JP2009081230A - Surface-emitting laser - Google Patents

Surface-emitting laser Download PDF

Info

Publication number
JP2009081230A
JP2009081230A JP2007248565A JP2007248565A JP2009081230A JP 2009081230 A JP2009081230 A JP 2009081230A JP 2007248565 A JP2007248565 A JP 2007248565A JP 2007248565 A JP2007248565 A JP 2007248565A JP 2009081230 A JP2009081230 A JP 2009081230A
Authority
JP
Japan
Prior art keywords
layer
emitting laser
surface emitting
tunnel junction
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248565A
Other languages
Japanese (ja)
Other versions
JP5029254B2 (en
Inventor
Masaru Hatakeyama
大 畠山
Takafumi Suzuki
尚文 鈴木
Kenichiro Yashiki
健一郎 屋敷
Takeshi Akagawa
武志 赤川
Takayoshi Anami
隆由 阿南
Masayoshi Tsuji
正芳 辻
Masayoshi Fukatsu
公良 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007248565A priority Critical patent/JP5029254B2/en
Priority to US12/237,048 priority patent/US20090080488A1/en
Publication of JP2009081230A publication Critical patent/JP2009081230A/en
Application granted granted Critical
Publication of JP5029254B2 publication Critical patent/JP5029254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-emitting laser having capability of high speed operation and excellent reliability. <P>SOLUTION: The surface-emitting laser includes a semiconductor substrate 101, a first reflector 102 formed on the semiconductor substrate 101, an active layer 103 formed on the first reflector 102, a tunnel junction layer 105 formed on the active layer 103, a first conductivity type semiconductor spacer layer 107 covering the tunnel junction layer 105, a second reflector 108 formed in a region right above the tunnel junction layer 105 on the semiconductor spacer layer 107, a first electrode 110 formed in the peripheral part of the second reflector 108 on the semiconductor spacer layer 107, and a second electrode 111 electrically connected to a layer lower than the active layer 103. The thickness of the first conductivity type semiconductor spacer layer 107 in the region right above the tunnel junction layer 105 is thinner than the thickness of the first conductivity type semiconductor spacer layer 107 in the region right below the first electrode 110. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、面発光レーザに関し、特に、トンネル接合型面発光レーザ素子に関する。   The present invention relates to a surface emitting laser, and more particularly to a tunnel junction type surface emitting laser element.

近年、光通信用の光源として、高速、小型、低消費電力、低コストなどの長所を備える垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)の開発が盛んである。既に、1〜10Gbps(ギガビット毎秒)程度の高速変調可能な素子も実用化されている。   2. Description of the Related Art In recent years, vertical cavity surface emitting lasers (VCSELs) having advantages such as high speed, small size, low power consumption, and low cost have been actively developed as light sources for optical communication. An element capable of high-speed modulation of about 1 to 10 Gbps (gigabit per second) has already been put into practical use.

面発光レーザで最も一般的な構成は、GaAs基板をベースとした酸化狭窄型と呼ばれるものである。この酸化狭窄型は、活性層及びその上下に位置する半導体ブラッグ反射鏡(DBR:Distributed Bragg reflector)が、GaAs基板上にエピタキシャル成長によって一体に形成された積層構造を有する。また、水蒸気酸化工程により形成された電流狭窄構造を有する。このような素子では、上下DBRを半導体で形成し、DBRを介して活性層へ電流注入を行う構造が一般的である。また、水蒸気酸化による電流狭窄構造の形成において、埋め込み再成長が不要であるなど、製造プロセスが簡易であるという特長を有する。   The most common configuration of a surface emitting laser is an oxide constriction type based on a GaAs substrate. This oxidized constriction type has a laminated structure in which an active layer and semiconductor Bragg reflectors (DBR: Distributed Bragg reflectors) positioned above and below the active layer are integrally formed on a GaAs substrate by epitaxial growth. Moreover, it has a current confinement structure formed by a steam oxidation process. Such an element generally has a structure in which upper and lower DBRs are formed of a semiconductor and current is injected into an active layer through the DBR. In addition, the formation of the current confinement structure by steam oxidation has a feature that the manufacturing process is simple, such as no need for burying regrowth.

一方、面発光レーザの中でも、電流狭窄構造としてトンネル接合を用いたトンネル接合型は、低抵抗化により、高速化・低消費電力化することができる。このトンネル接合型は典型的には非特許文献1に報告されている構造を有し、従来InP基板ベースであり、テレコム用途向けに発振波長1.3μm帯、もしくは1.55μm帯などの長波長帯用の面発光レーザに用いられる。   On the other hand, among surface emitting lasers, a tunnel junction type using a tunnel junction as a current confinement structure can achieve high speed and low power consumption by reducing resistance. This tunnel junction type typically has a structure reported in Non-Patent Document 1, is conventionally based on an InP substrate, and has a long wavelength such as an oscillation wavelength of 1.3 μm band or 1.55 μm band for telecom applications. Used in band surface emitting lasers.

発明者らは、主に酸化狭窄型に用いられるGaAs基板をベースとし、活性層には利得特性に優れるInGaAsを井戸層とする歪量子井戸を用い、電流狭窄構造としてトンネル接合構造を用いたトンネル接合型面発光レーザを開発し、酸化狭窄型面発光レーザを上回る24GHzの3dB変調帯域を達成することができた。このトンネル接合型面発光レーザの素子構造は、非特許文献2の図1に開示されている。   The inventors have used a strained quantum well having a well layer of InGaAs with excellent gain characteristics as a base layer based on a GaAs substrate mainly used for oxidation confinement, and a tunnel using a tunnel junction structure as a current confinement structure. A junction type surface emitting laser has been developed, and a 3 GHz modulation band of 24 GHz, which exceeds that of an oxidized confined type surface emitting laser, has been achieved. The element structure of this tunnel junction type surface emitting laser is disclosed in FIG.

非特許文献2に記載のトンネル接合型面発光レーザの素子構造について、図6を用いて説明する。図6の面発光レーザは、n型GaAsからなる半導体基板101上に、下部DBR102、量子井戸構造の活性層103、p型スペーサ層104、トンネル接合層105及びn型スペーサ層107が形成された半導体積層構造を有する。n型半導体基板101上の各層は、エピタキシャル成長により、順次形成される。また、トンネル接合層105は、高濃度p型InGaAs層と高濃度n型GaAsSb層とからなる。   The element structure of the tunnel junction type surface emitting laser described in Non-Patent Document 2 will be described with reference to FIG. In the surface emitting laser of FIG. 6, a lower DBR 102, an active layer 103 having a quantum well structure, a p-type spacer layer 104, a tunnel junction layer 105, and an n-type spacer layer 107 are formed on a semiconductor substrate 101 made of n-type GaAs. It has a semiconductor stacked structure. Each layer on the n-type semiconductor substrate 101 is sequentially formed by epitaxial growth. The tunnel junction layer 105 includes a high concentration p-type InGaAs layer and a high concentration n-type GaAsSb layer.

トンネル接合層105は、基板平面内において、最終的に発光部となる領域以外の周辺領域をエッチングにより除去した後、全体をn型スペーサ層107により埋め込まれた構造となっている。また、素子を高速動作させるために、n型スペーサ層107を形成する前に、電流注入領域A1の周辺に、イオン注入により高抵抗化部106を形成する。これにより、素子容量を低減することができる。上記半導体積層構造上には、上部DBR108、プラス電極110、マイナス電極111及びポリイミド層109が形成されている。プラス電極110及びマイナス電極111を介し、活性層103へ電流が注入され、レーザ発振及び高速変調動作する。   The tunnel junction layer 105 has a structure in which a peripheral region other than a region that finally becomes a light emitting portion is removed by etching in the substrate plane, and then the whole is buried with an n-type spacer layer 107. In order to operate the device at high speed, the high resistance portion 106 is formed by ion implantation around the current injection region A1 before the n-type spacer layer 107 is formed. Thereby, the element capacitance can be reduced. An upper DBR 108, a positive electrode 110, a negative electrode 111, and a polyimide layer 109 are formed on the semiconductor stacked structure. Current is injected into the active layer 103 via the plus electrode 110 and the minus electrode 111, and laser oscillation and high-speed modulation operation are performed.

非特許文献2に記載のトンネル接合型面発光レーザは、高速かつ低コスト・低消費電力である光源として極めて有望であるが、信頼性において課題を有していた。図7は、上記トンネル接合型面発光レーザの加速信頼性試験データである。図7(a)は、温度150℃、10mAの定電流駆動にて通電加速試験を行った場合の光出力変動の推移を示している。試験素子数は9個である。各素子とも所定時間経過後に突発的に光出力が減少している。   The tunnel junction type surface emitting laser described in Non-Patent Document 2 is extremely promising as a light source that is high speed, low cost, and low power consumption, but has a problem in reliability. FIG. 7 shows acceleration reliability test data of the tunnel junction type surface emitting laser. FIG. 7A shows the transition of the light output fluctuation when an energization acceleration test is performed at a constant current drive at a temperature of 150 ° C. and 10 mA. The number of test elements is nine. In each element, the light output suddenly decreases after a predetermined time.

図7(b)は、図7(a)の試験素子の故障時間(Time to Failure:TTF=故障に至るまでの動作時間)と、素子構造との関係を示したグラフである。各素子の故障時間は、トンネル接合層105の開口端(電流注入領域の端部)とプラス電極110との距離すなわち図6におけるLELECと明確な相関があり、LELECが長いほど故障時間が長くなっている。 FIG. 7B is a graph showing the relationship between the failure time (Time to Failure: TTF = operation time until failure) of the test element of FIG. 7A and the element structure. Failure time of each element, there is a clear correlation with the L ELEC in distance or 6 of the open end of the tunnel junction layer 105 and the (end of the current injection region) and the positive electrode 110, the more time to failure L ELEC is long It is getting longer.

故障素子を調査したところ、プラス電極110のアロイフロントが、n型スペーサ層107を突き抜けて活性層103まで達していることが分かった。なお、非特許文献2に記載のトンネル接合型面発光レーザでは、n型スペーサ層107の厚さは0.23μm、活性層103とプラス電極110の間の距離(D1=D2)は0.29μm程度である。また、このプラス電極110は、真空蒸着及びアロイ工程により形成したAuGe/AuGeNiで構成されている。プラス電極110のアロイ工程により活性層103に導入された格子欠陥は、通電により次第に電流注入領域A1の方に延伸していき、これに達した時に、突発的に光出力が減少することが分かった。   As a result of investigating the faulty element, it was found that the alloy front of the positive electrode 110 penetrates the n-type spacer layer 107 and reaches the active layer 103. In the tunnel junction surface emitting laser described in Non-Patent Document 2, the thickness of the n-type spacer layer 107 is 0.23 μm, and the distance between the active layer 103 and the plus electrode 110 (D1 = D2) is 0.29 μm. Degree. The plus electrode 110 is made of AuGe / AuGeNi formed by vacuum deposition and alloy processes. Lattice defects introduced into the active layer 103 by the alloying process of the positive electrode 110 are gradually extended toward the current injection region A1 by energization, and when this is reached, the light output suddenly decreases. It was.

上記故障を防止するには、LELECを十分に長くすることが考えられるが、LELECを長くすると、プラス電極110からトンネル接合層105に至る直列抵抗が増大する。そのため、現実的には、LELECは5μm以下程度に制限される。したがってLELECを長くすることは上記故障の本質的な改善手段とはならない。
また、プラス電極110のアロイフロントが活性層103に到達しないように、n型スペーサ層107をあらかじめ十分に厚くしておくことも有効であると考えられる。しかしながら、単純にn型スペーサ層107を厚くすると、上下DBR間距離LCAVITYが長くなる。従って、実効共振器長が長くなり、高速性が損なわれるという問題がある。
In order to prevent the above failure, it is conceivable that L ELEC is made sufficiently long. However, when L ELEC is made long, the series resistance from the plus electrode 110 to the tunnel junction layer 105 increases. Therefore, in reality, L ELEC is limited to about 5 μm or less. Therefore, lengthening L ELEC is not an essential remedy for the failure.
It is also considered effective to make the n-type spacer layer 107 sufficiently thick so that the alloy front of the positive electrode 110 does not reach the active layer 103. However, simply increasing the thickness of the n-type spacer layer 107 increases the distance L CAVITY between the upper and lower DBRs. Therefore, there is a problem that the effective resonator length becomes long and the high-speed performance is impaired.

以上に述べたトンネル接合型面発光レーザにおける課題は、これまで認識されていなかった。一般的な酸化狭窄型面発光レーザでは、上部DBR層はp型半導体で構成し、上部電極はノンアロイのTi/Auなどで形成する。このため、通電によるアロイの進行を考慮する必要がない。また、仮にアロイの進行がある場合、もしくは上部DBR層がn型半導体で構成され、上部電極としてアロイ電極が使用される場合でも、上部電極と活性層103の間には厚さ3〜4μm程度のp型DBR層があるため、活性層103に欠陥をもたらすことはない。   The problems in the tunnel junction type surface emitting laser described above have not been recognized so far. In a general oxidation confined surface emitting laser, the upper DBR layer is made of a p-type semiconductor, and the upper electrode is made of non-alloyed Ti / Au or the like. For this reason, it is not necessary to consider the progress of the alloy by energization. Further, even if the alloy progresses or the upper DBR layer is made of an n-type semiconductor and the alloy electrode is used as the upper electrode, the thickness between the upper electrode and the active layer 103 is about 3 to 4 μm. Therefore, there is no defect in the active layer 103.

他方、上部DBRが誘電体/半導体などで形成され、トンネル接合を有する長波長帯用の面発光レーザでも、以下に述べる3つの理由によって本課題は認識されていなかった。第1の理由は、InPベースの長波長帯面発光レーザではn電極材料として、ノンアロイのTi/Auなどを用いてもよいため、アロイフロントの進行による信頼性への影響を考慮する必要がない。   On the other hand, even in a long wavelength surface emitting laser having an upper DBR formed of a dielectric / semiconductor and having a tunnel junction, this problem has not been recognized for the following three reasons. The first reason is that in an InP-based long-wavelength surface emitting laser, non-alloyed Ti / Au or the like may be used as the n-electrode material, so it is not necessary to consider the influence on the reliability due to the progress of the alloy front .

第2の理由は、半導体材料に起因する。長波長帯面発光レーザでは、上部n電極と電気的なコンタクトが行われる半導体層としてバンドギャップの小さなInGaAsを用いることができる。また、n型スペーサ層にはInPが用いられる。Inを含む半導体中では結晶欠陥の増殖が抑制されるため、たとえ上部n電極を起点とした結晶欠陥が存在する場合でも、活性層への欠陥の延伸が抑制され、素子の信頼性に対して影響をもたらしにくい。   The second reason is due to the semiconductor material. In a long-wavelength surface emitting laser, InGaAs having a small band gap can be used as a semiconductor layer in electrical contact with the upper n-electrode. InP is used for the n-type spacer layer. Since the growth of crystal defects is suppressed in a semiconductor containing In, even if there is a crystal defect starting from the upper n electrode, the extension of the defect to the active layer is suppressed, and the reliability of the device is reduced. Less likely to have an impact.

第3の理由は、長波長帯面発光レーザでは、10Gbpsを上回る高速動作を実現するための検討は十分に行われていなことに起因する。これは、長波長帯面発光レーザでは材料の特性上素子利得が十分でなく、元々10Gbpsを上回る高速性が見込みにくいためである。10Gbps以下の変調速度であれば、LCAVITYを十分に短くする必要性がそもそも存在しないため、上記課題は認識され得ない。なお、非特許文献3については後述する。
Markus Ortsiefer他、「2.5-mW Single-Mode Operation of 1.55-μm Buried Tunnel Junction VCSELs」、IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 8、2005年8月 Yashiki他、「1.1 μm-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency」、Proceedings of optical fiber communication conference 2007、OMK1、2007年 Ye Zhou他、「Novel Surface Emitting Laser using High-Contrast Subwavelength Grating」、Conference Digest of Semiconductor Laser Conference 2006、WB4、2006年
The third reason is that long wavelength band surface emitting lasers have not been sufficiently studied to realize high-speed operation exceeding 10 Gbps. This is because the long-wavelength surface emitting laser does not have sufficient element gain due to the characteristics of the material, and it is difficult to expect high-speed performance that originally exceeds 10 Gbps. If the modulation speed is 10 Gbps or less, there is no need to make L CAVITY sufficiently short in the first place, so the above problem cannot be recognized. Non-patent document 3 will be described later.
Markus Ortsiefer et al., “2.5-mW Single-Mode Operation of 1.55-μm Buried Tunnel Junction VCSELs”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 8, August 2005 Yashiki et al., “1.1 μm-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency”, Proceedings of optical fiber communication conference 2007, OMK1, 2007 Ye Zhou et al., "Novel Surface Emitting Laser using High-Contrast Subwavelength Grating", Conference Digest of Semiconductor Laser Conference 2006, WB4, 2006

本発明は、以上のような問題点を解決するためになされたものであり、高速動作が可能であって、かつ、信頼性に優れる面発光レーザを提供すること目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a surface-emitting laser capable of high-speed operation and excellent in reliability.

本発明に係る面発光レーザは、半導体基板と、前記半導体基板上に形成された第1の反射鏡と、前記第1の反射鏡上に形成された活性層と、前記活性層上に形成されたトンネル接合層と、前記トンネル接合層を覆う第1導電型の半導体スペーサ層と、前記第1導電型の半導体スペーサ層上であって、前記トンネル接合層の直上領域に形成された第2の反射鏡と、前記第1導電型の半導体スペーサ層上であって、前記第2の反射鏡の周辺に形成された第1の電極と、前記活性層よりも下の層と電気的に接続された第2の電極とを備える面発光レーザであって、前記トンネル接合層の直上領域における前記第1導電型の半導体スペーサ層の厚さが、前記第1の電極の直下領域における前記第1導電型の半導体スペーサ層の厚さよりも薄いことを特徴とするものである。   A surface-emitting laser according to the present invention is formed on a semiconductor substrate, a first reflecting mirror formed on the semiconductor substrate, an active layer formed on the first reflecting mirror, and the active layer. A tunnel junction layer; a first conductivity type semiconductor spacer layer covering the tunnel junction layer; and a second conductivity type formed on the first conductivity type semiconductor spacer layer and in a region immediately above the tunnel junction layer. A first electrode formed on the reflector, on the first conductive type semiconductor spacer layer and around the second reflector, and electrically connected to a layer below the active layer A surface-emitting laser including a second electrode, wherein the thickness of the first-conductivity-type semiconductor spacer layer in the region directly above the tunnel junction layer is equal to the first conductivity in the region immediately below the first electrode. It is characterized by being thinner than the thickness of the semiconductor spacer layer of the mold It is an.

本発明によれば、高速動作が可能であって、かつ、信頼性に優れる面発光レーザを提供することができる。   According to the present invention, it is possible to provide a surface emitting laser capable of high-speed operation and excellent in reliability.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

第1の実施の形態
図1は、本発明の第1の実施の形態に係る面発光レーザ素子の断面図である。本実施の形態に係る面発光レーザは、n型GaAsからなる半導体基板101上に、下部DBR102、量子井戸構造の活性層103、p型スペーサ層104、トンネル接合層105及びn型スペーサ層107が形成された半導体積層構造を有する。n型半導体基板101上の各層は、エピタキシャル成長により、順次形成される。また、トンネル接合層105は、高濃度p型InGaAs層と高濃度n型GaAsSb層とからなる。
First Embodiment FIG. 1 is a cross-sectional view of a surface emitting laser element according to a first embodiment of the present invention. In the surface emitting laser according to the present embodiment, the lower DBR 102, the quantum well structure active layer 103, the p-type spacer layer 104, the tunnel junction layer 105, and the n-type spacer layer 107 are formed on the semiconductor substrate 101 made of n-type GaAs. It has a formed semiconductor stacked structure. Each layer on the n-type semiconductor substrate 101 is sequentially formed by epitaxial growth. The tunnel junction layer 105 includes a high concentration p-type InGaAs layer and a high concentration n-type GaAsSb layer.

下部DBR102は、例えば、Siドープ(濃度8×1017cm−3)n型AlAsからなる低屈折率層とSiドープ(濃度8×1017cm−3)n型GaAsからなる高屈折率層とが順に積層された構造を有する。具体的には、各々光学膜厚λ/4の低屈折率層と高屈折率層とを、40.5ペア積層した周期構造とすることができる。 The lower DBR 102 includes, for example, a low refractive index layer made of Si-doped (concentration 8 × 10 17 cm −3 ) n-type AlAs and a high refractive index layer made of Si-doped (concentration 8 × 10 17 cm −3 ) n-type GaAs. Are stacked in order. Specifically, a periodic structure in which 40.5 pairs of a low refractive index layer and a high refractive index layer, each having an optical film thickness λ / 4, are stacked.

活性層103は、例えば、In0.3Ga0.7As/GaAsを井戸層、GaAsを障壁層とする量子井戸層(発光スペクトルのピークは1.07μm)及びその両端に配置されたn型SCH層及びp型SCH層を備えている。活性層103全体の光学膜厚は1λ(媒質内波長の1波長分)とするのが好ましい。
また、p型スペーサ層104は、例えば、Cドープ(濃度8×1017cm−3)p型GaAsからなる。その光学膜厚はλ/4程度とするのが好ましい。
ここで、InGaAsを井戸層に用いた歪量子井戸構造活性層において、高速変調動作を実現する上で好適なレーザ発振波長の範囲は、GaAs基板上に活性層を形成する場合、1.0〜1.2μm程度の範囲である。発振波長が1.0μm未満の場合、歪量子井戸構造による利得向上のメリットが得られにくい。一方、発振波長が1.2μmを超える場合、結晶歪量が多すぎるため信頼性悪化が懸念される。ただし、基板として、GaAsよりも格子定数の大きなInGaAs3元基板を使用可能な場合、高信頼性を維持したまま、発振波長を1.34μm程度まで長波長にすることが可能である。しかし、発振波長をさらに長くした場合には、後で詳述する面発光レーザの実効共振器長も長くなるため、高速動作のためにはデメリットとなる。
The active layer 103 is, for example, a quantum well layer (the emission spectrum peak is 1.07 μm) using In 0.3 Ga 0.7 As / GaAs as a well layer and GaAs as a barrier layer, and n-type disposed at both ends thereof. An SCH layer and a p-type SCH layer are provided. The optical film thickness of the entire active layer 103 is preferably 1λ (one wavelength within the medium).
The p-type spacer layer 104 is made of, for example, C-doped (concentration 8 × 10 17 cm −3 ) p-type GaAs. The optical film thickness is preferably about λ / 4.
Here, in the strained quantum well structure active layer using InGaAs as the well layer, the range of the laser oscillation wavelength suitable for realizing the high-speed modulation operation is 1.0 to about 1.0 to when the active layer is formed on the GaAs substrate. The range is about 1.2 μm. When the oscillation wavelength is less than 1.0 μm, it is difficult to obtain the merit of gain improvement by the strained quantum well structure. On the other hand, when the oscillation wavelength exceeds 1.2 μm, there is a concern that reliability deteriorates because the amount of crystal distortion is too large. However, if an InGaAs ternary substrate having a larger lattice constant than GaAs can be used as the substrate, the oscillation wavelength can be increased to about 1.34 μm while maintaining high reliability. However, when the oscillation wavelength is further increased, the effective cavity length of the surface emitting laser, which will be described in detail later, is increased, which is a disadvantage for high-speed operation.

トンネル接合層105は、高濃度p型InGaAs層と高濃度n型GaAsSb層とを備える。例えば、Cドープ(濃度1×1020cm−3)p型GaAsからなる厚さ15nm程度の高濃度p型層及びSiドープ(濃度2×1019cm−3)n型GaAsからなる厚さ15nm程度の高濃度n型層を用いることができる。 The tunnel junction layer 105 includes a high concentration p-type InGaAs layer and a high concentration n-type GaAsSb layer. For example, a high concentration p-type layer having a thickness of about 15 nm made of C-doped (concentration 1 × 10 20 cm −3 ) p-type GaAs and a thickness of 15 nm made of Si-doped (concentration 2 × 10 19 cm −3 ) n-type GaAs. A moderately high concentration n-type layer can be used.

また、トンネル接合層105は基板平面内において、最終的に電流注入領域A1となる部分のみを残して周囲はエッチングで除去されている。また、素子の高速動作のために、電流注入領域A1の周辺部はイオン注入によって形成された高抵抗化部106によって素子容量の低減を図っている。トンネル接合層105及び高抵抗化部106が形成された半導体積層構造の表面全体は、n型スペーサ層107で埋め込まれている。   Further, the periphery of the tunnel junction layer 105 is removed by etching in the substrate plane, leaving only the portion that will eventually become the current injection region A1. Further, for high-speed operation of the device, the peripheral portion of the current injection region A1 is designed to reduce the device capacitance by the high resistance portion 106 formed by ion implantation. The entire surface of the semiconductor multilayer structure in which the tunnel junction layer 105 and the high resistance portion 106 are formed is buried with an n-type spacer layer 107.

ここで、トンネル接合層105の形成領域である電流注入領域A1ではトンネル接合層105を介して活性層103への電流注入が行われる。一方、トンネル接合のない領域では、n型スペーサ層107とp型スペーサ層104が隣接するため、通常の逆バイアスのp/n接合となるため電流がブロックされる。この電流狭窄構造によって、発光は電流注入領域A1近傍の活性層103で生じる。   Here, current injection into the active layer 103 is performed through the tunnel junction layer 105 in the current injection region A <b> 1, which is a formation region of the tunnel junction layer 105. On the other hand, in the region having no tunnel junction, the n-type spacer layer 107 and the p-type spacer layer 104 are adjacent to each other. Due to this current confinement structure, light emission occurs in the active layer 103 near the current injection region A1.

n型スペーサ層107は、例えば、Siドープ(濃度2×1019cm−3)n型GaAsからなる。n型スペーサ層107には、電流注入領域A1及びその近傍の直上部に、凹部112が形成されている。この凹部112の存在により、電流注入領域A1の近傍では、光共振器方向におけるn型スペーサ層107の上面と活性層103の中心面との間の距離を、図1中にD1で示すように、短くすることができる。一方、プラス電極110の直下では、この距離を図1中にD2で示すように、厚くすることができる。 The n-type spacer layer 107 is made of, for example, Si-doped (concentration 2 × 10 19 cm −3 ) n-type GaAs. In the n-type spacer layer 107, a recess 112 is formed immediately above the current injection region A1 and its vicinity. Due to the presence of the recess 112, in the vicinity of the current injection region A1, the distance between the upper surface of the n-type spacer layer 107 and the central surface of the active layer 103 in the direction of the optical resonator is indicated by D1 in FIG. Can be shortened. On the other hand, immediately below the plus electrode 110, this distance can be increased as indicated by D2 in FIG.

具体的には、電流注入領域A1においては、距離D1は光学膜厚1λ相当とし、上下DBR間距離LCAVITYは、光学膜厚3λ/2相当とするのが好ましい。これによって、電流注入領域A1及びその近傍では、面発光レーザの高速動作に必要な短いLCAVITYが実現できる。なお、10Gbpsを超える高速変調を実現するためのLCAVITYの光学厚さは、5λ/2以下程度であることが好ましい。また、トンネル接合層105の形成領域すなわち電流注入領域A1におけるn型スペーサ層107の厚さのばらつきは、光学膜厚λ/10以下であることが好ましい。 Specifically, in the current injection region A1, the distance D1 is preferably equivalent to the optical film thickness , and the distance L CAVITY between the upper and lower DBRs is preferably equivalent to the optical film thickness / 2. As a result, in the current injection region A1 and the vicinity thereof, a short L CAVITY necessary for high-speed operation of the surface emitting laser can be realized. Note that the optical thickness of L CAVITY for realizing high-speed modulation exceeding 10 Gbps is preferably about 5λ / 2 or less. The variation in the thickness of the n-type spacer layer 107 in the region where the tunnel junction layer 105 is formed, that is, the current injection region A1, is preferably equal to or less than the optical film thickness λ / 10.

また、電流注入領域A1よりも外側の領域では、n型スペーサ層107がエッチングされていないため、プラス電極110と活性層103の中心面との間の距離D2は1.0μm以上の厚さとするのが好ましい。これによって、プラス電極110におけるアロイのフロントが活性層103に到達しえない構造が実現できるため、非特許文献1に記載のトンネル接合型面発光レーザにおける信頼性上の問題を解決できる。以上述べたように、本発明によって、トンネル接合型面発光レーザの20Gbpsを上回る高速変調動作と、高い素子信頼性を両立することができる。   Further, in the region outside the current injection region A1, the n-type spacer layer 107 is not etched, so that the distance D2 between the positive electrode 110 and the center surface of the active layer 103 is 1.0 μm or more. Is preferred. As a result, a structure in which the front of the alloy in the plus electrode 110 cannot reach the active layer 103 can be realized, so that the reliability problem in the tunnel junction surface emitting laser described in Non-Patent Document 1 can be solved. As described above, according to the present invention, it is possible to achieve both high-speed modulation operation exceeding 20 Gbps and high element reliability of the tunnel junction type surface emitting laser.

凹部112形成後の半導体積層構造上には、上部DBR108、プラス電極110、マイナス電極111、ポリイミド層109が形成され、プラス電極110及びマイナス電極111を通じた活性層103への電流注入によってレーザ発振及び高速変調動作が行われる。ここで、プラス電極110及びマイナス電極111はいずれもn電極であって、Au/Ge/Niからなるアロイ電極である。   An upper DBR 108, a positive electrode 110, a negative electrode 111, and a polyimide layer 109 are formed on the semiconductor laminated structure after the formation of the recess 112, and laser oscillation and oscillation are performed by current injection into the active layer 103 through the positive electrode 110 and the negative electrode 111. A high speed modulation operation is performed. Here, both the positive electrode 110 and the negative electrode 111 are n electrodes, and are alloy electrodes made of Au / Ge / Ni.

上部DBR108は、好適には、光学膜厚λ/4のSiO低屈折率層(厚さ181.2nm)及び光学膜厚λ/4のSi高屈折率層(厚さ71.5nm)からなる3周期の層構造とすることができる。なお、高屈折率層の材料としては、Si、Sb、ZnSe、CdS、ZnS、TiOなどが考えられる。また、低屈折率層の材料としては、SiO、SiN、MgO、CaF、MgF、Alなどが考えられる。発振波長を考慮して適切な透明な材料が選択される。 The upper DBR 108 is preferably composed of an SiO 2 low refractive index layer (thickness 181.2 nm) with an optical film thickness λ / 4 and an Si high refractive index layer (thickness 71.5 nm) with an optical film thickness λ / 4. A three-period layer structure can be formed. As a material for the high refractive index layer, Si, Sb 2 S 3 , ZnSe, CdS, ZnS, TiO 2 or the like can be considered. Further, as a material for the low refractive index layer, SiO 2 , SiN x , MgO, CaF 2 , MgF 2 , Al 2 O 3 and the like can be considered. An appropriate transparent material is selected in consideration of the oscillation wavelength.

なお、半導体積層構造を構成する元素としては、窒素、リン、Teなども用いてもよく、半導体基板101もGaAsに限らず、InP、InGaAs、GaNなどを用いてもよい。   Note that nitrogen, phosphorus, Te, or the like may be used as an element constituting the semiconductor stacked structure, and the semiconductor substrate 101 is not limited to GaAs, and InP, InGaAs, GaN, or the like may be used.

次に、本発明に係るトンネル接合型面発光レーザの酸化狭窄型面発光レーザに対する特徴について説明する。主に2つの特徴がある。第1の特徴は、電流狭窄構造としてトンネル接合層105が用いられている点である。トンネル接合は、高濃度pn接合からなる。これに逆バイアスを印加すると、トンネル効果により、電子電流を正孔電流に変換することができる。このトンネル接合を、活性層103近傍のp型半導体層に形成することにより、半導体層の最表層をn型半導体とすることが可能となる。これにより、素子抵抗や吸収損失の低減、不均一注入の抑制などが期待できる。第2の特徴は、上部DBR108が高屈折率差いわゆる高ΔのSi/SiO多層膜から形成されている点である。高ΔのDBRを用いると、VCSELの実効的な共振器長が短くなるため、変調帯域を改善することができる。 Next, the characteristics of the tunnel junction type surface emitting laser according to the present invention with respect to the oxidized confined type surface emitting laser will be described. There are two main features. The first feature is that the tunnel junction layer 105 is used as a current confinement structure. The tunnel junction is a high-concentration pn junction. When a reverse bias is applied thereto, the electron current can be converted into a hole current by the tunnel effect. By forming this tunnel junction in the p-type semiconductor layer near the active layer 103, the outermost layer of the semiconductor layer can be an n-type semiconductor. Thereby, reduction of element resistance and absorption loss, suppression of nonuniform injection, etc. can be expected. A second feature is that the upper DBR 108 is formed of a Si / SiO 2 multilayer film having a high refractive index difference, that is, a high Δ. When a high Δ DBR is used, the effective resonator length of the VCSEL is shortened, so that the modulation band can be improved.

以下に高ΔのDBRによる高速特性の改善効果について説明する。直接変調型レーザの変調帯域は、素子抵抗(R)と寄生容量(C)の律速によって定まる帯域(fCR)と、電流注入素子の利得特性によって定まる帯域(fr:緩和振動周波数)の兼ね合いで決定される。酸化狭窄型VCSELにおいては、fCR帯域については、エピタキシャル成長による半導体層構造の最適化によるRの低減や、ポリイミド埋め込みやイオン注入構造によるCの低減などの適切な手段を講ずることで20GHz以上にすることが可能である。一方、frについては、16GHz程度に留まっており、酸化狭窄型VCSELにおいては20Gbps以上の高速動作を実現する上での主たる律速要因はfrである。frは次式で示される。

Figure 2009081230
ここで、dg/dnは微分利得、Vpはレーザ発振光のモード体積である。式(1)よりVpが小さいほど、frが改善されることが分かる。なお、第1の特徴であるトンネル接合構造による素子抵抗や吸収損失の低減などの効果は、素子の自己発熱の抑制につながるため、本式におけるdg/dnの項の改善効果として現れる。 The effect of improving the high speed characteristics by the high Δ DBR will be described below. The modulation band of the direct modulation laser is a balance between a band (f CR ) determined by the rate limiting of the element resistance (R) and the parasitic capacitance (C) and a band (fr: relaxation oscillation frequency) determined by the gain characteristics of the current injection element. It is determined. In the oxide confinement type VCSEL, for f CR band, reducing or R by optimizing the semiconductor layer structure by epitaxial growth, to more than 20GHz by taking appropriate measures, such as C reduce by polyimide buried or ion implantation structure It is possible. On the other hand, fr remains at about 16 GHz, and the main rate-limiting factor in realizing high-speed operation of 20 Gbps or more in the oxidized constriction type VCSEL is fr. fr is expressed by the following equation.
Figure 2009081230
Here, dg / dn is the differential gain, and Vp is the mode volume of the laser oscillation light. From the formula (1), it can be seen that as Vp is smaller, fr is improved. The effect of reducing the element resistance and absorption loss due to the tunnel junction structure, which is the first feature, leads to suppression of self-heating of the element, and thus appears as an improvement effect of the dg / dn term in this equation.

本発明に係るトンネル接合型面発光レーザでは、高Δの上部DBRによってモード体積Vpにおける光共振器方向成分が短縮されたためにfrが改善されたことが分かった。以下に、図2を用いてこれを説明する。図2(a)、図2(b)はそれぞれ、上下DBR間距離(LCAVITY)として1λの光学膜厚を有する酸化狭窄型VCSELと、LCAVITYが3λ/2のトンネル接合(TJ)型VCSELにおける共振器方向の光フィールドの強度分布を示している。横軸が厚さ方向の位置、縦軸が相対光強度を示す。横軸のプラス側が基板側である。光フィールドおよびその包絡線はそれぞれ実線及び波線で示している。両構造とも活性層103を挟んだ上下のDBRによって定在波状の光フィールドが形成されている。 In the tunnel junction type surface emitting laser according to the present invention, it was found that fr was improved because the optical resonator direction component in the mode volume Vp was shortened by the upper DBR of high Δ. This will be described below with reference to FIG. 2 (a) and 2 (b) respectively show an oxide constriction type VCSEL having an optical film thickness of as a distance between upper and lower DBRs (L CAVITY ) and a tunnel junction (TJ) type VCSEL having an L CAVITY of 3λ / 2. 2 shows the intensity distribution of the optical field in the direction of the resonator. The horizontal axis represents the position in the thickness direction, and the vertical axis represents the relative light intensity. The plus side of the horizontal axis is the substrate side. The optical field and its envelope are shown as a solid line and a wavy line, respectively. In both structures, a standing wave optical field is formed by upper and lower DBRs sandwiching the active layer 103.

ここで、VCSELにおける光共振器方向のモード体積を議論するための指標としてしばしば用いられる実効共振器長(LEFF)を用いる。LEFFは相対光強度が1/e以上となる領域の幅として定義される。ここで、eは自然対数の底である。また、相対光強度が1/e以上の領域は、積層構造中において上部DBRに属する部分(図2(a)、(b)におけるL1)、活性層に属する部分(同L2)、及び下部DBRに属する部分(同L3)の和として求めている。 Here, the effective resonator length ( LEFF ) often used as an index for discussing the mode volume in the direction of the optical resonator in the VCSEL is used. LEFF is defined as the width of the region where the relative light intensity is 1 / e or more. Here, e is the base of the natural logarithm. Further, a region having a relative light intensity of 1 / e or more includes a portion belonging to the upper DBR (L1 in FIGS. 2A and 2B), a portion belonging to the active layer (L2), and the lower DBR in the stacked structure. As the sum of the parts belonging to (L3).

図2(a)の酸化狭窄型VCSELでは上部DBRおよび下部DBR双方ともAlGaAs/GaAs系の半導体で形成されており、両領域への光フィールドの延伸幅L1とL3は467nmで同程度である。また、活性層を含み、1λの光学膜厚を有する共振器部における光フィールドの幅は308nmであり、実空間におけるLEFFは1242nm程となる。なお、ここで示した酸化狭窄型VCSELの構造は、frが16GHzで、3dB変調帯域は20GHzで、20Gbps以上での高速動作が可能な設計を施した素子のものである。 In the oxidized constriction type VCSEL of FIG. 2A, both the upper DBR and the lower DBR are formed of an AlGaAs / GaAs semiconductor, and the optical field extending widths L1 and L3 to both regions are approximately 467 nm. Also it includes an active layer, the width of the optical field in the resonator portion having an optical thickness of 1λ is 308 nm, L EFF in real space becomes about 1242Nm. The structure of the oxidized constriction type VCSEL shown here is an element which is designed to be capable of high-speed operation at 20 Gbps or more with fr of 16 GHz, a 3 dB modulation band of 20 GHz.

一方、図2(b)のトンネル接合型VCSELでは、下部DBRについては酸化狭窄型VCSELと同様に、AlGaAs/GaAs系の半導体で形成されているため、この領域への光フィールドの延伸幅L3は467nm程度である。一方、上部DBR108はSi/SiOからなる高Δ多層膜が使用されているため光フィールド強度は急激に減少し、その延伸幅L1は55nm程と大幅に短くなっている。活性層、トンネル接合などを含む共振器部における光フィールドの幅L2は3λ/2の光学膜厚であるため、酸化狭窄型よりも長く、463nm程度であり、結果的に本素子におけるLEFFは実空間で984nmとなり、酸化狭窄型VCSELよりも短縮されていることが分かる。なお、ここで示したトンネル接合型VCSELの構造はトンネル接合部の開口径が5μmの素子のもので、このときfrとしては、酸化狭窄型VCSELでは到達しえない23GHzの高い周波数が得られている。また、3dB変調帯域は24GHzで、20Gbps以上での高速動作を確認している。 On the other hand, in the tunnel junction type VCSEL of FIG. 2B, the lower DBR is formed of an AlGaAs / GaAs semiconductor as in the case of the oxide constriction type VCSEL. Therefore, the extension width L3 of the optical field to this region is It is about 467 nm. On the other hand, since the upper DBR 108 uses a high Δ multilayer film made of Si / SiO 2, the optical field intensity rapidly decreases, and the stretch width L1 is significantly shortened to about 55 nm. Active layer, the width L2 of the light field, which is the optical thickness of the 3 [lambda] / 2 in the resonator portion, including a tunnel junction, longer than oxidized confinement type, is about 463 nm, L EFF in consequently this device It turns out that it is 984 nm in real space, and is shortened rather than the oxidation confinement type | mold VCSEL. The structure of the tunnel junction type VCSEL shown here is an element having an opening diameter of the tunnel junction portion of 5 μm. At this time, as a fr, a high frequency of 23 GHz that cannot be reached by the oxidized constriction type VCSEL is obtained. Yes. In addition, the 3 dB modulation band is 24 GHz, and high-speed operation at 20 Gbps or higher has been confirmed.

両構造のLEFF比較を表1にまとめた。ここで、トンネル接合(TJ)型VCSELについては共振器長LCAVITYを2λ及び5λ/2と長くした構造のLEFFもあわせて示した。表1より、トンネル接合型VCSELの共振器長LCAVITYが5λ/2程度と長い構造でもLEFFは1293nm程度と、従来の酸化狭窄型VCSELと同等程度の長さとすることができ、fr=16GHz、変調帯域20GHz、動作速度20Gbps以上が実現可能であることが分かる。 Table 1 summarizes the L EFF comparison of both structures. Here, for the tunnel junction (TJ) type VCSEL, L EFF having a structure in which the resonator length L CAVITY is increased to 2λ and 5λ / 2 is also shown. From Table 1, also L EFF may be on the order 1293Nm, a length of about equivalent to that of the conventional oxide-confinement VCSEL resonator length L CAVITY is 5 [lambda] / 2 degree and long structure of the tunnel junction type VCSEL, fr = 16 GHz It can be seen that a modulation band of 20 GHz and an operation speed of 20 Gbps or more can be realized.

Figure 2009081230
Figure 2009081230

以上の通り、本発明に係るトンネル接合型面発光レーザでは、高ΔDBRによりモード体積を小さくすることができるため、酸化狭窄型VCSELと比較してfrの改善が図られる。   As described above, in the tunnel junction type surface emitting laser according to the present invention, since the mode volume can be reduced by the high ΔDBR, the fr can be improved as compared with the oxidized constriction type VCSEL.

次に、図1に示した面発光レーザ素子の製造方法について、図3(a)〜(d)及び図4(e)〜(g)を参照して説明する。
まず、図3(a)に示すように、n型半導体基板101上に、第1の反射鏡である下部DBR102からトンネル接合層105までの半導体積層構造を、有機金属気相化学堆積法(MOVPE:Metal-Organic Vapor Phase Epitaxy)により形成する。この積層構造は、少なくとも下部DBR102、活性層103、p型スペーサ層104及びトンネル接合層105を備える。素子特性向上のため、傾斜組成層などの付加的半導体層を適宜挿入してもよい。
Next, a method of manufacturing the surface emitting laser element shown in FIG. 1 will be described with reference to FIGS. 3 (a) to 3 (d) and FIGS. 4 (e) to 4 (g).
First, as shown in FIG. 3A, a semiconductor laminated structure from a lower DBR 102 which is a first reflecting mirror to a tunnel junction layer 105 is formed on an n-type semiconductor substrate 101 by metal organic chemical vapor deposition (MOVPE). : Metal-Organic Vapor Phase Epitaxy). This stacked structure includes at least a lower DBR 102, an active layer 103, a p-type spacer layer 104, and a tunnel junction layer 105. In order to improve device characteristics, an additional semiconductor layer such as a gradient composition layer may be appropriately inserted.

次に、図3(b)に示すように、フォトリソグラフィーによりレジストパターンを形成し、電流注入領域A1以外のトンネル接合層105を公知のエッチング手段で除去する。このとき、エッチング深さは30nm程度とするのが好ましい。また、電流注入領域A1の平面形状は、特に限定されないが、例えば、直径3〜10μm程度の円形とすることができる。エッチング工程の後、電流注入領域A1の周辺部に酸素イオン注入により高抵抗化部106を形成する。ここで、高抵抗化部106は、電流注入領域A1の中央を中心として、直径12μmよりも外側の領域とするのが好ましい。   Next, as shown in FIG. 3B, a resist pattern is formed by photolithography, and the tunnel junction layer 105 other than the current injection region A1 is removed by a known etching means. At this time, the etching depth is preferably about 30 nm. Moreover, the planar shape of the current injection region A1 is not particularly limited, but may be a circle having a diameter of about 3 to 10 μm, for example. After the etching step, the high resistance portion 106 is formed by oxygen ion implantation around the current injection region A1. Here, the high resistance increasing portion 106 is preferably a region outside the diameter of 12 μm with the center of the current injection region A1 as the center.

次に、図3(c)に示すように、2回目の結晶成長工程により、Siドープn型GaAsからなるn型スペーサ層107を厚さ0.94μmにて形成する。n型スペーサ層107の形成によって、埋め込みトンネル接合型の電流ブロック構造が形成される。なお、このn型スペーサ層107の厚さは、プラス電極110の形成、アロイ工程によってアロイフロントに発生した結晶欠陥が活性層103に到達しない範囲で必要最小限の厚さとすることが望ましい。我々の検討では活性層103からプラス電極110までの距離D2がおよそ1.0μm以上とすることで十分な信頼性が確保できることを確認した。このときGaAsからなるn型スペーサ層107の厚さは0.94μm程度となる。なお、このn型スペーサ層107の材料を、GaAsではなく、微量のInを添加したInGaAs、InGaP、InGaAsPなどの、より結晶欠陥の増殖しにくい材料に変更することで、このn型スペーサ層107の所要とする厚さを薄くすることが可能である。   Next, as shown in FIG. 3C, an n-type spacer layer 107 made of Si-doped n-type GaAs is formed with a thickness of 0.94 μm by the second crystal growth step. By forming the n-type spacer layer 107, a buried tunnel junction type current blocking structure is formed. The thickness of the n-type spacer layer 107 is desirably set to the minimum necessary within a range in which crystal defects generated on the alloy front due to the formation of the plus electrode 110 and the alloy process do not reach the active layer 103. In our examination, it was confirmed that sufficient reliability can be secured by setting the distance D2 from the active layer 103 to the plus electrode 110 to be approximately 1.0 μm or more. At this time, the thickness of the n-type spacer layer 107 made of GaAs is about 0.94 μm. The material of the n-type spacer layer 107 is changed to a material that is less prone to crystal defects such as InGaAs, InGaP, and InGaAsP to which a small amount of In is added instead of GaAs. It is possible to reduce the required thickness.

次に、図3(d)に示すように、電流注入領域A1及びその周辺におけるn型スペーサ層107に、公知のエッチング手段を用いて凹部112を形成した。このエッチング工程によって、電流注入領域A1及びその周辺部直上ではn型スペーサ層107の厚さはλ/4の光学膜厚とするのが好ましい。なお、この凹部112の底面領域A2は、レーザ発振光に含まれる全ての発振モードがこの凹部112に接触しないように、電流注入領域A1の直径よりも0.5μmから6μm程度大きくなるように形成するのが好ましい。   Next, as shown in FIG. 3D, a recess 112 was formed in the n-type spacer layer 107 in and around the current injection region A1 using a known etching means. By this etching process, it is preferable that the thickness of the n-type spacer layer 107 is set to an optical film thickness of λ / 4 immediately above the current injection region A1 and its peripheral portion. The bottom surface region A2 of the recess 112 is formed to be larger by about 0.5 to 6 μm than the diameter of the current injection region A1 so that all the oscillation modes included in the laser oscillation light do not contact the recess 112. It is preferable to do this.

次に、図4(e)に示すように、n型スペーサ層107の表面に第2の反射鏡である上部DBR108をスパッタリング法により形成したのち、フォトリソ工程と公知のエッチング手段を用いてプラス電極110の内径領域A3を残し、それよりも外周領域の上部DBR108を除した。さらに、フォトリソ工程と公知のエッチング手段を用いて、下部DBR102に達する深さまで外周部の半導体積層構造を除去することでメサを形成した。ここで、メサ形成領域A4の直径は、例えば、22μmとすることができる。   Next, as shown in FIG. 4E, an upper DBR 108 as a second reflecting mirror is formed on the surface of the n-type spacer layer 107 by sputtering, and then a positive electrode is formed using a photolithography process and known etching means. 110 inner diameter region A3 was left, and the upper DBR 108 in the outer peripheral region was removed. Further, the mesa was formed by removing the semiconductor laminated structure at the outer peripheral portion to a depth reaching the lower DBR 102 by using a photolithography process and known etching means. Here, the diameter of the mesa formation region A4 can be set to 22 μm, for example.

その後、図4(f)に示すように、高速動作時に必要となるプラス電極110のパッド容量を低減するための構造であるポリイミド層109を、フォトリソ工程によって形成する。   Thereafter, as shown in FIG. 4F, a polyimide layer 109, which is a structure for reducing the pad capacity of the positive electrode 110 necessary for high-speed operation, is formed by a photolithography process.

最後に、図4(g)に示すように、Au/Ge/Niからなるプラス電極110及びマイナス電極111を形成した後、電極アロイを行うことにより、図1に示す本実施の形態に係る面発光レーザ素子が完成する。電極アロイは、例えば、温度375℃、時間10秒の条件で、行うことができる。   Finally, as shown in FIG. 4G, the positive electrode 110 and the negative electrode 111 made of Au / Ge / Ni are formed, and then electrode alloying is performed, whereby the surface according to the present embodiment shown in FIG. A light emitting laser element is completed. The electrode alloy can be performed, for example, under conditions of a temperature of 375 ° C. and a time of 10 seconds.

なお、本発明にて使用される半導体材料や製造方法は、本実施の形態に限定されるものではない。上部DBR108の成膜には、RFスパッタリング法や反応性スパッタリング法などのスパッタリング法、電子ビーム蒸着法、CVD法(Chemical Vapor Deposition)、イオンビームアシスト堆積法、MOVPE、分子線エピタクシー法(MBE:Molecular Beam Epitaxy)などの方法を用いても良い。   Note that the semiconductor materials and manufacturing methods used in the present invention are not limited to the present embodiment. The upper DBR 108 is formed by sputtering such as RF sputtering or reactive sputtering, electron beam evaporation, CVD (Chemical Vapor Deposition), ion beam assisted deposition, MOVPE, molecular beam epitaxy (MBE). A method such as Molecular Beam Epitaxy) may be used.

下部DBR102も本実施の形態の形態に限定されるものではなく、半導体DBR以外に、半導体基板101のエッチングによる除去と堆積によって、上部DBR108と同様に半導体/誘電体からなる多層膜が用いられても良い。また、水蒸気酸化プロセスを用いて、半導体/水蒸気酸化膜からなるDBRが形成されてもよいし、この水蒸気酸化プロセスを用いて形成した半導体/水蒸気酸化膜からなるDBRに対して、水蒸気酸化膜のみを選択的にエッチングする工程を施して形成した半導体/空隙からなるDBRが用いられていてもよい。また、金属の蒸着などによって、DBR以外の反射鏡が用いられてもよい。   The lower DBR 102 is not limited to the form of the present embodiment. In addition to the semiconductor DBR, a multilayer film made of a semiconductor / dielectric material is used similarly to the upper DBR 108 by removing and depositing the semiconductor substrate 101 by etching. Also good. Further, a DBR composed of a semiconductor / steam oxide film may be formed using a steam oxidation process, or only a steam oxide film is formed with respect to a DBR composed of a semiconductor / steam oxide film formed using this steam oxidation process. A DBR made of a semiconductor / void formed by performing a step of selectively etching the substrate may be used. Further, a reflecting mirror other than the DBR may be used by metal deposition or the like.

また、上部DBR108及び下部DBR102を半導体で構成する場合には、電流を注入しやすくし、素子抵抗を低減するために、バンドギャップの大きな低屈折率層とバンドギャップの小さな高屈折率層との間に、バンド不連続を緩和するための中間バンドギャップを有する障壁緩和層を導入しても良い。   In the case where the upper DBR 108 and the lower DBR 102 are made of semiconductors, a low-refractive index layer having a large band gap and a high-refractive index layer having a small band gap are provided to facilitate current injection and reduce element resistance. A barrier relaxation layer having an intermediate band gap for relaxing the band discontinuity may be introduced therebetween.

第2の実施の形態
図5は、本発明の第2の実施の形態の面発光レーザ素子の断面図である。本実施の形態の素子構造の特徴は、上部反射鏡としてDBRではなく、サブ波長回折格子113が用いられている点にある。サブ波長回折格子113は、半導体/誘電体などからなり、レーザ発振波長よりも短い周期の周期的平面構造を備える。サブ波長回折格子を上部反射鏡として具備した面発光レーザの報告例としては、例えば、非特許文献3が挙げられる。本文献の面発光レーザはAlGaAsと空隙で構成され、レーザの発振波長以下の周期的なストライプ状の平面構造を有するサブ波長回折格子が、活性層上部の半導体層構造中に具備され、さらにその上下層も空隙で構成されている。本報告では、サブ波長回折格子の使用によって、偏光制御された単一モードレーザ発振が得られている。
Second Embodiment FIG. 5 is a cross-sectional view of a surface emitting laser element according to a second embodiment of the present invention. The element structure of the present embodiment is characterized in that a sub-wavelength diffraction grating 113 is used as the upper reflecting mirror instead of DBR. The sub-wavelength diffraction grating 113 is made of a semiconductor / dielectric material or the like and has a periodic planar structure having a period shorter than the laser oscillation wavelength. As a report example of a surface emitting laser provided with a sub-wavelength diffraction grating as an upper reflecting mirror, for example, Non-Patent Document 3 is cited. The surface emitting laser of this document is composed of AlGaAs and a gap, and a sub-wavelength diffraction grating having a periodic stripe-like planar structure below the oscillation wavelength of the laser is provided in the semiconductor layer structure above the active layer. The upper and lower layers are also composed of voids. In this report, polarization-controlled single-mode laser oscillation is obtained by using a subwavelength diffraction grating.

本実施の形態の構造は、上部反射鏡としてDBRの変わりにサブ波長回折格子113が用いられている点以外は第1の実施の形態と同一である。本実施の形態では、第1の実施形態において説明した図4(e)工程としてサブ波長回折格子113が形成される。即ち、図4(d)凹部112形成後の半導体層の表面に、スパッタによって厚さ180nmのSiO及び厚さ80nmのSiからなる層を積層する。その後電子ビーム露光とドライエッチングによって、ストライブ状周期構造からなるサブ波長回折格子113を形成した。このとき、ストライプ状周期構造は幅80nmのSiがピッチ260nmで並んだ構造となっている。本工程によって形成されたSiのストライプ状周期構造は、さらにスパッタリング工程によって厚さ360nmのSiOで埋め込まれることで完成する。その他の工程は第1の実施の形態と同一である。 The structure of the present embodiment is the same as that of the first embodiment except that a sub-wavelength diffraction grating 113 is used instead of DBR as the upper reflecting mirror. In the present embodiment, the sub-wavelength diffraction grating 113 is formed as the step of FIG. 4E described in the first embodiment. That is, a layer made of SiO 2 having a thickness of 180 nm and Si having a thickness of 80 nm is laminated on the surface of the semiconductor layer after forming the recess 112 in FIG. Thereafter, a sub-wavelength diffraction grating 113 having a stripe-like periodic structure was formed by electron beam exposure and dry etching. At this time, the stripe-like periodic structure has a structure in which Si with a width of 80 nm are arranged at a pitch of 260 nm. The Si stripe-like periodic structure formed by this process is completed by being embedded with SiO 2 having a thickness of 360 nm by a sputtering process. Other steps are the same as those in the first embodiment.

なお、高速動作の観点からは、このサブ波長回折格子113を用いた反射鏡は、99%以上の反射率を有するため、DBRを用いた反射鏡よりも膜厚を薄くすることができる。これにより、面発光レーザの実効共振器長LEFFが短縮され、frの増大による高速変調特性のさらなる向上が期待できる。 From the viewpoint of high-speed operation, the reflecting mirror using the sub-wavelength diffraction grating 113 has a reflectivity of 99% or more, and thus can be made thinner than the reflecting mirror using DBR. Thereby, the effective resonator length LEFF of the surface emitting laser is shortened, and further improvement of the high-speed modulation characteristics due to an increase in fr can be expected.

また、素子抵抗及び放熱性の観点での本発明の特長を述べる。サブ波長回折格子を上部反射鏡に用いた関連技術の面発光レーザは、上部電極がp型半導体上に形成されており、周辺の上部p電極から活性層103への電流注入は薄いp型スペーサ層104を介して横方向より行っていたため、キャリア不均一注入による空間的ホールバーニングが生じやすいという問題があった。また、素子抵抗の増大も大きな問題となる。さらに、素子抵抗の増大によって発熱量も増大するが、サブ波長回折格子は通常熱抵抗が大きく放熱性の悪い誘電体や空気などを構造中に具備するため、廃熱が効率的に行えないことが問題となる。この放熱性の悪さによって活性層温度が上昇し、素子利得の低下をもたらす。以上の問題のために、サブ波長回折格子と上部p電極を有する関連技術の電流注入型の面発光レーザでは、本質的に20Gbpsを越える高速動作を実現することは極めて困難である。本実施の形態では、トンネル接合層105によるキャリアの変換によって、素子抵抗が低く、キャリア不均一注入も発生しにくいn型スペーサ層107の上にサブ波長回折格子113を形成することで、サブ波長回折格子113の形成に起因する素子抵抗、熱抵抗の増大の問題を回避することが可能である。   The features of the present invention from the viewpoint of element resistance and heat dissipation will be described. In a related art surface emitting laser using a sub-wavelength diffraction grating as an upper reflecting mirror, an upper electrode is formed on a p-type semiconductor, and current injection from the peripheral upper p electrode to the active layer 103 is a thin p-type spacer. Since it was performed from the lateral direction through the layer 104, there was a problem that spatial hole burning due to non-uniform carrier injection was likely to occur. In addition, an increase in element resistance is a serious problem. In addition, although the amount of heat generation increases as the element resistance increases, the sub-wavelength diffraction grating usually has a large thermal resistance and poor heat dissipation, so the waste heat cannot be efficiently generated. Is a problem. Due to this poor heat dissipation, the active layer temperature rises, causing a reduction in device gain. Due to the above problems, it is extremely difficult to realize a high-speed operation exceeding 20 Gbps by the current injection type surface emitting laser of the related art having the sub-wavelength diffraction grating and the upper p-electrode. In the present embodiment, the sub-wavelength diffraction grating 113 is formed on the n-type spacer layer 107 that has a low element resistance and is unlikely to generate non-uniform carrier injection due to carrier conversion by the tunnel junction layer 105, so that the sub-wavelength It is possible to avoid the problem of increase in element resistance and thermal resistance due to the formation of the diffraction grating 113.

以上述べたとおり、本実施の形態に係るトンネル接合型面発光レーザによれば、DBRを用いたトンネル接合型面発光レーザに比べ、さらなる高速特性が期待できる。   As described above, according to the tunnel junction type surface emitting laser according to the present embodiment, higher speed characteristics can be expected as compared with the tunnel junction type surface emitting laser using DBR.

本発明の面発光レーザ素子は、例えば、超高速計算機などの光インターコネクションに適用することができる。   The surface emitting laser element of the present invention can be applied to optical interconnection such as an ultrahigh speed computer.

第1の実施の形態に係る面発光レーザ素子の構造を模式的に示した部分断面図である。It is the fragmentary sectional view which showed typically the structure of the surface emitting laser element which concerns on 1st Embodiment. 第1の実施の形態に係る面発光レーザ素子及び酸化狭窄型面発光レーザにおける光共振器方向の光フィールド分布を示すグラフである。4 is a graph showing an optical field distribution in the direction of an optical resonator in the surface emitting laser element and the oxidized confined surface emitting laser according to the first embodiment. 第1の実施の形態に係る面発光レーザ素子の製造工程を模式的に示した部分断面図である。It is the fragmentary sectional view which showed typically the manufacturing process of the surface emitting laser element which concerns on 1st Embodiment. 第1の実施の形態に係る面発光レーザ素子の製造工程を模式的に示した部分断面図である。It is the fragmentary sectional view which showed typically the manufacturing process of the surface emitting laser element which concerns on 1st Embodiment. 第2の実施の形態に係る面発光レーザ素子の構造を模式的に示した部分断面図である。It is the fragmentary sectional view which showed typically the structure of the surface emitting laser element which concerns on 2nd Embodiment. 本発明に関連する面発光レーザ素子の構造を模式的に示した部分断面図である。It is the fragmentary sectional view which showed typically the structure of the surface emitting laser element relevant to this invention. 本発明に関連する素子の信頼性について示す実験データである。It is an experimental data shown about the reliability of the element relevant to this invention.

符号の説明Explanation of symbols

101 半導体基板
102 下部DBR
103 活性層
104 p型スペーサ層
105 トンネル接合層
106 高抵抗化部
107 n型スペーサ層
108 上部DBR
109 ポリイミド層
110 プラス電極
111 マイナス電極
112 凹部
113 サブ波長回折格子
A1 電流注入領域
A2 凹部底面領域
A3 プラス電極内径領域
A4 メサ形成領域
101 Semiconductor substrate 102 Lower DBR
103 active layer 104 p-type spacer layer 105 tunnel junction layer 106 high resistance portion 107 n-type spacer layer 108 upper DBR
109 Polyimide layer 110 Plus electrode 111 Negative electrode 112 Concave 113 Subwavelength diffraction grating A1 Current injection region A2 Concave bottom surface region A3 Positive electrode inner diameter region A4 Mesa formation region

Claims (13)

半導体基板と、
前記半導体基板上に形成された第1の反射鏡と、
前記第1の反射鏡上に形成された活性層と、
前記活性層上に形成されたトンネル接合層と、
前記トンネル接合層を覆う第1導電型の半導体スペーサ層と、
前記第1導電型の半導体スペーサ層上であって、前記トンネル接合層の直上領域に形成された第2の反射鏡と、
前記第1導電型の半導体スペーサ層上であって、前記第2の反射鏡の周辺に形成された第1の電極と、
前記活性層よりも下の層と電気的に接続された第2の電極とを備える面発光レーザであって、
前記トンネル接合層の直上領域における前記第1導電型の半導体スペーサ層の厚さが、前記第1の電極の直下領域における前記第1導電型の半導体スペーサ層の厚さよりも薄いことを特徴とする面発光レーザ。
A semiconductor substrate;
A first reflecting mirror formed on the semiconductor substrate;
An active layer formed on the first reflector;
A tunnel junction layer formed on the active layer;
A first conductivity type semiconductor spacer layer covering the tunnel junction layer;
A second reflecting mirror formed on the semiconductor spacer layer of the first conductivity type and in a region immediately above the tunnel junction layer;
A first electrode formed on a semiconductor spacer layer of the first conductivity type and around the second reflecting mirror;
A surface-emitting laser comprising a second electrode electrically connected to a layer below the active layer,
The thickness of the first conductivity type semiconductor spacer layer in a region immediately above the tunnel junction layer is smaller than the thickness of the first conductivity type semiconductor spacer layer in a region immediately below the first electrode. Surface emitting laser.
前記第1導電型の半導体スペーサ層が、前記トンネル接合層の直上領域において、当該トンネル接合層側に窪んだ凹形状であることを特徴とする請求項1に記載の面発光レーザ。   2. The surface emitting laser according to claim 1, wherein the semiconductor spacer layer of the first conductivity type has a concave shape that is recessed toward the tunnel junction layer in a region immediately above the tunnel junction layer. 前記第1の電極がアロイ電極であることを特徴とする請求項1又は請求項2に記載の面発光レーザ。   The surface emitting laser according to claim 1 or 2, wherein the first electrode is an alloy electrode. 前記第1の電極と前記活性層の中心面との間の、前記半導体基板に垂直な方向の距離が、少なくとも1.0μm以上であることを特徴とする請求項1〜3のいずれか一項に記載の面発光レーザ。   The distance in the direction perpendicular to the semiconductor substrate between the first electrode and the center plane of the active layer is at least 1.0 μm or more. A surface emitting laser according to claim 1. 前記トンネル接合層の形成領域における前記第1及び第2反射鏡間の距離が、光学膜厚5λ/2(ただし、λはレーザ発振波長)以下であることを特徴とする請求項1〜4のいずれか一項に記載の面発光レーザ。   The distance between the first and second reflecting mirrors in the tunnel junction layer formation region is an optical film thickness of 5λ / 2 (where λ is a laser oscillation wavelength) or less. The surface emitting laser according to any one of the above. 前記トンネル接合層の形成領域における前記第1導電型の半導体スペーサ層の厚さのばらつきが、光学膜厚λ/10(ただし、λはレーザ発振波長)以下であることを特徴とする請求項1〜5のいずれか一項に記載の面発光レーザ。   2. The variation in thickness of the first conductivity type semiconductor spacer layer in the formation region of the tunnel junction layer is less than or equal to an optical film thickness λ / 10 (where λ is a laser oscillation wavelength). The surface emitting laser as described in any one of -5. 前記第1及び第2の反射鏡のうちの少なくとも一方に、半導体層と誘電体層との積層構造又は半導体層中に空隙の周期構造を備える分布ブラッグ反射鏡を用いたことを特徴とする請求項1〜6のいずれか一項に記載の面発光レーザ。   A distributed Bragg reflector having a laminated structure of a semiconductor layer and a dielectric layer or a periodic structure of voids in the semiconductor layer is used as at least one of the first and second reflectors. Item 7. The surface emitting laser according to any one of Items 1 to 6. 前記第1及び第2の反射鏡のうちの少なくとも一方に、サブ波長回折格子を用いたことを特徴とする請求項1〜7のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to claim 1, wherein a sub-wavelength diffraction grating is used for at least one of the first and second reflecting mirrors. 前記活性層と前記トンネル接合層との間に第2導電型の半導体スペーサ層を備えることを特徴とする請求項1〜8のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to claim 1, further comprising a second conductivity type semiconductor spacer layer between the active layer and the tunnel junction layer. 前記半導体基板がGaとAsを含む化合物半導体混晶基板であることを特徴とする請求項1〜9のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to any one of claims 1 to 9, wherein the semiconductor substrate is a compound semiconductor mixed crystal substrate containing Ga and As. 前記第1導電型の半導体スペーサ層の少なくとも一部にInを含む半導体層が含まれることを特徴とする請求項1〜10のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to claim 1, wherein a semiconductor layer containing In is included in at least a part of the first conductivity type semiconductor spacer layer. 前記活性層を構成する半導体量子井戸構造の井戸層がInGaAs半導体混晶であることを特徴とする請求項1〜11のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to any one of claims 1 to 11, wherein the well layer of the semiconductor quantum well structure constituting the active layer is an InGaAs semiconductor mixed crystal. 発振波長が1.0μmから1.34μmであることを特徴とする請求項1〜12のいずれか一項に記載の面発光レーザ。   The surface emitting laser according to claim 1, wherein the oscillation wavelength is 1.0 μm to 1.34 μm.
JP2007248565A 2007-09-26 2007-09-26 Surface emitting laser Expired - Fee Related JP5029254B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007248565A JP5029254B2 (en) 2007-09-26 2007-09-26 Surface emitting laser
US12/237,048 US20090080488A1 (en) 2007-09-26 2008-09-24 Surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248565A JP5029254B2 (en) 2007-09-26 2007-09-26 Surface emitting laser

Publications (2)

Publication Number Publication Date
JP2009081230A true JP2009081230A (en) 2009-04-16
JP5029254B2 JP5029254B2 (en) 2012-09-19

Family

ID=40471530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248565A Expired - Fee Related JP5029254B2 (en) 2007-09-26 2007-09-26 Surface emitting laser

Country Status (2)

Country Link
US (1) US20090080488A1 (en)
JP (1) JP5029254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155143A (en) * 2010-01-27 2011-08-11 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
JP2014029979A (en) * 2012-06-28 2014-02-13 Ricoh Co Ltd Surface light emitting laser, surface light emitting laser array, optical scanner, and image forming apparatus
JP2015035542A (en) * 2013-08-09 2015-02-19 ソニー株式会社 Light emitting element and manufacturing method of the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066318A1 (en) * 2011-11-01 2013-05-10 Hewlett-Packard Development Company, L.P. Direct modulated laser
US10366883B2 (en) 2014-07-30 2019-07-30 Hewlett Packard Enterprise Development Lp Hybrid multilayer device
US10658177B2 (en) 2015-09-03 2020-05-19 Hewlett Packard Enterprise Development Lp Defect-free heterogeneous substrates
US11088244B2 (en) 2016-03-30 2021-08-10 Hewlett Packard Enterprise Development Lp Devices having substrates with selective airgap regions
US10193634B2 (en) 2016-09-19 2019-01-29 Hewlett Packard Enterprise Development Lp Optical driver circuits
US10381801B1 (en) 2018-04-26 2019-08-13 Hewlett Packard Enterprise Development Lp Device including structure over airgap
DE102021132083A1 (en) * 2021-12-06 2023-06-07 Trumpf Photonic Components Gmbh VCSEL, transmitter for transmitting optical signal pulses with a VCSEL, method for operating a VCSEL and method for manufacturing a VCSEL

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063657A (en) * 2002-07-26 2004-02-26 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, light transmitting module, light transmitting/receiving module and optical communication system
JP2005191343A (en) * 2003-12-26 2005-07-14 Ricoh Co Ltd Vertical cavity surface emitting laser, manufacturing method thereof, and optical transmission system
JP2005223351A (en) * 1995-12-27 2005-08-18 Hitachi Ltd Surface emitting semiconductor laser, optical transceiving module using the laser, and parallel information processing unit using the laser
JP2005243743A (en) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> Long wavelength band surface emission semiconductor laser
WO2005096463A1 (en) * 2004-03-30 2005-10-13 Nec Corporation Surface-emitting laser and its driving method
WO2006100975A1 (en) * 2005-03-23 2006-09-28 Nec Corporation Tunnel junction light emitting element
JP2007235090A (en) * 2006-02-03 2007-09-13 Ricoh Co Ltd Surface light emitting laser element, surface light emitting laser array having same, image forming device having surface light emitting laser array, optical pick-up device having surface light emitting laser element or surface light emitting laser array, optical transmission module having surface light emitting laser element or surface light emitting laser array, optical transmission/receiption module having surface light emitting laser element or surface light emitting laser array and optical communications system having surface light emitting laser element or surface light emitting laser array
JP2008147531A (en) * 2006-12-13 2008-06-26 Opnext Japan Inc Surface light emitting semiconductor laser element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223351A (en) * 1995-12-27 2005-08-18 Hitachi Ltd Surface emitting semiconductor laser, optical transceiving module using the laser, and parallel information processing unit using the laser
JP2004063657A (en) * 2002-07-26 2004-02-26 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, light transmitting module, light transmitting/receiving module and optical communication system
JP2005191343A (en) * 2003-12-26 2005-07-14 Ricoh Co Ltd Vertical cavity surface emitting laser, manufacturing method thereof, and optical transmission system
JP2005243743A (en) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> Long wavelength band surface emission semiconductor laser
WO2005096463A1 (en) * 2004-03-30 2005-10-13 Nec Corporation Surface-emitting laser and its driving method
WO2006100975A1 (en) * 2005-03-23 2006-09-28 Nec Corporation Tunnel junction light emitting element
JP2007235090A (en) * 2006-02-03 2007-09-13 Ricoh Co Ltd Surface light emitting laser element, surface light emitting laser array having same, image forming device having surface light emitting laser array, optical pick-up device having surface light emitting laser element or surface light emitting laser array, optical transmission module having surface light emitting laser element or surface light emitting laser array, optical transmission/receiption module having surface light emitting laser element or surface light emitting laser array and optical communications system having surface light emitting laser element or surface light emitting laser array
JP2008147531A (en) * 2006-12-13 2008-06-26 Opnext Japan Inc Surface light emitting semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155143A (en) * 2010-01-27 2011-08-11 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
JP2014029979A (en) * 2012-06-28 2014-02-13 Ricoh Co Ltd Surface light emitting laser, surface light emitting laser array, optical scanner, and image forming apparatus
JP2015035542A (en) * 2013-08-09 2015-02-19 ソニー株式会社 Light emitting element and manufacturing method of the same

Also Published As

Publication number Publication date
JP5029254B2 (en) 2012-09-19
US20090080488A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5029254B2 (en) Surface emitting laser
US5513202A (en) Vertical-cavity surface-emitting semiconductor laser
US6411638B1 (en) Coupled cavity anti-guided vertical-cavity surface-emitting laser
US7288421B2 (en) Method for forming an optoelectronic device having an isolation layer
US6618414B1 (en) Hybrid vertical cavity laser with buried interface
KR20080049705A (en) Surface emitting optical devices
US20050063440A1 (en) Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same
CN211929898U (en) Vertical cavity surface emitting laser device
US20050265415A1 (en) Laser diode and method of manufacture
JP4177262B2 (en) Asymmetric distributed Bragg reflector for vertical cavity surface emitting lasers
US7881358B2 (en) Surface emitting laser
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
US20110002353A1 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
US6396865B1 (en) Vertical-cavity surface-emitting lasers with antiresonant reflecting optical waveguides
US7154927B2 (en) Surface emitting semiconductor laser and communication system using the same
JPWO2007135772A1 (en) Light emitting element
JPWO2008114707A1 (en) Surface emitting semiconductor laser
JP2003347670A (en) Surface-emission semiconductor laser element and laser array
JP5023595B2 (en) Surface emitting laser element
JP4224981B2 (en) Surface emitting semiconductor laser device and method for manufacturing the same
JP2009094317A (en) Surface-emitting laser
JP2008098234A (en) Surface light emitting laser element
CN112290379B (en) VCSEL chip and manufacturing method thereof
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
TW202308247A (en) Reflector for vcsel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees