JP2006214697A - Radiation panel and air conditioner system - Google Patents

Radiation panel and air conditioner system Download PDF

Info

Publication number
JP2006214697A
JP2006214697A JP2005030532A JP2005030532A JP2006214697A JP 2006214697 A JP2006214697 A JP 2006214697A JP 2005030532 A JP2005030532 A JP 2005030532A JP 2005030532 A JP2005030532 A JP 2005030532A JP 2006214697 A JP2006214697 A JP 2006214697A
Authority
JP
Japan
Prior art keywords
heat medium
flow path
medium flow
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005030532A
Other languages
Japanese (ja)
Inventor
Ryoichi Kuwabara
亮一 桑原
Kuniaki Yamada
邦昭 山田
Manabu Narimatsu
学 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2005030532A priority Critical patent/JP2006214697A/en
Publication of JP2006214697A publication Critical patent/JP2006214697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation panel capable of increasing the efficiency of heat transfer from a heat medium flow passage to a radiation plate by a simple structure and an air conditioner system using the radiation panel. <P>SOLUTION: This radiation panel comprises the heat medium flow passage 13 for flowing the heat medium therein and the radiation plate 11 receiving heat from the heat medium flowing in the heat medium flowing passage 13 and radiating the heat. The heat medium flow passage 13 comprises such a cross sectional shape that the contact area of the heat medium flow passage 13 with the radiation plate 11 is larger than in a case when the cross sectional shape of the heat medium flow passage 13 is assumed to be complete round. The radiation panel is disposed at at least one of the ceiling surface, floor surface, and wall surface of an air conditioned room. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は放射パネル及び空調システムに関し、特に簡易な構成で熱媒体流路から放射板への伝熱効率を向上させた放射パネル、及びそのような放射パネルを用いた空調システムに関するものである。   The present invention relates to a radiant panel and an air conditioning system, and more particularly to a radiant panel with improved heat transfer efficiency from a heat medium flow path to a radiant plate with a simple configuration, and an air conditioning system using such a radiant panel.

省エネルギーと快適性とを両立する空調方式として、現在、放射空調が注目されている。放射空調は、熱媒体流路を放射板に敷設した放射パネルを床や天井に設け、熱媒体流路に冷水又は温水を流して放射板の温度を上昇又は下降させ、放射板からの放射熱により空調をするシステムである。放射板からの放射熱の強さは熱媒体流路から放射板への伝熱量に関係する。熱媒体流路から放射板への伝熱量を増加させるために、熱媒体流路をできるだけ密に放射板に敷設することが一般的に行なわれている。他方、漏水を防止するために熱媒体流路にできるだけ接続部を設けないよう、放射板には長尺の熱媒体流路を適宜曲げて敷設することが行なわれている。ところが、熱媒体流路の曲げ強度の観点から曲げ半径を小さくするのには限界があるため、熱媒体流路の密度を高めるのには一定の限界があった。   Radiant air conditioning is currently attracting attention as an air conditioning system that achieves both energy saving and comfort. In radiant air conditioning, a radiant panel with a heat medium passage laid on a radiant plate is installed on the floor or ceiling, and cold water or hot water is flowed through the heat medium passage to raise or lower the temperature of the radiant plate. This is an air conditioning system. The intensity of radiant heat from the radiation plate is related to the amount of heat transferred from the heat medium flow path to the radiation plate. In order to increase the amount of heat transfer from the heat medium flow path to the radiation plate, it is common practice to lay the heat medium flow path on the radiation plate as densely as possible. On the other hand, in order to prevent water leakage, a long heat medium flow path is appropriately bent and laid on the radiation plate so as not to provide a connection portion in the heat medium flow path as much as possible. However, since there is a limit to reducing the bending radius from the viewpoint of the bending strength of the heat medium flow path, there is a certain limit to increasing the density of the heat medium flow path.

このような状況で、熱媒体流路を放射板にできるだけ密に敷設した上で、さらに熱媒体流路と放射板との熱伝達効率を向上させるため、放射パネルに配管用の凹溝部を設けてその凹溝部に熱媒体流路を敷設するということが行なわれていた(例えば特許文献1参照)。また、凹溝部を設けずに熱媒体流路からの放熱量を増加させる手段として、熱媒体流路にフィン等を設けることが行なわれていた(例えば特許文献2参照)。
特開平11−315629号公報(段落0006、図2、図3等) 特開平10−288386号公報(図4、図5等)
Under such circumstances, the heat medium flow path is laid as densely as possible on the radiation plate, and in order to further improve the heat transfer efficiency between the heat medium flow path and the radiation plate, a groove for piping is provided in the radiation panel. It has been practiced to lay the heat medium flow path in the concave groove (see, for example, Patent Document 1). Further, fins or the like have been provided in the heat medium flow path as means for increasing the heat radiation amount from the heat medium flow path without providing the concave groove portion (see, for example, Patent Document 2).
JP-A-11-315629 (paragraph 0006, FIG. 2, FIG. 3, etc.) JP-A-10-288386 (FIGS. 4, 5, etc.)

しかしながら、特許文献1に記載された手段では、熱媒体流路と放射板との接触部を増やすため、溝の加工に精度が要求されると共に、溝の加工に手間がかかった。また、特許文献2に記載された手段では、放熱フィンを設けるため放射パネルの作成に手間がかかると共に、現場における熱媒体流路の敷設の自由度が制約されることとなっていた。   However, in the means described in Patent Document 1, since the contact portion between the heat medium flow path and the radiation plate is increased, accuracy in the processing of the groove is required, and it takes time to process the groove. Further, in the means described in Patent Document 2, since the radiation fins are provided, it takes time to create the radiating panel, and the degree of freedom in laying the heat medium flow path in the field is restricted.

本発明は上述の課題に鑑み、簡易な構成で熱媒体流路から放射板への伝熱効率を向上させた放射パネル、及びそのような放射パネルを用いた空調システムを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a radiant panel with improved heat transfer efficiency from a heat medium flow path to a radiant plate with a simple configuration, and an air conditioning system using such a radiant panel. .

上記目的を達成するために、請求項1に記載の発明に係る放射パネルは、例えば図1に示すように、熱媒体が流れる熱媒体流路13と;熱媒体流路13を流れる熱媒体から受熱してその熱を放射する放射板11とを備え;熱媒体流路13が、熱媒体流路13の断面形状が真円であると仮定したときに比べて熱媒体流路13と放射板11との接触面積が大きくなるような断面形状を有する。ここで、断面形状の「真円」は、断面形状が厳密に真円であることを要求する意味ではなく、後述する断面扁平形状等と比較するために用いたものであり、実際には多少の歪が存在する場合であっても断面形状を円形とするように設計されているものを含む。   In order to achieve the above object, a radiant panel according to a first aspect of the present invention includes a heat medium flow path 13 through which a heat medium flows; for example, as shown in FIG. A radiation plate 11 that receives heat and radiates the heat; the heat medium flow path 13 and the heat medium flow path 13 and the radiation plate are compared with the case where the cross section of the heat medium flow path 13 is assumed to be a perfect circle. 11 has a cross-sectional shape in which the contact area with the electrode 11 is large. Here, the “perfect circle” of the cross-sectional shape does not mean that the cross-sectional shape is strictly a perfect circle, but is used for comparison with the flat cross-sectional shape described later. Even in the case where there is a strain of, a cross-sectional shape is designed to be circular.

このように構成すると、熱媒体流路が、熱媒体流路の断面形状が真円であると仮定したときに比べて熱媒体流路と放射板との接触面積が大きくなるような断面形状を有するので、放射パネルに熱媒体流路を敷設するための溝を設けなくても熱媒体流路から放射パネルへの熱伝達効率を向上させることができる。なお、「受熱」は、温熱の受熱のみならず冷熱の受熱をもいうものとする。すなわち、放射板が熱媒体によって温められる場合だけでなく冷やされる場合も、放射板が「受熱」すると表現することとする。また、「放射する」というのは、温熱のみならず冷熱についてもこのように表現することとする。すなわち、厳密にいえば、放射パネルから冷熱が放射されるのではなく、例えば人間などから放射された熱が、温度の低い放射パネルに吸収されて反射されないために納涼感が生ずるのであるが、本明細書においては便宜上、冷熱についても「放射する」と表現することとする。   When configured in this way, the heat medium flow path has a cross-sectional shape such that the contact area between the heat medium flow path and the radiation plate is larger than when the cross-sectional shape of the heat medium flow path is assumed to be a perfect circle. Therefore, the heat transfer efficiency from the heat medium flow path to the radiant panel can be improved without providing a groove for laying the heat medium flow path in the radiant panel. “Receiving heat” means not only receiving heat but also receiving heat. In other words, not only when the radiation plate is heated by the heat medium but also when it is cooled, the radiation plate is expressed as “heat receiving”. In addition, “radiating” is expressed in this way not only for heat but also for cold. That is, strictly speaking, cold heat is not radiated from the radiant panel, but heat radiated from, for example, humans is absorbed by the radiant panel having a low temperature and is not reflected. In this specification, for the sake of convenience, cold heat is also expressed as “radiating”.

また、請求項2に記載の発明に係る放射パネルは、例えば図2に示すように、請求項1に記載の放射パネル10(例えば図1参照)において、熱媒体流路13の断面形状が、扁平形状、半円形状、矩形又は三角形のいずれかの形状に形成されている。   In addition, the radiating panel according to the invention described in claim 2 is, for example, as shown in FIG. 2, in the radiating panel 10 according to claim 1 (see FIG. 1, for example), It has a flat shape, a semicircular shape, a rectangular shape, or a triangular shape.

このように構成すると、放射パネルに熱媒体流路を敷設するための溝を設けなくても熱媒体流路から放射パネルへの熱伝達効率を向上させることができる。   If comprised in this way, even if it does not provide the groove | channel for laying a heat carrier flow path in a radiation panel, the heat transfer efficiency from a heat carrier flow path to a radiation panel can be improved.

また、請求項3に記載の発明に係る放射パネルは、例えば図1に示すように、請求項1又は請求項2に記載の放射パネル10において、放射板11に、通気孔12が形成されている。   Moreover, the radiation panel according to the invention described in claim 3 is, for example, as shown in FIG. 1, in the radiation panel 10 according to claim 1 or 2, a vent hole 12 is formed in the radiation plate 11. Yes.

このように構成すると、放射パネルを被空調室に設置した際に通気孔に空気を通過させ、放射熱と対流とによって被空調室内の温度分布をほぼ均一にする空調システムに適用可能な放射パネルとなる。   If comprised in this way, when a radiation panel is installed in an air-conditioned room, the radiation panel can be applied to an air-conditioning system that allows air to pass through the vent hole and makes the temperature distribution in the air-conditioned room substantially uniform by radiant heat and convection. It becomes.

上記目的を達成するために、請求項4に記載の発明に係る空調システムは、請求項1乃至請求項3のいずれか1項に記載の放射パネル10(例えば図1参照)が、被空調室の天井面、床面及び壁面の少なくとも1箇所に配設され;被空調室を冷房する際に熱媒体流路13(例えば図1参照)に冷水を流し、被空調室を暖房する際に熱媒体流路13(例えば図1参照)に温水を流すように構成されている。ここで、放射パネルが「面」に配設されるとは、既に形成されている天井、床、壁に放射パネルを貼り付けること、及び放射パネルによって天井、床、壁を形成することのいずれの意であってもよい。   In order to achieve the above object, an air conditioning system according to a fourth aspect of the present invention is characterized in that the radiating panel 10 according to any one of the first to third aspects (see, for example, FIG. 1) The cooling medium is disposed in at least one of the ceiling surface, the floor surface, and the wall surface of the ceiling; when cooling the air-conditioned room, cold water is passed through the heat medium flow path 13 (see, for example, FIG. 1) to heat the air-conditioned room. It is configured to allow warm water to flow through the medium flow path 13 (see, for example, FIG. 1). Here, the radiating panel is disposed on the “surface” means that the radiating panel is pasted on the ceiling, floor, or wall that has already been formed, and that the radiating panel forms the ceiling, floor, or wall. May mean.

このように構成すると、放射パネルに熱媒体流路を敷設するための溝を設けなくても熱媒体流路から放射パネルへの熱伝達効率を向上させることができる放射パネルを用た空調システムを提供することができる。   With this configuration, an air conditioning system using a radiant panel that can improve the heat transfer efficiency from the heat medium flow path to the radiant panel without providing a groove for laying the heat medium flow path in the radiant panel. Can be provided.

本発明によれば、熱媒体流路が、熱媒体流路の断面形状が真円であると仮定したときに比べて熱媒体流路と放射板との接触面積が大きくなるような断面形状を有するので、放射パネルに熱媒体流路を敷設するための溝を設けなくても熱媒体流路から放射パネルへの熱伝達効率を向上させることができる。   According to the present invention, the heat medium flow path has a cross-sectional shape such that the contact area between the heat medium flow path and the radiation plate is larger than when the cross-sectional shape of the heat medium flow path is assumed to be a perfect circle. Therefore, the heat transfer efficiency from the heat medium flow path to the radiant panel can be improved without providing a groove for laying the heat medium flow path in the radiant panel.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する装置には同一符号を付し、重複した説明は省略する。
図1は、本発明の実施の形態に係る放射パネルを示す斜視図である。放射パネル10は、放射板11と熱媒体流路13を備えている。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same or equivalent devices are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a perspective view showing a radiation panel according to an embodiment of the present invention. The radiating panel 10 includes a radiating plate 11 and a heat medium flow path 13.

放射板11は、ほぼ長方形状の板であり、複数の通気孔12を有している。放射板11の材質は、典型的にはアルミニウムが用いられるが、ステンレス、その他の熱伝導率の高い材料を用いてもよい。放射板11に形成された複数の通気孔12は、典型的には円形の小孔である。放射板11に形成された通気孔12の大きさは、典型的には3mm〜15mmであるが、天井面の装飾(通気孔から天井裏が見えないようにする)の観点から上限を好ましくは12mm、より好ましくは10mmとし、ドラフト抑制のために吹き出し風速を小さくする観点から下限を好ましくは5mm、より好ましくは8mmとするとよい。放射板11に形成された通気孔12の数は、その大きさに対して、典型的には被空調室内とその天井裏とを通気孔12を通して通過させる空気の風量と風速によって決定される。風量は、典型的には、被空調室2内を所定の清浄度に保つために必要な循環風量から決定される。風速は、典型的には0.05〜0.35m/sであるが、被空調室に在室する者がドラフトを感じないという観点から上限を好ましくは0.3m/s、より好ましくは0.25m/sとし、被空調室への対流による効果を実行あらしめる観点から下限を好ましくは0.1m/s、より好ましくは0.15m/sとするとよい。なお、放射板11の形状は、長方形以外の、正方形、三角形、多角形であってもよい。放射板11の形状は、被空調室の形状や照明等他の器具類との取り合い(天伏)を考慮して、適宜納まりのよい形状を選択するとよい。   The radiation plate 11 is a substantially rectangular plate and has a plurality of vent holes 12. The material of the radiation plate 11 is typically aluminum, but stainless steel or other materials with high thermal conductivity may be used. The plurality of air holes 12 formed in the radiation plate 11 are typically circular small holes. The size of the vent hole 12 formed in the radiation plate 11 is typically 3 mm to 15 mm, but the upper limit is preferably set from the viewpoint of decoration of the ceiling surface (so that the back of the ceiling cannot be seen from the vent hole). The lower limit is preferably 5 mm, more preferably 8 mm, from the viewpoint of reducing the blown air speed in order to suppress drafting. The number of ventilation holes 12 formed in the radiation plate 11 is determined by the air volume and the velocity of air that typically passes through the air-conditioned room and the ceiling back through the ventilation holes 12 with respect to the size. The air volume is typically determined from the circulating air volume necessary for keeping the inside of the air-conditioned room 2 at a predetermined cleanliness. The wind speed is typically 0.05 to 0.35 m / s, but the upper limit is preferably 0.3 m / s, more preferably 0 from the viewpoint that a person in the air-conditioned room does not feel a draft. The lower limit is preferably 0.1 m / s, more preferably 0.15 m / s, from the viewpoint of implementing the effect of convection to the air-conditioned room. The shape of the radiation plate 11 may be a square, a triangle, or a polygon other than a rectangle. The shape of the radiating plate 11 may be appropriately selected in consideration of the shape of the air-conditioned room and the relationship with other appliances such as lighting (proneness).

熱媒体流路13は、その内部に、冷房か暖房かにより熱媒体としての冷水又は温水のうちの一方を流し、放射板11に冷熱又は温熱を授熱することができるように構成されている。ここで、「冷水」とは、被空調室を冷房する際に熱媒体流路13内を流れる水であり、その放射パネル10の入口における温度は、典型的には15〜20℃であり、冷房効率を向上させる観点から上限を好ましくは19℃、より好ましくは18℃とし、結露防止の観点から下限を好ましくは16℃、より好ましくは17℃とするのがよい。また、「温水」とは、被空調室を暖房する際に熱媒体流路13内を流れる水であり、その放射パネル10の入口における温度は、典型的には28〜45℃であり、消費エネルギー削減の観点から上限を好ましくは40℃、より好ましくは38℃とし、暖房効率を向上させる観点から下限を好ましくは30℃、より好ましくは34℃とするのがよい。また、熱は高熱源から低熱源へと移動するという観点から見れば冷熱を受熱するという表現は違和感があるかもしれないが、被空調室2を冷房するために周囲温度より低い温度である質的に高位な冷熱を必要とする点に鑑み、放射板11が冷水によって冷やされる場合を、便宜上、冷熱を受熱すると表現することとする。   The heat medium flow path 13 is configured such that one of cold water or hot water as a heat medium flows through the heat medium flow path depending on whether it is cooling or heating, and the radiating plate 11 can receive heat or heat. . Here, “cold water” is water that flows in the heat medium flow path 13 when the air-conditioned room is cooled, and the temperature at the entrance of the radiant panel 10 is typically 15 to 20 ° C., From the viewpoint of improving the cooling efficiency, the upper limit is preferably 19 ° C., more preferably 18 ° C., and from the viewpoint of preventing condensation, the lower limit is preferably 16 ° C., more preferably 17 ° C. The “warm water” is water that flows in the heat medium flow path 13 when the air-conditioned room is heated, and the temperature at the entrance of the radiation panel 10 is typically 28 to 45 ° C. The upper limit is preferably 40 ° C., more preferably 38 ° C. from the viewpoint of energy reduction, and the lower limit is preferably 30 ° C., more preferably 34 ° C., from the viewpoint of improving heating efficiency. In addition, from the viewpoint of heat moving from a high heat source to a low heat source, the expression of receiving cold heat may be uncomfortable, but the quality is lower than the ambient temperature to cool the air-conditioned room 2 In view of the fact that a high level of cold heat is required, the case where the radiation plate 11 is cooled by cold water is expressed as receiving cold heat for convenience.

熱媒体流路13は、適宜曲げられた状態で放射板11に取り付けられている。熱媒体流路13は、典型的には、銅管や樹脂管が用いられる。その他の材質を用いてもよいが、曲げ加工性に優れ、曲げに強い材料を用いるとよい。また、熱媒体流路13は、放射板11に取り付けられる長さによって放射板11への伝熱量を調整することができ、より多くの熱を放射板11に与えたい場合は、できる限り小さい曲げ半径で曲げてより多くの長さを放射板11に接触させるとよい。また、熱媒体流路13は、適宜放射板11に固定されるが、温度変化に対する伸縮を吸収可能とするため、長さ方向(軸方向)の固定は最小限度にとどめることが好ましい。このように放射板11に取り付けられた熱媒体流路13は、温度変化に伴う伸縮に対して、曲部でその伸縮が吸収される。また、熱媒体流路13は、配管への接続を容易にする可とう部13a、13bが形成されている。   The heat medium flow path 13 is attached to the radiation plate 11 in an appropriately bent state. Typically, a copper pipe or a resin pipe is used for the heat medium flow path 13. Other materials may be used, but it is preferable to use a material that is excellent in bending workability and strong in bending. Further, the heat medium flow path 13 can adjust the amount of heat transfer to the radiation plate 11 according to the length attached to the radiation plate 11, and when it is desired to give more heat to the radiation plate 11, the heat medium flow path 13 is bent as small as possible. It is good to bend with a radius and to make more length contact the radiation plate 11. FIG. Moreover, although the heat medium flow path 13 is suitably fixed to the radiation plate 11, in order to be able to absorb expansion and contraction with respect to temperature changes, it is preferable to fix the length direction (axial direction) to a minimum. Thus, the expansion / contraction of the heat medium flow path 13 attached to the radiation plate 11 is absorbed by the curved portion with respect to expansion / contraction accompanying temperature change. Moreover, the heat medium flow path 13 is formed with flexible portions 13a and 13b that facilitate connection to the piping.

熱媒体流路13の断面の形状は、熱媒体流路13から放射板11への熱伝達を増加させる観点から、熱媒体流路13と放射板11との接触面積を増やすことができる形状を有している。
ここで図2を参照して、熱媒体流路13の形状について説明する。図2は放射パネル10に取り付けられる熱媒体流路13の断面図であり、(a)は本実施の形態に係る熱媒体流路の断面を示し、(b)〜(d)は変形例の熱媒体流路の断面を示している。図2(a)に示すように、熱媒体流路13は、典型的には断面が扁平形状を有している。断面扁平形状の熱媒体流路13は、断面が扁平となるような型を用いて製造してもよく、一旦断面が円形状の管を製造した後に断面が扁平となるように変形させてもよい。熱媒体流路13の扁平率は、熱媒体流路13の伸縮に伴う熱応力の観点や、内部を流れる熱媒体による潰食を防止し得る流速の観点等から決定するとよい。
The shape of the cross section of the heat medium flow path 13 is a shape that can increase the contact area between the heat medium flow path 13 and the radiation plate 11 from the viewpoint of increasing heat transfer from the heat medium flow path 13 to the radiation plate 11. Have.
Here, the shape of the heat medium flow path 13 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the heat medium flow path 13 attached to the radiant panel 10, (a) shows a cross section of the heat medium flow path according to the present embodiment, and (b) to (d) are modified examples. The cross section of a heat carrier channel is shown. As shown in FIG. 2A, the heat medium flow path 13 typically has a flat cross section. The heat medium flow path 13 having a flat cross section may be manufactured by using a mold having a flat cross section, or once a tube having a circular cross section is manufactured and deformed so that the cross section becomes flat. Good. The flatness ratio of the heat medium flow path 13 may be determined from the viewpoint of thermal stress accompanying expansion and contraction of the heat medium flow path 13 and the flow speed capable of preventing erosion due to the heat medium flowing inside.

また、図2(b)に示すように、熱媒体流路13の断面形状を半円形状としてもよい。この場合、断面半円形状の直径に相当する部分が放射板11に接触するように、熱媒体流路13が放射板11に取り付けられる。また、図2(c)に示すように、熱媒体流路13の断面形状を矩形状としてもよく、図2(d)に示すように三角形状としてもよい。断面形状を矩形又は三角形状とする場合は、矩形又は三角形の一辺が放射板11に接触するように、熱媒体流路13が放射板11に取り付けられる。断面形状を半円形状、矩形状又は三角形状とする場合の熱媒体流路13は、典型的には、断面が半円形状、矩形状又は三角形状となるような型を用いて製造される。なお、熱媒体流路13の断面形状は、上記以外の、五角形や六角形等の多角形でもよい。   Moreover, as shown in FIG.2 (b), it is good also considering the cross-sectional shape of the heat-medium flow path 13 as a semicircle shape. In this case, the heat medium flow path 13 is attached to the radiation plate 11 so that a portion corresponding to the diameter of the semicircular cross section is in contact with the radiation plate 11. Moreover, as shown in FIG.2 (c), the cross-sectional shape of the heat-medium flow path 13 may be made into a rectangular shape, and may be made into a triangular shape as shown in FIG.2 (d). When the cross-sectional shape is a rectangle or a triangle, the heat medium flow path 13 is attached to the radiation plate 11 so that one side of the rectangle or the triangle is in contact with the radiation plate 11. The heat medium flow path 13 when the cross-sectional shape is a semicircular shape, a rectangular shape, or a triangular shape is typically manufactured using a mold having a semicircular shape, a rectangular shape, or a triangular shape in cross section. . The cross-sectional shape of the heat medium passage 13 may be a polygon such as a pentagon or a hexagon other than the above.

熱媒体流路13の断面形状を扁平形状、半円形状、矩形状又は三角形状等とすることにより、断面形状を真円とした場合と比較して、熱媒体流路13と放射板11との接触面積を増加させることができ、これが熱媒体流路13から放射板11への熱伝達を増加させ、結果的に放射板11からの放射熱量を増加させることができる。なお、ここでいう「真円」とは、厳密な意味の真円ではなく、おおよそ一般に、配管が採用する断面形状である円形を意味するものであって、多少のひずみを有するものも含む。すなわち、ここでいう「真円」は、ほぼ円形断面にすることを意図して作られた配管の断面形状である。   Compared with the case where the cross-sectional shape is a perfect circle by setting the cross-sectional shape of the heat medium flow channel 13 to be a flat shape, a semicircular shape, a rectangular shape, a triangular shape, or the like, the heat medium flow path 13 and the radiation plate 11 This increases the heat transfer from the heat medium flow path 13 to the radiating plate 11, and as a result, the amount of radiant heat from the radiating plate 11 can be increased. The “perfect circle” here is not a perfect circle in a strict sense, but generally means a circle that is a cross-sectional shape adopted by the piping, and includes those having some distortion. That is, the “perfect circle” referred to here is a cross-sectional shape of a pipe that is intended to have a substantially circular cross section.

また、熱媒体流路13の断面形状を扁平形状、半円形状、矩形状又は三角形状等とすると、断面形状を真円とした場合と比較して、熱媒体流路13内の熱媒体の流速が速くなり、熱伝達率を向上させることができる。断面形状が扁平形状、半円形状、矩形状又は三角形状等を有する熱媒体流路13内の熱媒体の流速を断面形状を真円とした場合の流速と同じにした場合は、断面扁平形状等の熱媒体流路13を流れる熱媒体の流量が減少することとなるので、熱媒体の搬送動力が低減することとなる。   Moreover, when the cross-sectional shape of the heat medium flow path 13 is a flat shape, a semicircular shape, a rectangular shape, a triangular shape, or the like, the heat medium in the heat medium flow path 13 is compared with the case where the cross-sectional shape is a perfect circle. The flow rate is increased, and the heat transfer rate can be improved. If the flow rate of the heat medium in the heat medium flow path 13 having a flat, semicircular, rectangular or triangular cross-sectional shape is the same as the flow rate when the cross-sectional shape is a perfect circle, the cross-sectional flat shape Therefore, the flow rate of the heat medium flowing through the heat medium flow path 13 is reduced, so that the conveyance power of the heat medium is reduced.

上述のように構成された放射パネル10は、電磁波である熱線を放射して、被空調室内の温度を調整することができるように構成されている。放射パネル10から放射される熱線は、冷房時は冷熱であり、暖房時は温熱である。冷熱は、被空調室の設定温度よりも低い温度の熱である。温熱は、被空調室の設定温度よりも高い温度の熱である。前述のように、厳密にいえば、冷房時は、放射パネル10から冷熱が放射されるのではなく、例えば人間などから放射された熱が、温度の低い放射パネル10に吸収されることによって反射されないために納涼感が生ずるのであるが、本明細書においては便宜上、冷熱についても放射されると表現することとする。放射パネル10は、典型的には、天井面、床面、壁面に設置され、被空調室を空調する空調システムを構成する。   The radiating panel 10 configured as described above is configured to be able to adjust the temperature in the air-conditioned room by radiating heat rays that are electromagnetic waves. The heat rays radiated from the radiating panel 10 are cold during cooling and warm during heating. Cold heat is heat at a temperature lower than the set temperature of the air-conditioned room. The warm heat is heat at a temperature higher than the set temperature of the air-conditioned room. Strictly speaking, as described above, at the time of cooling, cold heat is not radiated from the radiating panel 10, but, for example, heat radiated from a human or the like is reflected by being absorbed by the radiating panel 10 having a low temperature. However, in this specification, for the sake of convenience, it is expressed that cold heat is also radiated. The radiating panel 10 is typically installed on a ceiling surface, a floor surface, or a wall surface, and constitutes an air conditioning system that air-conditions an air-conditioned room.

図3は、本発明の実施の形態に係る空調システム1を説明する系統図である。本実施の形態に係る空調システム1は、被空調室2の天井面に放射パネル10が複数配設され、放射パネル10が被空調室2の天井を構成している。また、空調システム1は、放射パネル10に供給する冷水(冷房時)又は温水(暖房時)の温度を調整する熱源機61を備えている。また、図示はしないが天井裏に送風機が設けられている。送風機は、放射板11の通気孔12に空気を流す。   FIG. 3 is a system diagram illustrating the air conditioning system 1 according to the embodiment of the present invention. In the air conditioning system 1 according to the present embodiment, a plurality of radiation panels 10 are arranged on the ceiling surface of the air-conditioned room 2, and the radiation panel 10 constitutes the ceiling of the air-conditioned room 2. The air conditioning system 1 also includes a heat source device 61 that adjusts the temperature of cold water (during cooling) or hot water (during heating) supplied to the radiant panel 10. Although not shown, a blower is provided behind the ceiling. The blower causes air to flow through the vent holes 12 of the radiation plate 11.

熱源機61としては、ヒートポンプチラーや冷温水発生機等が用いられる。熱源機61は、放射パネル10を通って、冷房時に温度が上昇した冷水を導入して温度が低下した冷水を導出し、暖房時に温度が低下した温水を導入して温度が上昇した温水を導出することができるように構成されている。熱源機61で温度が調整された冷水(温水)は、熱媒体導出口61aから導出され、放射パネル10から還ってきた冷水(温水)は、熱媒体導入口61bから導入される。   As the heat source device 61, a heat pump chiller, a cold / hot water generator, or the like is used. The heat source 61 passes through the radiant panel 10 to introduce cold water whose temperature has increased during cooling and derive cold water whose temperature has decreased, and introduces hot water whose temperature has decreased during heating and derives hot water whose temperature has increased It is configured to be able to. The cold water (hot water) whose temperature is adjusted by the heat source device 61 is led out from the heat medium outlet 61a, and the cold water (hot water) returned from the radiation panel 10 is introduced from the heat medium inlet 61b.

熱媒体導出口61aは、熱媒体流路13の可とう部13a(図1参照)と配管81を介して接続されている。配管81には、冷水(温水)を熱媒体流路13に圧送する送水ポンプ62が配設されている。他方、熱媒体導入口61bは、熱媒体流路13の可とう部13b(図1参照)と配管82を介して接続されている。放射パネル10は、被空調室2の天井に複数設けられており、放射パネル10の数だけ可とう部13a、13bが存在するため、典型的には、配管81はサプライヘッダー18を介して各放射パネル10の可とう部13aと接続されており、配管82はレタンヘッダー19を介して各放射パネル10の可とう部13bと接続されている。このようにして、放射パネル10と熱源機61との間を冷水(温水)が循環する循環流路が形成されている。   The heat medium outlet 61 a is connected to the flexible portion 13 a (see FIG. 1) of the heat medium flow path 13 via a pipe 81. The pipe 81 is provided with a water supply pump 62 that pumps cold water (hot water) to the heat medium flow path 13. On the other hand, the heat medium inlet 61 b is connected to the flexible portion 13 b (see FIG. 1) of the heat medium flow path 13 via a pipe 82. Since a plurality of the radiating panels 10 are provided on the ceiling of the air-conditioned room 2 and there are as many flexible portions 13 a and 13 b as the number of the radiating panels 10, typically, the pipe 81 is connected to each other via the supply header 18. It is connected to the flexible part 13 a of the radiating panel 10, and the pipe 82 is connected to the flexible part 13 b of each radiating panel 10 via the letter header 19. In this way, a circulation channel is formed in which cold water (hot water) circulates between the radiating panel 10 and the heat source device 61.

引き続き図1〜図3を参照して、本発明の実施の形態に係る放射パネル10及び空調システム1の作用を説明する。
まず、冷房時の作用について説明する。被空調室2の冷房を開始するに際し、ポンプ62が起動され、配管81、82等の内部を流れる冷水の循環が開始される。ポンプ62が起動すると熱源機61が起動する。熱源機61は電気やガス等のエネルギー源を導入して仕事をし、熱源機61から導出される冷水の温度を17℃程度にする。約17℃の冷水は、配管81、及びサプライヘッダー18を経て放射パネル10の熱媒体流路13に流入する。
With reference to FIGS. 1 to 3, the operation of the radiating panel 10 and the air conditioning system 1 according to the embodiment of the present invention will be described.
First, the operation during cooling will be described. When the cooling of the air-conditioned room 2 is started, the pump 62 is activated and the circulation of the cold water flowing through the pipes 81 and 82 and the like is started. When the pump 62 is activated, the heat source device 61 is activated. The heat source 61 works by introducing an energy source such as electricity or gas, and sets the temperature of the cold water led out from the heat source 61 to about 17 ° C. The cold water of about 17 ° C. flows into the heat medium flow path 13 of the radiant panel 10 through the pipe 81 and the supply header 18.

放射パネル10に導入された冷水は、熱媒体流路13内を流れてレタンヘッダー19に至る。熱媒体流路13を流れる冷水は放射板11と熱交換し、放射板11は冷やされ、冷水の温度は上昇する。このとき、熱媒体流路13の断面は扁平となっており(図3(a)参照)、断面が円形である場合と比べて放射板11との接触面積が増加しているので、冷水と放射板11との熱交換が促進される。また、扁平断面を持つ熱媒体流路13は、円形断面の場合に比べて内部を流れる冷水の流速が速くなるため熱伝達率が向上する。他方、冷水から放射板11への伝熱量を熱媒体流路13の断面が円形である場合と同程度にして、熱媒体流路13を流れる冷水の流速を低下させた場合は、ポンプ62の動力が低減する。また、熱媒体流路13を流れる冷水の温度が17℃程度であり、被空調室2の湿度を考慮すると放射板11が結露することがない。冷水から冷熱を受熱して放射板11の温度が低下した放射パネル10は、被空調室2に向けて冷熱を放射する。放射パネル10からの冷熱の放射は、被空調室2の天井面全体から行なわれるので、被空調室2内に温度ムラが生じにくい。   The cold water introduced into the radiant panel 10 flows through the heat medium flow path 13 and reaches the retan header 19. The cold water flowing through the heat medium flow path 13 exchanges heat with the radiation plate 11, the radiation plate 11 is cooled, and the temperature of the cold water rises. At this time, the cross section of the heat medium flow path 13 is flat (see FIG. 3A), and the contact area with the radiation plate 11 is increased as compared with the case where the cross section is circular. Heat exchange with the radiation plate 11 is promoted. Moreover, since the flow rate of the cold water which flows through the inside of the heat medium flow path 13 which has a flat cross section becomes quick compared with the case of a circular cross section, a heat transfer rate improves. On the other hand, when the heat transfer amount from the cold water to the radiation plate 11 is set to the same level as when the cross section of the heat medium flow path 13 is circular, and the flow rate of the cold water flowing through the heat medium flow path 13 is reduced, the pump 62 Power is reduced. Further, the temperature of the cold water flowing through the heat medium passage 13 is about 17 ° C., and the radiation plate 11 does not condense in consideration of the humidity of the air-conditioned room 2. The radiant panel 10 that has received cold from cold water and the temperature of the radiating plate 11 has decreased radiates cold toward the air-conditioned room 2. Since the radiation of the cold heat from the radiation panel 10 is performed from the entire ceiling surface of the air-conditioned room 2, temperature unevenness hardly occurs in the air-conditioned room 2.

また、放射板11に複数の通気孔12が形成されており、不図示の送風機により、通気孔12を通って被空調室2と天井裏(放射パネル10を挟んで被空調室2と反対側)との間を微風として空気が動くため、被空調室2内に微小な空気の流れが生じ、淀みを防ぐことができる。また、空気が通気孔12を通過する際に、その近傍に設けられた熱媒体流路13により冷やされた空気が被空調室2に流れ込み、冷房効果を阻害しない。   Further, a plurality of vent holes 12 are formed in the radiation plate 11, and the air-conditioned room 2 and the ceiling back (through the radiation panel 10 on the opposite side of the air-conditioned room 2) through the vent hole 12 by a blower (not shown). ), The air moves with a slight wind, so that a minute flow of air is generated in the air-conditioned room 2 and stagnation can be prevented. Further, when the air passes through the vent hole 12, the air cooled by the heat medium flow path 13 provided in the vicinity thereof flows into the air-conditioned room 2 and does not hinder the cooling effect.

熱媒体流路13を流れて放射板11と熱交換した冷水は、レタンヘッダー19に流入する。レタンヘッダー19に流入した冷水の温度は、19℃程度となっている。レタンヘッダー19に流入した冷水は、配管82を流れ、熱媒体流入口61bから熱源機61に流入し、熱源機61で温度が調整される。熱源機61で温度が低下させられた冷水は、熱媒体導出口61aから導出されて配管81を流れ、再び放射パネル10に供給される。   The cold water that has flowed through the heat medium flow path 13 and exchanged heat with the radiation plate 11 flows into the retan header 19. The temperature of the cold water flowing into the letan header 19 is about 19 ° C. The cold water that has flowed into the letter header 19 flows through the pipe 82, flows into the heat source unit 61 from the heat medium inlet 61 b, and the temperature is adjusted by the heat source unit 61. The cold water whose temperature has been lowered by the heat source device 61 is led out from the heat medium outlet 61a, flows through the pipe 81, and is supplied to the radiation panel 10 again.

次に、暖房時の作用について説明する。被空調室2の暖房を開始するに際し、ポンプ62の起動により、配管81、82等の内部を流れる温水の循環が開始され、次いで熱源機61が起動する。熱源機61から導出される温水の温度は36℃程度である。約36℃の温水は、配管81、及びサプライヘッダー18を経て放射パネル10の熱媒体流路13に流入する。   Next, the effect | action at the time of heating is demonstrated. When the heating of the air-conditioned room 2 is started, circulation of hot water flowing through the pipes 81, 82, etc. is started by starting the pump 62, and then the heat source unit 61 is started. The temperature of the hot water led out from the heat source device 61 is about 36 ° C. The hot water of about 36 ° C. flows into the heat medium flow path 13 of the radiant panel 10 through the pipe 81 and the supply header 18.

放射パネル10に導入された温水は、熱媒体流路13内を流れてレタンヘッダー19に至る。熱媒体流路13を流れる温水は放射板11と熱交換し、放射板11は温められ、温水の温度は低下する。このとき、熱媒体流路13の断面は扁平となっており(図3(a)参照)、断面が円形である場合と比べて放射板11との接触面積が増加しているので、温水と放射板11との熱交換が促進される。また、扁平断面を持つ熱媒体流路13は、円形断面の場合に比べて内部を流れる温水の流速が速くなるため熱伝達率が向上する。他方温水から放射板11への伝熱量を熱媒体流路13の断面が円形である場合と同程度にして、熱媒体流路13を流れる温水の流速を低下させた場合は、ポンプ62の動力が低減する。温水から温熱を受熱して放射板11の温度が上昇した放射パネル10は、被空調室2に向けて温熱を放射する。放射パネル10からの温熱の放射は、被空調室2の天井面全体から行なわれるので、被空調室2内に温度ムラが生じにくい。   The hot water introduced into the radiating panel 10 flows through the heat medium flow path 13 and reaches the retan header 19. The hot water flowing through the heat medium flow path 13 exchanges heat with the radiation plate 11, the radiation plate 11 is warmed, and the temperature of the hot water decreases. At this time, the cross section of the heat medium flow path 13 is flat (see FIG. 3A), and the contact area with the radiation plate 11 is increased as compared with the case where the cross section is circular. Heat exchange with the radiation plate 11 is promoted. Moreover, since the flow rate of the hot water which flows through the inside of the heat medium flow path 13 which has a flat cross section becomes quick compared with the case of a circular cross section, a heat transfer rate improves. On the other hand, when the amount of heat transfer from the hot water to the radiation plate 11 is set to the same level as when the cross section of the heat medium flow path 13 is circular, and the flow rate of the hot water flowing through the heat medium flow path 13 is reduced, the power of the pump 62 Is reduced. The radiant panel 10 that has received the heat from the hot water and has raised the temperature of the radiation plate 11 radiates the heat toward the air-conditioned room 2. Since the radiation of the warm heat from the radiation panel 10 is performed from the entire ceiling surface of the air-conditioned room 2, temperature unevenness hardly occurs in the air-conditioned room 2.

また、放射板11に複数の通気孔12が形成されており、不図示の送風機により、通気孔12を通って被空調室2と天井裏(放射パネル10を挟んで被空調室2と反対側)との間を微風として空気が動くため、被空調室2内に微小な空気の流れが生じ、淀みを防ぐことができる。また、空気が通気孔12を通過する際に、その近傍に設けられた熱媒体流路13により温められた空気が被空調室2に流れ込み、暖房効果を阻害しない。   A plurality of vent holes 12 are formed in the radiating plate 11, and the air-conditioned room 2 and the back of the ceiling (the opposite side of the air-conditioned room 2 across the radiating panel 10 through the vent hole 12 by a blower (not shown). ), The air moves with a slight wind, so that a minute flow of air is generated in the air-conditioned room 2 and stagnation can be prevented. Further, when the air passes through the vent hole 12, the air heated by the heat medium flow path 13 provided in the vicinity thereof flows into the air-conditioned room 2 and does not hinder the heating effect.

熱媒体流路13を流れて放射板11と熱交換した温水は、レタンヘッダー19に流入する。レタンヘッダー19に流入した温水の温度は、34℃程度となっている。レタンヘッダー19に流入した温水は、配管82を流れ、熱媒体流入口61bから熱源機61に流入し、熱源機61で温度が調整される。熱源機61で温度を上昇させられた温水は、熱媒体導出口61aから導出されて配管81を流れ、再び放射パネル10に供給される。   The hot water that has flowed through the heat medium flow path 13 and exchanged heat with the radiation plate 11 flows into the retan header 19. The temperature of the hot water flowing into the letan header 19 is about 34 ° C. The hot water that has flowed into the letter header 19 flows through the pipe 82, flows into the heat source unit 61 from the heat medium inlet 61 b, and the temperature is adjusted by the heat source unit 61. The hot water whose temperature has been raised by the heat source device 61 is led out from the heat medium outlet 61a, flows through the pipe 81, and is supplied to the radiation panel 10 again.

以上の説明では、放射板11に通気孔12が形成されているとして説明したが、通気孔12が形成されていなくてもよい。通気孔12が形成されない場合は、天井裏に送風機を設ける必要がなくなり、空調システム2をよりシンプルにできる。しかしながら、放射板11に通気孔12を形成して微小な空気の流れをつくった場合は、被空調室内の空気の淀みを防ぐことができる。   In the above description, it has been described that the vent hole 12 is formed in the radiation plate 11, but the vent hole 12 may not be formed. When the vent hole 12 is not formed, it is not necessary to provide a blower behind the ceiling, and the air conditioning system 2 can be simplified. However, when the ventilation hole 12 is formed in the radiation plate 11 to create a minute air flow, it is possible to prevent stagnation of air in the air-conditioned room.

以上の説明では、熱媒体は冷水又は温水であるとして説明したが、ブラインやガス等、他の流体であってもよい。つまり、放射させるための熱を放射板に与えることができる流体であればよい。   In the above description, the heat medium is described as cold water or hot water, but other fluids such as brine and gas may be used. That is, any fluid can be used as long as the heat can be applied to the radiation plate.

以上の説明では、放射パネル10が被空調室の天井面に配設されているとして説明したが、床面や壁面、あるいは天井、床、壁の2箇所以上に設けてもよい。   In the above description, the radiating panel 10 has been described as being disposed on the ceiling surface of the air-conditioned room. However, the radiating panel 10 may be provided at two or more locations on the floor surface, wall surface, ceiling, floor, or wall.

本発明の実施の形態に係る放射パネルの斜視図である。It is a perspective view of the radiation panel concerning an embodiment of the invention. 放射パネルに取り付けられる熱媒体流路の断面図である。(a)は本実施の形態に係る熱媒体流路の断面を示し、(b)〜(d)は変形例の熱媒体流路の断面を示している。It is sectional drawing of the heat medium flow path attached to a radiation panel. (A) shows the cross section of the heat medium flow path which concerns on this Embodiment, (b)-(d) has shown the cross section of the heat medium flow path of a modification. 本発明の実施の形態に係る空調システムを説明する系統図である。It is a distribution diagram explaining an air-conditioning system concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 空調システム
2 被空調室
10 放射パネル
11 放射板
12 通気孔
13 熱媒体流路
18 サプライヘッダー
19 レタンヘッダー
61 熱源機
62 ポンプ
81、82 配管
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Air-conditioned room 10 Radiation panel 11 Radiation plate 12 Ventilation hole 13 Heat medium flow path 18 Supply header 19 Letter header 61 Heat source machine 62 Pump 81, 82 Piping

Claims (4)

熱媒体が流れる熱媒体流路と;
前記熱媒体流路を流れる熱媒体から受熱して該熱を放射する放射板とを備え;
前記熱媒体流路が、前記熱媒体流路の断面形状が真円であると仮定したときに比べて前記熱媒体流路と前記放射板との接触面積が大きくなるような断面形状を有する;
放射パネル。
A heat medium flow path through which the heat medium flows;
A radiation plate that receives heat from the heat medium flowing through the heat medium flow path and radiates the heat;
The heat medium flow path has a cross-sectional shape such that the contact area between the heat medium flow path and the radiation plate is larger than when the cross-sectional shape of the heat medium flow path is assumed to be a perfect circle;
Radiant panel.
前記熱媒体流路の断面形状が、扁平形状、半円形状、矩形又は三角形のいずれかの形状に形成された;
請求項1に記載の放射パネル。
The cross-sectional shape of the heat medium flow path is formed into a flat shape, a semicircular shape, a rectangular shape, or a triangular shape;
The radiation panel according to claim 1.
前記放射板に、通気孔が形成された;
請求項1又は請求項2に記載の放射パネル。
Vent holes were formed in the radiation plate;
The radiation panel according to claim 1 or 2.
請求項1乃至請求項3のいずれか1項に記載の放射パネルが、被空調室の天井面、床面及び壁面の少なくとも1箇所に配設され;
前記被空調室を冷房する際に前記熱媒体流路に冷水を流し、前記被空調室を暖房する際に前記熱媒体流路に温水を流すように構成された;
空調システム。
The radiation panel according to any one of claims 1 to 3 is disposed in at least one of a ceiling surface, a floor surface, and a wall surface of the air-conditioned room;
Cold water is allowed to flow through the heat medium flow path when the air-conditioned room is cooled, and hot water is allowed to flow through the heat medium flow path when the air-conditioned room is heated;
Air conditioning system.
JP2005030532A 2005-02-07 2005-02-07 Radiation panel and air conditioner system Pending JP2006214697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030532A JP2006214697A (en) 2005-02-07 2005-02-07 Radiation panel and air conditioner system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030532A JP2006214697A (en) 2005-02-07 2005-02-07 Radiation panel and air conditioner system

Publications (1)

Publication Number Publication Date
JP2006214697A true JP2006214697A (en) 2006-08-17

Family

ID=36978074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030532A Pending JP2006214697A (en) 2005-02-07 2005-02-07 Radiation panel and air conditioner system

Country Status (1)

Country Link
JP (1) JP2006214697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115393A (en) * 2013-02-21 2013-05-22 台州市亿莱德空调设备有限公司 Radiation type floor convector
CN110739284A (en) * 2019-09-24 2020-01-31 杭州臻镭微波技术有限公司 flexible circuit board radio frequency module with heat dissipation function and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336880U (en) * 1986-08-28 1988-03-09
JPH0814595A (en) * 1994-06-30 1996-01-19 Showa Alum Corp Radiation panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336880U (en) * 1986-08-28 1988-03-09
JPH0814595A (en) * 1994-06-30 1996-01-19 Showa Alum Corp Radiation panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115393A (en) * 2013-02-21 2013-05-22 台州市亿莱德空调设备有限公司 Radiation type floor convector
CN103115393B (en) * 2013-02-21 2015-11-18 台州市亿莱德空调设备有限公司 Radiation type floor convector
CN110739284A (en) * 2019-09-24 2020-01-31 杭州臻镭微波技术有限公司 flexible circuit board radio frequency module with heat dissipation function and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI608200B (en) Air conditioning device and air conditioning system
JP5492521B2 (en) Heat absorption or heat dissipation device
JP4792101B2 (en) Pneumatic radiant laminar flow unit
JP5043158B2 (en) Air source heat pump air conditioner
CN107806663B (en) Indoor unit of air conditioner and air conditioning system
JP2007285643A (en) Cooling panel
JP2016217630A (en) Radiation air-conditioning system
JP2006214697A (en) Radiation panel and air conditioner system
JP4605759B2 (en) Indoor air conditioning system for buildings
CA2488898A1 (en) Radiant heating system using forced air furnace as heat source
JP2002162053A (en) Air conditioner
JP2004197988A (en) Air conditioner
JP5396248B2 (en) Air conditioning system for individual space
JP2002162057A (en) Air conditioner
JP2007071516A (en) Water heater system
JP4698204B2 (en) Indoor air conditioning system for buildings
JP2002168469A (en) Air conditioner
JP2002286241A (en) Air-conditioning device
KR102301525B1 (en) Chilled sails type air conditioning system integrated with air supply function
JP4590372B2 (en) Heat exchanger and air conditioning system
JP2009030935A (en) Indoor air-conditioning panel and indoor air-conditioning system
JP4806260B2 (en) Geothermal air conditioner
JP2002168470A (en) Air conditioner
JP2002286242A (en) Air-conditioning device
KR100822238B1 (en) Unit for mixing air in cool-air and warm-air for an air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109