WO2019187666A1 - Semiconductor laser and inspection device - Google Patents

Semiconductor laser and inspection device Download PDF

Info

Publication number
WO2019187666A1
WO2019187666A1 PCT/JP2019/004238 JP2019004238W WO2019187666A1 WO 2019187666 A1 WO2019187666 A1 WO 2019187666A1 JP 2019004238 W JP2019004238 W JP 2019004238W WO 2019187666 A1 WO2019187666 A1 WO 2019187666A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light emitting
semiconductor
layers
Prior art date
Application number
PCT/JP2019/004238
Other languages
French (fr)
Japanese (ja)
Inventor
影山健生
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2019187666A1 publication Critical patent/WO2019187666A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Definitions

  • the present invention relates to a semiconductor laser and an inspection apparatus, for example, an optically pumped surface emitting laser and an inspection apparatus.
  • the surface emitting laser has an active layer provided on a substrate and a pair of reflective layers sandwiching the active layer (for example, Patent Document 1). It is known to arrange an active layer so that the active layer has a plurality of active layers and becomes an antinode of a standing wave generated between a pair of reflective layers (for example, Patent Document 2).
  • the present invention has been made in view of the above problems, and aims to improve laser characteristics.
  • the present invention provides a first reflective layer that receives excitation light and reflects emitted light, a second reflective layer that is provided in the stacking direction of the first reflective layer and reflects the emitted light, and the first reflective layer in the stacking direction.
  • a second active layer having a second band gap energy greater than the first band gap energy of the first semiconductor layer, the active layer being provided between the active layer and the first semiconductor layer of the active layer adjacent to the active layer.
  • a semiconductor layer wherein a width of the active layer in the plurality of active layers in the stacking direction becomes smaller as going to the first reflective layer side.
  • the energy of the excitation light may be larger than the first band gap energy and smaller than the second band gap energy.
  • a plurality of antinodes of standing waves generated between the first reflective layer and the second reflective layer may be positioned in the plurality of active layers, respectively.
  • the light emitting layer may be a quantum well layer or a quantum dot layer.
  • each of the plurality of active layers may have a plurality of light emitting layers.
  • any one of the first reflective layer and the second reflective layer changes in the stacking direction with respect to the other of the first reflective layer and the second reflective layer, whereby the wavelength of the emitted light is increased. It can be configured to change.
  • the present invention is an inspection apparatus including the semiconductor laser.
  • the laser characteristics can be improved.
  • FIG. 1 is a cross-sectional view of a semiconductor laser in Example 1.
  • FIG. FIG. 2 is a cross-sectional view of the resonance layer in the first embodiment.
  • FIG. 3 is a cross-sectional view of the resonance layer in Comparative Example 1.
  • 4A and 4B are diagrams showing the excitation light intensity I (z), the standing wave light intensity, and the conduction band bottom energy Ec with respect to the position z in Comparative Example 1.
  • FIGS. 5A and 5B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the first embodiment.
  • FIG. 6 is a diagram illustrating the number of carriers excited in the lengths L1 to L3 in Comparative Example 1 and Example 1.
  • FIG. 7 is a schematic diagram showing the emission intensity of the semiconductor laser with respect to the excitation light intensity in Comparative Example 1 and Example 1.
  • FIG. 8 is a cross-sectional view of the semiconductor laser according to the second embodiment.
  • 9A and 9B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in Comparative Example 2.
  • FIG. 10A and FIG. 10B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the second embodiment.
  • FIG. 11 is a diagram illustrating the number of carriers excited in the lengths L1 to L3 in Comparative Example 2 and Example 2.
  • FIG. 12 is a block diagram of an inspection apparatus according to the third embodiment.
  • FIG. 1 is a cross-sectional view of a semiconductor laser in Example 1.
  • the semiconductor laser is a photoexcited surface emitting laser.
  • a reflective layer 12, a resonance layer 14, and a reflective layer 16 are sequentially provided on a substrate 10.
  • the substrate 10 is a semiconductor layer such as a GaAs layer.
  • the reflective layer 12 is formed by alternately laminating a low refractive index layer 12a and a high refractive index layer 12b having a higher refractive index than the low refractive index layer 12a.
  • the reflective layer 16 is formed by alternately laminating a low refractive index layer 16a and a high refractive index layer 16b having a higher refractive index than the low refractive index layer 16a.
  • the resonance layer 14 When the excitation light 52 is irradiated to the resonance layer 14, the resonance layer 14 emits light.
  • the reflective layers 12 and 16 reflect the light emitted from the resonant layer 14.
  • the optical length between the upper surface of the reflective layer 12 and the lower surface of 16 is set to 0.5 ⁇ natural number times the wavelength ⁇ of light.
  • a standing wave is generated in the resonance layer 14 and light resonates in the resonance layer 14.
  • the reflectance of the reflective layer 16 slightly smaller than 1, the laser light 50 is emitted from the upper surface of the reflective layer 16.
  • the low refractive index layers 12a and 16a are, for example, an Al 0.9 Ga 0.1 As layer having a thickness of 87 nm, and the high refractive index layers 12b and 16b are, for example, a GaAs layer having a thickness of 75 nm.
  • the low refractive index layer 12a and the high refractive index layer 12b are, for example, 35 pairs.
  • the low refractive index layer 16a and the high refractive index layer 16b are, for example, 22 pairs.
  • the reflective layer 16 may be a dielectric DBR (Distributed Bragg Reflector). In the dielectric DBR, for example, a silicon oxide film can be used as the low refractive index layer, and a silicon nitride film or a titanium oxide film can be used as the high refractive index layer.
  • FIG. 2 is a cross-sectional view of the resonance layer in the first embodiment.
  • the resonance layer 14 has a plurality of active layers 20.
  • the active layer 20 has three layers.
  • Each of the active layers 20 includes a light emitting layer 22 and a semiconductor layer 24.
  • the active layer 20 is sandwiched between the semiconductor layers 26.
  • Three light emitting layers 22 are provided in the semiconductor layer 24.
  • the three light emitting layers 22 form light emitting layer groups 21a to 21c.
  • the light emitting layer 22 functions as a quantum well layer
  • the semiconductor layer 24 functions as a barrier layer of the quantum well.
  • the light emitting layer 22 may be a quantum dot layer.
  • the upper surface of the resonance layer 14 is 0, and the lower direction is the z direction.
  • the band gap energy of the semiconductor layer 26 is larger than the band gap energy of the semiconductor layer 24.
  • the band gap energy of the semiconductor layer 26 may be lower than the excitation light energy, and the band gap energy of each semiconductor layer 26 may be different from each other.
  • the band gap energy of the light emitting layer 22 is smaller than the band gap energy of the semiconductor layer 24.
  • Carriers are excited by excitation light in the semiconductor layer 24 and the light emitting layer 22. As carriers are recombined in the light emitting layer 22, light is emitted from the light emitting layer 22. As the emitted light resonates between the reflective layers 12 and 16, stimulated emission occurs from the light emitting layer 22.
  • the semiconductor layer 24 is, for example, a GaAs layer
  • the semiconductor layer 26 is, for example, an Al 0.2 Ga 0.8 As layer.
  • the light emitting layer 22 is, for example, an In 0.28 Ga 0.72 As layer.
  • the semiconductor layers 24 and 26 are Al x Ga 1-x As layers (0 ⁇ x ⁇ 1). At this time, x of the semiconductor layer 26 is made larger than x of the semiconductor layer 24. Thereby, the band gap energy of the semiconductor layer 26 can be made larger than the band gap energy of the semiconductor layer 24.
  • the light emitting layer 22 can be made into a quantum well layer by making the light emitting layer 22 into InGaAs or InAs.
  • FIG. 3 is a cross-sectional view of the resonance layer in the first comparative example.
  • the semiconductor layer 26 is not provided, and the light emitting layer 22 is provided in the semiconductor layer 24.
  • Other configurations of the resonance layer 14 are the same as those in the first embodiment, and the description thereof is omitted.
  • FIG. 4 (a) and 4 (b) are diagrams showing excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to position z in Comparative Example 1.
  • FIG. The excitation light intensity I (z) indicates the light intensity distribution in the resonance layer 14 of the excitation light 52.
  • the standing wave light intensity indicates the light intensity of the standing wave in the resonance layer 14 generated between the reflective layers 12 and 16.
  • the conduction band bottom energy Ec indicates the energy of the bottom of the conduction band in the resonance layer 14.
  • the standing wave light intensity and the conduction band bottom energy Ec are expressed in arbitrary units (au).
  • the light emitting layer groups 21a to 21c are provided near the antinodes of the standing wave.
  • the light emitting layer 22 is an In 0.28 Ga 0.72 As layer having a thickness of 7 nm
  • the barrier layer between the light emitting layers 22 is a GaAs layer having a thickness of 15 nm.
  • the carrier is excited by the excitation light.
  • the energy of the excitation light is made larger than the band gap energy of the semiconductor layer 24. Therefore, the wavelength of the excitation light is set to 808 nm, which is shorter than the wavelength corresponding to the band gap energy of GaAs.
  • the excitation light is attenuated in the semiconductor layer 24. For this reason, the excitation light intensity distribution in the resonance layer 14 decreases as the position z increases. For this reason, the light emitting layer group 21c having a large position z has fewer carriers contributing to light emission than the light emitting layer group 21a. Thus, the carriers are unbalanced by the light emitting layer groups 21a to 21c.
  • FIGS. 5A and 5B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the first embodiment.
  • the band gap energy of the semiconductor layers 26 a to 26 c is larger than the band gap energy of the semiconductor layer 24.
  • From the semiconductor layer 26a 26c is Al 0.2 Ga 0.8 As layer.
  • the energy of the excitation light is lower than the band gap energy of the semiconductor layers 26a to 26c. Therefore, the excitation light passes through the semiconductor layers 26a to 26c.
  • the thicknesses of the semiconductor layers 26a to 26c are 39 nm, 5 nm, and 5 nm, respectively.
  • the excitation light intensity I (z) is as shown in FIG.
  • the number of carriers contributing to the light emission of each light emitting layer group 21a to 21c was calculated.
  • a semiconductor layer that serves as a carrier barrier is not shown under the active layer 20 including the light emitting layer group 21c, but the reflective layer 12 in FIG. 1 serves as a carrier barrier.
  • Equation 1 The number of carriers Nn excited within the length Ln (n is a natural number) is expressed by Equation 1.
  • zn is the position of z at the end of the n-th semiconductor layer 26 where z is larger.
  • FIG. 6 is a diagram showing the number of carriers excited in the lengths L1 to L3 in Comparative Example 1 and Example 1.
  • the number of carriers was calculated by simulation. As shown in FIG. 6, in Comparative Example 1, the number of carriers is not uniform from L1 to L3. In Example 1, the number of carriers is uniform from L1 to L3. This is because L1 in the region where the excitation light intensity I (z) is large is shorter than L3 in the region where the excitation light intensity I (z) is small.
  • FIG. 7 is a schematic diagram showing the emission intensity of the semiconductor laser with respect to the excitation light intensity in Comparative Example 1 and Example 1.
  • the light emission intensity characteristic (LL characteristic) with respect to the excitation light intensity is nonlinear. Moreover, even if the excitation light intensity is increased, the emission intensity is saturated and does not increase so much.
  • Comparative Example 1 when the excitation light intensity increases, only the light emitting layer group 21a having a large number of carriers contributes to oscillation. On the other hand, in the light emitting layer groups 21b and 21c, the carrier density does not reach the threshold carrier density causing oscillation. Thus, in the light emitting layer groups 21b and 21c, carriers are consumed as spontaneous emission light or heat without contributing to laser oscillation. Further, when the carrier density of the light emitting layer group 21a reaches the threshold carrier density, the light emitting layer groups 21b and 21c do not reach the carrier density that is transparent to the oscillation light. Thus, the light emitting layer groups 21b and 21c function as an absorption layer for oscillation light.
  • the optical output of the semiconductor laser is greatly limited.
  • the excitation intensity is greatly increased.
  • the LL characteristic is saturated, and a desired LL characteristic cannot be obtained.
  • Example 1 the number of carriers contributing to the light emission of the light emitting layer groups 21a to 21c is almost uniform. Thereby, the LL characteristic becomes linear. This is because light emission does not saturate in each of the light emitting layer groups 21a to 21c even when the excitation light intensity increases. That is, in Example 1, when the light emitting layer groups 21a to 21c are irradiated with excitation light having the same intensity as in Comparative Example 1, the number of carriers generated in Comparative Example 1 is small. For this reason, the excitation light intensity, which is a threshold value at which the oscillation light oscillates in the light emitting layer groups 21a to 21c, is smaller than that of the first comparative example.
  • the conversion efficiency from the excitation light to the oscillation light is greatly improved as compared with Comparative Example 1.
  • the amount of heat generated in the light emitting layer groups 21a to 21c is reduced, so that the LL characteristics are less likely to be saturated.
  • the maximum light output can be improved.
  • the carrier densities of the light emitting layer groups 21a to 21c are uniform. Thereby, the linearity of the Ll characteristic is improved and the kink disappears.
  • the LL characteristics can be improved.
  • FIG. 8 is a cross-sectional view of the semiconductor laser in Example 2.
  • an air gap 18 is provided between the resonance layer 14 and the reflection layer 16.
  • the reflective layer 16 is supported on the resonance layer 14 by the support layer 17.
  • the wavelength of the laser light 50 is variable.
  • the wavelength of the laser beam 50 can be set to 1050 nm ⁇ 50 nm.
  • the uppermost layer and the lowermost layer of the reflective layer 16 are the high refractive index layer 16b so that the low refractive index layer 16a is not exposed to the air.
  • a layer made of gas, liquid, vacuum, or solid may be provided instead of the air gap 18.
  • FIGS. 9A and 9B are diagrams showing the excitation light intensity I (z), the standing wave light intensity, and the conduction band bottom energy Ec with respect to the position z in Comparative Example 2.
  • FIG. As shown in FIGS. 9A and 9B, the thickness of the resonance layer 14 is 2.25 ⁇ .
  • the thickness of the air gap 18 is 1.25 ⁇ . If the interface between the air gap 18 and the resonance layer 14 is a standing wave node, the resonance layer 14 above the light emitting layer group 21a becomes 1 / 4 ⁇ thick. Thereby, the length L1 becomes 300 nm.
  • the other configurations are the same as those in FIGS. 4A to 4B of the first comparative example.
  • FIGS. 10A and 10B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in Example 2.
  • FIG. 10A and 10B the semiconductor layer 26a becomes 1 / 4 ⁇ thick. The thickness of the semiconductor layer 26a is 114 nm.
  • Other configurations are the same as those of the first comparative example shown in FIGS. 5A to 5B. Similar to Comparative Example 1 and Example 1, the number of carriers excited within the lengths L1 to L3 was calculated.
  • FIG. 11 is a diagram showing the number of carriers excited in the lengths L1 to L3 in Comparative Example 2 and Example 2. As shown in FIG. 11, in Example 2, the number of carriers is uniform from L1 to L3 compared to Comparative Example 2. As in the second embodiment, the wavelength of the semiconductor laser may be variable.
  • the reflective layer 16 (first reflective layer) reflects the emitted light that the excitation light 52 enters and the light emitting layer 22 emits.
  • the reflective layer 12 (second reflective layer) is provided in the stacking direction of the reflective layer 16 and reflects the emitted light.
  • the plurality of active layers 20 are sandwiched between the reflective layers 12 and 16 in the stacking direction, and each include a light emitting layer 22 and a semiconductor layer 24 (first semiconductor layer) sandwiching the light emitting layer 22 in the stacking direction.
  • the semiconductor layer 26 (second semiconductor layer) is provided between adjacent active layers 20 among the plurality of active layers 20.
  • the semiconductor layer 26 has a second band gap energy that is greater than the first band gap energy of the semiconductor layer 24.
  • the width (length L1 to L3) in the stacking direction of the active layers 20 in the plurality of active layers 20 becomes smaller as going to the reflective layer 16 side.
  • the number of carriers excited in the semiconductor layer 24 can be made substantially uniform between the active layers 20. Therefore, laser characteristics such as LL characteristics can be improved.
  • the energy of the excitation light 52 is larger than the first band gap energy of the semiconductor layer 24 and smaller than the second band gap energy of the semiconductor layer 26. Thereby, the excitation light 52 is hardly attenuated in the semiconductor layer 26. Therefore, the light output can be improved.
  • the light emitting layer 22 is a quantum well layer or a quantum dot layer. Thereby, the light emitting layer 22 can emit light efficiently.
  • the quantum dot layer is a layer in which a plurality of semiconductor dots such as InAs or InGaAs whose band gap energy is smaller than that of the semiconductor layer 24 are provided in the semiconductor layer 24.
  • the light emitting layer 22 in each active layer 20 may be a single layer.
  • Each of the plurality of active layers 20 may have a plurality of light emitting layers 22. Thereby, the light emitting layer groups 21a to 21c can emit light efficiently.
  • the number of light emitting layer groups and the number of light emitting layers in the light emitting layer group can be arbitrarily set.
  • the antinodes of a plurality of standing waves generated between the reflective layers 12 and 16 are located in the plurality of active layers 20 respectively. Thereby, the light emitting layer 22 can emit light efficiently. It is preferable that at least one of the light emitting layers 22 in each of the light emitting layer groups 21a to 21c is located at the antinode of the standing wave.
  • the distance between the upper end of the reflective layer 12 and the lower end of the reflective layer 16 is 2 ⁇ and 3.5 ⁇ , respectively, but can be arbitrarily set within a range of a natural number multiple of ⁇ / 2.
  • Example 2 when one of the reflective layers 12 and 16 changes in the stacking direction with respect to the other, the wavelength of the emitted light changes. Thereby, the wavelength of the laser beam 50 becomes variable.
  • Example 3 is an example of an OCT (Optical Coherence Tomography) apparatus as an inspection apparatus using the wavelength tunable laser apparatus according to Example 2.
  • FIG. 12 is a block diagram of an inspection apparatus according to the third embodiment. As shown in FIG. 12, the light emitted from the light source 60 that sweeps the wavelength (or the wavelength is variable) is divided into reflected light and transmitted light by the half mirror 62. The reflected light is reflected by the mirror 64 and becomes reference light. The reference light passes through the half mirror 62. The transmitted light that has passed through the half mirror 62 is applied to the object 68 and becomes signal light.
  • the object 68 is, for example, a body part, for example, an eye. The signal light is reflected by the half mirror 62.
  • the detector 66 detects the light intensity at which the signal light and the reference light interfere. The light source 60 can change the wavelength of light.
  • the processing unit 65 generates an optical coherent tomography based on the signal from the detector 66.
  • the inspection apparatus may include the semiconductor laser of Example 1 or 2.

Abstract

This semiconductor laser is characterized in that: a plurality of active layers are provided, each including a first reflection layer wherein an excitation light enters and an emission light is reflected, a second reflection layer provided in the layering direction of the first reflection layer and reflecting the emission light, a light-emitting layer sandwiched in the layering direction between the first reflection layer and the second reflection layer, layered in the layering direction and emitting the emission light caused by the excitation light, and first semiconductor layers sandwiching the light-emitting layer in the layering direction; a second semiconductor layer is provided between the first semiconductor layers of adjacent active layers of the plurality of active layers, and has a second band gap energy that is greater than the first band gap energy of first semiconductor layers; and, the closer to the first reflection layer side, the shorter the layering direction widths of the active layers of the plurality of active layers become.

Description

半導体レーザおよび検査装置Semiconductor laser and inspection equipment
 本発明は、半導体レーザおよび検査装置に関し、例えば光励起型面発光レーザおよび検査装置に関する。 The present invention relates to a semiconductor laser and an inspection apparatus, for example, an optically pumped surface emitting laser and an inspection apparatus.
 面発光レーザは、基板上に設けられた活性層と活性層を挟む一対の反射層とを有している(例えば特許文献1)。複数の活性層を有し活性層が一対の反射層間に生成される定在波の腹となるように活性層を配置することが知られている(例えば特許文献2)。 The surface emitting laser has an active layer provided on a substrate and a pair of reflective layers sandwiching the active layer (for example, Patent Document 1). It is known to arrange an active layer so that the active layer has a plurality of active layers and becomes an antinode of a standing wave generated between a pair of reflective layers (for example, Patent Document 2).
特開平7-221398号公報JP-A-7-221398 特開平8-340149号公報JP-A-8-340149
 面発光レーザにおける複数の活性層において励起光により励起されるキャリア数に不均一が生じると、レーザ特性が劣化してしまう。 If the number of carriers excited by excitation light in a plurality of active layers in a surface emitting laser is uneven, the laser characteristics will be degraded.
 本発明は、上記課題に鑑みなされたものであり、レーザ特性を向上させることを目的とする。 The present invention has been made in view of the above problems, and aims to improve laser characteristics.
 本発明は、励起光が入射し放出光を反射する第1反射層と、前記第1反射層の積層方向に設けられ前記放出光を反射する第2反射層と、前記積層方向において前記第1反射層および前記第2反射層に挟まれ、前記積層方向に積層され、前記励起光により前記放出光を放出する発光層と、前記積層方向において前記発光層を挟む第1半導体層と、を各々有する複数の活性層と、前記複数の活性層の隣接する活性層の第1半導体層の間に設けられ、前記第1半導体層の第1バンドギャップエネルギーより大きい第2バンドギャップエネルギーを有する第2半導体層と、を備え、前記複数の活性層における活性層の前記積層方向の幅は、前記第1反射層側に行くにしたがい小さくなることを特徴とする半導体レーザである。 The present invention provides a first reflective layer that receives excitation light and reflects emitted light, a second reflective layer that is provided in the stacking direction of the first reflective layer and reflects the emitted light, and the first reflective layer in the stacking direction. A light emitting layer sandwiched between the reflective layer and the second reflective layer, stacked in the stacking direction and emitting the emitted light by the excitation light, and a first semiconductor layer sandwiching the light emitting layer in the stacking direction, respectively A second active layer having a second band gap energy greater than the first band gap energy of the first semiconductor layer, the active layer being provided between the active layer and the first semiconductor layer of the active layer adjacent to the active layer. A semiconductor layer, wherein a width of the active layer in the plurality of active layers in the stacking direction becomes smaller as going to the first reflective layer side.
 上記構成において、前記励起光のエネルギーは前記第1バンドギャップエネルギーより大きく前記第2バンドギャップエネルギーより小さい構成とすることができる。 In the above configuration, the energy of the excitation light may be larger than the first band gap energy and smaller than the second band gap energy.
 上記構成において、前記第1反射層と前記第2反射層との間に生成される定在波の複数の腹は、それぞれ前記複数の活性層内に位置する構成とすることができる。 In the above configuration, a plurality of antinodes of standing waves generated between the first reflective layer and the second reflective layer may be positioned in the plurality of active layers, respectively.
 上記構成において、前記発光層は、量子井戸層または量子ドット層である構成とすることができる。 In the above configuration, the light emitting layer may be a quantum well layer or a quantum dot layer.
 上記構成において、前記複数の活性層は各々複数の発光層を有する構成とすることができる。 In the above structure, each of the plurality of active layers may have a plurality of light emitting layers.
 上記構成において、前記第1反射層および前記第2反射層のいずれか一方は、前記第1反射層および前記第2反射層の他方に対し前記積層方向に変化することにより前記放出光の波長が変化する構成とすることができる。 In the above-described configuration, any one of the first reflective layer and the second reflective layer changes in the stacking direction with respect to the other of the first reflective layer and the second reflective layer, whereby the wavelength of the emitted light is increased. It can be configured to change.
 本発明は、上記半導体レーザを含む検査装置である。 The present invention is an inspection apparatus including the semiconductor laser.
 本発明によれば、レーザ特性を向上させることができる。 According to the present invention, the laser characteristics can be improved.
図1は、実施例1における半導体レーザの断面図である。1 is a cross-sectional view of a semiconductor laser in Example 1. FIG. 図2は、実施例1における共振層の断面図である。FIG. 2 is a cross-sectional view of the resonance layer in the first embodiment. 図3は、比較例1における共振層の断面図である。FIG. 3 is a cross-sectional view of the resonance layer in Comparative Example 1. 図4(a)および図4(b)は、比較例1における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。4A and 4B are diagrams showing the excitation light intensity I (z), the standing wave light intensity, and the conduction band bottom energy Ec with respect to the position z in Comparative Example 1. FIG. 図5(a)および図5(b)は、実施例1における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。FIGS. 5A and 5B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the first embodiment. 図6は、比較例1および実施例1における長さL1からL3内で励起されるキャリア数を示す図である。FIG. 6 is a diagram illustrating the number of carriers excited in the lengths L1 to L3 in Comparative Example 1 and Example 1. 図7は、比較例1および実施例1における励起光強度に対する半導体レーザの発光強度を示す模式図である。FIG. 7 is a schematic diagram showing the emission intensity of the semiconductor laser with respect to the excitation light intensity in Comparative Example 1 and Example 1. 図8は、実施例2における半導体レーザの断面図である。FIG. 8 is a cross-sectional view of the semiconductor laser according to the second embodiment. 図9(a)および図9(b)は、比較例2における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。9A and 9B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in Comparative Example 2. FIG. 図10(a)および図10(b)は、実施例2における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。FIG. 10A and FIG. 10B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the second embodiment. 図11は、比較例2および実施例2における長さL1からL3内で励起されるキャリア数を示す図である。FIG. 11 is a diagram illustrating the number of carriers excited in the lengths L1 to L3 in Comparative Example 2 and Example 2. 図12は、実施例3に係る検査装置のブロック図である。FIG. 12 is a block diagram of an inspection apparatus according to the third embodiment.
 以下、図面を参照し、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1における半導体レーザの断面図である。半導体レーザは、光励起型面発光レーザである。図1に示すように、基板10上に反射層12、共振層14および反射層16が順に設けられている。基板10は例えばGaAs層等の半導体層である。反射層12は、低屈折率層12aと低屈折率層12aより屈折率の高い高屈折率層12bとが交互に積層されている。反射層16は、低屈折率層16aと低屈折率層16aより屈折率の高い高屈折率層16bとが交互に積層されている。 FIG. 1 is a cross-sectional view of a semiconductor laser in Example 1. The semiconductor laser is a photoexcited surface emitting laser. As shown in FIG. 1, a reflective layer 12, a resonance layer 14, and a reflective layer 16 are sequentially provided on a substrate 10. The substrate 10 is a semiconductor layer such as a GaAs layer. The reflective layer 12 is formed by alternately laminating a low refractive index layer 12a and a high refractive index layer 12b having a higher refractive index than the low refractive index layer 12a. The reflective layer 16 is formed by alternately laminating a low refractive index layer 16a and a high refractive index layer 16b having a higher refractive index than the low refractive index layer 16a.
 励起光52が共振層14に照射されると、共振層14は光を放出する。反射層12および16は共振層14が放出した光を反射する。反射層12の上面と16の下面との間の光学長を光の波長λの0.5×自然数倍とする。これにより、共振層14内に定在波が生成され共振層14内において光が共振する。反射層16の反射率を1よりやや小さくすることで、反射層16の上面からレーザ光50が出射される。 When the excitation light 52 is irradiated to the resonance layer 14, the resonance layer 14 emits light. The reflective layers 12 and 16 reflect the light emitted from the resonant layer 14. The optical length between the upper surface of the reflective layer 12 and the lower surface of 16 is set to 0.5 × natural number times the wavelength λ of light. As a result, a standing wave is generated in the resonance layer 14 and light resonates in the resonance layer 14. By making the reflectance of the reflective layer 16 slightly smaller than 1, the laser light 50 is emitted from the upper surface of the reflective layer 16.
 低屈折率層12aおよび16aは例えば膜厚が87nmのAl0.9Ga0.1As層であり、高屈折率層12bおよび16bは例えば膜厚が75nmのGaAs層である。反射層12では低屈折率層12aと高屈折率層12bとは例えば35対である。反射層16では低屈折率層16aと高屈折率層16bとは例えば22対である。低屈折率層12aおよび16a並びに高屈折率層12bおよび16bをAlGa1-xAs層(0≦x≦1、x=0のときはGaAs、x=1のときはAlAs)とする。このとき、低屈折率層12aおよび16aのxを高屈折率層12bおよび16bのxより大きくする。低屈折率層16aのxが大きいと低屈折率層16aが酸化されやすい。そこで、低屈折率層16aが空気に露出しないように、反射層16の最上層は高屈折率層16bとする。反射層16は誘電体DBR(Distributed Bragg Reflector)でもよい。誘電体DBRでは、例えば低屈折率層として酸化シリコン膜、高屈折率層として窒化シリコン膜または酸化チタン膜を用いることができる。 The low refractive index layers 12a and 16a are, for example, an Al 0.9 Ga 0.1 As layer having a thickness of 87 nm, and the high refractive index layers 12b and 16b are, for example, a GaAs layer having a thickness of 75 nm. In the reflective layer 12, the low refractive index layer 12a and the high refractive index layer 12b are, for example, 35 pairs. In the reflective layer 16, the low refractive index layer 16a and the high refractive index layer 16b are, for example, 22 pairs. The low refractive index layers 12a and 16a and the high refractive index layers 12b and 16b are Al x Ga 1-x As layers (0 ≦ x ≦ 1, GaAs when x = 0, and AlAs when x = 1). At this time, x of the low refractive index layers 12a and 16a is made larger than x of the high refractive index layers 12b and 16b. When x of the low refractive index layer 16a is large, the low refractive index layer 16a is easily oxidized. Therefore, the uppermost layer of the reflective layer 16 is a high refractive index layer 16b so that the low refractive index layer 16a is not exposed to the air. The reflective layer 16 may be a dielectric DBR (Distributed Bragg Reflector). In the dielectric DBR, for example, a silicon oxide film can be used as the low refractive index layer, and a silicon nitride film or a titanium oxide film can be used as the high refractive index layer.
 図2は、実施例1における共振層の断面図である。図2に示すように、共振層14は複数の活性層20を有している。例えば共振層14の厚さが2λのとき活性層20は3層である。活性層20は各々発光層22および半導体層24を有している。活性層20は半導体層26に挟まれている。3層の発光層22が半導体層24内に設けられている。3層の発光層22は発光層群21aから21cを形成する。各々の発光層群21aから21cでは、発光層22が量子井戸層として機能し、半導体層24が量子井戸のバリア層として機能する。発光層22は量子ドット層でもよい。共振層14の上面を0とし、下方向をz方向とする。半導体層26のバンドギャップエネルギーは半導体層24のバンドギャップエネルギーより大きい。なお、半導体層26のバンドギャップエネルギーは励起光エネルギー以下でもよく、各半導体層26のバンドギャップエネルギーは互いに異なっていてもよい。発光層22のバンドギャップエネルギーは半導体層24のバンドギャップエネルギーより小さい。半導体層24および発光層22内において励起光によりキャリア(電子とホール)が励起される。発光層22においてキャリアが再結合することにより、発光層22から光が放出する。放出された光が反射層12と16との間で共振することで、発光層22から誘導放出が生じる。 FIG. 2 is a cross-sectional view of the resonance layer in the first embodiment. As shown in FIG. 2, the resonance layer 14 has a plurality of active layers 20. For example, when the thickness of the resonance layer 14 is 2λ, the active layer 20 has three layers. Each of the active layers 20 includes a light emitting layer 22 and a semiconductor layer 24. The active layer 20 is sandwiched between the semiconductor layers 26. Three light emitting layers 22 are provided in the semiconductor layer 24. The three light emitting layers 22 form light emitting layer groups 21a to 21c. In each light emitting layer group 21a to 21c, the light emitting layer 22 functions as a quantum well layer, and the semiconductor layer 24 functions as a barrier layer of the quantum well. The light emitting layer 22 may be a quantum dot layer. The upper surface of the resonance layer 14 is 0, and the lower direction is the z direction. The band gap energy of the semiconductor layer 26 is larger than the band gap energy of the semiconductor layer 24. The band gap energy of the semiconductor layer 26 may be lower than the excitation light energy, and the band gap energy of each semiconductor layer 26 may be different from each other. The band gap energy of the light emitting layer 22 is smaller than the band gap energy of the semiconductor layer 24. Carriers (electrons and holes) are excited by excitation light in the semiconductor layer 24 and the light emitting layer 22. As carriers are recombined in the light emitting layer 22, light is emitted from the light emitting layer 22. As the emitted light resonates between the reflective layers 12 and 16, stimulated emission occurs from the light emitting layer 22.
 半導体層24は例えばGaAs層であり、半導体層26は例えばAl0.2Ga0.8As層である。発光層22は例えばIn0.28Ga0.72As層である。半導体層24および26をAlGa1-xAs層(0≦x≦1)とする。このとき、半導体層26のxを半導体層24のxより大きくする。これにより、半導体層26のバンドギャップエネルギーを半導体層24のバンドギャップエネルギーより大きくできる。また、発光層22をInGaAsまたはInAsとすることで、発光層22を量子井戸層とすることができる。 The semiconductor layer 24 is, for example, a GaAs layer, and the semiconductor layer 26 is, for example, an Al 0.2 Ga 0.8 As layer. The light emitting layer 22 is, for example, an In 0.28 Ga 0.72 As layer. The semiconductor layers 24 and 26 are Al x Ga 1-x As layers (0 ≦ x ≦ 1). At this time, x of the semiconductor layer 26 is made larger than x of the semiconductor layer 24. Thereby, the band gap energy of the semiconductor layer 26 can be made larger than the band gap energy of the semiconductor layer 24. Moreover, the light emitting layer 22 can be made into a quantum well layer by making the light emitting layer 22 into InGaAs or InAs.
 実施例1の効果を説明するために比較例1について説明する。図3は、比較例1における共振層の断面図である。図3に示すように、比較例1では、半導体層26が設けられておらず、半導体層24内に発光層22が設けられている。その他の共振層14の構成は実施例1と同じであり説明を省略する。 In order to explain the effects of Example 1, Comparative Example 1 will be described. FIG. 3 is a cross-sectional view of the resonance layer in the first comparative example. As shown in FIG. 3, in Comparative Example 1, the semiconductor layer 26 is not provided, and the light emitting layer 22 is provided in the semiconductor layer 24. Other configurations of the resonance layer 14 are the same as those in the first embodiment, and the description thereof is omitted.
 図4(a)および図4(b)は、比較例1における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。励起光強度I(z)は、励起光52の共振層14内での光強度分布を示す。定在波光強度は、反射層12と16との間に生成される共振層14内の定在波の光強度を示す。伝導帯底エネルギーEcは共振層14内の伝導帯の底のエネルギーを示す。励起光強度I(z)はz=0のとき1とする。定在波光強度および伝導帯底エネルギーEcは任意単位(a.u.)で示す。 4 (a) and 4 (b) are diagrams showing excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to position z in Comparative Example 1. FIG. The excitation light intensity I (z) indicates the light intensity distribution in the resonance layer 14 of the excitation light 52. The standing wave light intensity indicates the light intensity of the standing wave in the resonance layer 14 generated between the reflective layers 12 and 16. The conduction band bottom energy Ec indicates the energy of the bottom of the conduction band in the resonance layer 14. The excitation light intensity I (z) is 1 when z = 0. The standing wave light intensity and the conduction band bottom energy Ec are expressed in arbitrary units (au).
 レーザ光の波長λを1050nmとし、反射層12と16との間に2λの定在波が生成されるようにする。GaAsの屈折率が3.5とすると、共振層14の厚さは600nmである。図4(b)のように、共振層14の上端(z=0nm)および下端(z=600nm)は定在波の腹となる。共振層14内には、λ/2(150nm)間隔で3つの腹が形成される。 The wavelength λ of the laser beam is set to 1050 nm so that a standing wave of 2λ is generated between the reflective layers 12 and 16. If the refractive index of GaAs is 3.5, the thickness of the resonance layer 14 is 600 nm. As shown in FIG. 4B, the upper end (z = 0 nm) and the lower end (z = 600 nm) of the resonance layer 14 are antinodes of standing waves. Three antinodes are formed in the resonance layer 14 at intervals of λ / 2 (150 nm).
 図4(b)のように定在波の腹付近に発光層群21aから21cを設ける。発光層群21aから21cにおいて、発光層22は膜厚が7nmのIn0.28Ga0.72As層であり、発光層22間のバリア層は膜厚が15nmのGaAs層である。定在波の腹付近に発光層群21aから21cを設けることで、発光層群21aから21cにおいて効率的に光学利得を得ることができる。 As shown in FIG. 4B, the light emitting layer groups 21a to 21c are provided near the antinodes of the standing wave. In the light emitting layer groups 21a to 21c, the light emitting layer 22 is an In 0.28 Ga 0.72 As layer having a thickness of 7 nm, and the barrier layer between the light emitting layers 22 is a GaAs layer having a thickness of 15 nm. By providing the light emitting layer groups 21a to 21c near the antinodes of the standing wave, the optical gain can be efficiently obtained in the light emitting layer groups 21a to 21c.
 光励起型面発光レーザでは、励起光によりキャリアを励起する。キャリアを励起するため励起光のエネルギーは半導体層24のバンドギャップエネルギーより大きくする。よって、励起光の波長をGaAsのバンドギャップエネルギーに相当する波長より短い808nmとする。図4(a)のように、励起光は半導体層24内では減衰する。このため、共振層14内の励起光強度分布は位置zが大きくなると小さくなる。このため、位置zが大きい発光層群21cでは発光に寄与するキャリアが発光層群21aより少なくなる。このように発光層群21aから21cによりキャリアがアンバランスになる。 In the photo-excited surface emitting laser, the carrier is excited by the excitation light. In order to excite carriers, the energy of the excitation light is made larger than the band gap energy of the semiconductor layer 24. Therefore, the wavelength of the excitation light is set to 808 nm, which is shorter than the wavelength corresponding to the band gap energy of GaAs. As shown in FIG. 4A, the excitation light is attenuated in the semiconductor layer 24. For this reason, the excitation light intensity distribution in the resonance layer 14 decreases as the position z increases. For this reason, the light emitting layer group 21c having a large position z has fewer carriers contributing to light emission than the light emitting layer group 21a. Thus, the carriers are unbalanced by the light emitting layer groups 21a to 21c.
 図5(a)および図5(b)は、実施例1における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。図5(b)のように、半導体層26aから26cのバンドギャップエネルギーは半導体層24のバンドギャップエネルギーより大きい。半導体層26aから26cはAl0.2Ga0.8As層である。励起光のエネルギーは半導体層26aから26cのバンドギャップエネルギーより低い。よって、励起光は半導体層26aから26cを透過する。半導体層26aから26cの厚さはそれぞれ39nm、5nmおよび5nmである。励起光強度I(z)は図5(a)のようになる。 FIGS. 5A and 5B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in the first embodiment. As shown in FIG. 5B, the band gap energy of the semiconductor layers 26 a to 26 c is larger than the band gap energy of the semiconductor layer 24. From the semiconductor layer 26a 26c is Al 0.2 Ga 0.8 As layer. The energy of the excitation light is lower than the band gap energy of the semiconductor layers 26a to 26c. Therefore, the excitation light passes through the semiconductor layers 26a to 26c. The thicknesses of the semiconductor layers 26a to 26c are 39 nm, 5 nm, and 5 nm, respectively. The excitation light intensity I (z) is as shown in FIG.
 比較例1および実施例1において、各発光層群21aから21cの発光に寄与するキャリア数を算出した。比較例1では、発光層群21aの発光に寄与するキャリアはz=0から発光層群21aと21bの中間のz=225nmまでの長さL1=225nmにおいて励起されるキャリアとした。発光層群21bの発光に寄与するキャリアはz=225nmから発光層群21bと21cの中間のz=375nmまでの長さL2=150nmにおいて励起されるキャリアとした。発光層群21cの発光に寄与するキャリアはz=375nmからz=600nmまでの長さL3=225nmにおいて励起されるキャリアとした。すなわち、比較例1の上記例では、長さL1からL3の関係はL2<L1=L3となっている。 In Comparative Example 1 and Example 1, the number of carriers contributing to the light emission of each light emitting layer group 21a to 21c was calculated. In Comparative Example 1, the carriers contributing to the light emission of the light emitting layer group 21a are carriers excited at a length L1 = 225 nm from z = 0 to z = 225 nm between the light emitting layer groups 21a and 21b. The carriers contributing to the light emission of the light emitting layer group 21b were carriers excited at a length L2 = 150 nm from z = 225 nm to z = 375 nm intermediate between the light emitting layer groups 21b and 21c. The carriers contributing to the light emission of the light emitting layer group 21c were carriers excited at a length L3 = 225 nm from z = 375 nm to z = 600 nm. That is, in the above example of Comparative Example 1, the relationship between the lengths L1 to L3 is L2 <L1 = L3.
 実施例1では、半導体層26aから26cが励起キャリアに対するバリア層となる。このため、発光層群21aから21cの各々の発光に寄与するキャリアは、半導体層26aから26cで挟まれた半導体層24内で励起されたキャリアである。そこで、発光層群21aの発光に寄与するキャリアは半導体層26aと26bの間の長さL1=158nmにおいて励起されるキャリアとした。発光層群21bの発光に寄与するキャリアは半導体層26bと26cの間の長さL2=177nmにおいて励起されるキャリアとした。発光層群21cの発光に寄与するキャリアは半導体層26cとz=600nmの間の長さL3=222nmにおいて励起されるキャリアとした。すなわち、実施例1の上記例では、長さL1からL3の関係はL1<L2<L3となっている。なお、図2では、発光層群21cを含む活性層20の下にキャリアのバリアとなる半導体層は図示されていないが、図1の反射層12がキャリアのバリアとなる。 In Example 1, the semiconductor layers 26a to 26c serve as barrier layers against excited carriers. Therefore, the carriers contributing to the light emission of each of the light emitting layer groups 21a to 21c are carriers excited in the semiconductor layer 24 sandwiched between the semiconductor layers 26a to 26c. Therefore, the carriers contributing to the light emission of the light emitting layer group 21a are carriers excited at the length L1 = 158 nm between the semiconductor layers 26a and 26b. The carriers contributing to the light emission of the light emitting layer group 21b were carriers excited at a length L2 = 177 nm between the semiconductor layers 26b and 26c. The carrier contributing to the light emission of the light emitting layer group 21c was a carrier excited at a length L3 = 222 nm between the semiconductor layer 26c and z = 600 nm. That is, in the above example of the first embodiment, the relationship between the lengths L1 to L3 is L1 <L2 <L3. In FIG. 2, a semiconductor layer that serves as a carrier barrier is not shown under the active layer 20 including the light emitting layer group 21c, but the reflective layer 12 in FIG. 1 serves as a carrier barrier.
 長さLn(nは自然数)内で励起されるキャリア数Nnは数1で表される。znはn番目の半導体層26のzが大きい方の端のzの位置である。
Figure JPOXMLDOC01-appb-M000001
The number of carriers Nn excited within the length Ln (n is a natural number) is expressed by Equation 1. zn is the position of z at the end of the n-th semiconductor layer 26 where z is larger.
Figure JPOXMLDOC01-appb-M000001
 図6は、比較例1および実施例1における長さL1からL3内で励起されるキャリア数を示す図である。キャリア数はシミュレーションにより算出した。図6に示すように、比較例1では、L1からL3でキャリア数が不均一である。実施例1ではL1からL3でキャリア数が均一である。これは、励起光強度I(z)の大きい領域におけるL1を励起光強度I(z)の小さい領域におけるL3より短くしたためである。 FIG. 6 is a diagram showing the number of carriers excited in the lengths L1 to L3 in Comparative Example 1 and Example 1. The number of carriers was calculated by simulation. As shown in FIG. 6, in Comparative Example 1, the number of carriers is not uniform from L1 to L3. In Example 1, the number of carriers is uniform from L1 to L3. This is because L1 in the region where the excitation light intensity I (z) is large is shorter than L3 in the region where the excitation light intensity I (z) is small.
 図7は、比較例1および実施例1における励起光強度に対する半導体レーザの発光強度を示す模式図である。比較例1のように発光層群21aから21cの発光に寄与するキャリア数に不均一があると、励起光強度に対する発光強度の特性(LL特性)は非線形である。また、励起光強度が大きくなっても発光強度は飽和してしまいあまり大きくならない。 FIG. 7 is a schematic diagram showing the emission intensity of the semiconductor laser with respect to the excitation light intensity in Comparative Example 1 and Example 1. When the number of carriers contributing to light emission of the light emitting layer groups 21a to 21c is not uniform as in Comparative Example 1, the light emission intensity characteristic (LL characteristic) with respect to the excitation light intensity is nonlinear. Moreover, even if the excitation light intensity is increased, the emission intensity is saturated and does not increase so much.
 比較例1において、LL特性が飽和する理由について説明する。比較例1では、励起光強度が大きくなると、キャリア数の多い発光層群21aのみが発振に寄与する。一方、発光層群21bおよび21cにおいては、キャリア密度が発振を生じる閾値キャリア密度に到達しない。これにより、発光層群21bおよび21cでは、キャリアはレーザ発振に寄与しないで自然放出光や熱として消費される。また、発光層群21aのキャリア密度が閾値キャリア密度に達したときに、発光層群21bおよび21cにおいては、発振光に対し透明となるキャリア密度に到達していない。これにより、発光層群21bおよび21cは、発振光の吸収層として働く。よって、半導体レーザの光出力が大幅に制限される。この結果、発光層群21aから21cがすべて発振に寄与するためには大幅に励起強度を上げることとなる。このため、比較例1では、LL特性は飽和してしまい、所望のLL特性が得られない。 The reason why the LL characteristic is saturated in Comparative Example 1 will be described. In Comparative Example 1, when the excitation light intensity increases, only the light emitting layer group 21a having a large number of carriers contributes to oscillation. On the other hand, in the light emitting layer groups 21b and 21c, the carrier density does not reach the threshold carrier density causing oscillation. Thus, in the light emitting layer groups 21b and 21c, carriers are consumed as spontaneous emission light or heat without contributing to laser oscillation. Further, when the carrier density of the light emitting layer group 21a reaches the threshold carrier density, the light emitting layer groups 21b and 21c do not reach the carrier density that is transparent to the oscillation light. Thus, the light emitting layer groups 21b and 21c function as an absorption layer for oscillation light. Therefore, the optical output of the semiconductor laser is greatly limited. As a result, in order for all of the light emitting layer groups 21a to 21c to contribute to oscillation, the excitation intensity is greatly increased. For this reason, in Comparative Example 1, the LL characteristic is saturated, and a desired LL characteristic cannot be obtained.
 一方、実施例1では、発光層群21aから21cの発光に寄与するキャリア数がほぼ均一がある。これにより、LL特性は線形となる。これは、励起光強度が大きくなっても各発光層群21aから21cで発光が飽和しないためである。すなわち、実施例1では、比較例1と同じ強度の励起光が発光層群21aから21cに照射されると、比較例1より生成されるキャリア数は小さい。このため、発光層群21aから21cにおいて発振光が発振する閾値となる励起光強度は比較例1より小さい。しかし、励起光強度が閾値以上では励起光から発振光への変換効率が比較例1と比べて大きく向上する。このため、発光層群21aから21cにおける発熱量が低下することでLL特性は飽和しにくくなる。この結果、最高光出力を向上させることができる。さらに各発光層群21aから21cのキャリア密度が揃っている。これにより、Ll特性の線形性がよくなりキンクが消滅する。このように実施例1では、LL特性を向上できる。 On the other hand, in Example 1, the number of carriers contributing to the light emission of the light emitting layer groups 21a to 21c is almost uniform. Thereby, the LL characteristic becomes linear. This is because light emission does not saturate in each of the light emitting layer groups 21a to 21c even when the excitation light intensity increases. That is, in Example 1, when the light emitting layer groups 21a to 21c are irradiated with excitation light having the same intensity as in Comparative Example 1, the number of carriers generated in Comparative Example 1 is small. For this reason, the excitation light intensity, which is a threshold value at which the oscillation light oscillates in the light emitting layer groups 21a to 21c, is smaller than that of the first comparative example. However, when the excitation light intensity is greater than or equal to the threshold value, the conversion efficiency from the excitation light to the oscillation light is greatly improved as compared with Comparative Example 1. For this reason, the amount of heat generated in the light emitting layer groups 21a to 21c is reduced, so that the LL characteristics are less likely to be saturated. As a result, the maximum light output can be improved. Further, the carrier densities of the light emitting layer groups 21a to 21c are uniform. Thereby, the linearity of the Ll characteristic is improved and the kink disappears. Thus, in the first embodiment, the LL characteristics can be improved.
 図8は、実施例2における半導体レーザの断面図である。図8に示すように、共振層14と反射層16との間にエアギャップ18が設けられている。反射層16は支持層17により共振層14に支持されている。反射層16を駆動し、エアギャップ18の厚さを変化させることにより、レーザ光50の波長が可変となる。例えばレーザ光50の波長を1050nm±50nmとすることができる。低屈折率層16aが酸化されやすい場合、低屈折率層16aが空気に露出しないように、反射層16の最上層および最下層は高屈折率層16bとする。反射層16が駆動できればエアギャップ18の代わりに気体、液体、真空または固体からなる層が設けられていてもよい。 FIG. 8 is a cross-sectional view of the semiconductor laser in Example 2. As shown in FIG. 8, an air gap 18 is provided between the resonance layer 14 and the reflection layer 16. The reflective layer 16 is supported on the resonance layer 14 by the support layer 17. By driving the reflective layer 16 and changing the thickness of the air gap 18, the wavelength of the laser light 50 is variable. For example, the wavelength of the laser beam 50 can be set to 1050 nm ± 50 nm. When the low refractive index layer 16a is easily oxidized, the uppermost layer and the lowermost layer of the reflective layer 16 are the high refractive index layer 16b so that the low refractive index layer 16a is not exposed to the air. If the reflective layer 16 can be driven, a layer made of gas, liquid, vacuum, or solid may be provided instead of the air gap 18.
 図9(a)および図9(b)は、比較例2における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。図9(a)および図9(b)に示すように、共振層14の厚さを2.25λとする。エアギャップ18の厚さを1.25λとする。エアギャップ18と共振層14との界面を定在波の節とすると、発光層群21aより上の共振層14が1/4λ厚くなる。これにより、長さL1は300nmとなる。その他の構成は比較例1の図4(a)から図4(b)と同じである。 9A and 9B are diagrams showing the excitation light intensity I (z), the standing wave light intensity, and the conduction band bottom energy Ec with respect to the position z in Comparative Example 2. FIG. As shown in FIGS. 9A and 9B, the thickness of the resonance layer 14 is 2.25λ. The thickness of the air gap 18 is 1.25λ. If the interface between the air gap 18 and the resonance layer 14 is a standing wave node, the resonance layer 14 above the light emitting layer group 21a becomes 1 / 4λ thick. Thereby, the length L1 becomes 300 nm. The other configurations are the same as those in FIGS. 4A to 4B of the first comparative example.
 図10(a)および図10(b)は、実施例2における位置zに対する励起光強度I(z)、定在波光強度および伝導帯底エネルギーEcを示す図である。図10(a)および図10(b)に示すように、半導体層26aが1/4λ厚くなる。半導体層26aの厚さは114nmである。その他の構成は比較例1の図5(a)から図5(b)と同じである。比較例1および実施例1と同様に、長さL1からL3内で励起されるキャリア数を算出した。 FIGS. 10A and 10B are diagrams showing the excitation light intensity I (z), standing wave light intensity, and conduction band bottom energy Ec with respect to the position z in Example 2. FIG. As shown in FIGS. 10A and 10B, the semiconductor layer 26a becomes 1 / 4λ thick. The thickness of the semiconductor layer 26a is 114 nm. Other configurations are the same as those of the first comparative example shown in FIGS. 5A to 5B. Similar to Comparative Example 1 and Example 1, the number of carriers excited within the lengths L1 to L3 was calculated.
 図11は、比較例2および実施例2における長さL1からL3内で励起されるキャリア数を示す図である。図11に示すように、実施例2では比較例2に比べL1からL3でキャリア数が均一である。実施例2のように、半導体レーザは波長が可変でもよい。 FIG. 11 is a diagram showing the number of carriers excited in the lengths L1 to L3 in Comparative Example 2 and Example 2. As shown in FIG. 11, in Example 2, the number of carriers is uniform from L1 to L3 compared to Comparative Example 2. As in the second embodiment, the wavelength of the semiconductor laser may be variable.
 実施例1および2によれば、図1、図2および図8のように、反射層16(第1反射層)は、励起光52が入射し発光層22が放出する放出光を反射する。反射層12(第2反射層)は、反射層16の積層方向に設けられ放出光を反射する。複数の活性層20は、積層方向において反射層12および16に挟まれ、発光層22と、積層方向において発光層22を挟む半導体層24(第1半導体層)と、を各々有する。半導体層26(第2半導体層)は、複数の活性層20のうち隣接する活性層20の間に設けられている。半導体層26は、半導体層24の第1バンドギャップエネルギーより大きい第2バンドギャップエネルギーを有する。図5(b)および図10(b)のように、複数の活性層20における活性層20の積層方向の幅(長さL1からL3)は、反射層16側に行くにしたがい小さくなる。 According to Examples 1 and 2, as shown in FIGS. 1, 2, and 8, the reflective layer 16 (first reflective layer) reflects the emitted light that the excitation light 52 enters and the light emitting layer 22 emits. The reflective layer 12 (second reflective layer) is provided in the stacking direction of the reflective layer 16 and reflects the emitted light. The plurality of active layers 20 are sandwiched between the reflective layers 12 and 16 in the stacking direction, and each include a light emitting layer 22 and a semiconductor layer 24 (first semiconductor layer) sandwiching the light emitting layer 22 in the stacking direction. The semiconductor layer 26 (second semiconductor layer) is provided between adjacent active layers 20 among the plurality of active layers 20. The semiconductor layer 26 has a second band gap energy that is greater than the first band gap energy of the semiconductor layer 24. As shown in FIGS. 5B and 10B, the width (length L1 to L3) in the stacking direction of the active layers 20 in the plurality of active layers 20 becomes smaller as going to the reflective layer 16 side.
 これにより、図6および図11のように、半導体層24内で励起されるキャリア数を活性層20間でほぼ均一にできる。よって、LL特性等のレーザ特性を向上できる。 Thereby, as shown in FIGS. 6 and 11, the number of carriers excited in the semiconductor layer 24 can be made substantially uniform between the active layers 20. Therefore, laser characteristics such as LL characteristics can be improved.
 励起光52のエネルギーは半導体層24の第1バンドギャップエネルギーより大きく半導体層26の第2バンドギャップエネルギーより小さい。これにより、励起光52は半導体層26内でほとんど減衰しない。よって、光出力を向上できる。 The energy of the excitation light 52 is larger than the first band gap energy of the semiconductor layer 24 and smaller than the second band gap energy of the semiconductor layer 26. Thereby, the excitation light 52 is hardly attenuated in the semiconductor layer 26. Therefore, the light output can be improved.
 発光層22は、量子井戸層または量子ドット層である。これにより、発光層22は効率的に光を放出できる。量子ドット層は、半導体層24内に半導体層24よりバンドギャップエネルギーが小さいInAsまたはInGaAs等の複数の半導体ドットが設けられた層である。 The light emitting layer 22 is a quantum well layer or a quantum dot layer. Thereby, the light emitting layer 22 can emit light efficiently. The quantum dot layer is a layer in which a plurality of semiconductor dots such as InAs or InGaAs whose band gap energy is smaller than that of the semiconductor layer 24 are provided in the semiconductor layer 24.
 各活性層20内の発光層22は1層でもよい。複数の活性層20は各々複数の発光層22を有してもよい。これにより、発光層群21aから21cが効率的に発光できる。発光層群の数および発光層群内の発光層の数は任意に設定できる。 The light emitting layer 22 in each active layer 20 may be a single layer. Each of the plurality of active layers 20 may have a plurality of light emitting layers 22. Thereby, the light emitting layer groups 21a to 21c can emit light efficiently. The number of light emitting layer groups and the number of light emitting layers in the light emitting layer group can be arbitrarily set.
 反射層12と16との間に生成される複数の定在波の腹は、それぞれ複数の活性層20内に位置する。これにより、発光層22が効率的に光を放出できる。発光層群21aから21cの各々中の発光層22の少なくとも1つが定在波の腹に位置することが好ましい。実施例1および2では、反射層12の上端と反射層16の下端との間の距離をそれぞれ2λおよび3.5λとしたが、λ/2の自然数倍の範囲で任意に設定できる。 The antinodes of a plurality of standing waves generated between the reflective layers 12 and 16 are located in the plurality of active layers 20 respectively. Thereby, the light emitting layer 22 can emit light efficiently. It is preferable that at least one of the light emitting layers 22 in each of the light emitting layer groups 21a to 21c is located at the antinode of the standing wave. In Examples 1 and 2, the distance between the upper end of the reflective layer 12 and the lower end of the reflective layer 16 is 2λ and 3.5λ, respectively, but can be arbitrarily set within a range of a natural number multiple of λ / 2.
 実施例2のように、反射層12および16のいずれか一方は他方に対し積層方向に変化することにより放出光の波長が変化する。これにより、レーザ光50の波長が可変となる。 As in Example 2, when one of the reflective layers 12 and 16 changes in the stacking direction with respect to the other, the wavelength of the emitted light changes. Thereby, the wavelength of the laser beam 50 becomes variable.
 実施例3は、実施例2に係る波長可変レーザ装置を用いる検査装置として、OCT(Optical Coherence Tomography)装置の例である。図12は、実施例3に係る検査装置のブロック図である。図12に示すように、波長を掃引する(または波長が可変である)光源60から出射された光はハーフミラー62により反射光と透過光とに分割される。反射光はミラー64で反射し参照光となる。参照光はハーフミラー62を透過する。ハーフミラー62を透過した透過光は対象物68に照射され信号光となる。対象物68は例えば生体の部位であり、例えば眼である。信号光はハーフミラー62で反射する。検出器66は、信号光と参照光とが干渉した光強度を検出する。光源60は、光の波長を変更できる。処理部65は、検出器66の信号に基づき光干渉断層を生成する。 Example 3 is an example of an OCT (Optical Coherence Tomography) apparatus as an inspection apparatus using the wavelength tunable laser apparatus according to Example 2. FIG. 12 is a block diagram of an inspection apparatus according to the third embodiment. As shown in FIG. 12, the light emitted from the light source 60 that sweeps the wavelength (or the wavelength is variable) is divided into reflected light and transmitted light by the half mirror 62. The reflected light is reflected by the mirror 64 and becomes reference light. The reference light passes through the half mirror 62. The transmitted light that has passed through the half mirror 62 is applied to the object 68 and becomes signal light. The object 68 is, for example, a body part, for example, an eye. The signal light is reflected by the half mirror 62. The detector 66 detects the light intensity at which the signal light and the reference light interfere. The light source 60 can change the wavelength of light. The processing unit 65 generates an optical coherent tomography based on the signal from the detector 66.
 波長可変レーザ装置を用いる検査装置の例として、OCT装置について説明したがOCT装置以外の医療用または他の検査装置でもよい。検査装置は実施例1または2の半導体レーザを含めばよい。 Although an OCT apparatus has been described as an example of an inspection apparatus using a wavelength tunable laser apparatus, a medical or other inspection apparatus other than the OCT apparatus may be used. The inspection apparatus may include the semiconductor laser of Example 1 or 2.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (7)

  1.  励起光が入射し放出光を反射する第1反射層と、
     前記第1反射層の積層方向に設けられ前記放出光を反射する第2反射層と、
     前記積層方向において前記第1反射層および前記第2反射層に挟まれ、前記積層方向に積層され、前記励起光により前記放出光を放出する発光層と、前記積層方向において前記発光層を挟む第1半導体層と、を各々有する複数の活性層と、
     前記複数の活性層の隣接する活性層の第1半導体層の間に設けられ、前記第1半導体層の第1バンドギャップエネルギーより大きい第2バンドギャップエネルギーを有する第2半導体層と、
     を備え、
     前記複数の活性層における活性層の前記積層方向の幅は、前記第1反射層側に行くにしたがい小さくなることを特徴とする半導体レーザ。
    A first reflective layer on which excitation light enters and reflects emitted light;
    A second reflective layer provided in the stacking direction of the first reflective layer and reflecting the emitted light;
    A light emitting layer sandwiched between the first reflective layer and the second reflective layer in the stacking direction and stacked in the stacking direction and emitting the emitted light by the excitation light; and a light emitting layer sandwiching the light emitting layer in the stacking direction. A plurality of active layers each having one semiconductor layer;
    A second semiconductor layer provided between first semiconductor layers of adjacent active layers of the plurality of active layers and having a second band gap energy larger than a first band gap energy of the first semiconductor layer;
    With
    The width of the active layer in the stacking direction of the plurality of active layers becomes smaller as going to the first reflective layer side.
  2.  前記励起光のエネルギーは前記第1バンドギャップエネルギーより大きく前記第2バンドギャップエネルギーより小さい請求項1に記載の半導体レーザ。 2. The semiconductor laser according to claim 1, wherein the energy of the excitation light is larger than the first band gap energy and smaller than the second band gap energy.
  3.  前記第1反射層と前記第2反射層との間に生成される定在波の複数の腹は、それぞれ前記複数の活性層内に位置する請求項1または2に記載の半導体レーザ。 3. The semiconductor laser according to claim 1, wherein a plurality of antinodes of a standing wave generated between the first reflective layer and the second reflective layer are located in the plurality of active layers, respectively.
  4.  前記発光層は、量子井戸層または量子ドット層である請求項1から3のいずれか一項に記載の半導体レーザ。 4. The semiconductor laser according to claim 1, wherein the light emitting layer is a quantum well layer or a quantum dot layer.
  5.  前記複数の活性層は各々複数の発光層を有する請求項1から4のいずれか一項に記載の半導体レーザ。 The semiconductor laser according to any one of claims 1 to 4, wherein each of the plurality of active layers has a plurality of light emitting layers.
  6.  前記第1反射層および前記第2反射層のいずれか一方は、前記第1反射層および前記第2反射層の他方に対し前記積層方向に変化することにより前記放出光の波長が変化する請求項1から5のいずれか一項に記載の半導体レーザ。 The wavelength of the emitted light is changed by changing one of the first reflective layer and the second reflective layer in the stacking direction with respect to the other of the first reflective layer and the second reflective layer. The semiconductor laser according to any one of 1 to 5.
  7.  請求項1から6のいずれか一項に記載の半導体レーザを含む検査装置。 An inspection apparatus including the semiconductor laser according to any one of claims 1 to 6.
PCT/JP2019/004238 2018-03-30 2019-02-06 Semiconductor laser and inspection device WO2019187666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018068658A JP2019179864A (en) 2018-03-30 2018-03-30 Semiconductor laser and inspection device
JP2018-068658 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187666A1 true WO2019187666A1 (en) 2019-10-03

Family

ID=68058518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004238 WO2019187666A1 (en) 2018-03-30 2019-02-06 Semiconductor laser and inspection device

Country Status (2)

Country Link
JP (1) JP2019179864A (en)
WO (1) WO2019187666A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
JP2006216722A (en) * 2005-02-02 2006-08-17 Tokyo Institute Of Technology Modulator-integrated surface emitting laser
JP2013219323A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Semiconductor laminate and surface emitting laser element
JP2016523444A (en) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. Wavelength tuned vertical cavity surface emitting laser for swept source coherence tomography system
JP2016143863A (en) * 2015-02-05 2016-08-08 キヤノン株式会社 Tunable laser device and optical coherence tomography
JP2017047061A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Optical coherent tomographic apparatus and control method
JP2017092189A (en) * 2015-11-06 2017-05-25 キヤノン株式会社 Surface light emitting laser, information acquisition apparatus, and imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
JP2006216722A (en) * 2005-02-02 2006-08-17 Tokyo Institute Of Technology Modulator-integrated surface emitting laser
JP2013219323A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Semiconductor laminate and surface emitting laser element
JP2016523444A (en) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. Wavelength tuned vertical cavity surface emitting laser for swept source coherence tomography system
JP2016143863A (en) * 2015-02-05 2016-08-08 キヤノン株式会社 Tunable laser device and optical coherence tomography
JP2017047061A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Optical coherent tomographic apparatus and control method
JP2017092189A (en) * 2015-11-06 2017-05-25 キヤノン株式会社 Surface light emitting laser, information acquisition apparatus, and imaging device

Also Published As

Publication number Publication date
JP2019179864A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
KR101228108B1 (en) Vertical external cavity surface emitting laser with pump beam reflector
US6859481B2 (en) Optically-pumped multiple-quantum well active region with improved distribution of optical pumping power
US7339965B2 (en) Optoelectronic device based on an antiwaveguiding cavity
JP6315887B2 (en) Optically pumped surface emitting laser with built-in high reflectivity / band-limited reflector
US8249126B2 (en) Photonic crystal and surface emitting laser using such photonic crystal
WO2018190030A1 (en) Light emitting element and light emitting device
JP4690647B2 (en) Vertical emission type semiconductor laser
US6403983B1 (en) Quantum well type light-emitting diode
KR101015499B1 (en) Laser device emitting a plurality of wavelength and a laser pumping unit for the same
KR20070052059A (en) Vertical external cavity surface emitting laser capable of recycling pump beam
JP2006229222A (en) Modulator integrated type optical pumping semiconductor laser device
JPH08340149A (en) Surface-luminous laser with improved pumping efficiency
KR20050120483A (en) High efficient surface emitting laser device, laser pumping unit for the laser device and method for fabricating the laser pumping unit
WO2019187666A1 (en) Semiconductor laser and inspection device
KR101100424B1 (en) Pump laser integrated vertical external cavity surface emitting laser
US9106053B2 (en) Distributed feedback surface emitting laser
WO2019220795A1 (en) Surface emitting laser and inspection device
JP4967615B2 (en) Semiconductor light emitting device
RU2349989C1 (en) Multicolour light-emitting device with using microresonator
JP2003332615A (en) Semiconductor light emitting element
JP5221180B2 (en) Light emitting element
KR20190041318A (en) Tunable laser device
JPH1154846A (en) Resonant surface-emitting element
KR20070109244A (en) Vertical external cavity surface emitting laser
JP2019075438A (en) Semiconductor laser element and semiconductor laser element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776181

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776181

Country of ref document: EP

Kind code of ref document: A1