JP2006216722A - Modulator-integrated surface emitting laser - Google Patents

Modulator-integrated surface emitting laser Download PDF

Info

Publication number
JP2006216722A
JP2006216722A JP2005027078A JP2005027078A JP2006216722A JP 2006216722 A JP2006216722 A JP 2006216722A JP 2005027078 A JP2005027078 A JP 2005027078A JP 2005027078 A JP2005027078 A JP 2005027078A JP 2006216722 A JP2006216722 A JP 2006216722A
Authority
JP
Japan
Prior art keywords
layer
light
wavelength
emitting laser
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005027078A
Other languages
Japanese (ja)
Inventor
Isao Kobayashi
功郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005027078A priority Critical patent/JP2006216722A/en
Publication of JP2006216722A publication Critical patent/JP2006216722A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a modulator-integrated surface emitting laser which is remarkably increased in temperature range in which a good modulation characteristic is available. <P>SOLUTION: The modulator-integrated surface emitting laser 1 comprises an active layer 6 for exciting laser light, an absorption-type light modulation layer 8 which performs modulation using a change in light absorption factor due to application of voltage, and a wavelength variable resonator 17 wherein light resonates between two light reflection layers 4 and 12 with the active layer 6 and the light modulation layer 8 put in-between and the resonant wavelength can be changed depending on the temperature. The temperature dependency of the resonant wavelength of the wavelength variable resonator 17 and that of the band gap energy of the light modulation layer 8 are nearly the same. A portion for supporting part of one of the two light reflection layers 4 and 12 which constitutes an optical reflector 12R of the wavelength variable resonator 17 has a cantilever beam 18 structure consisting of two semiconductor layers 12 and 13 having a different coefficient of thermal expansion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は変調器集積面発光レーザに関する。詳しくは、面発光レーザの波長可変共振器内に吸収型の変調器を集積した変調器集積面発光レーザに関する。   The present invention relates to a modulator integrated surface emitting laser. More specifically, the present invention relates to a modulator integrated surface emitting laser in which an absorption type modulator is integrated in a wavelength tunable resonator of a surface emitting laser.

変調器を共振器内に集積した面発光レーザはすでに開発されている。特に、光変調層を共振器内に集積した面発光レーザの中で、光変調層として量子井戸層における吸収の電界依存性を用いるものは、低電圧で超高速の変調が可能なデバイスとして注目されている。(例えば非特許文献1参照)   A surface emitting laser in which a modulator is integrated in a resonator has already been developed. In particular, among surface-emitting lasers in which an optical modulation layer is integrated in a resonator, those using the electric field dependence of absorption in the quantum well layer as an optical modulation layer are attracting attention as devices capable of ultra-high-speed modulation at a low voltage. Has been. (For example, see Non-Patent Document 1)

このような面発光レーザに関して、小山らは、面発光レーザの2つの反射鏡のうちの一方の反射鏡の支持部を組成の異なる二種類の半導体からなる片持ち梁構造とすることにより、周囲温度が変わると、設計された温度係数で自動的に共振器長が変わる面発光レーザを実現した。(非特許文献2、3参照)   With regard to such a surface emitting laser, Koyama et al. Have adopted a cantilever structure made of two types of semiconductors having different compositions as the support part of one of the two reflecting mirrors of the surface emitting laser. We realized a surface emitting laser whose cavity length automatically changes with the designed temperature coefficient when the temperature changes. (See Non-Patent Documents 2 and 3)

図5にその波長可変共振器21の構成を示す。光反射鏡として上下に円形の2つの分布ブラッグ反射鏡(Distributed Bragg Reflector、以下DBR反射鏡という。)22R、23Rがあり、2つのDBR反射鏡22R、23Rとこれらに挟まれた部分が共振器21を構成しており、2つのDBR反射鏡22R、23R間の距離が共振器長となり共振波長が決まる。上側のDBR反射鏡23には熱応力層24が積層され、これを片持ち梁25が支持する構造になっている。片持ち梁25は、DBR反射鏡23Rと同じ膜構成のDBR反射鏡層23と熱応力層24からなり、上側のDBR反射鏡23は片持ち梁25の先端に形成されている。DBR反射鏡層23と熱応力層24の熱膨張係数が異なるために、温度が変化すると片持ち梁25に反りが生じ、共振器長が変化し、共振波長が変化する。熱応力層24’の熱膨張係数がDBR反射鏡層23の熱膨張係数より大きければ、片持ち梁25は下側に反り、共振波長が短波長側に変化し、熱応力層24の熱膨張係数がDBR反射鏡層23の熱膨張係数より小さければ、片持ち梁25は上側に反り、共振波長が長波長側に変化する。なお、反射鏡層22は反射鏡22Rと同じ膜構成である。   FIG. 5 shows the configuration of the wavelength tunable resonator 21. There are two distributed Bragg reflectors (hereinafter referred to as DBR reflectors) 22R, 23R as light reflectors, and two DBR reflectors 22R, 23R and a portion sandwiched between them are resonators. 21, the distance between the two DBR reflecting mirrors 22R and 23R becomes the resonator length, and the resonance wavelength is determined. A thermal stress layer 24 is laminated on the upper DBR reflecting mirror 23, and the cantilever 25 supports the thermal stress layer 24. The cantilever beam 25 includes a DBR reflector layer 23 and a thermal stress layer 24 having the same film configuration as the DBR reflector 23R. The upper DBR reflector 23 is formed at the tip of the cantilever beam 25. Since the thermal expansion coefficients of the DBR reflecting mirror layer 23 and the thermal stress layer 24 are different, the cantilever 25 is warped when the temperature is changed, the resonator length is changed, and the resonance wavelength is changed. If the thermal expansion coefficient of the thermal stress layer 24 ′ is larger than the thermal expansion coefficient of the DBR reflector layer 23, the cantilever beam 25 warps downward, the resonance wavelength changes to the short wavelength side, and the thermal expansion of the thermal stress layer 24. If the coefficient is smaller than the thermal expansion coefficient of the DBR reflector layer 23, the cantilever beam 25 warps upward, and the resonance wavelength changes to the long wavelength side. The reflecting mirror layer 22 has the same film configuration as the reflecting mirror 22R.

図6に温度の変化による共振波長の変化を示す。横軸に温度変化量(K)を、縦軸に波長変化量(nm)を示す。波長変化量は熱応力層24の膜厚や梁の長さにも依存するが、図6では、温度の増加により、熱応力層24がGaAs層(膜厚500nm、梁長140μm)の場合には共振波長が短波長側に、熱応力層24’がGa0.2Al0.8As層(膜厚1250nm、梁長140μm)の場合には共振波長が長波長側に変化している。   FIG. 6 shows a change in resonance wavelength due to a change in temperature. The horizontal axis indicates the temperature change (K), and the vertical axis indicates the wavelength change (nm). The amount of wavelength change also depends on the film thickness of the thermal stress layer 24 and the length of the beam, but in FIG. 6, when the thermal stress layer 24 is a GaAs layer (film thickness 500 nm, beam length 140 μm) due to an increase in temperature. When the resonance wavelength is on the short wavelength side and the thermal stress layer 24 ′ is a Ga0.2Al0.8As layer (film thickness 1250 nm, beam length 140 μm), the resonance wavelength changes to the long wavelength side.

S.F.Lim, J.A.Hudgings, L.P. Chen, G. S. Li, W.Yuen, K.Y.Lau and C. J. Chang−Hasnain, “Modulation of a Vertical−Cavity Surface−Emitting Laser Using an Intracavity Quantum−Well Absorber” , IEEE Photonics Tech. Letts., vol. 10, No. 3, pp. 319−321, Mar. 1998S. F. Lim, J .; A. Huggings, L.M. P. Chen, G.G. S. Li, W.L. Yuen, K .; Y. Lau and C.M. J. et al. Chang-Hasnain, “Modulation of a Vertical-Cavity Surface-Emitting Laser Usage an Intracavity Quantum-Well Absorber”, IEEE Photonics Tech. Letts. , Vol. 10, no. 3, pp. 319-321, Mar. 1998 T. Amano, F. Koyama, T.Hino, M. Arai and A. Matsutani, “Design and Fabrication of GaAs−AlGaAs Micromachined Tunable Filter With Thermal Strain Control”, J. Lightwave Tech. vol. 21, No.3, pp. 596−601, Mar. 2003T.A. Amano, F.M. Koyama, T .; Hino, M.M. Arai and A.A. Matsutani, “Design and Fabrication of GaAs-AlGaAs Micromachined Tunable Filter With Thermal Strain Control”, J. Am. Lightwave Tech. vol. 21, no. 3, pp. 596-601, Mar. 2003 T. Amano, F. Koyama, M. Arai and A. Matsutani, “Micromachined GaAs/AlGaAs Resonant−Cavity Light Emitter with Small Temperature Dependence of Emission Wavelength” , Jpn. J. Appl. Phys., vol 42, pp. L1377−L1379, Nov. 2003.T.A. Amano, F.M. Koyama, M .; Arai and A.A. Matsutani, “Micromachined GaAs / AlGaAs Resonant-Cavity Light Emitter with Small Temperature Dependence of Emission Wavelength”, Jpn. J. et al. Appl. Phys. , Vol 42, pp. L1377-L1379, Nov. 2003.

この変調器集積面発光レーザの課題は、十分な消光比が得られる温度範囲が+−5から10度程度と狭く、安定に動作させるためには、ペルチェ素子などによる温度安定化が要求されていた。これは、デバイスの大型化や消費電力の増大を招き、多数のチャンネルを同時に並列に使う光インターコネクションでは、大きな問題点になっていた。この狭い温度範囲の理由を次に述べる。   The problem with this modulator integrated surface emitting laser is that the temperature range where a sufficient extinction ratio can be obtained is as narrow as + -5 to 10 degrees, and in order to operate stably, temperature stabilization by a Peltier element or the like is required. It was. This has led to an increase in the size of the device and an increase in power consumption, which has been a major problem in optical interconnections in which a large number of channels are simultaneously used in parallel. The reason for this narrow temperature range will be described next.

従来の変調器集積面発光レーザで効果的な光変調を実現するためには、吸収層(光変調層)である量子井戸層の吸収端波長をレーザの発振波長と合わせる必要がある。吸収型の光変調層は量子井戸の量子準位間のエネルギー差より高いエネルギーの光を吸収する。量子準位間のエネルギー差は、バンドギャップエネルギーと伝導帯、価電子帯内の量子準位エネルギーの和になる。このエネルギー差に対応する波長が吸収端波長となる。光変調層に電圧を印加しない状態では、共振器の共振波長を吸収端波長よりも僅かに長波長(低エネルギー)で、吸収が小さい光の波長に設定しておく。そして、光変調層に電圧を印加すると実効的にバンドギャップエネルギーが小さくなり、設定した共振波長の光が吸収されるようになり、印加電圧に応じて吸収量が変化するので、振幅変調が可能である。従って、レーザ光の発振波長が振幅変調される吸収端波長より僅かに長い時に効果的な変調が行われる。面発光レーザの発振波長、すなわち共振波長は屈折率を考慮した共振器の光学長で決まる。一方、吸収端波長は量子井戸層の材料のバンドギャップエネルギーで決まる。従って、共振器の光学長の温度依存性とバンドギャップエネルギーの温度依存性が異なれば、ある温度で光学長とバンドギャップエネルギーの両者の関係を最適な条件に合わせても、温度が変化すると両者の関係が最適条件からはずれて、効率の良い変調がかからなくなるという問題があった。   In order to realize effective light modulation with a conventional modulator integrated surface emitting laser, it is necessary to match the absorption edge wavelength of the quantum well layer, which is an absorption layer (light modulation layer), with the oscillation wavelength of the laser. The absorption type light modulation layer absorbs light having an energy higher than the energy difference between the quantum levels of the quantum wells. The energy difference between the quantum levels is the sum of the band gap energy and the quantum level energy in the conduction band and valence band. The wavelength corresponding to this energy difference is the absorption edge wavelength. In a state where no voltage is applied to the light modulation layer, the resonance wavelength of the resonator is set to a wavelength of light that is slightly longer than the absorption edge wavelength (low energy) and has a small absorption. When a voltage is applied to the light modulation layer, the band gap energy is effectively reduced, light of the set resonance wavelength is absorbed, and the amount of absorption changes according to the applied voltage, allowing amplitude modulation. It is. Therefore, effective modulation is performed when the oscillation wavelength of the laser light is slightly longer than the absorption edge wavelength that is amplitude-modulated. The oscillation wavelength of the surface emitting laser, that is, the resonance wavelength is determined by the optical length of the resonator in consideration of the refractive index. On the other hand, the absorption edge wavelength is determined by the band gap energy of the material of the quantum well layer. Therefore, if the temperature dependence of the optical length of the resonator and the temperature dependence of the band gap energy are different, even if the relationship between the optical length and the band gap energy is adjusted to an optimum condition at a certain temperature, There is a problem that the above relationship deviates from the optimum condition and efficient modulation is not applied.

これは、共振器光学長は屈折率の温度依存性を反映して波長に換算すると約0.1nm/℃変化するのに対して、吸収端波長はエネルギーギャップの温度依存性により変化するので、波長に換算すると約0.4nm/℃変化することに起因する。すなわち、従来の変調器集積面発光レーザでは、このように、共振器の光学長で決まる発振波長と、変調器のバンドギャップエネルギーで決まる吸収端波長の温度依存性が4倍程度も異なるので、ある温度で良好な変調特性が得られていても、温度が変わると変調特性が悪化してしまい、効率的な変調動作が可能な温度範囲が極めて狭いという問題があった。   This is because the optical length of the resonator changes by about 0.1 nm / ° C. when converted to a wavelength reflecting the temperature dependence of the refractive index, whereas the absorption edge wavelength changes by the temperature dependence of the energy gap. This is due to a change of about 0.4 nm / ° C. when converted to wavelength. That is, in the conventional modulator integrated surface emitting laser, the temperature dependence of the oscillation wavelength determined by the optical length of the resonator and the absorption edge wavelength determined by the band gap energy of the modulator is different by about four times. Even if a good modulation characteristic is obtained at a certain temperature, the modulation characteristic deteriorates when the temperature changes, and there is a problem that the temperature range in which an efficient modulation operation can be performed is extremely narrow.

本発明は、良好な変調特性が得られる温度範囲を拡大した変調器集積面発光レーザを提供する事を目的とする。   An object of the present invention is to provide a modulator integrated surface emitting laser having an expanded temperature range in which good modulation characteristics can be obtained.

上記課題を解決するために、請求項1に記載の変調器集積面発光レーザ1は、例えば図1〜3に示すように、レーザ光を励起する活性層6と、電圧印加による光吸収係数の変化を利用して変調を行う吸収型光変調層8と、活性層6及び光変調層8を挟む2つの光反射層4,12間で光が共振し、温度により共振波長が可変である波長可変共振器17を備え、波長可変共振器17の共振波長の温度依存性と光変調層8のバンドギャップエネルギーの温度依存性がほぼ等しい。   In order to solve the above-mentioned problem, a modulator integrated surface emitting laser 1 according to claim 1 includes an active layer 6 that excites laser light and a light absorption coefficient due to voltage application, as shown in FIGS. Wavelength at which the resonance wavelength is variable depending on the temperature, with the light resonating between the absorption light modulation layer 8 that modulates using the change and the two light reflection layers 4 and 12 sandwiching the active layer 6 and the light modulation layer 8 The variable resonator 17 is provided, and the temperature dependency of the resonance wavelength of the wavelength variable resonator 17 and the temperature dependency of the band gap energy of the light modulation layer 8 are substantially equal.

ここにおいて、活性層6及び光変調層8は必ずしも全て波長可変共振器17の内部にある必要はなく、一部が外側にはみ出ても良い。また、光反射層4,12も全てが共振器17の光反射鏡4R,12Rである必要はなく、その外側にはみ出る部分があっても良い。また、波長可変共振器17の領域は光や電流が広がる部分であり、空間11領域も含め光反射層4,12に挟まれた領域で、酸化狭窄層5,7の開口部より幾分広い部分である。このように構成すると、波長可変共振器17の温度依存性と光変調層8のバンドギャップエネルギーの温度依存性がほぼ等しいので、良好な変調特性が得られる温度範囲を拡大した変調器集積面発光レーザを提供できる。   Here, the active layer 6 and the light modulation layer 8 do not necessarily have to be inside the wavelength tunable resonator 17, and some of them may protrude outside. Also, the light reflecting layers 4 and 12 need not all be the light reflecting mirrors 4R and 12R of the resonator 17, but may have a portion protruding outside. The region of the wavelength tunable resonator 17 is a portion where light and current spread, and is a region sandwiched between the light reflecting layers 4 and 12 including the space 11 region, which is somewhat wider than the openings of the oxidized constricting layers 5 and 7. Part. With this configuration, the temperature dependence of the wavelength tunable resonator 17 and the temperature dependence of the band gap energy of the light modulation layer 8 are substantially equal. Therefore, the modulator integrated surface light emission that expands the temperature range in which good modulation characteristics can be obtained. A laser can be provided.

また、請求項2に記載の発明は、請求項1に記載の変調器集積面発光レーザにおいて、例えば図1〜3に示すように、2つの光反射層4R,12Rのうちの1つからなり、波長可変共振器17の光反射鏡12Rを構成する部分を支持する熱膨張係数の異なる2つの半導体層12,13からなる片持ち梁18を備える。   Further, the invention according to claim 2 is the modulator integrated surface emitting laser according to claim 1, comprising, for example, one of the two light reflecting layers 4R and 12R as shown in FIGS. The cantilever 18 is formed of two semiconductor layers 12 and 13 having different thermal expansion coefficients that support the portion constituting the light reflecting mirror 12R of the wavelength tunable resonator 17.

ここにおいて、光反射鏡は4R,12Rは光反射鏡層4,12のうち、波長可変共振器17の反射鏡として機能する部分が主であるが、この部分に限られず、所定の形状(図1では円形)でこの部分と一体的に形成された周辺部を含むものとする。波長可変共振器17の境界が必ずしも明確でないため、実際に反射鏡として機能する部分よりも余裕をもって広く形成される。また、かかる周辺部がかなり広い場合には、対をなす光反射鏡と対向する部分とする。また、光反射鏡12Rは片持ち梁18の一部であっても良く、片持ち梁18は光反射鏡12Rと共にそれ以外の部分を支持しても良い。また、片持ち梁18の光反射鏡12Rの部分とこれを支持する部分で材料が同じでも異なっても良い。また、片持ち梁18の光反射鏡12Rを支持する部分が3以上の半導体層からなるものであっても、そのうちの2以上の半導体層の熱膨張係数が異なれば熱応力による歪みを生じるので、この場合も熱膨張係数が異なる2つの半導体層に含まれるものとする。このように構成すると、温度が変化すると片持ち梁18に熱応力による反りが生じ、波長可変共振器17の2つの光反射鏡4R,12R間の共振器長が変化して共振波長が変化するので、良好な変調特性が得られる温度範囲を拡大した変調器集積面発光レーザに適した構造を得られる。   Here, the light reflecting mirrors 4R and 12R are mainly the portions that function as the reflecting mirrors of the wavelength variable resonator 17 in the light reflecting mirror layers 4 and 12, but are not limited to this portion, and have a predetermined shape (see FIG. 1 includes a peripheral portion formed integrally with this portion. Since the boundary of the wavelength tunable resonator 17 is not always clear, it is formed wider with a margin than the part that actually functions as a reflecting mirror. Further, when such a peripheral part is quite wide, it is a part facing the paired light reflecting mirrors. Further, the light reflecting mirror 12R may be a part of the cantilever 18 and the cantilever 18 may support other portions together with the light reflecting mirror 12R. Moreover, the material may be the same or different in the portion of the light reflecting mirror 12R of the cantilever 18 and the portion that supports it. Even if the portion of the cantilever 18 that supports the light reflecting mirror 12R is made of three or more semiconductor layers, if the thermal expansion coefficients of the two or more semiconductor layers are different, distortion due to thermal stress occurs. In this case, it is assumed that they are included in two semiconductor layers having different thermal expansion coefficients. With this configuration, when the temperature changes, the cantilever 18 warps due to thermal stress, the resonator length between the two light reflecting mirrors 4R and 12R of the wavelength tunable resonator 17 changes, and the resonance wavelength changes. Therefore, it is possible to obtain a structure suitable for a modulator integrated surface emitting laser with an expanded temperature range in which good modulation characteristics can be obtained.

また、請求項3に記載の発明は、請求項1又は請求項2に記載の変調器集積面発光レーザにおいて、例えば図1〜3に示すように、2つの光反射層4R、12Rは、光学長が共振波長の1/4にほぼ等しい厚さで、屈折率の異なる2つの膜を交互に多層積層した分布ブラッグ反射鏡である。   Further, according to a third aspect of the present invention, in the modulator integrated surface emitting laser according to the first or second aspect, for example, as shown in FIGS. This is a distributed Bragg reflector in which two films having different lengths and a thickness substantially equal to ¼ of the resonance wavelength are alternately laminated.

このように構成すると、波長可変共振器17の共振特性を向上できる。   If comprised in this way, the resonance characteristic of the wavelength variable resonator 17 can be improved.

本発明によれば、変調器集積面発光レーザにおいて、量子井戸吸収層の吸収波長の温度変化と、面発光レーザの発振波長の温度変化をほぼ一致させることができるので、良好な変調特性が得られる温度範囲が拡大される。例えば、従来の変調器集積面発光レーザの動作温度範囲は指定温度+―5〜10℃程度であったのに対して、本発明によればその動作温度範囲を+−30〜40℃以上に拡大できる。これにより、ペルチェ素子などによる温度安定化の必要はなくなるので、低消費電力化、小型化、低コスト化の点で大いに有利になる。   According to the present invention, in the modulator-integrated surface-emitting laser, the temperature change of the absorption wavelength of the quantum well absorption layer and the temperature change of the oscillation wavelength of the surface-emitting laser can be substantially matched, so that good modulation characteristics can be obtained. The temperature range that can be expanded. For example, the operating temperature range of a conventional modulator integrated surface emitting laser is about a specified temperature + -5 to 10 ° C., but according to the present invention, the operating temperature range is +30 to 40 ° C. or higher. Can be expanded. This eliminates the need for temperature stabilization by a Peltier element or the like, which is very advantageous in terms of low power consumption, miniaturization, and cost reduction.

以下に図面に基づき本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の第1の実施の形態による変調器集積面発光レーザの構成例を示す。3次元座標をXYZで表す。また、そのX方向から見た側面図を図2に、Y方向から見た側面図を図3に示す。変調器集積面発光レーザ1はGaAs基板2上に、多数の半導体薄膜を積層して、半導体微細加工技術により形成される。   FIG. 1 shows a configuration example of a modulator integrated surface emitting laser according to a first embodiment of the present invention. Three-dimensional coordinates are represented by XYZ. Moreover, the side view seen from the X direction is shown in FIG. 2, and the side view seen from the Y direction is shown in FIG. The modulator integrated surface emitting laser 1 is formed by laminating a number of semiconductor thin films on a GaAs substrate 2 and using a semiconductor microfabrication technique.

図1〜3において、基板2上に、バッファ層3を介して光反射層として第1のn型DBR反射鏡層4が形成され、その上の一部に第1の酸化狭窄層5、活性層6、第2の酸化狭窄層7、p型コンタクト層19が台状に形成され、さらにその上の一部に光変調層(吸収層)8、光反射層として中間n型DBR反射鏡層9が一方向に長い台状に形成されている。この一方向に長い台上の一方の端部にスペーサ層10が形成され、その他の大部分の上は空間(空気層)になっている。そしてスペーサ層10上から中間n型DBR反射鏡層9上の空間11を挟み延長して、光反射層としての第2のn型DBR反射鏡層12と熱応力層13からなる片持ち梁18が形成されている。   1 to 3, a first n-type DBR reflecting mirror layer 4 is formed on a substrate 2 as a light reflecting layer via a buffer layer 3, and a first oxidized constricting layer 5 and an active layer are partially formed on the first n-type DBR reflecting mirror layer 4. The layer 6, the second oxide constriction layer 7, and the p-type contact layer 19 are formed in a trapezoidal shape, and a light modulation layer (absorption layer) 8 is further formed thereon, and an intermediate n-type DBR reflector layer as a light reflection layer 9 is formed in a trapezoidal shape that is long in one direction. A spacer layer 10 is formed on one end of the base that is long in one direction, and a space (air layer) is formed on the other most part. A cantilever 18 comprising a second n-type DBR reflector layer 12 as a light reflecting layer and a thermal stress layer 13 is extended from the spacer layer 10 with a space 11 on the intermediate n-type DBR reflector layer 9 interposed therebetween. Is formed.

片持ち梁18の先端で第2のn型DBR反射鏡層12は第2のn型DBR反射鏡12Rとなっており、第1のn型DBR反射鏡層4のうち、この第2のn型DBR反射鏡12Rの直下にある部分(対向する部分)が第1のn型DBR反射鏡4Rとなっている。なお、光反射鏡4R,12Rは光反射鏡層4,12のうち反射鏡として機能する部分が主であるが、この部分に限られず、所定の形状(図1では円形)でこの部分と一体的に形成された周辺部を含むものとする。波長可変共振器17の境界が必ずしも明確でないため、実際に反射鏡として機能する部分よりも余裕をもって広く形成される。また、かかる周辺部がかなり広い場合には、対をなす光反射鏡と対向する部分とする。図1〜3においては、第2のn型DBR反射鏡層12の円形に形成された部分が、所定の形状でこの部分と一体的に形成された部分といえ、また、その直下の第1のn型DBR反射鏡層4の部分が対をなす光反射鏡と対向する部分といえ、それぞれ、第1、第2のn型DBR反射鏡4R,12Rに該当する。中間n型DBR反射鏡9Rについては、中間n型DBR反射鏡層9のうち第2のn型DBR反射鏡12R下の矩形の部分が、所定の形状でこの部分と一体的に形成された部分に該当する。   The second n-type DBR reflecting mirror layer 12 is a second n-type DBR reflecting mirror 12R at the tip of the cantilever 18 and, of the first n-type DBR reflecting mirror layer 4, the second n-type DBR reflecting mirror layer 12R is used. A portion (opposite portion) immediately below the type DBR reflecting mirror 12R is the first n-type DBR reflecting mirror 4R. The light reflecting mirrors 4R and 12R are mainly the portions that function as the reflecting mirrors in the light reflecting mirror layers 4 and 12, but are not limited to this portion, and are integrated with this portion in a predetermined shape (circular in FIG. 1). It is assumed that the peripheral part formed automatically is included. Since the boundary of the wavelength tunable resonator 17 is not always clear, it is formed wider with a margin than the part that actually functions as a reflecting mirror. Further, when such a peripheral part is quite wide, it is a part facing the paired light reflecting mirrors. 1 to 3, the circular portion of the second n-type DBR reflector layer 12 can be said to be a portion formed integrally with this portion in a predetermined shape, and the first portion directly below the portion is formed. The n-type DBR reflecting mirror layer 4 is a portion facing the paired light reflecting mirrors, and corresponds to the first and second n-type DBR reflecting mirrors 4R and 12R, respectively. As for the intermediate n-type DBR reflector 9R, a portion of the intermediate n-type DBR reflector layer 9 in which a rectangular portion under the second n-type DBR reflector 12R is integrally formed with this portion in a predetermined shape It corresponds to.

そして、第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rとは、その間に、空間11、第1の酸化狭窄層5、活性層6、第2の酸化狭窄層7、p型コンタクト層19、光変調層8、中間n型DBR反射鏡9R(以下空間等という。)を挟んで共振器17を構成している。正しくは、第1の酸化狭窄層5の開口部及び第2の酸化狭窄層7の開口部の上下に当たる部分が主な光路となるので、共振器の中心部分となり、この部分を含んで光や電流が広がる部分が共振器17として機能する。この共振器17として機能する部分が共振器17の領域であり、空間11領域も含め光反射層4、12に挟まれた領域で、酸化狭窄層5,7の開口部より幾分広い部分であり、概略、図2、3に破線で示す。したがって共振器17は、基板2上に形成、固定された第1のn型DBR反射鏡4Rから、第1の酸化狭窄層5、活性層6、第2の酸化狭窄層7、p型コンタクト層19、光変調層8、中間n型DBR反射鏡9Rまでの下部と、第2のn型DBR反射鏡12Rからなる上部と、その間の空間(空気層)11で構成される。   The first n-type DBR reflecting mirror 4R and the second n-type DBR reflecting mirror 12R include the space 11, the first oxidized constricting layer 5, the active layer 6, the second oxidized constricting layer 7, A resonator 17 is configured with a p-type contact layer 19, a light modulation layer 8, and an intermediate n-type DBR reflecting mirror 9 </ b> R (hereinafter referred to as a space). Correctly, since the main optical path is the portion of the first oxidized constricting layer 5 and the portion of the second oxidized constricting layer 7 which are in contact with the upper and lower portions, the central portion of the resonator is included. The part where the current spreads functions as the resonator 17. The portion functioning as the resonator 17 is a region of the resonator 17, a region sandwiched between the light reflecting layers 4 and 12 including the space 11 region, and a portion somewhat wider than the opening of the oxide constriction layers 5 and 7. Yes, schematically shown in FIG. Accordingly, the resonator 17 includes the first oxidized constricting layer 5, the active layer 6, the second oxidized constricting layer 7, and the p-type contact layer from the first n-type DBR reflecting mirror 4R formed and fixed on the substrate 2. 19, a light modulation layer 8, a lower part to the intermediate n-type DBR reflecting mirror 9R, an upper part composed of the second n-type DBR reflecting mirror 12R, and a space (air layer) 11 therebetween.

共振器17の上部を片持ち梁18が支持し、片持ち梁18をスペーサ層10が支持する構造になっている。片持ち梁18は、第2のn型DBR反射鏡層12と熱応力層13からなり、これら2つの半導体層12、13は熱膨張係数が異なるものである。なお、第2のn型DBR反射鏡12Rとその上の熱応力層13は片持ち梁18の一部になっている。   The cantilever 18 supports the upper portion of the resonator 17, and the spacer layer 10 supports the cantilever 18. The cantilever 18 includes a second n-type DBR reflector layer 12 and a thermal stress layer 13, and the two semiconductor layers 12 and 13 have different thermal expansion coefficients. Note that the second n-type DBR reflector 12R and the thermal stress layer 13 thereon are part of the cantilever 18.

また、第1のn型DBR反射鏡層4の露出部分(活性層6のn領域に連なる)にn電極14が形成され、p型コンタクト層19(活性層6のp領域及び光変調層8のp領域に連なる)の露出部分にp電極15が形成され、中間n型DBR反射鏡層9の露出部分(光変調層8のn領域に連なる)にn電極16が形成されている。n電極14とp電極15とは活性層6に順方向電圧を印加してレーザ光を励起するための電極であり、p電極15とn電極16とは光変調層8に逆方向電圧を印加して振幅変調するための電極である。 Further, n A electrode 14 is formed on the exposed portion of the first n-type DBR reflector layer 4 (connected to the n region of the active layer 6), p regions and the light modulating layer of p-type contact layer 19 (active layer 6 8 p electrode 15 on the exposed portion of the p connected to region) is formed of, n B electrode 16 is formed on the exposed portion of the intermediate n-type DBR reflector layer 9 (connected to the n region of the light modulation layer 8) . The n A electrode 14 and the p electrode 15 are electrodes for applying a forward voltage to the active layer 6 to excite the laser beam, and the p electrode 15 and the n B electrode 16 are a reverse voltage applied to the light modulation layer 8. This is an electrode for applying amplitude to modulate the amplitude.

本実施の形態では、基板及び各層は例えば次のように形成される。基板1にはn型GaAs基板が用いられ、その上の多層の半導体薄膜の結晶成長にはMOCVD(metalorganic chemical vapor deposition)法を使用できる。バッファ層3はその上に形成する薄膜の結晶格子を整えるための層で、n型GaAs層を500nm形成する。   In the present embodiment, the substrate and each layer are formed as follows, for example. An n-type GaAs substrate is used as the substrate 1, and a MOCVD (metalorganic chemical vapor deposition) method can be used for crystal growth of a multilayer semiconductor thin film thereon. The buffer layer 3 is a layer for adjusting the crystal lattice of a thin film formed thereon, and an n-type GaAs layer is formed to a thickness of 500 nm.

第1のn型DBR反射鏡層4としてn型Al0.90Ga0.10As層80nmとn型Al0.16Ga0.84As層70nmの2層の組み合わせを28対積層する。DBR反射鏡層はDBR反射鏡を形成するための層である。DBR反射鏡は半導体2層を交互に重ね合わせた多重構造の反射鏡で、2つのDBR反射鏡が光共振器を構成し、反射鏡を多重構造とすることにより反射光の波長を揃え、共振特性を高める(Q値を高くする)ものである。第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rで波長可変共振器17を構成しており、これら2つのDBR反射鏡4R,12R間を共振する光のみが、増幅されて第1のn型DBR反射鏡4R又は第2のn型DBR反射鏡12Rを透過し、外部に出力される。また、第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rは、光学長が共振波長の1/4にほぼ等しい厚さで、屈折率の異なる2つの膜を交互に多層積層したDBR反射鏡であり、これにより共振器17の共振特性を向上できる。また、第1のn型DBR反射鏡4Rと中間n型DBR反射鏡9Rは活性層6を挟んで一部光を往復する補助的な共振器を構成することにより、活性層6での発振をし易くするものである。   As the first n-type DBR reflector layer 4, 28 pairs of combinations of two layers of an n-type Al0.90Ga0.10As layer 80 nm and an n-type Al0.16Ga0.84As layer 70 nm are stacked. The DBR reflector layer is a layer for forming a DBR reflector. The DBR reflector is a multi-layered reflector in which two semiconductor layers are alternately stacked. The two DBR reflectors form an optical resonator, and the reflectors have a multi-layered structure so that the wavelength of the reflected light is aligned and resonant. The characteristic is improved (the Q value is increased). The first n-type DBR reflecting mirror 4R and the second n-type DBR reflecting mirror 12R constitute a wavelength variable resonator 17, and only the light resonating between the two DBR reflecting mirrors 4R and 12R is amplified. Then, the light passes through the first n-type DBR reflecting mirror 4R or the second n-type DBR reflecting mirror 12R and is output to the outside. Further, the first n-type DBR reflector 4R and the second n-type DBR reflector 12R are formed by alternately stacking two films having optical lengths that are substantially equal to ¼ of the resonance wavelength and having different refractive indexes. This is a laminated DBR reflector, whereby the resonance characteristics of the resonator 17 can be improved. Further, the first n-type DBR reflecting mirror 4R and the intermediate n-type DBR reflecting mirror 9R constitute an auxiliary resonator that reciprocates part of the light with the active layer 6 interposed therebetween, thereby oscillating in the active layer 6. It is easy to do.

第1の酸化狭窄層5としてn型Al0.90Ga0.10As層55nmの上にn型Al0.98Ga0.02AS層30nmを形成する。酸化狭窄層5、7は電流を効果的に共振器17の中心部分に絞って効率よく発振させるための層で、光及び電流を透過させる部分を開口し、他の部分を絶縁性の酸化膜とする。開口部はn型の半導体層である。活性層6としてノンドープAl0.6Ga0.4As層113nm上に、GaAs層10nmとIn0.2Ga0.8As層8nmの2層の組み合わせを3対積層し、その上にGaAs層10nmとAl0.6Ga0.4As層113nmを形成する。活性層6は量子井戸構造を有し、注入されたキャリアが再結合し、量子井戸のバンドギャップエネルギーおよび量子準位エネルギーの和に応じた光を発光する。第2の酸化狭窄層7としてp型Al0.90Ga0.10As層55nmの上にp型Al0.98Ga0.02AS層30nmを形成する。開口部はp型の半導体層であり、他の部分を絶縁性の酸化膜となる。酸化狭窄層は1層でも良いが、ここでは2層にして効率性を高めている。第2の酸化狭窄層7上にp型コンタクト層19としてp型GaAs層を110nm形成する。   An n-type Al0.98Ga0.02AS layer 30 nm is formed on the n-type Al0.90Ga0.10As layer 55 nm as the first oxide constriction layer 5. The oxide constriction layers 5 and 7 are layers for efficiently concentrating current to the central portion of the resonator 17 and efficiently oscillating. The portions that transmit light and current are opened, and the other portions are insulating oxide films. And The opening is an n-type semiconductor layer. Three pairs of two combinations of a GaAs layer 10 nm and an In0.2Ga0.8As layer 8 nm are stacked on the non-doped Al0.6Ga0.4As layer 113 nm as the active layer 6, and the GaAs layer 10 nm and the Al0.6Ga0.4As layer are formed thereon. 113 nm is formed. The active layer 6 has a quantum well structure, and the injected carriers are recombined to emit light corresponding to the sum of the band gap energy and quantum level energy of the quantum well. A p-type Al 0.98 Ga 0.02 AS layer 30 nm is formed on the p-type Al 0.90 Ga 0.10 As layer 55 nm as the second oxide constriction layer 7. The opening is a p-type semiconductor layer, and the other part is an insulating oxide film. The oxidation constriction layer may be a single layer, but here the efficiency is improved by using two layers. A p-type GaAs layer having a thickness of 110 nm is formed as the p-type contact layer 19 on the second oxide constriction layer 7.

光変調層8として2つのAl0.6Ga0.4As層140nmのほぼ中央にIn0.2Ga0.8As層8nmを挟む層構造とする。光変調層8として吸収型光変調層を採用する。したがって、光変調層8は吸収層でもあり、量子井戸の量子準位間エネルギー差より高いエネルギーの光を吸収する。すなわち、バンドギャップエネルギーと量子準位エネルギーの和に対応する波長が吸収端波長となる。光変調層8に電圧を印加しない状態では、共振器の共振波長を吸収端波長よりも僅かに長波長(低エネルギー)に設定して、吸収が小さい光の波長に設定しておく。光変調層8に逆方向電圧を印加すると実効的にバンドギャップエネルギーが小さくなり、設定した共振波長の光が吸収されるようになり、印加電圧に応じて吸収量が変化するので、振幅変調が可能である。   The light modulation layer 8 has a layer structure in which an In0.2Ga0.8As layer 8 nm is sandwiched between approximately 140 nm of two Al0.6Ga0.4As layers 140 nm. An absorption light modulation layer is employed as the light modulation layer 8. Therefore, the light modulation layer 8 is also an absorption layer, and absorbs light having energy higher than the energy difference between quantum levels of the quantum well. That is, the wavelength corresponding to the sum of the band gap energy and the quantum level energy is the absorption edge wavelength. In a state where no voltage is applied to the light modulation layer 8, the resonance wavelength of the resonator is set to a wavelength slightly longer (low energy) than the absorption edge wavelength, and is set to the wavelength of light with small absorption. When a reverse voltage is applied to the light modulation layer 8, the band gap energy is effectively reduced, light having a set resonance wavelength is absorbed, and the amount of absorption changes according to the applied voltage. Is possible.

中間n型DBR反射鏡層9としてp型Al0.16Ga0.84As層70nmとp型Al09.90Ga0.10As層80nmの組み合わせを3対積層する。中間n型DBR反射鏡9Rは必須ではないが、共振器を形成する第1、第2のn型DBR反射鏡4R,12Rの中間に設置され、活性層6を第1のn型DBR反射鏡4Rと中間n型DBR反射鏡9Rで挟むことにより、中間n型DBR反射鏡9Rで光を一部活性層6側に反射させることにより、発振し易くし、発振閾値を下げる効果がある。中間n型DBR反射鏡9Rは積層数が少ないので共振波の一部を反射し、一部を透過する。中間n型DBR反射鏡9Rの反射率を上げれば外側の波長可変共振器17の共振パワーが小さくなり、反射率を下げればレーザ動作そのものがしにくくなるので、反射率としては60〜90%程度が適当である。なお、第1、第2のn型DBR反射鏡4R,12R間の光学長、及び第1のn型DBR反射鏡4Rと中間n型DBR反射鏡9R間の光学長は共に共振波長の1/2の整数倍にほぼ等しい。   Three pairs of combinations of a p-type Al0.16Ga0.84As layer 70 nm and a p-type Al09.90Ga0.10As layer 80 nm are laminated as the intermediate n-type DBR reflector layer 9. Although the intermediate n-type DBR reflecting mirror 9R is not essential, it is installed in the middle of the first and second n-type DBR reflecting mirrors 4R and 12R forming the resonator, and the active layer 6 is arranged as the first n-type DBR reflecting mirror. By sandwiching between 4R and the intermediate n-type DBR reflecting mirror 9R, light is partially reflected by the intermediate n-type DBR reflecting mirror 9R toward the active layer 6, thereby making it easy to oscillate and lowering the oscillation threshold. Since the intermediate n-type DBR reflecting mirror 9R has a small number of layers, it reflects a part of the resonance wave and transmits a part thereof. If the reflectivity of the intermediate n-type DBR reflector 9R is increased, the resonance power of the outer wavelength tunable resonator 17 is decreased, and if the reflectivity is decreased, the laser operation itself becomes difficult, so the reflectivity is about 60 to 90%. Is appropriate. The optical length between the first and second n-type DBR reflecting mirrors 4R and 12R and the optical length between the first n-type DBR reflecting mirror 4R and the intermediate n-type DBR reflecting mirror 9R are both 1 / resonance wavelength. It is almost equal to an integer multiple of 2.

スペーサ層10としてAl0.6Ga0.4As層を1600nm形成する。スペーサ層10の厚さで中間n型DBR反射鏡層9と第2のn型DBR反射鏡層12間の空間の距離が定まり、これにより、第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rで構成される共振器17の光学長(空間等を光路とする)が定まり、共振波長が定まる。第2のn型DBR反射鏡層12としてn型Al0.90Ga0.10As層80nmとn型Al0.16Ga0.84As層70nmの組み合わせを33対積層する。熱応力層13としてAl0.48Ga0.52As層を500nm形成する。   As the spacer layer 10, an Al0.6Ga0.4As layer is formed at 1600 nm. The distance of the space between the intermediate n-type DBR reflector layer 9 and the second n-type DBR reflector layer 12 is determined by the thickness of the spacer layer 10, whereby the first n-type DBR reflector 4R and the second n-type DBR reflector mirror 12 The optical length of the resonator 17 composed of the n-type DBR reflecting mirror 12R (space or the like as an optical path) is determined, and the resonance wavelength is determined. As the second n-type DBR reflector layer 12, 33 pairs of an n-type Al0.90Ga0.10As layer of 80 nm and an n-type Al0.16Ga0.84As layer of 70 nm are stacked. An Al0.48Ga0.52As layer having a thickness of 500 nm is formed as the thermal stress layer 13.

これら多数の膜が積層された後に、フォトリソグラフィと、ドライエッチングで活性層6を含む60μm角の台、光変調層8を含む30μm角の台、およびスペーサ層10として残す台(1600nm)の部分を形成する。次いで、化学エッチングにより、台上のスペーサ層10のみを残して、第2のn型DBR反射鏡12Rの下の部分を除去し、空間(空気層)11を形成する。次いで、第2のn型DBR反射鏡層12および熱応力層13の形状を、フォトリソグラフィとドライエッチングなどで図1〜図3に記載の形状に整える。次いで、AuZn−Auなどの導電膜でp電極15を、AuNi−Au又はAuGe−Auなどの導電膜でn電極14、n電極16を形成する。 After these multiple films are laminated, the 60 μm square base including the active layer 6, the 30 μm square base including the light modulation layer 8, and the base (1600 nm) to be left as the spacer layer 10 by photolithography and dry etching. Form. Next, by chemical etching, the space (air layer) 11 is formed by removing the portion under the second n-type DBR reflector 12R, leaving only the spacer layer 10 on the table. Next, the shapes of the second n-type DBR reflector layer 12 and the thermal stress layer 13 are adjusted to the shapes shown in FIGS. 1 to 3 by photolithography and dry etching. Then, a p electrode 15 with a conductive film such as AuZn-Au, forming an n A electrode 14, n B electrode 16 with a conductive film such as AuNi-Au or AuGe-Au.

n型DBR反射鏡層12(GaAs/GaAlAs半導体多層膜反射鏡層)と熱応力層13は片持ち梁18を構成し、第1のn型DBR反射鏡4R(GaAlAs/GaAlAs半導体多層膜反射鏡)と第2のn型DBR反射鏡12Rとが空間(空気層)11等を挟んで共振器17を構成する。すなわち、共振器17の上部は片持ち梁18の先端に形成される。上下のDBR反射鏡4R、12R間で共振した光のみが共振器17を透過し、第2のn型DBR反射鏡12Rから出力、又は第1のn型DBR反射鏡4Rから基板2を通して出力される。本実施の形態では、第1のn型DBR反射鏡層4より第2のn型DBR反射鏡層12の方が層数が多いので、第1のn型DBR反射鏡4R側に出力される。また、熱応力層13はDBR用材料系でエピタキシャル成長が可能なGaAs又はAlAsの混晶半導体で構成されている。   The n-type DBR reflector layer 12 (GaAs / GaAlAs semiconductor multilayer reflector layer) and the thermal stress layer 13 constitute a cantilever 18 and the first n-type DBR reflector 4R (GaAlAs / GaAlAs semiconductor multilayer reflector). ) And the second n-type DBR reflecting mirror 12R constitute a resonator 17 with a space (air layer) 11 or the like interposed therebetween. That is, the upper part of the resonator 17 is formed at the tip of the cantilever 18. Only the light resonated between the upper and lower DBR reflecting mirrors 4R, 12R is transmitted through the resonator 17 and output from the second n-type DBR reflecting mirror 12R or output from the first n-type DBR reflecting mirror 4R through the substrate 2. The In the present embodiment, since the second n-type DBR reflector layer 12 has a larger number of layers than the first n-type DBR reflector layer 4, it is output to the first n-type DBR reflector 4R side. . The thermal stress layer 13 is made of a mixed crystal semiconductor of GaAs or AlAs that can be epitaxially grown in the DBR material system.

熱応力層13と第2のn型DBR反射鏡層12の熱膨張係数の差異により、温度変化時に応力によって片持ち梁18が変位する。熱応力層13がGaAs層の時はGaAs層が第2のn型DBR反射鏡層12よりも大きな熱膨張係数を有し、温度上昇時に片持ち梁18は基板側に下がるように反る。また、応力層13がAlAs層の時はAlAs層が第2のn型DBR反射鏡層12よりも小さな熱膨張係数を有し、温度上昇時には片持ち梁18は基板とは反対側にせり上がるように反る。この様に温度を変化させることで、片持ち梁18の位置の上下方向への変位をもたらし、共振器17の共振器長が変化する。   Due to the difference in thermal expansion coefficient between the thermal stress layer 13 and the second n-type DBR reflector layer 12, the cantilever 18 is displaced by stress when the temperature changes. When the thermal stress layer 13 is a GaAs layer, the GaAs layer has a larger thermal expansion coefficient than the second n-type DBR reflector layer 12, and the cantilever 18 is warped so as to be lowered toward the substrate when the temperature rises. When the stress layer 13 is an AlAs layer, the AlAs layer has a smaller thermal expansion coefficient than that of the second n-type DBR reflector layer 12, and when the temperature rises, the cantilever 18 rises to the opposite side of the substrate. Warp like so. By changing the temperature in this manner, the position of the cantilever 18 is displaced in the vertical direction, and the resonator length of the resonator 17 is changed.

このような片持ち梁18(カンチレバー)構造を用いて、共振器長の変化による発振波長の変化の温度係数と量子井戸のバンドギャップエネルギーの変化による吸収端波長の変化の温度係数とを一致させることが可能である。例えば、Ga0.2Al0.8As層の厚さを増す、片持ち梁18の長さを少し長くする等の工夫をし、両者の温度係数を合わせるように正確な設計をすることにより、適切な波長可変共振器17と光変調層8の組み合わせを実現でき、良好な変調特性が得られる温度範囲を拡大した変調器集積面発光レーザ1を提供できる。 Using such a cantilever 18 (cantilever) structure, the temperature coefficient of the change in the oscillation wavelength due to the change in the resonator length and the temperature coefficient of the change in the absorption edge wavelength due to the change in the band gap energy of the quantum well are matched. It is possible. For example, by devising such as increasing the thickness of the Ga 0.2 Al 0.8 As layer or slightly increasing the length of the cantilever 18, and by designing accurately to match the temperature coefficient of both Thus, it is possible to provide a modulator integrated surface emitting laser 1 that can realize an appropriate combination of the wavelength tunable resonator 17 and the light modulation layer 8 and expand a temperature range in which good modulation characteristics can be obtained.

本実施の形態では、熱応力層13のAl組成を0.48とし、熱応力層13の厚さを500nmとし、片持ち梁18の長さ(先端まで)を250μmと設定した。このとき、熱応力層13の熱膨張係数はその直下の第2のDBR反射鏡層12の平均的な熱膨張係数よりも小さいために、周囲温度が上昇すると、この片持ち梁18は図の上方に反る。すなわち、第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rの間でつくる共振器17の共振器長(光学長)は温度上昇とともに長くなり、その結果発振波長も長くなる。共振波長として約0.98μmを選択し、パラメータを上述の如く設定した結果、温度上昇1℃あたり、0.4nmの波長変化になった。この波長変化率は、InGaAs光変調層8のバンドギャップが温度とともに縮むことによる光変調層8の最適動作波長(吸収端波長)の波長変化率とほぼ等しい。これにより、このデバイスは、0℃から80℃の広い温度範囲に渉って、変調された光のオンオフ比が10dB以上など、すぐれた変調特性を示した。これにより、温度が変わっても、量子井戸の吸収端波長と発振波長の相対的な関係はほとんど変わらないので、安定な変調特性が期待できる。すなわち、良好な変調特性が得られる温度範囲を大幅に拡大した変調器集積面発光レーザを実現できる。   In the present embodiment, the Al composition of the thermal stress layer 13 is 0.48, the thickness of the thermal stress layer 13 is 500 nm, and the length of the cantilever 18 (up to the tip) is 250 μm. At this time, since the thermal expansion coefficient of the thermal stress layer 13 is smaller than the average thermal expansion coefficient of the second DBR reflector layer 12 immediately below the thermal stress layer 13, when the ambient temperature rises, the cantilever 18 is Warp upward. That is, the resonator length (optical length) of the resonator 17 formed between the first n-type DBR reflecting mirror 4R and the second n-type DBR reflecting mirror 12R becomes longer as the temperature rises, and as a result, the oscillation wavelength becomes longer. . As a result of selecting about 0.98 μm as the resonance wavelength and setting the parameters as described above, the wavelength change was 0.4 nm per 1 ° C. temperature rise. This wavelength change rate is substantially equal to the wavelength change rate of the optimum operating wavelength (absorption edge wavelength) of the light modulation layer 8 due to the band gap of the InGaAs light modulation layer 8 shrinking with temperature. As a result, this device showed excellent modulation characteristics such as an on / off ratio of modulated light of 10 dB or more over a wide temperature range from 0 ° C. to 80 ° C. As a result, even if the temperature changes, the relative relationship between the absorption edge wavelength and the oscillation wavelength of the quantum well hardly changes, and stable modulation characteristics can be expected. That is, it is possible to realize a modulator integrated surface emitting laser that greatly expands the temperature range in which good modulation characteristics can be obtained.

また、従来の変調器集積面発光レーザをこのような広い温度範囲で使うには、ペルチェ素子などの温度制御素子をいっしょに使わざるを得ず、デバイス形状が大きくなり、消費電力も大幅に増大し、その結果、多数の素子を並列に使う光インターコネクションなどへの適用に大きな制限が加えられていたのに対して、本実施の形態によれば、小型で低消費電力のデバイスを実現可能となり、上記光インターコネクションなどへの適用における上記制限が除去される。   In addition, in order to use a conventional modulator integrated surface emitting laser in such a wide temperature range, a temperature control element such as a Peltier element must be used together, the device shape becomes larger, and the power consumption increases significantly. As a result, the application to optical interconnections that use a large number of elements in parallel has been greatly restricted. However, according to this embodiment, a small and low power consumption device can be realized. Thus, the restriction in application to the optical interconnection or the like is removed.

次に、本発明の第2の実施の形態による変調器集積面発光レーザについて説明する。第1の実施の形態では、DBR反射鏡が3つ、酸化狭窄層が2つの例を説明したが、本実施の形態では、DBR反射鏡を2つとし、酸化狭窄層を1つとするものである。すなわち、第1の実施の形態から、中間n型DBR反射鏡層9と第1の酸化狭窄層5を除去して、波長可変共振器17の光反射鏡を第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rとで構成する。この場合、空間11を含む第1のn型DBR反射鏡4Rと第2のn型DBR反射鏡12Rの光学長から共振波長が定まる。したがって、中間n型DBR反射鏡9Rと第1の酸化狭窄層5の光路分、空間11の距離を長くし、熱応力層13の膜厚、片持ち梁18の長さを調整する等により、共振器長の変化による発振波長の変化の温度係数と量子井戸のバンドギャップエネルギーの変化による吸収端波長の変化の温度係数とを一致させることが可能である。例えば、熱応力層13の厚さと、片持ち梁18の長さをパラメータとして、m×nのサンプルを試作し、そのうち発振波長の変化の温度係数とバンドギャップエネルギーの変化の温度係数が最も近い組み合わせの近傍でパラメータを再調整する等により、実験を通して両者の温度係数とを一致させても良い。   Next, a modulator integrated surface emitting laser according to a second embodiment of the present invention will be described. In the first embodiment, an example in which there are three DBR reflectors and two oxidized constricting layers has been described. However, in this embodiment, two DBR reflectors and two oxidized constricting layers are used. is there. That is, from the first embodiment, the intermediate n-type DBR reflector layer 9 and the first oxidized constricting layer 5 are removed, and the light reflector of the wavelength tunable resonator 17 is changed to the first n-type DBR reflector 4R. And the second n-type DBR reflecting mirror 12R. In this case, the resonance wavelength is determined from the optical lengths of the first n-type DBR reflector 4R and the second n-type DBR reflector 12R including the space 11. Therefore, by increasing the distance between the optical path of the intermediate n-type DBR reflecting mirror 9R and the first oxidized constricting layer 5 and the space 11, adjusting the film thickness of the thermal stress layer 13, the length of the cantilever 18 and the like, It is possible to make the temperature coefficient of the change of the oscillation wavelength due to the change of the resonator length coincide with the temperature coefficient of the change of the absorption edge wavelength due to the change of the band gap energy of the quantum well. For example, an m × n sample is prototyped using the thickness of the thermal stress layer 13 and the length of the cantilever 18 as parameters, and the temperature coefficient of change in oscillation wavelength and the temperature coefficient of change in band gap energy are the closest. Both temperature coefficients may be made to coincide with each other through an experiment, for example, by readjusting the parameters in the vicinity of the combination.

次に、本発明の第3の実施の形態による変調器集積面発光レーザについて説明する。第1、第2の実施の形態では、温度変化とともに反りが変わる光反射鏡を保持する片持ち梁18として、DBR反射鏡層12の一方と同じ組成の層を下側に熱応力層13を上側にして2層を組み合わせた。同じ効果を得るのに、片持ち梁18のうち共振器17のDBR反射鏡12Rを支持する部分のみ熱膨張係数の異なる2つの半導体層、たとえば、AlGaAs層とGaAs層との組み合わせを用い、共振器17のDBR反射鏡12Rを別に積層しても良い。この構造では、DBR反射鏡12Rとして、半導体でなく、誘電体多層膜を蒸着などにより片持ち梁18の先端部分に形成し、可動反射鏡としても良い。   Next, a modulator integrated surface emitting laser according to a third embodiment of the present invention will be described. In the first and second embodiments, as the cantilever 18 that holds the light reflector whose warpage changes with temperature change, the thermal stress layer 13 is formed on the lower side with a layer having the same composition as one of the DBR reflector layers 12. Two layers were combined on the top. In order to obtain the same effect, only the portion of the cantilever 18 that supports the DBR reflector 12R of the resonator 17 is supported by using two semiconductor layers having different thermal expansion coefficients, for example, a combination of an AlGaAs layer and a GaAs layer. The DBR reflecting mirror 12R of the vessel 17 may be laminated separately. In this structure, the DBR reflector 12R may be a movable reflector by forming a dielectric multilayer film on the tip of the cantilever 18 by vapor deposition or the like instead of a semiconductor.

図4に本発明の第4の実施の形態として、変調器集積面発光レーザをアレイ状に配置した変調器集積面発光レーザ装置を示す。4×4のレーザアレイ31が基板32上に配置され、そのうちの3×3の発光レーザ33からレーザ光34が発光している状態を示している。各発光レーザ33は第1の実施の形態における変調器集積面発光レーザを用いる。この場合各発光レーザ33の発振周波数が等しくなるので、並列処理用、時系列的使用、大電力利用等の場合に使用できる。なお、各レーザ光34の発振周波数を変えて、波長多重通信用等、全体として広い周波数帯で使用できるようにしても良い。   FIG. 4 shows a modulator integrated surface emitting laser device in which modulator integrated surface emitting lasers are arranged in an array as a fourth embodiment of the present invention. A 4 × 4 laser array 31 is arranged on a substrate 32, and a laser beam 34 is emitted from a 3 × 3 light emitting laser 33 among them. Each light emitting laser 33 uses the modulator integrated surface emitting laser according to the first embodiment. In this case, since the oscillation frequencies of the respective light emitting lasers 33 are equal, it can be used for parallel processing, time series use, high power use, and the like. Note that the oscillation frequency of each laser beam 34 may be changed so that it can be used in a wide frequency band as a whole, such as for wavelength multiplexing communications.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、実施の形態に種々変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is obvious that various modifications can be made to the embodiments.

例えば、レーザ光の利用効率を高めるため活性層を埋め込み型にしたり、省電力化のため量子ドット構造の活性層としても良い。また、共振波長も例えば0.4μ〜1.6μの間で選択可能である。また、本実施の形態では、光反射鏡としてDBR反射鏡の例を説明したが、単層の反射鏡でも良い。また、本実施の形態では、酸化狭窄層が1つ又は2つの例を説明したが、無くても良い。また、薄膜の形成はMOCVD法に限られず、CBE(Chemical Beam Epitaxy)法を用いても良い。また、一致する温度係数の値も任意に選択でき、その他、反射鏡層等の2種の層の対数、薄膜の組成や膜厚、台や電極の配置等は多様である。   For example, the active layer may be a buried type in order to increase the utilization efficiency of laser light, or may be an active layer having a quantum dot structure for power saving. Also, the resonance wavelength can be selected between 0.4 μm and 1.6 μm, for example. In this embodiment, an example of a DBR reflecting mirror has been described as the light reflecting mirror, but a single-layer reflecting mirror may be used. In the present embodiment, an example of one or two oxidized constricting layers has been described. The formation of the thin film is not limited to the MOCVD method, and a CBE (Chemical Beam Epitaxy) method may be used. In addition, the matching temperature coefficient value can be arbitrarily selected, and the logarithm of two types of layers such as the reflecting mirror layer, the composition and thickness of the thin film, the arrangement of the stage and the electrode, and the like are various.

本発明は、使用温度範囲の広いレーザ光の取得に利用される。   The present invention is used for obtaining laser light having a wide operating temperature range.

本発明の第1の実施の形態による変調器集積面発光レーザの構成例を示す図である。It is a figure which shows the structural example of the modulator integrated surface emitting laser by the 1st Embodiment of this invention. 図1の変調器集積面発光レーザをX方向から見た側面図である。It is the side view which looked at the modulator integrated surface emitting laser of FIG. 1 from the X direction. 図1の変調器集積面発光レーザをY方向から見た側面図である。It is the side view which looked at the modulator integrated surface emitting laser of FIG. 1 from the Y direction. 本発明による変調器集積面発光レーザをアレイ状に配置した図である。It is the figure which has arrange | positioned the modulator integrated surface emitting laser by this invention in the array form. 従来の変調器集積面発光レーザの構成例を示す図である。It is a figure which shows the structural example of the conventional modulator integrated surface emitting laser. 温度の変化による共振波長の変化を示す図である。It is a figure which shows the change of the resonant wavelength by the change of temperature.

符号の説明Explanation of symbols

1 変調器集積面発光レーザ
2 基板
3 バッファ層
4 第1のn型DBR反射鏡層(光反射層)
4R 第1のn型DBR反射鏡
5 第1の酸化狭窄層
6 活性層
7 第2の酸化狭窄層
8 光変調層
9 中間n型DBR反射鏡層(光反射層)
9R 中間n型DBR反射鏡
10 スペーサ層
11 空間
12 第2のn型DBR反射鏡層(光反射層)
12R 第2のn型DBR反射鏡
13 熱応力層
14 n電極
15 p電極
16 n電極
17 波長可変共振器
18 片持ち梁
19 p型コンタクト層
21 波長可変共振器
22、23 DBR反射鏡層
22R,23R DBR反射鏡
24、24’ 熱応力層
25 片持ち梁
31 レーザアレイ
32 基板
33 面発光レーザ
34 レーザ光

DESCRIPTION OF SYMBOLS 1 Modulator integrated surface emitting laser 2 Substrate 3 Buffer layer 4 1st n-type DBR reflecting mirror layer (light reflecting layer)
4R 1st n-type DBR reflector 5 1st oxidation confinement layer 6 Active layer 7 2nd oxidation confinement layer 8 Light modulation layer 9 Intermediate n-type DBR reflection mirror layer (light reflection layer)
9R Intermediate n-type DBR reflector 10 Spacer layer 11 Space 12 Second n-type DBR reflector layer (light reflecting layer)
12R Second n-type DBR reflector 13 Thermal stress layer 14 n A electrode 15 p electrode 16 n B electrode 17 Wavelength variable resonator 18 Cantilever 19 p-type contact layer 21 Wavelength variable resonators 22 and 23 DBR reflector layer 22R, 23R DBR reflectors 24, 24 'Thermal stress layer 25 Cantilever 31 Laser array 32 Substrate 33 Surface emitting laser 34 Laser light

Claims (3)

レーザ光を励起する活性層と;
電圧印加による光吸収係数の変化を利用して変調を行う吸収型光変調層と;
前記活性層及び前記光変調層を挟む2つの光反射層間で光が共振し、温度により共振波長が可変である波長可変共振器とを備え;
前記波長可変共振器の共振波長の温度依存性と前記光変調層のバンドギャップエネルギーの温度依存性がほぼ等しい;
変調器集積面発光レーザ。
An active layer for exciting laser light;
An absorptive light modulation layer that modulates light absorption coefficient by applying voltage;
A wavelength tunable resonator in which light resonates between two light reflection layers sandwiching the active layer and the light modulation layer, and the resonance wavelength is variable depending on temperature;
The temperature dependence of the resonance wavelength of the wavelength tunable resonator is substantially equal to the temperature dependence of the band gap energy of the light modulation layer;
Modulator integrated surface emitting laser.
前記2つの光反射層のうちの1つからなり、前記波長可変共振器の光反射鏡を構成する部分を支持する熱膨張係数の異なる2つの半導体層からなる片持ち梁を備える;
請求項1に記載の変調器集積面発光レーザ。
A cantilever beam comprising one of the two light reflecting layers and comprising two semiconductor layers having different thermal expansion coefficients that support a portion constituting the light reflecting mirror of the wavelength tunable resonator;
The modulator integrated surface emitting laser according to claim 1.
前記2つの光反射層は、光学長が前記共振波長の1/4にほぼ等しい厚さで、屈折率の異なる2つの膜を交互に多層積層した分布ブラッグ反射鏡である;
請求項1又は請求項2に記載の変調器集積面発光レーザ。

The two light reflecting layers are distributed Bragg reflectors in which an optical length is approximately equal to ¼ of the resonance wavelength and two films having different refractive indexes are alternately laminated.
The modulator integrated surface emitting laser according to claim 1.

JP2005027078A 2005-02-02 2005-02-02 Modulator-integrated surface emitting laser Withdrawn JP2006216722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027078A JP2006216722A (en) 2005-02-02 2005-02-02 Modulator-integrated surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027078A JP2006216722A (en) 2005-02-02 2005-02-02 Modulator-integrated surface emitting laser

Publications (1)

Publication Number Publication Date
JP2006216722A true JP2006216722A (en) 2006-08-17

Family

ID=36979684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027078A Withdrawn JP2006216722A (en) 2005-02-02 2005-02-02 Modulator-integrated surface emitting laser

Country Status (1)

Country Link
JP (1) JP2006216722A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016591A (en) * 2011-07-01 2013-01-24 Denso Corp Optical deflection element and optical deflection module
US8644649B2 (en) 2011-05-27 2014-02-04 Micron Technology, Inc. Optical waveguide with cascaded modulator circuits
JP2015029085A (en) * 2013-06-27 2015-02-12 キヤノン株式会社 Surface-emitting laser and optical coherence tomography using the same
JP2016523444A (en) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. Wavelength tuned vertical cavity surface emitting laser for swept source coherence tomography system
JPWO2014065332A1 (en) * 2012-10-26 2016-09-08 大学共同利用機関法人情報・システム研究機構 Light generating device and light generating method
US9513106B2 (en) 2013-11-23 2016-12-06 Canon Kabushiki Kaisha Wavelength tunable light source
WO2019187666A1 (en) * 2018-03-30 2019-10-03 株式会社Qdレーザ Semiconductor laser and inspection device
KR20190116299A (en) * 2017-02-08 2019-10-14 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 Quantum light source device and its quantum optical circuit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644649B2 (en) 2011-05-27 2014-02-04 Micron Technology, Inc. Optical waveguide with cascaded modulator circuits
KR20140016988A (en) * 2011-05-27 2014-02-10 마이크론 테크놀로지, 인크 Optical waveguide with cascaded modulator circuits
US8909000B2 (en) 2011-05-27 2014-12-09 Micron Technology, Inc. Optical waveguide with cascaded modulator circuits
US9209904B2 (en) 2011-05-27 2015-12-08 Micron Technology, Inc. Optical waveguide with cascaded modulator circuits
KR101659650B1 (en) 2011-05-27 2016-09-26 마이크론 테크놀로지, 인크 Optical waveguide with cascaded modulator circuits
JP2013016591A (en) * 2011-07-01 2013-01-24 Denso Corp Optical deflection element and optical deflection module
JPWO2014065332A1 (en) * 2012-10-26 2016-09-08 大学共同利用機関法人情報・システム研究機構 Light generating device and light generating method
JP2015029085A (en) * 2013-06-27 2015-02-12 キヤノン株式会社 Surface-emitting laser and optical coherence tomography using the same
JP2016523444A (en) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. Wavelength tuned vertical cavity surface emitting laser for swept source coherence tomography system
US9762031B2 (en) 2013-07-03 2017-09-12 Inphenix, Inc. Wavelength-tunable vertical cavity surface emitting laser for swept source optical coherence tomography system
US10128637B2 (en) 2013-07-03 2018-11-13 Inphenix, Inc. Wavelength-tunable vertical cavity surface emitting laser for swept source optical coherence tomography system
US9513106B2 (en) 2013-11-23 2016-12-06 Canon Kabushiki Kaisha Wavelength tunable light source
KR20190116299A (en) * 2017-02-08 2019-10-14 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 Quantum light source device and its quantum optical circuit
JP2020506556A (en) * 2017-02-08 2020-02-27 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス(シーエスアイシー)Consejo Superior De Investigaciones Cientificas Quantum light source device and quantum optical circuit thereof
KR102461670B1 (en) * 2017-02-08 2022-10-31 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 Quantum light source device and quantum optical circuit thereof
JP7212621B2 (en) 2017-02-08 2023-01-25 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(セエセイセ) Quantum light source element and its quantum optical circuit
WO2019187666A1 (en) * 2018-03-30 2019-10-03 株式会社Qdレーザ Semiconductor laser and inspection device

Similar Documents

Publication Publication Date Title
JP4927178B2 (en) Vertical external cavity surface emitting laser and method for manufacturing the light emitting component
JP4027393B2 (en) Surface emitting laser
KR100759603B1 (en) Vertical cavity surface emitting laser device
US6879615B2 (en) FCSEL that frequency doubles its output emissions using sum-frequency generation
JP2006140446A (en) Surface-emitting laser element, method of producing the same surface emitting laser array, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
JP4034513B2 (en) Surface emitting laser device, optical module using the same, and optical system
JP2006216722A (en) Modulator-integrated surface emitting laser
US20070071054A1 (en) Vertical cavity surface emitting semiconductor laser, light emission device, and optical transmission system
JP2004072118A (en) Variable wavelength surface emitting laser
US20150010034A1 (en) Short cavity surface emitting laser with double high contrast gratings with and without airgap
JP2006190976A (en) External resonator type surface light-emitting laser element having a plurality of quantum wells
KR101015499B1 (en) Laser device emitting a plurality of wavelength and a laser pumping unit for the same
JP2009081230A (en) Surface-emitting laser
JP4612442B2 (en) Vertical cavity surface emitting semiconductor laser device, optical switching method, optical transmission module, and optical transmission device
JP2006229222A (en) Modulator integrated type optical pumping semiconductor laser device
JP4790287B2 (en) Vertical cavity surface emitting semiconductor laser device, optical switching method, optical transmission module, and optical transmission device
JP4803992B2 (en) Light emitting device, optical transmission system, and vertical cavity surface emitting semiconductor laser element
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JP4113576B2 (en) Surface emitting semiconductor laser, optical transmission module, optical switching device, and optical transmission system
JP4439199B2 (en) Vertical cavity surface emitting semiconductor laser device, optical logic operation device, wavelength converter, optical pulse waveform shaping device, and optical transmission system using the same
JP2007219561A (en) Semiconductor light emitting device
JP3857632B2 (en) Vertical cavity surface emitting laser device
JP2007294741A (en) Surface-emitting semiconductor laser, optical transmission module, and optical transmission system
JP2006173562A (en) Surface-emitting laser device for optical communication wavelength using antimony-based material, its image forming apparatus and information relay system
JP2001358403A (en) Surface light emitting laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513