JP2006216243A - Oxide superconducting wire and its manufacturing method - Google Patents

Oxide superconducting wire and its manufacturing method Download PDF

Info

Publication number
JP2006216243A
JP2006216243A JP2005024801A JP2005024801A JP2006216243A JP 2006216243 A JP2006216243 A JP 2006216243A JP 2005024801 A JP2005024801 A JP 2005024801A JP 2005024801 A JP2005024801 A JP 2005024801A JP 2006216243 A JP2006216243 A JP 2006216243A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
superconducting wire
oxide
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005024801A
Other languages
Japanese (ja)
Inventor
Shinichiro Meguro
信一郎 目黒
Kazutomi Miyoshi
一富 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005024801A priority Critical patent/JP2006216243A/en
Publication of JP2006216243A publication Critical patent/JP2006216243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide superconducting wire with a circular or rectangular cross section which has an engineering critical current density equivalent to that of a tape-shaped bismuth-based oxide superconducting wire and is easily used as cable conductors and magnet windings, and to provide an oxide superconducting wire which achieves a lower silver ratio at low cost by suppressing the amount of silver or silver alloy used as stabilizers. <P>SOLUTION: The oxide superconducting wire comprises a core material 16 made of metal, a matrix 22 made of the stabilizer that is arranged outside the core material, and a filament 21 made of a plurality of oxide superconductors buried in the matrix. The filament is formed so as to be flat-shaped and distributed around the core material in a layered form in the cross section of the wire and to be spirally drawn in the longitudinal direction of the wire, and the engineering critical current density of 15,000 A/cm<SP>2</SP>or higher is obtained at temperatures of liquid nitrogen in a self magnetic field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い工学的臨界電流密度特性Jeを示し、円形または矩形の断面形状を有する酸化物超電導線材、特に、ビスマス系酸化物超電導線材及び、その製造方法に関する。   The present invention relates to an oxide superconducting wire having a high engineering critical current density characteristic Je and having a circular or rectangular cross-sectional shape, in particular, a bismuth-based oxide superconducting wire and a method for producing the same.

従来、ビスマス系酸化物超電導線材は、いわゆるパウダー・イン・チューブ法を用いて製造される。パウダー・イン・チューブ法は、酸化物超電導体を生成し得る原料の粉末を、安定化材のチューブに詰め、それに塑性加工及び熱処理を施して、線材を得る方法である。原料粉末の調整では、超電導体を構成する元素の酸化物または炭酸塩の粉末が所定の配合比で配合され、かつ焼結された後、焼結物は粉砕される。
原料粉末を充填する安定化材のチューブは、例えば銀または銀合金からなる。塑性加工には、伸線加工、圧延加工、プレス加工などが用いられる。
Conventionally, bismuth-based oxide superconducting wires are manufactured using a so-called powder-in-tube method. The powder-in-tube method is a method of obtaining a wire by filling a powder of a raw material capable of forming an oxide superconductor into a tube of a stabilizing material and subjecting it to plastic processing and heat treatment. In the preparation of the raw material powder, the oxide or carbonate powder of the element constituting the superconductor is blended at a predetermined blending ratio and sintered, and then the sintered product is pulverized.
The stabilizer tube filled with the raw material powder is made of, for example, silver or a silver alloy. For the plastic working, wire drawing, rolling, press working or the like is used.

安定化材のチューブに銀または銀合金を用いた銀シース線材には、断面が扁平なテープ状線材と、断面が円型の丸型線材との2種類がある。丸形線材の場合、圧延を行わず伸線と熱処理を繰り返して作成するが、テープ状線材の場合、圧延、熱処理を施すことにより作成される。 There are two types of silver sheath wire using silver or a silver alloy for the stabilizing material tube, a tape-shaped wire having a flat cross section and a round wire having a circular cross section. In the case of a round wire, it is created by repeating drawing and heat treatment without rolling, but in the case of a tape-like wire, it is created by rolling and heat treatment.

しかしながら、従来の酸化物超電導線材において、テープ状線材には、圧延が行われるため圧延設備が必要として製造コストが高く、また、応用面においては、超電導体としてケーブルやマグネットに用いられる時に、線材断面がテープ状であるゆえ、従来のケーブル化技術やマグネット化の巻線技術が適用されない。更に、高価なシース材料である銀を多く使用することで、原料コストが高いなど、種々な問題点を抱えていた。
一方の丸型線材はテープ状線材と対照的に、製造においても、後ほどのケーブル化やマグネット化などの応用面においても、従来技術が問題なく適応される、という便利かつ経済的な一面があるものの、圧延加工を施して得られるテープ状線材と比較して工学的臨界電流密度(以下はJeと記する)が著しく小さいため、実用性が欠けていた。
However, in the conventional oxide superconducting wire, the tape-shaped wire is rolled, so that a rolling facility is required and the manufacturing cost is high, and in terms of application, when the wire is used as a superconductor in a cable or a magnet, Since the cross section is tape-shaped, conventional cable technology and magnet winding technology are not applied. Furthermore, the use of a large amount of silver, which is an expensive sheath material, has various problems such as high raw material costs.
On the other hand, in contrast to the tape-shaped wire, one round wire has a convenient and economical aspect that the conventional technology can be applied without problems both in production and in later application of cables and magnets. However, since the engineering critical current density (hereinafter referred to as Je) is remarkably small as compared with a tape-shaped wire obtained by rolling, practicality was lacking.

テープ状ビスマス系超電導線材で高いJe特性が得られる理由は、圧延加工における圧縮力が酸化物超電導の原料となる粉末の密度を高め、引き続く熱処理過程で配向性の良いビスマス結晶構造が実現されていることに起因する。一方丸型線材の場合は、圧延加工を行わず、伸線加工では長手方向に粉末が伸延されるだけで粉末密度の向上が実現しないのである。このメカニズムは、銀比(線材中の銀の体積/超電導体の体積)が圧延、熱処理後に増大していることで実験的に確認されている。   The reason why high Je characteristics can be obtained with a tape-shaped bismuth-based superconducting wire is that the compressive force in the rolling process increases the density of the powder that is the raw material for oxide superconductivity, and a bismuth crystal structure with good orientation is realized in the subsequent heat treatment process. Due to being. On the other hand, in the case of a round wire rod, the rolling process is not performed, and in the wire drawing process, the powder is simply elongated in the longitudinal direction, and the powder density cannot be improved. This mechanism is experimentally confirmed by the fact that the silver ratio (volume of silver in the wire / volume of superconductor) increases after rolling and heat treatment.

また、多芯化した丸型線材の場合は従来、図7に示すように、酸化物超電導体の原料粉末を銀チューブに充填し、伸線して得た超電導素線11を複数本銀からなるチューブ18に嵌合した後、チューブ18の両端に銀からなる蓋14,15をつけて複合ビレット24を作成する。さらにこの複合ビレット24に伸線加工、熱処理を所定回数で繰り返し行い、多芯化した酸化物超電導の丸型線材25を作成する。このように作成された酸化物超電導の丸型線材25は図8に示すように、線材断面において銀安定化材からなるマトリックス22の中に酸化物超電導体からなるフィラメント21が多数に埋め込まれて、また、線材長手方向においてはフィラメント21が一方向に伸ばされるものである。従って、従来の多芯化した酸化物超電導の丸型線材も前記単芯の丸型超電導線材同様に、圧延が施されない限り、伸線のみでは高いJe特性が得られなかった。 Further, in the case of a round wire having a multi-core structure, conventionally, as shown in FIG. 7, a plurality of superconducting wires 11 obtained by filling a raw material powder of an oxide superconductor into a silver tube and drawing it are made of silver. After fitting into the tube 18, the composite billet 24 is created by attaching the lids 14 and 15 made of silver to both ends of the tube 18. Further, the composite billet 24 is repeatedly subjected to wire drawing and heat treatment a predetermined number of times, thereby producing a multi-core oxide superconducting round wire 25. As shown in FIG. 8, the oxide superconducting round wire 25 prepared in this way has a large number of filaments 21 made of an oxide superconductor embedded in a matrix 22 made of a silver stabilizer in the cross section of the wire. The filament 21 is stretched in one direction in the longitudinal direction of the wire. Accordingly, as in the case of the single-core round superconducting wire, a conventional multi-core oxide superconducting round wire has not been able to obtain high Je characteristics only by drawing unless it is rolled.

ビスマス系酸化物超電導の丸型線材のJeを向上させようとした例として、下記特許文献1と2が挙げられる。特許文献1に開示された酸化物超電導の丸型線材は、金属、銀または銀合金と酸化物超電導体を交互に積層した概ね同心円状の多重環構造を有しており、その線材における酸化物超電導と金属との界面距離を小さくすることでc軸配向ができると言われている。しかし、この線材の臨界電流密度(以下はJcと記する)値が従来の他の丸型線材の値に比べて1桁高いが、テープ状線材に比べては1桁小さく、実用レベルには至っていなかった。 Patent Documents 1 and 2 listed below are examples of attempts to improve Je of a bismuth-based oxide superconducting round wire. The oxide superconducting round wire disclosed in Patent Document 1 has a substantially concentric multiple ring structure in which metal, silver or a silver alloy and an oxide superconductor are alternately laminated, and the oxide in the wire It is said that c-axis orientation can be achieved by reducing the interface distance between superconductivity and metal. However, the critical current density (hereinafter referred to as Jc) value of this wire is an order of magnitude higher than that of other conventional round wires, but is an order of magnitude smaller than that of a tape-shaped wire. It was not reached.

また、特許文献2には、酸化物超電導体を銀パイプ中に充填して得られた嵌合線を銀の芯棒の周りの各側面に沿って5層配列し、銀パイプに嵌合し、複数回熱処理を施して得た酸化物超電導線材を開示していた。しかし、前記嵌合線は実質上に圧延を施したテープ状線であって、なおかつ、これを用いて作成した近似円型断面形状の線材のJcが、前記特許文献1で開示したJcよりは高かったものの、テープ状線材のJcレベルには及ばなかった。
なお、上記特許文献1と2に記載したJcについて、明細書において超電導線材を用いて評価したものであるため、厳密にJc(=Ic/超電導体の断面積、Icは臨界電流である)ではなく、Je(=Ic/超電導線材の断面積)と推定する。
Further, in Patent Document 2, five layers of fitting wires obtained by filling an oxide superconductor into a silver pipe are arranged along each side surface around a silver core rod, and fitted into the silver pipe. An oxide superconducting wire obtained by performing heat treatment a plurality of times has been disclosed. However, the fitting line is a tape-like line that has been substantially rolled, and the Jc of the wire having an approximate circular cross-section formed using this is more than the Jc disclosed in the Patent Document 1. Although it was high, it did not reach the Jc level of the tape-shaped wire.
Since Jc described in Patent Documents 1 and 2 was evaluated using a superconducting wire in the specification, strictly in Jc (= Ic / cross-sectional area of superconductor, Ic is a critical current) And Je (= Ic / cross-sectional area of superconducting wire).

特開平4−262308号公報JP-A-4-262308 特開平9‐259660号公報JP-A-9-259660

本発明の目的は、ビスマス系酸化物超電導テープ状線材と同等なJe特性を有し、ケーブル導体やマグネット用巻線として使いやすい円形または矩形の断面を有する酸化物超電導線材、並びにこの酸化物超電導線材を用いた撚線や、ケーブル、マグネットなどを提供することである。   An object of the present invention is to provide an oxide superconducting wire having a Je characteristic equivalent to that of a bismuth-based oxide superconducting tape-like wire and having a circular or rectangular cross section that is easy to use as a cable conductor or a winding for a magnet. It is to provide a stranded wire using a wire, a cable, a magnet, and the like.

本発明の更なる目的は、安定化材に使用される銀または銀合金の使用量を抑え、低銀比化を実現した酸化物超電導線材を低コストで提供することである。   It is a further object of the present invention to provide an oxide superconducting wire that reduces the amount of silver or silver alloy used in the stabilizing material and realizes a low silver ratio at a low cost.

筆者らは、伸線加工でも線材断面周辺部には圧縮の残留応力を残すことができること、および、酸化物超電導体の原料となる粉末をフィラメント軸方向だけでなく、横方向にも伸延し扁平化することにより、伸線加工でも原料粉末に圧延と同等な圧縮力を及ぼし、高密度化が実現できることを見出した。 The authors are able to leave compressive residual stress in the periphery of the wire cross-section even during wire drawing, and the powder that is the raw material of the oxide superconductor is flattened not only in the filament axis direction but also in the lateral direction. As a result, it was found that even in the wire drawing process, the raw material powder was subjected to a compressive force equivalent to that of rolling and high density could be realized.

即ち、本発明では、芯材と、芯材より外側に配置された安定化材からなるマトリックスと、前記マトリックス中に多数埋め込んだ酸化物超電導体からなるフィラメントを備えた酸化物超電導線材において、前記フィラメントが、線材の断面において扁平状となり前記芯材周辺に層状分布すると共に、線材の長手方向においてらせん状に延伸して形成されるものであり、かつ、液体窒素中自己磁場中15000A/cm以上の臨界電流密度を示すことを特徴とする酸化物超電導線材、とりわけ、円形または矩形の断面形状を有するビスマス系酸化物超電導線材を提供する。 That is, in the present invention, in an oxide superconducting wire comprising a core material, a matrix made of a stabilizing material disposed outside the core material, and a filament made of an oxide superconductor embedded in the matrix in a large number, The filament is flat in the cross section of the wire and is distributed in layers around the core material, and is formed by extending in a spiral shape in the longitudinal direction of the wire, and is 15000 A / cm 2 in a self-magnetic field in liquid nitrogen. Provided is an oxide superconducting wire characterized by exhibiting the above critical current density, particularly a bismuth-based oxide superconducting wire having a circular or rectangular cross-sectional shape.

上記本発明の酸化物超電導線材において、断面中央部では伸線加工で圧縮効果が得られないため、この部分に酸化物超電導体を配置しても臨界電流(以下はIcと記する)はごく僅かしか増大しない。このため酸化物超電導体は断面周辺のみに配置することになり、断面中央部は酸素透過性が不要となる。 In the oxide superconducting wire of the present invention, since the compression effect cannot be obtained by wire drawing at the center of the cross section, the critical current (hereinafter referred to as Ic) is extremely high even if the oxide superconductor is disposed in this portion. Only slightly increased. For this reason, the oxide superconductor is disposed only in the periphery of the cross section, and oxygen permeability is not required at the center of the cross section.

これにより、本発明では、前記芯材が銅または銅合金からなり、かつ、前記芯材の銅と前記安定化材との拡散を防止するバリア材からなる被覆層が前記芯材の外周に形成されていることを特徴とする上記酸化物超電導線材を提供する。 Thereby, in this invention, the said core material consists of copper or a copper alloy, and the coating layer which consists of a barrier material which prevents the spreading | diffusion of the copper of the said core material and the said stabilization material is formed in the outer periphery of the said core material The oxide superconducting wire described above is provided.

また、本発明では、上記酸化物超電導線材を複数本撚り合わせて形成された超電導撚線、また、上記酸化物超電導線材を用いた超電導ケーブル、マグネットを提供する。   In addition, the present invention provides a superconducting stranded wire formed by twisting a plurality of the oxide superconducting wires, and a superconducting cable and a magnet using the oxide superconducting wire.

本発明による酸化物超電導線材は、これまで不可避だった圧延加工を用いなくとも従来のテープ線材と同等のJe特性を有する丸型線材の製作が可能となった。この線材を筆者らはTRIC型構造を有する酸化物超電導線材と命名した。 The oxide superconducting wire according to the present invention has made it possible to produce a round wire having Je characteristics equivalent to that of a conventional tape wire without using the rolling process that has been unavoidable until now. The authors named this wire an oxide superconducting wire having a TRIC type structure.

このTRIC型の線材では、線材断面の中央部分が酸素透過性が不要のため、高価な銀を配置する必要もなくなる。この部分に銅を配置し周辺の銀との拡散を防止するNb、Taなどのバリア材で被覆することにより、銀の使用量を抑制した低コスト酸化物超電導線材が得られることになる。 In this TRIC type wire, the central portion of the cross section of the wire does not need oxygen permeability, so there is no need to dispose expensive silver. By placing copper in this portion and covering with a barrier material such as Nb or Ta that prevents diffusion with surrounding silver, a low-cost oxide superconducting wire with a reduced amount of silver used can be obtained.

また、丸型線材であるTRIC型酸化物超電導線材を素線として使用すれば、超電導電力ケーブルに必要とされるケーブル導体は従来のケーブル化技術を用いて容易に構成できる。またマグネット化も従来の巻線技術で容易に実現されることになる。 Further, if a TRIC type oxide superconducting wire, which is a round wire, is used as a strand, the cable conductor required for the superconducting power cable can be easily configured using a conventional cable forming technique. Magnetization can also be easily realized by conventional winding technology.

更に、本発明に関わる酸化物超電導線材の製造方法では、連続する超電導素線を芯材上に多層に整列巻きすれば良いので、超電導素線の整直、切断、バリ取りなどが不要となり、複合ビレットの制作が容易になる。 Furthermore, in the method for manufacturing an oxide superconducting wire according to the present invention, continuous superconducting strands may be wound in multiple layers on a core material, so that superconducting strands need not be straightened, cut, deburred, etc. Making composite billets is easy.

以下、図面を参照して本発明の実施形態を詳細に説明する。
図1ないし図5は本発明の一実施形態を示す。
図1−(A)〜(D)に示す超電導素線11は、いずれも酸化物超電導体12と安定化材からなるマトリックス13より形成される。本実施形態では、図1−(A)に示す単芯の超電導丸型素線11を用いるが、これに限ることが無く、矩形の素線(図1−(B))、または、多芯化した超電導素線(図1−(C)、(D))などを使用することもできる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 5 show an embodiment of the present invention.
Each of the superconducting wires 11 shown in FIGS. 1- (A) to (D) is formed of an oxide superconductor 12 and a matrix 13 made of a stabilizing material. In the present embodiment, the single-core superconducting round strand 11 shown in FIG. 1- (A) is used, but the present invention is not limited to this, and a rectangular strand (FIG. 1- (B)) or a multi-core A superconducting element wire (FIG. 1- (C), (D)) or the like can also be used.

超電導素線11には、酸化物超電導体、好ましくは、ビスマス系酸化物超電導体を用いる。例えば、ビスマス系2223相や、2212相などを主体となるビスマス系酸化物超電導体、またはその原料となる粉末を安定化材からなるチューブに充填してパウダー・イン・チューブ法により線材を作成する。
本実施形態の超電導素線11は丸型線材であり、その寸法は、例えば、外径2mmφ、銀比1.5である。
For the superconducting wire 11, an oxide superconductor, preferably a bismuth-based oxide superconductor is used. For example, a bismuth-based oxide superconductor mainly composed of a bismuth-based 2223 phase, a 2212-phase, or the like, or a powder serving as a raw material thereof is filled in a tube made of a stabilizing material, and a wire is produced by a powder-in-tube method. .
The superconducting wire 11 of the present embodiment is a round wire, and its dimensions are, for example, an outer diameter of 2 mmφ and a silver ratio of 1.5.

本発明において、マトリックスを形成する安定化材には、銀または銀合金、例えば銀(Ag)−金(Au)合金、銀(Ag)−マンガン(Mn)合金、銀(Ag)−チタン(Ti)合金、銀(Ag)−アンチモン(Sb)合金を用いるが、好ましくはAg−Mg合金を用いる。 In the present invention, the stabilizing material forming the matrix includes silver or a silver alloy, such as a silver (Ag) -gold (Au) alloy, a silver (Ag) -manganese (Mn) alloy, silver (Ag) -titanium (Ti ) Alloy, silver (Ag) -antimony (Sb) alloy is used, preferably an Ag-Mg alloy.

一方、図2に示す棒状芯材16とその両端についている銀または銀合金よりなる蓋14、15で構成する心金を製造する。芯材16は、銅または銅合金からなるが、銅と銀安定化材との拡散を防ぐために、外側にニオブ(Nb)またはニオブ(Nb)−銅(Cu)合金被覆層を形成したものが用いられる。銀の芯材を使用せず銅または銅合金の芯材16を用いたため、製造される酸化物超電導の丸型線材20の低銀比化が実現される。
心金の寸法は、例えば、芯材16の外径は10mm、蓋14、15の外径は25mm、全長750mmである。
On the other hand, a mandrel composed of the rod-shaped core 16 shown in FIG. 2 and the lids 14 and 15 made of silver or a silver alloy on both ends thereof is manufactured. The core material 16 is made of copper or a copper alloy, but in order to prevent diffusion of copper and a silver stabilizing material, a niobium (Nb) or niobium (Nb) -copper (Cu) alloy coating layer is formed on the outside. Used. Since the core material 16 made of copper or copper alloy is used without using the silver core material, the silver ratio of the manufactured oxide superconducting round wire 20 can be reduced.
As for the dimensions of the mandrel, for example, the outer diameter of the core 16 is 10 mm, the outer diameters of the lids 14 and 15 are 25 mm, and the total length is 750 mm.

次に図3に示すように、芯材16の外周に前記超電導素線11を、隣ターン同士を密接させて、かつ3層に、らせん巻きして、超電導素線巻装体17を形成し、その外周に安定化材、例えば銀または銀合金からなる外形25mmφ、内径21mmφのチューブ18をかぶせ、真空中で銀からなるチューブ18と銀製の蓋14、15を電子ビーム溶接する。その後、HIP加工を施し、外削りして、複合ビレット19を制作する。これを伸線、830℃、72時間の熱処理を3回繰り返して図4に示す線径1.0mmφの酸化物超電導の丸型線材20を得る。   Next, as shown in FIG. 3, the superconducting element wire 11 is wound around the outer periphery of the core member 16, the adjacent turns are brought into close contact with each other, and spirally wound in three layers to form a superconducting element wire wound body 17. Then, a tube 18 having an outer diameter of 25 mmφ and an inner diameter of 21 mmφ made of a stabilizing material such as silver or a silver alloy is placed on the outer periphery, and the tube 18 made of silver and the silver lids 14 and 15 are electron beam welded in a vacuum. Thereafter, the composite billet 19 is produced by performing HIP processing and cutting off. This is drawn, and heat treatment at 830 ° C. for 72 hours is repeated three times to obtain an oxide superconducting round wire 20 having a wire diameter of 1.0 mmφ shown in FIG.

得られた丸型線材20は、その断面には図4に示されるように、銀または銀合金マトリックス22の中に埋め込まれた扁平状のフィラメント21が芯材の周りに層状分布しており、また、長手方向には図5に点線で示すように、リボン状に引き延ばされた各フィラメント21がらせん状になっている。従って、フィラメント21が長手方向一方向だけの延伸ではなく、長手方向と垂直する方向にも延伸されている。これは、フィラメント21の周辺に圧縮応力を存在させ、酸化物超電導体に圧延と同様な効果を加えることになる。その結果、本発明の酸化物超電導線材に液体窒素温度下で超電導特性が得られ、Je特性が向上される。   In the cross section of the obtained round wire 20, as shown in FIG. 4, flat filaments 21 embedded in a silver or silver alloy matrix 22 are distributed in layers around the core material, Further, in the longitudinal direction, as shown by dotted lines in FIG. 5, each filament 21 stretched in a ribbon shape is spiral. Accordingly, the filament 21 is stretched not only in one direction in the longitudinal direction but also in a direction perpendicular to the longitudinal direction. This causes a compressive stress to exist around the filament 21 and adds an effect similar to rolling to the oxide superconductor. As a result, superconducting properties can be obtained at the liquid nitrogen temperature in the oxide superconducting wire of the present invention, and the Je properties can be improved.

得られた丸型線材20のIcを液体窒素中、自己磁界のみで測定したところ120A(Je=15279A/cm)が得られた。これは同一断面積を有するテープ状ビスマス線材と同等のIc特性である。 When Ic of the obtained round wire 20 was measured only in a self-magnetic field in liquid nitrogen, 120 A (Je = 15279 A / cm 2 ) was obtained. This is the same Ic characteristic as a tape-like bismuth wire having the same cross-sectional area.

また、本発明に関わるその他の実施形態として、上記実施形態で得た酸化物超電導線材を図1に示す断面形状に加工して素線として用いることもできる。この場合、予め素線のフィラメントが長手方向にらせん状に形成されている。これを図2のように心金にらせん巻きし超電導巻線体を得、更に、図3に示すような複合ビレットを作成した後、前記同様に押し出し、伸線、熱処理を経て、図6に示すような、ねじりながら長手方向にらせん状に伸びるフィラメント23を有する酸化物超電導線材を得る。 As another embodiment related to the present invention, the oxide superconducting wire obtained in the above embodiment can be processed into a cross-sectional shape shown in FIG. 1 and used as a strand. In this case, the filament of the strand is previously formed in a spiral shape in the longitudinal direction. This is spirally wound on a mandrel as shown in FIG. 2 to obtain a superconducting winding body. Further, after a composite billet as shown in FIG. 3 is formed, it is extruded, drawn and heat-treated in the same manner as described above. As shown, an oxide superconducting wire having a filament 23 that spirally extends in the longitudinal direction while twisting is obtained.

本発明の実施形態で用いる超電導素線の断面図Sectional view of a superconducting wire used in an embodiment of the present invention 本発明の実施形態で用いた蓋付きの心金の断面図Sectional drawing of a mandrel with a lid used in an embodiment of the present invention 本発明の実施形態で作成された複合ビレットの断面図Sectional view of a composite billet made in an embodiment of the present invention 本発明の実施形態で作成された超電導線材の断面図Sectional drawing of the superconducting wire created in the embodiment of the present invention 本発明の実施形態で作成された超電導線材におけるフィラメントの存在状態を示す説明図Explanatory drawing which shows the presence state of the filament in the superconducting wire created by embodiment of this invention 本発明のその他の実施形態で作成された超電導線材におけるフィラメントの存在状態を示す説明図Explanatory drawing which shows the presence state of the filament in the superconducting wire created by other embodiment of this invention 従来の製造方法による複合ビレットの断面図Cross section of composite billet by conventional manufacturing method 従来の製造方法による超電導線材の断面図Cross section of superconducting wire by conventional manufacturing method

符号の説明Explanation of symbols

11: 超電導素線
12: 酸化物超電導体
13、22、27: 安定化材マトリックス
14、15: 蓋
16: 芯材
17: 超電導素線巻装体
18: チューブ
19、24: 複合ビレット
20、25: 丸型線材
21、23: フィラメント


11: Superconducting wire 12: Oxide superconductor 13, 22, 27: Stabilizer matrix 14, 15: Lid 16: Core material 17: Superconducting wire wound body 18: Tube 19, 24: Composite billet 20, 25 : Round wire 21, 23: Filament


Claims (7)

金属からなる芯材と、前記芯材より外側に配置された安定化材からなるマトリックスと、前記マトリックス中に多数埋め込んだ酸化物超電導体からなるフィラメントとを備えた酸化物超電導線材において、前記フィラメントが、線材の断面において扁平状となり前記芯材周辺に層状分布すると共に、線材の長手方向においてらせん状に延びて形成されるものであり、かつ、液体窒素温度下自己磁場において15000A/cm以上の工学的臨界電流密度を示すことを特徴とする、酸化物超電導線材。 An oxide superconducting wire comprising: a core material made of metal; a matrix made of a stabilizing material disposed outside the core material; and a filament made of an oxide superconductor embedded in the matrix. However, it is flat in the cross section of the wire and distributed in a layered manner around the core material, and is formed to extend in a spiral shape in the longitudinal direction of the wire, and is 15000 A / cm 2 or more in a self-magnetic field at a liquid nitrogen temperature. An oxide superconducting wire characterized by exhibiting an engineering critical current density of 前記芯材が銅または銅合金からなり、かつ、前記芯材の銅と前記安定化材との拡散を防止するバリア材からなる被覆層が前記芯材の外周に形成されていることを特徴とする、請求項1に記載の酸化物超電導線材。 The core material is made of copper or a copper alloy, and a coating layer made of a barrier material for preventing diffusion of copper of the core material and the stabilizing material is formed on the outer periphery of the core material. The oxide superconducting wire according to claim 1. 前記酸化物超電導線材の断面形状が円形または矩形であることを特徴とする請求項1または2に記載の酸化物超電導線材。 The oxide superconducting wire according to claim 1 or 2, wherein a cross-sectional shape of the oxide superconducting wire is circular or rectangular. 前記酸化物超電導体がビスマス系酸化物からなることを特徴とする請求項1ないし3に記載の酸化物超電導線材。 4. The oxide superconducting wire according to claim 1, wherein the oxide superconductor is made of a bismuth-based oxide. 請求項1ないし4に記載の酸化物超電導線材を複数本撚り合わせて形成したことを特徴とする超電導撚線。 A superconducting stranded wire formed by twisting a plurality of the oxide superconducting wires according to claim 1. 請求項1ないし4に記載の酸化物超電導線材を用いた超電導ケーブル。 A superconducting cable using the oxide superconducting wire according to claim 1. 請求項1ないし4に記載の酸化物超電導線材を用いたマグネット。

A magnet using the oxide superconducting wire according to claim 1.

JP2005024801A 2005-02-01 2005-02-01 Oxide superconducting wire and its manufacturing method Pending JP2006216243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024801A JP2006216243A (en) 2005-02-01 2005-02-01 Oxide superconducting wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024801A JP2006216243A (en) 2005-02-01 2005-02-01 Oxide superconducting wire and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006216243A true JP2006216243A (en) 2006-08-17

Family

ID=36979312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024801A Pending JP2006216243A (en) 2005-02-01 2005-02-01 Oxide superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006216243A (en)

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
EP0638942B1 (en) Oxide superconducting wire, manufacturing method thereof, oxide superconducting coil and cable conductor
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
AU3346501A (en) Multifilamentary oxide superconducting wire and method of producing the same, and stranded oxide superconducting wire and method of producing the same
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
JP2006216243A (en) Oxide superconducting wire and its manufacturing method
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JP4605156B2 (en) Superconducting wire manufacturing method
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JPH06325634A (en) Multi-core oxide superconducting wire
JPH10312718A (en) Superconductive cable conductor
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
JPH05334921A (en) Ceramic superconductor
JP3033624B2 (en) Ceramic superconducting conductor
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JP4203313B2 (en) Bi-based rectangular oxide superconductor
JPH06325633A (en) Multi-core oxide superconducting wire
JP2001118437A (en) Oxide superconductive multi-conductor wire and method for manufacturing
JP2006107843A (en) Tape-shaped superconductive wire
JPH07169342A (en) Multi-filament oxide superconducting wire
JPH05114320A (en) Manufacture of ceramics superconductive conductor