熱利用空調システムにおいて、前記地熱交換井を海または河川に接する護岸構造物から水平方向に20m以内の距離に設けてあることを特徴とするものである。   The invention according to claim 1 of the present application uses the underground heat obtained from the geothermal exchange well excavated in the ground as a heat source, and exchanges heat with a heat medium circulating in the geothermal exchange pipe inserted into the geothermal exchange well. In the geothermal heat-use air conditioning system that uses the geothermal heat obtained through the heat medium for air conditioning of the building, the geothermal exchange well is within 20 m horizontally from the revetment structure in contact with the sea or river It is provided at a distance.

発明が解決しようとする課題の項で述べたように、一般的には地下水の流速は非常に遅く、そのため熱交換による熱が地熱交換井の周辺に蓄積され、熱交換の効率が落ちるという問題がある。   As described in the section of the problem to be solved by the invention, in general, the flow rate of groundwater is very slow, so heat due to heat exchange is accumulated around the geothermal exchange well and the efficiency of heat exchange decreases. There is.

これに対し、海や河川に接する護岸構造物の近傍では、潮の満干あるいは河川の流れの影響により地下水の移動が比較的顕著である。この部分に地熱交換井を設けることで、地熱交換井周囲の熱ごもりの問題が解消され、高効率の熱交換が可能となる。   On the other hand, in the vicinity of the revetment structure in contact with the sea and rivers, the movement of groundwater is relatively remarkable due to the effects of tides and river flow. By providing a geothermal exchange well in this part, the problem of heat trapping around the geothermal exchange well is solved, and highly efficient heat exchange becomes possible.

すなわち、建物等との距離が大きくなり、配管の敷設などに要するイニシャルコストが高くついても、高い熱交換効率が確保されることでシステム全体としての経済性を向上させることができる。   That is, even if the distance from the building or the like becomes large and the initial cost required for laying piping is high, the high cost of heat exchange can be ensured to improve the economic efficiency of the entire system.

海または河川に接する護岸構造物から水平方向に20m以内としたのは、護岸構造物の構造や地盤条件その他によっても異なるが、潮の満干、あるいは河川における堤防等の影響による地下水の流速が顕著に大きくなる範囲が一般的に10mないし20m以内程度であるためである。   The reason why the horizontal revetment is 20m or less from the seawall or river-facing structure depends on the structure of the revetment structure, ground conditions, etc., but the flow rate of groundwater due to tides or river embankments is significant. This is because the range in which the distance is larger is generally within 10 m to 20 m.

請求項2は、請求項1に係る地中熱利用空調システムにおいて、空調の対象となる建物から護岸構造物までの距離が50〜1000mであることを特徴とするものである。   According to a second aspect of the present invention, in the ground heat utilization air conditioning system according to the first aspect, the distance from the building to be air-conditioned to the revetment structure is 50 to 1000 m.

空調の対象となる建物から護岸構造物までの距離に関し、下限を特に規定する必要はないが、建物が海や河川に非常に近い場合、本発明の目的とは無関係に地熱交換井と護岸構造物が近接してくる可能性があるため、請求項2では下限を50mとした。   Regarding the distance from the building to be air-conditioned to the revetment structure, it is not necessary to stipulate the lower limit, but if the building is very close to the sea or river, the geothermal exchange well and revetment structure are not related to the purpose of the present invention. Since there is a possibility that an object approaches, the lower limit is set to 50 m in claim 2.

一方、1000mを超えると、配管の敷設費用、メンテナンス費用等が嵩むことや、1000mを超える範囲であれば、広い範囲で熱交換を図ることも考えられるので、請求項2では上限を1000mとした。   On the other hand, if it exceeds 1000 m, piping laying costs, maintenance costs, etc. will increase, and if it exceeds 1000 m, it is possible to exchange heat in a wide range, so in claim 2 the upper limit is 1000 m .

請求項3は、請求項1または2に係る地中熱利用空調システムにおいて、前記地熱交換井が、鉛直方向、斜め方向または水平方向に掘削されていることを特徴とするものである。   According to a third aspect of the present invention, in the geothermal air conditioning system according to the first or second aspect, the geothermal exchange well is excavated in a vertical direction, an oblique direction, or a horizontal direction.

従来一般的な地熱交換井は鉛直方向のボーリングによって掘削されているが、斜めでもよく、また護岸構造物近傍での地下水流を考慮した場合、比較的浅い深さに水平方向に設けることでも、熱交換効率の向上が期待できる。   Conventional geothermal exchange wells have been excavated by vertical boring, but they may be slanted, and considering groundwater flow in the vicinity of the revetment structure, they can be installed horizontally in a relatively shallow depth. Improvement of heat exchange efficiency can be expected.

請求項4は、請求項1、2または3に係る地中熱利用空調システムにおいて、前記護岸構造物が鋼材を構成要素とする場合に、前記地熱交換井の一部または全部を、前記護岸構造物を構成する鋼材に近接させて配置することを特徴とするものである。   Claim 4 is the geothermal heat-use air conditioning system according to claim 1, 2, or 3, wherein when the revetment structure is made of steel, a part or all of the geothermal exchange well is replaced with the revetment structure. It is characterized by being placed close to the steel material constituting the object.

護岸構造物が、例えば鋼矢板等の鋼材を構成要素とする場合、地熱交換井あるいはその中に挿入される地熱交換パイプが熱伝導率の高い鋼材の近傍に位置するようにすることで、熱交換効率を上げることができる。   When the revetment structure is made of steel such as steel sheet piles, for example, the geothermal exchange well or the geothermal exchange pipe inserted therein is positioned in the vicinity of the steel with high thermal conductivity. Exchange efficiency can be increased.

請求項5は、請求項1〜4に係る地中熱利用空調システムにおいて、前記地熱交換井と建物との間の区間は、地表面高さ近傍に設置した地熱交換パイプより大径の配管を介して熱媒体を循環させることを特徴とするものである。   Claim 5 is the underground heat utilization air conditioning system according to claims 1 to 4, wherein the section between the geothermal exchange well and the building is a pipe having a diameter larger than the geothermal exchange pipe installed near the ground surface height. The heat medium is circulated through the heat exchanger.

地熱交換井の数は、必要とする熱容量に応じて設計され、例えば護岸構造物の近傍に数十から数百本設けられる場合、地熱交換パイプは、市販のものを利用することができるが、離れた位置にある建物あるいはヒートポンプまでは、より大径の配管を介して熱媒体を循環させることで、施工コストを抑えることができ、メンテナンスも容易となる。   The number of geothermal exchange wells is designed according to the required heat capacity.For example, when several tens to several hundreds are provided in the vicinity of the revetment structure, a commercially available geothermal exchange pipe can be used. By circulating the heat medium through a larger-diameter pipe to a building or a heat pump at a distant position, the construction cost can be suppressed and maintenance is facilitated.

請求項6は、請求項1〜5に係る地中熱利用空調システムにおいて、前記地熱交換井と建物との間にヒートポンプを介在させることを特徴とするものである。   According to a sixth aspect of the present invention, in the ground heat utilization air conditioning system according to the first to fifth aspects, a heat pump is interposed between the geothermal exchange well and the building.

ヒートポンプを介在させる場合には、空調装置において、より高温(冬場)またはより低温(夏場)での熱交換を行うことができ、電力負荷をさらに低減することができる。また、冬場の給湯への利用も可能となる。   When a heat pump is interposed, heat exchange can be performed at a higher temperature (winter) or lower temperature (summer) in the air conditioner, and the power load can be further reduced. It can also be used for hot water supply in winter.

請求項7は、請求項1〜6に係る地中熱利用空調システムにおいて、建物の空調に加え、給湯または溶雪にも併用することを特徴とするものである。   A seventh aspect of the present invention is the ground heat utilization air conditioning system according to any one of the first to sixth aspects, wherein the ground heat utilization air conditioning system is also used for hot water supply or snow melting in addition to air conditioning of a building.

本発明における地中熱利用は、主として冷暖房といった空調設備への利用を対象としたものであるが、空調に限らず、給湯あるいは溶雪等、他の地熱利用も併せて行うことができうる。   The use of geothermal heat in the present invention is mainly intended for use in air conditioning facilities such as air conditioning, but is not limited to air conditioning, and other geothermal uses such as hot water supply or snow melting can also be performed.

本発明では、地熱交換井を、一般的な地域に比べ地下水の移動が顕著である海または河川に接する護岸構造物の近傍に設けることで、地熱交換井周囲での熱こもりが解消され、高効率の熱交換が可能となる。   In the present invention, the geothermal exchange well is provided in the vicinity of the revetment structure in contact with the sea or river where the movement of groundwater is remarkable compared to a general area, so that heat accumulation around the geothermal exchange well is eliminated, Efficient heat exchange is possible.

すなわち、建物等との距離が大きくなり、配管などに要するイニシャルコストが高くついても高い熱交換効率が確保されることで、システム全体としての経済性を向上させることが可能となる。   That is, even if the distance to a building or the like is increased and the initial cost required for piping or the like is high, high heat exchange efficiency is ensured, so that the economy of the entire system can be improved.

本発明の地中熱利用システムの一実施形態(実施例1)を概念的に示したものであり、(a)は鉛直断面図、(b)は平面図である。BRIEF DESCRIPTION OF THE DRAWINGS One Embodiment (Example 1) of the geothermal heat utilization system of this invention is shown notionally, (a) is a vertical sectional view, (b) is a top view. 本発明の地中熱利用システムの他の実施形態(実施例2)を概念的に示したものであり、(a)は鉛直断面図、(b)は平面図である。The other embodiment (Example 2) of the geothermal heat utilization system of this invention is shown notionally, (a) is a vertical sectional view, (b) is a top view.

以下、本発明の実施の形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.

図1は、本発明の地中熱空調システムの一実施形態を示したものであり、海に接する埋立地の護岸構造物としての岸壁1からL2=5〜20mの範囲に、鉛直方向の地熱交換井2を1〜2m間隔で掘削し、地熱交換井2内に往復の地熱交換パイプ3を設置し、地熱交換井2周囲の地盤との間で熱交換するようにしたものである。 FIG. 1 shows an embodiment of a geothermal air conditioning system according to the present invention. In a range of L 2 = 5 to 20 m from a quay 1 as a revetment structure in a landfill in contact with the sea, a vertical direction is shown. The geothermal exchange well 2 is excavated at intervals of 1 to 2 m, a reciprocating geothermal exchange pipe 3 is installed in the geothermal exchange well 2, and heat is exchanged with the ground around the geothermal exchange well 2.

冷暖房の対象となる建物6までの距離は、L1=500m程度を想定しており、またこの例では、建物6との間にヒートポンプ5を介在させてある。 The distance to the building 6 to be air-conditioned is assumed to be about L 1 = 500 m. In this example, the heat pump 5 is interposed between the building 6 and the building 6.

すなわち、多数の地熱交換パイプ3とヒートポンプ5との間の配管4を通じて、熱媒体としての不凍液等の液体を循環させ、地熱交換井2位置での熱交換により得られた熱エネルギーを、ヒートポンプ5位置でさらに熱交換し、夏は建物の冷房に、冬は建物の暖房や給湯に利用するようにしている。また、寒冷地等では、冬場の道路や屋根の融雪にも利用することができる。   That is, a liquid such as an antifreeze as a heat medium is circulated through a plurality of pipes 4 between the geothermal exchange pipes 3 and the heat pump 5, and the heat energy obtained by the heat exchange at the geothermal exchange well 2 is converted into the heat pump 5. Heat is further exchanged at the location, which is used for cooling the building in summer and for heating and hot water supply in winter. In cold regions, it can also be used for snow melting on roads and roofs in winter.

海に接する岸壁1近傍では、海の満干に影響されて、地下水位の変動が顕著であり、その水位変動に伴う一般地域より流速の大きい地下水流により、従来の地熱利用で問題となっていた熱のこもりが少なく、効率の良い熱交換が可能となる。   In the vicinity of the quay 1 in contact with the sea, the fluctuation of the groundwater level is remarkable due to the sea fullness, and the groundwater flow with a larger flow velocity than the general area due to the fluctuation of the water level has caused problems in conventional geothermal use. There is little heat accumulation and efficient heat exchange becomes possible.

図2は、本発明の地中熱空調システムの他の実施形態を示したものであり、地熱交換井12を水平方向に複数段配置し、水平方向に延びる地熱交換井12内に往復の地熱交換パイプ13を設置し、地熱交換井12周囲の地盤との間で熱交換するようにしたものである。   FIG. 2 shows another embodiment of the geothermal air-conditioning system of the present invention, in which a plurality of geothermal exchange wells 12 are arranged in the horizontal direction, and the geothermal heat is reciprocated in the geothermal exchange well 12 extending in the horizontal direction. An exchange pipe 13 is installed to exchange heat with the ground around the geothermal exchange well 12.

また、この例では護岸構造物が鋼矢板11である場合を想定しており、水平方向に延び、鉛直方向に複数段配置した多数の地熱交換井12をできるだけ鋼矢板11に近接するように配置している。   Further, in this example, it is assumed that the revetment structure is a steel sheet pile 11, and a large number of geothermal exchange wells 12 extending in the horizontal direction and arranged in a plurality of stages in the vertical direction are arranged as close to the steel sheet pile 11 as possible. is doing.

すなわち、鋼材からなる鋼矢板11は熱伝導率が高いため、地熱交換井12を鋼矢板11に近接させて配置することで、護岸構造物近傍での地下水の流速を利用した高熱交換効率に加え、さらに高い熱交換効率を期待することができる。   That is, since the steel sheet pile 11 made of steel has a high thermal conductivity, by placing the geothermal exchange well 12 close to the steel sheet pile 11, in addition to the high heat exchange efficiency using the flow rate of groundwater near the revetment structure. Further, higher heat exchange efficiency can be expected.

なお、この例は、ヒートポンプを用いず、工場・ビル等の吸気時の予冷・予温に直接利用する場合を想定しており、配管14を給気口部分15の予冷・予温コイルに導き、給気口部分15から取り入れられる外気との間で熱交換するようにしたものであるが、実施例1のようにヒートポンプを介在させることもできる。   In this example, it is assumed that the heat pump is not used but is directly used for precooling / preheating at the time of intake air in a factory, a building, etc. Although heat is exchanged with the outside air taken in from the air supply port portion 15, a heat pump can be interposed as in the first embodiment.

本発明は、地球温暖化につながるCO2の削減やヒートアイランド現象の緩和に効果のある地中熱空調システムとして、建物の冷暖房に利用することができ、併せて給湯や融雪等にも用いることができる。 INDUSTRIAL APPLICABILITY The present invention can be used for building air conditioning as a geothermal air conditioning system effective in reducing CO 2 leading to global warming and mitigating the heat island phenomenon, and can also be used for hot water supply, melting snow, etc. it can.

1…岸壁、2…地熱交換井、3…地熱交換パイプ、4…配管、5…ヒートポンプ、6…建物、11…鋼矢板、12…地熱交換井、13…地熱交換パイプ、14…配管、15…給気口部分、16…建物   DESCRIPTION OF SYMBOLS 1 ... Quay, 2 ... Geothermal exchange well, 3 ... Geothermal exchange pipe, 4 ... Piping, 5 ... Heat pump, 6 ... Building, 11 ... Steel sheet pile, 12 ... Geothermal exchange well, 13 ... Geothermal exchange pipe, 14 ... Piping, 15 ... Air supply part, 16 ... Building

Claims (7)

地盤内に掘削した地熱交換井から得られる地中熱を熱源とし、該地熱交換井内に挿入した地熱交換パイプ内を循環する熱媒体との間で熱交換を行い、前記熱媒体を介して得られた地中熱を建物の空調に利用する地中熱利用システムにおいて、前記地熱交換井を海または河川に接する護岸構造物から水平方向に20m以内の距離に設けてあることを特徴とする地中熱利用空調システム。   The ground heat obtained from the geothermal exchange well excavated in the ground is used as a heat source, heat exchange is performed with the heat medium circulating in the geothermal exchange pipe inserted into the geothermal exchange well, and the heat obtained through the heat medium is obtained. In a geothermal heat utilization system that uses the generated geothermal heat for air conditioning of a building, the geothermal exchange well is provided at a distance of 20 m or less in a horizontal direction from a revetment structure in contact with the sea or river. Medium heat use air conditioning system. 空調の対象となる建物から護岸構造物までの距離が50〜1000mであることを特徴とする請求項1記載の地中熱利用空調システム。   2. The geothermal air conditioning system according to claim 1, wherein the distance from the air conditioning target building to the revetment structure is 50 to 1000 m. 前記地熱交換井は、鉛直方向、斜め方向または水平方向に掘削されていることを特徴とする請求項1または2記載の地中熱利用空調システム。   The geothermal heat exchange air conditioning system according to claim 1 or 2, wherein the geothermal exchange well is excavated in a vertical direction, an oblique direction, or a horizontal direction. 前記護岸構造物が鋼材を構成要素とする場合に、前記地熱交換井の一部または全部を、前記護岸構造物を構成する鋼材に近接させて配置することを特徴とする請求項1、2または3記載の地中熱利用空調システム。   When the revetment structure has steel as a constituent element, a part or all of the geothermal exchange well is disposed close to the steel material constituting the revetment structure. 3. Geothermal heat-use air conditioning system according to 3. 前記地熱交換井と建物との間の区間は、地表面高さ近傍に設置した地熱交換パイプより大径の配管を介して熱媒体を循環させることを特徴とする請求項1、2、3または4記載の地中熱利用空調システム。   The section between the geothermal exchange well and the building circulates the heat medium through a pipe having a diameter larger than that of the geothermal exchange pipe installed near the ground surface height. 4. Geothermal use air conditioning system according to 4. 前記地熱交換井と建物との間にヒートポンプを介在させることを特徴とする請求項1〜5の何れかの項に記載の地中熱利用空調システム。   The geothermal heat-use air conditioning system according to any one of claims 1 to 5, wherein a heat pump is interposed between the geothermal exchange well and the building. 建物の空調に加え、給湯または溶雪にも併用することを特徴とする請求項1〜6の何れかの項に記載の地中熱利用空調システム。   The geothermal heat-use air conditioning system according to any one of claims 1 to 6, which is used in combination with hot water supply or snow melting in addition to air conditioning of a building.
JP2009177857A 2009-07-30 2009-07-30 Geothermal air conditioning system Expired - Fee Related JP5389565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177857A JP5389565B2 (en) 2009-07-30 2009-07-30 Geothermal air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177857A JP5389565B2 (en) 2009-07-30 2009-07-30 Geothermal air conditioning system

Publications (2)

Publication Number Publication Date
JP2011033233A true JP2011033233A (en) 2011-02-17
JP5389565B2 JP5389565B2 (en) 2014-01-15

Family

ID=43762485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177857A Expired - Fee Related JP5389565B2 (en) 2009-07-30 2009-07-30 Geothermal air conditioning system

Country Status (1)

Country Link
JP (1) JP5389565B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465795B1 (en) * 2013-01-15 2014-04-09 中国電力株式会社 Outside diameter measuring device
CN104165429A (en) * 2014-09-01 2014-11-26 李传友 System based on cold-warm/dry-wet and purifying environment in ground temperature adjusting space
CN105042913A (en) * 2015-07-29 2015-11-11 中国地质大学(北京) High-efficiency and low-cost geothermal utilization system
CN111912055A (en) * 2019-05-07 2020-11-10 青岛理工大学 Novel solar-assisted heating seawater source heat pump air conditioning system
CN114322370A (en) * 2021-12-23 2022-04-12 佩高电子电器(德国)技术有限公司 Heating system utilizing mine ventilation air energy heat pump

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256477A (en) * 1992-03-10 1993-10-05 Kubota Corp Heat exchanger using revetment retaining wall of steel tube column array
JP2000161793A (en) * 1998-11-20 2000-06-16 Akimi Suzawa Heat source system utilizing geothermy around bank of storage reservoir and constructing of same system
JP2000297950A (en) * 1999-04-13 2000-10-24 Terada Hide Auxiliary cooling and heating device
JP2003307354A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Heat source equipment utilizing underground heat and its installation method
JP2005049016A (en) * 2003-07-29 2005-02-24 Sato Sogo Keikaku:Kk Geothermal heat pump system
JP2006220402A (en) * 2005-02-08 2006-08-24 Earth Resources:Kk Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method
US20070151704A1 (en) * 2006-01-04 2007-07-05 Elmore Gregory A Geothermal heat exchange system
JP2008128494A (en) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd Geothermal utilization system
US20080154801A1 (en) * 2006-12-22 2008-06-26 Genedics Llc System and Method for Creating a Geothermal Roadway Utility with Alternative Energy Pumping Billing System
JP2008275263A (en) * 2007-05-01 2008-11-13 Kajima Corp Underground heat exchange system
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
JP2009524793A (en) * 2006-01-27 2009-07-02 マテベ オサケ ユキチュア Pipes and systems for utilizing low energy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256477A (en) * 1992-03-10 1993-10-05 Kubota Corp Heat exchanger using revetment retaining wall of steel tube column array
JP2000161793A (en) * 1998-11-20 2000-06-16 Akimi Suzawa Heat source system utilizing geothermy around bank of storage reservoir and constructing of same system
JP2000297950A (en) * 1999-04-13 2000-10-24 Terada Hide Auxiliary cooling and heating device
JP2003307354A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Heat source equipment utilizing underground heat and its installation method
JP2005049016A (en) * 2003-07-29 2005-02-24 Sato Sogo Keikaku:Kk Geothermal heat pump system
JP2006220402A (en) * 2005-02-08 2006-08-24 Earth Resources:Kk Heat collection pipe burying method used for underground heat system, and underground heat system using the burying method
US20070151704A1 (en) * 2006-01-04 2007-07-05 Elmore Gregory A Geothermal heat exchange system
JP2009524793A (en) * 2006-01-27 2009-07-02 マテベ オサケ ユキチュア Pipes and systems for utilizing low energy
JP2008128494A (en) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd Geothermal utilization system
US20080154801A1 (en) * 2006-12-22 2008-06-26 Genedics Llc System and Method for Creating a Geothermal Roadway Utility with Alternative Energy Pumping Billing System
JP2008275263A (en) * 2007-05-01 2008-11-13 Kajima Corp Underground heat exchange system
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465795B1 (en) * 2013-01-15 2014-04-09 中国電力株式会社 Outside diameter measuring device
CN104165429A (en) * 2014-09-01 2014-11-26 李传友 System based on cold-warm/dry-wet and purifying environment in ground temperature adjusting space
CN105042913A (en) * 2015-07-29 2015-11-11 中国地质大学(北京) High-efficiency and low-cost geothermal utilization system
CN111912055A (en) * 2019-05-07 2020-11-10 青岛理工大学 Novel solar-assisted heating seawater source heat pump air conditioning system
CN114322370A (en) * 2021-12-23 2022-04-12 佩高电子电器(德国)技术有限公司 Heating system utilizing mine ventilation air energy heat pump
CN114322370B (en) * 2021-12-23 2024-03-19 佩高电子电器(德国)技术有限公司 Heat pump heating system utilizing ventilation air methane of mine

Also Published As

Publication number Publication date
JP5389565B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6009138B2 (en) Geothermal utilization system
Balbay et al. Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks
CA2818760A1 (en) Geothermal system
JP5389565B2 (en) Geothermal air conditioning system
JP4785098B2 (en) Underground heat exchanger buried structure
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
JP2005049016A (en) Geothermal heat pump system
US11359338B2 (en) Construction products and systems for providing geothermal heat
KR101631508B1 (en) Temperature control system for road using solar heat and geothermal heat pump
JP2008196834A (en) Geothermal apparatus
JP2003262430A (en) Heat pump using underground heat
JP5921891B2 (en) Panel heat exchanger for underground heat source heat pump
JP2010151351A (en) Underground heat exchanger burying structure
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
US20100251710A1 (en) System for utilizing renewable geothermal energy
CN205119565U (en) Supplementary ground of road heat source source heat pump system
JP2009257081A (en) Steel pipe pile for heat exchange
Chen et al. High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review
US20110030674A1 (en) Energy generating roof system
RU135679U1 (en) ROOF HEATING FOR ROOF BUILDING
KR101547875B1 (en) Cooling-heating system by double pond
JP7359361B2 (en) heat pump equipment
KR101097910B1 (en) The heat of the earth exchanger of enemy number of layers pyeong style structure
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
Aleksandravičius et al. Single family house: Heat pump or gas boiler?

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees