JP2007285643A - Cooling panel - Google Patents

Cooling panel Download PDF

Info

Publication number
JP2007285643A
JP2007285643A JP2006115240A JP2006115240A JP2007285643A JP 2007285643 A JP2007285643 A JP 2007285643A JP 2006115240 A JP2006115240 A JP 2006115240A JP 2006115240 A JP2006115240 A JP 2006115240A JP 2007285643 A JP2007285643 A JP 2007285643A
Authority
JP
Japan
Prior art keywords
heat
cooling panel
flow path
plate
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115240A
Other languages
Japanese (ja)
Other versions
JP4810290B2 (en
Inventor
Katsumi Matsuda
克己 松田
Yoshinaga Yokomoto
吉永 横本
Fumio Hosoki
文夫 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Sankyo Tateyama Aluminium Inc
Original Assignee
Asahi Kasei Homes Corp
Sankyo Tateyama Aluminium Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp, Sankyo Tateyama Aluminium Inc filed Critical Asahi Kasei Homes Corp
Priority to JP2006115240A priority Critical patent/JP4810290B2/en
Publication of JP2007285643A publication Critical patent/JP2007285643A/en
Application granted granted Critical
Publication of JP4810290B2 publication Critical patent/JP4810290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substantially uniform temperature throughout a whole panel area by suppressing uneven temperature through out a whole area of a cooling panel. <P>SOLUTION: In the cooling panel 1, heat absorbing plates 2 having passages for passing a heating medium are numerously arranged in a vertical direction. It is characterized by that a heat absorbing plate group 3 comprised of the arranged numerous heat absorbing plates 2 has a first passage 7 for carrying the heating medium from an arranged direction one side of the heat absorbing plates 2 to another side while carrying the heating medium in the vertical direction of the heat absorbing plates 2, and a second passage 8 for carrying the heating medium from the arranged direction other side of the heat absorbing plates 2 to the one side while carrying the heating medium in the vertical direction of the heat absorbing plates 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、輻射冷房に用いられる冷却パネルであって、特に熱媒体を流すための流路を有する冷却パネルに関するものである。   The present invention relates to a cooling panel used for radiation cooling, and more particularly to a cooling panel having a flow path for flowing a heat medium.

従来、輻射冷房に用いられる冷却パネルは、パネル内を流れる熱媒体によってパネル自体が冷却され、その冷却されたパネル表面からの輻射熱によって冷房を行っている。例えば、特開平10−325570号公報(以下、特許文献1)には、開口部を有するケーシングに取り囲まれた熱放射吸収機構及びファンを有する冷暖房装置が開示されている。この冷暖房装置における熱放射吸収機構は、熱媒体を通す熱媒体パイプが数本並設され、これらのパイプがU字管によって直列に接続された構成であることが開示されている。   Conventionally, in a cooling panel used for radiant cooling, the panel itself is cooled by a heat medium flowing in the panel, and cooling is performed by radiant heat from the cooled panel surface. For example, Japanese Patent Application Laid-Open No. 10-325570 (hereinafter referred to as Patent Document 1) discloses a cooling / heating device having a heat radiation absorbing mechanism and a fan surrounded by a casing having an opening. It is disclosed that the heat radiation absorption mechanism in this air conditioning / heating device has a configuration in which several heat medium pipes through which a heat medium passes are arranged in parallel, and these pipes are connected in series by a U-shaped tube.

しかしながら、上記特許文献1に記載の技術では、熱媒体パイプとU字管とを直列に接続した熱媒体流路の最上流側と最下流側とで熱媒体に大きな温度差が生じてしまうおそれがある。このため、並設された熱媒体パイプからなる熱放射吸収機構全体にわたって熱媒体の温度をほぼ均一な温度にすることは困難である。   However, in the technique described in Patent Document 1, a large temperature difference may occur in the heat medium between the most upstream side and the most downstream side of the heat medium flow path in which the heat medium pipe and the U-shaped tube are connected in series. There is. For this reason, it is difficult to make the temperature of the heat medium substantially uniform throughout the heat radiation absorption mechanism including the heat medium pipes arranged side by side.

一方、特開平10−220672号公報(以下、特許文献2)には、熱媒体流路を並列に接続する床暖房用放熱体に関する技術が開示されている。詳しくは、床暖房用放熱体の内部において蛇行して配置された熱媒チューブの端部が接続される、複数の往き流路口と複数の戻り流路口を有する分岐ブロックが開示されている。この分岐ブロックは、分岐ブロック内の最初の往き流路口と最後の戻り流路口との間で熱媒体の温度差が生じないようにすることを目的としている。すなわち、特許文献1に記載の分岐ブロックでは、1つの往き流路口と次の往き流路口とをつなぐ往き流路と、1つの戻り流路口と次の戻り流路口とをつなぐ戻り流路とを、分岐ブロック内でX字状に立体交差させている。   On the other hand, Japanese Patent Application Laid-Open No. 10-220672 (hereinafter referred to as Patent Document 2) discloses a technique related to a floor heating radiator that connects heat medium flow paths in parallel. Specifically, there is disclosed a branch block having a plurality of forward flow passage ports and a plurality of return flow passage ports, to which end portions of heat medium tubes arranged meandering inside the floor heating radiator are connected. The purpose of this branch block is to prevent a temperature difference of the heat medium from occurring between the first forward flow path port and the last return flow path port in the branch block. That is, in the branch block described in Patent Document 1, the forward flow path connecting one forward flow path opening and the next forward flow path opening, and the return flow path connecting one return flow path opening and the next return flow path opening. The three-dimensional intersection is made in an X shape within the branch block.

特開平10−325570号公報JP-A-10-325570 特開平10−220672号公報JP-A-10-220672

上記特許文献2に記載の分岐ブロックによれば、理論上、最初の往き流路口と最後の戻り流路口での熱媒体の温度差は小さくなる。しかしながら、前記分岐ブロックの各流路口に接続された熱媒チューブの配置によっては、床暖房用放熱体の床面において熱媒体に温度差が生じてしまうおそれがある。例えば、特許文献2に図示されている四個の熱媒チューブが配置された放熱板に、同様に図示されている四個/四個の組合せの分岐ブロックを使用した場合、放熱板の床面において熱媒体の温度差が生じてしまう。詳しくは、放熱板の床面において、分岐ブロックを境にして、右側床面の熱媒チューブは左側床面の各熱媒チューブの下流側に位置するため、左側床面と右側床面とでは熱媒体に温度差が生じてしまう。このため、例え最初の往き流路口と最後の戻り流路口での熱媒体の温度差を小さくできても、放熱板の床面全域での温度(放熱量)をほぼ均一にすることは困難である。   According to the branch block described in Patent Document 2, theoretically, the temperature difference of the heat medium between the first forward flow path port and the last return flow path port becomes small. However, depending on the arrangement of the heat medium tube connected to each flow path port of the branch block, there is a possibility that a temperature difference occurs in the heat medium on the floor surface of the floor heating radiator. For example, when a four-piece / four-piece combination block illustrated in the same manner is used for the heat radiating plate in which four heating medium tubes shown in Patent Document 2 are arranged, the floor surface of the heat radiating plate In this case, a temperature difference of the heat medium occurs. Specifically, on the floor surface of the heat sink, the heat medium tube on the right floor surface is located downstream of each heat medium tube on the left floor surface with the branch block as a boundary. A temperature difference occurs in the heat medium. For this reason, even if the temperature difference of the heat medium between the first forward flow path port and the last return flow path port can be reduced, it is difficult to make the temperature (heat radiation amount) almost uniform across the floor surface of the heat sink. is there.

そこで、本発明の目的は、熱媒体の流路を有する多数枚の吸熱板からなる冷却パネルの全域において温度ムラを抑制し、パネル全域にわたってほぼ均一な温度が得られるようにすることである。   Accordingly, an object of the present invention is to suppress temperature unevenness in the entire area of the cooling panel composed of a plurality of heat absorbing plates having a heat medium flow path so that a substantially uniform temperature can be obtained over the entire area of the panel.

上記目的を達成するための本発明の代表的な構成は、熱媒体を流すための流路を有する吸熱板が鉛直方向に多数枚並設されてなる冷却パネルであって、前記並設された多数枚の吸熱板からなる吸熱板群が、前記吸熱板の鉛直方向に熱媒体を流しつつ前記吸熱板の並び方向一方側から他方側に熱媒体を流すための第1の流路と、前記吸熱板の鉛直方向に熱媒体を流しつつ前記吸熱板の並び方向他方側から一方側に熱媒体を流すための第2の流路と、を有することを特徴とする。   In order to achieve the above object, a typical configuration of the present invention is a cooling panel in which a large number of heat absorbing plates each having a flow path for flowing a heat medium are arranged in parallel in the vertical direction. A first flow path for flowing a heat medium from one side to the other side of the endothermic plate while flowing the heat medium in a vertical direction of the heat end plate, the heat end plate group including a plurality of endothermic plates; And a second flow path for allowing the heat medium to flow from one side to the other side in the arrangement direction of the heat absorption plates while flowing the heat medium in the vertical direction of the heat absorption plate.

また上記構成に加えて、前記各流路は、熱媒体が前記吸熱板の鉛直方向に流れつつ前記吸熱板の並び方向に流れるように直列に連結された流路であることが好ましい。   Further, in addition to the above configuration, each of the flow paths is preferably a flow path that is connected in series so that the heat medium flows in the arrangement direction of the heat absorption plates while flowing in the vertical direction of the heat absorption plates.

また上記構成に加えて、前記多数枚の吸熱板は、隣接する吸熱板が、前記第1の流路又は前記第2の流路のいずれか一方の流路を有することが好ましく、更には前記第1の流路を有する吸熱板と前記第2の流路を有する吸熱板が前記並び方向において交互に並んでいることが好ましい。   Further, in addition to the above-described configuration, it is preferable that the plurality of heat absorption plates have adjacent ones of the first flow channel and the second flow channel. It is preferable that the heat absorption plate having the first flow path and the heat absorption plate having the second flow path are alternately arranged in the arrangement direction.

または上記構成に加えて、前記多数枚の吸熱板は、各々、前記第1の流路と前記第2の流路を有することが好ましい。   Alternatively, in addition to the above configuration, each of the plurality of heat absorbing plates preferably includes the first flow path and the second flow path.

また上記構成に加えて、前記各流路は、各々1本の樹脂製の配管で形成されていることが好ましい。例えば、前記配管は、金属の補強層を有する架橋ポレオレフィン樹脂製の配管であることが好ましい。   Further, in addition to the above configuration, each of the flow paths is preferably formed by one resin pipe. For example, the pipe is preferably a pipe made of a crosslinked polyolefin resin having a metal reinforcing layer.

また上記構成に加えて、前記配管は、内径が8mm以下であることが好ましい。また、前記第1の流路と前記第2の流路を有する吸熱板群を複数有することが好ましい。また、前記第1の流路と前記第2の流路は、一方の端部が連結され、又は1本の配管で形成されていることが好ましい。   Moreover, in addition to the said structure, it is preferable that the said piping is 8 mm or less in internal diameter. Moreover, it is preferable to have a plurality of heat absorbing plate groups each having the first flow path and the second flow path. Moreover, it is preferable that one end part of the said 1st flow path and the said 2nd flow path is connected, or it is formed with one piping.

また上記構成に加えて、前記吸熱板の外表面に、鉛直方向に連なる断面突起状のフィンを多数設け、前記フィンの突起先端頂部の構造を、結露水が水滴状に発生し、発生水滴が太ることなく頂部を落下しやすくしたことを特徴とする。   In addition to the above configuration, the outer surface of the heat absorbing plate is provided with a large number of fins with cross-sectional protrusions continuous in the vertical direction, and the structure of the top end of the protrusions of the fins generates condensed water in the form of water droplets. The top is easy to fall without getting fat.

具体的には、前記結露水が水滴状に発生し、発生水滴が太ることなく頂部を落下しやすい、前記フィンの突起先端頂部の構造とは、前記フィンの突起先端頂部の幅を1.5mm以上にすることである。さらには前記フィンの突起先端頂部の幅を6.0mm以下にすることである。また前記吸熱板は導電性軽金属の押出成形品であることが好ましい。更に上記構成に加えて、前記吸熱板は、一体成形品であることが好ましい。   Specifically, the condensed water is generated in the form of water droplets, and the generated water droplets are easy to fall off without thickening. The structure of the top of the protrusion tip of the fin is the width of the protrusion tip top of the fin of 1.5 mm. That's it. Furthermore, the width of the top end of the protrusion of the fin is 6.0 mm or less. The endothermic plate is preferably an extruded product of a conductive light metal. Further, in addition to the above configuration, the heat absorbing plate is preferably an integrally molded product.

また上記構成に加えて、前記吸熱板の外形は、水平断面形状が扁平であり、端部が中央部よりも細い先細り形状となっていることが好ましい。   Moreover, in addition to the said structure, it is preferable that the external shape of the said heat absorption board is a taper shape whose horizontal cross-sectional shape is flat, and an edge part is thinner than a center part.

また上記構成に加えて、前記吸熱板は、外表面に前記フィンが鉛直方向に多数設けられた中空部材と、前記中空部材内にて前記配管を案内支持するガイド部材を有し、前記吸熱板の外形は、水平断面形状が扁平であり、前記中空部材の端部が前記ガイド部材部分よりも細い先細り形状となっていることが好ましい。   Further, in addition to the above configuration, the heat absorption plate includes a hollow member in which a large number of fins are provided on the outer surface in the vertical direction, and a guide member that guides and supports the pipe in the hollow member, and the heat absorption plate As for the external shape, the horizontal cross-sectional shape is flat, and it is preferable that the edge part of the said hollow member is a taper shape thinner than the said guide member part.

本発明によれば、吸熱板の鉛直方向に熱媒体を流しつつ吸熱板の並び方向一方側から他方側に熱媒体を流す第1の流路と、同様に前記鉛直方向に熱媒体を流しつつ前記並び方向他方側から一方側に熱媒体を流す第2の流路とにより、冷却パネル全域において温度ムラを抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果を常に高い状態で維持することができる。   According to the present invention, the first flow path for flowing the heat medium from one side to the other side in the arrangement direction of the heat absorption plates while flowing the heat medium in the vertical direction of the heat absorption plates, and the flow of the heat medium in the vertical direction as well. Due to the second flow path through which the heat medium flows from the other side in the arrangement direction to the one side, temperature unevenness can be suppressed over the entire cooling panel, and a substantially uniform temperature can be obtained over the entire panel. Thereby, the cooling effect by radiation can be always maintained in a high state over the entire cooling panel.

更に前記冷却パネルは、熱媒体の流路を有する吸熱板を鉛直方向に多数枚並設することにより、鉛直方向上方から見た単位面積当たりの吸熱量を多くでき、前記輻射による冷房効果を更に増すことができる。   Furthermore, the cooling panel can increase the amount of heat absorption per unit area viewed from above in the vertical direction by arranging a large number of heat absorbing plates having heat medium flow paths in the vertical direction, further improving the cooling effect by the radiation. Can be increased.

また前記各流路を、直列に連結された流路とすることにより、仮に流路内に空気が溜まってしまうことがあっても該流路内の空気を確実に押し出すことができる。このため、流路内の熱媒体の流速を一定に保つことができ、流速低下に起因する吸熱不良を防止できる。また、並列接続時に必要なヘッダーが不要となるため、構成を簡易化することができ、軽量化及び低コスト化が図れる。   Moreover, by making each said flow path into the flow path connected in series, even if air may accumulate in a flow path, the air in this flow path can be extruded reliably. For this reason, the flow rate of the heat medium in the flow path can be kept constant, and the endothermic failure due to the decrease in flow rate can be prevented. In addition, since a header necessary for parallel connection is not required, the configuration can be simplified, and the weight and cost can be reduced.

また隣接する吸熱板が、前記第1の流路又は前記第2の流路のいずれか一方の流路を有し、更には前記第1の流路を有する吸熱板と前記第2の流路を有する吸熱板が前記並び方向において交互に並ぶ構成とすることにより、冷却パネル全域において温度ムラをより抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   Further, the adjacent heat absorption plate has one of the first flow channel and the second flow channel, and further, the heat absorption plate having the first flow channel and the second flow channel. By adopting a configuration in which the endothermic plates having the above are arranged alternately in the arrangement direction, temperature unevenness can be further suppressed over the entire cooling panel, and a substantially uniform temperature can be obtained over the entire panel. Thereby, the cooling effect by radiation can be maintained in a higher state over the entire cooling panel.

あるいは、前記多数枚の吸熱板が、各々、前記第1の流路と前記第2の流路を有する構成としても、同様に、冷却パネル全域において温度ムラがより抑制でき、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   Alternatively, even if each of the plurality of heat absorbing plates has the first flow path and the second flow path, similarly, temperature unevenness can be further suppressed in the entire cooling panel, and substantially uniform over the entire panel. Temperature is obtained. Thereby, the cooling effect by radiation can be maintained in a higher state over the entire cooling panel.

また前記各流路を、各々1本の樹脂製の配管で形成することにより、屈曲性が良く、小半径に曲げることができ、配管の加工、吸熱板への配管の組み付け作業が容易となる。また各吸熱板間の配管同士の接続が不要であるため、配管の組み付け作業が更に容易になり、コストも安くすることができる。更に吸熱板の幅を狭くすることも可能である。あるいは、前記配管として、金属の補強層を有する架橋ポレオレフィン樹脂製の配管を用いることにより、前述の効果に加えて更に、配管の加工が容易であるだけでなく、曲げなどの加工状態を維持することができるため、作業性が更に向上する。また金属補強により更なる強度アップも図れる。また金属層を有するので熱伝導性や耐性を更に高めることができ、金属補強による強度アップにより管を肉薄にでき、その結果熱伝導が更に良くなる。   In addition, by forming each flow path with a single resin pipe, each pipe has good flexibility and can be bent to a small radius, making it easy to work on the pipe and assemble the pipe to the heat absorbing plate. . Moreover, since it is not necessary to connect the pipes between the respective heat absorbing plates, the work of assembling the pipes is further facilitated and the cost can be reduced. Further, the width of the heat absorbing plate can be reduced. Alternatively, by using a pipe made of a crosslinked polyolefin resin having a metal reinforcing layer as the pipe, in addition to the effects described above, the pipe is not only easily processed but also maintained in a processed state such as bending. Therefore, workability is further improved. Moreover, the strength can be further increased by metal reinforcement. In addition, since the metal layer is provided, the thermal conductivity and resistance can be further increased, and the tube can be thinned by increasing the strength by reinforcing the metal, and as a result, the heat conduction is further improved.

また前記配管の内径を8mm以下とすることにより、吸熱板の幅を更に狭くすることが可能となり、冷却パネルの設置スペースに対してより多くの吸熱板を配置することが可能となる。これにより、設置スペースに対する冷却パネルの吸熱量をより多くでき、前記輻射による冷房効果を更に増すことができる。   Further, by setting the inner diameter of the pipe to 8 mm or less, it is possible to further reduce the width of the heat absorbing plate, and it is possible to arrange more heat absorbing plates in the installation space of the cooling panel. Thereby, the heat absorption amount of the cooling panel with respect to the installation space can be increased, and the cooling effect by the radiation can be further increased.

また、前記第1の流路と前記第2の流路を有する吸熱板群を複数有することにより、冷却パネルは吸熱板群ごとに温度ムラを抑制できる。従って、冷却パネルの全域において温度ムラをより抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   Moreover, the cooling panel can suppress temperature nonuniformity for every heat absorption board group by having two or more heat absorption board groups which have the said 1st flow path and the said 2nd flow path. Therefore, temperature unevenness can be further suppressed over the entire area of the cooling panel, and a substantially uniform temperature can be obtained over the entire panel. Thereby, the cooling effect by radiation can be maintained in a higher state over the entire cooling panel.

また前記第1の流路と前記第2の流路を、一方の端部を連結し、又は1本の配管で形成することにより、構成を更に簡易化することができ、配管の組み付け作業が更に容易になり、軽量化及び低コスト化も図れる。   In addition, by connecting one end of the first flow path and the second flow path or by forming a single pipe, the configuration can be further simplified, and the work of assembling the pipe Furthermore, it becomes easy, and weight reduction and cost reduction can also be achieved.

更に本発明では、吸熱板の表面積を広くするために多数枚のフィンを設けている。常識的にフィンはできるだけ高く、かつ薄くして、時として送風して吸熱効果を高めようとしている。これに対し本発明では、吸熱板の表面積を広くするために多数枚のフィンを設けただけでなく、更に前記フィンの突起先端頂部の構造を、結露水が水滴状に発生し、且つ発生水滴が太ることなく頂部を落下しやすい構造としている。具体的には、前記フィンの突起先端頂部の幅を1.5mm以上とし、さらには前記フィンの突起先端頂部の幅を6.0mm以下としている。これにより、前記フィンの突起先端頂部では、結露(滴状凝縮)が発生しやすく且つ該結露が成長しやすく、しかもその結露で成長した水滴が自重で滴下しやすい。つまり、フィンの突起先端頂部に水滴が付着している時間が短いのである。すなわち、フィンの突起先端頂部は、常に結露しやすい室温との温度差を有する状態に保たれており、前述した構成による効果と相まって更に輻射による冷房効果を高い状態で維持することができ、且つ除湿効果をも高めることができる。   Furthermore, in the present invention, a large number of fins are provided to increase the surface area of the heat absorbing plate. Common sense is that fins are as high and thin as possible and sometimes blown to increase the endothermic effect. On the other hand, in the present invention, not only a large number of fins are provided in order to increase the surface area of the heat absorbing plate, but also the structure of the top of the protrusion tip of the fin is generated in the form of water droplets and the generated water droplets. The top is easy to fall without getting fat. Specifically, the width of the top of the protrusion tip of the fin is 1.5 mm or more, and further, the width of the top of the protrusion tip of the fin is 6.0 mm or less. As a result, condensation (drop-like condensation) is likely to occur at the top of the tip of the projection of the fin, and the condensation is likely to grow, and water droplets grown by the condensation are likely to be dripped by its own weight. That is, the time during which water droplets are attached to the top of the projection tip of the fin is short. That is, the tip of the tip of the fin protrusion is always kept in a state having a temperature difference from room temperature at which condensation easily occurs, and in addition to the effect of the above-described configuration, the cooling effect by radiation can be maintained in a high state, and The dehumidifying effect can also be enhanced.

また前記吸熱板をアルミニウムなどの導電性軽金属の押出成形品とすることにより、熱伝導性が良く、かつ軽量でハンドリング性が良く、更に安価に提供できる。しかも間仕切り等の建築エレメントと一体となった冷却装置が提供可能である。   Moreover, by making the heat-absorbing plate an extruded product of a conductive light metal such as aluminum, it can be provided at a low cost with good thermal conductivity, light weight and good handling properties. Moreover, it is possible to provide a cooling device integrated with a building element such as a partition.

また前述の如き冷却パネルを、地中熱を利用したヒートポンプシステム等の地中熱利用冷暖房システムと組み合わせることにより、効率の良い省エネ冷暖房が可能(夏期は地中からの熱媒体直接循環も可能)である。   In addition, efficient cooling and heating / cooling is possible by combining the cooling panel as described above with a geothermal heating / cooling system such as a heat pump system that uses geothermal heat (in summer, direct circulation of the heat medium from the ground is also possible) It is.

また上記構成に加えて、前記吸熱板の外形を、水平断面形状が扁平であり、端部が中央部よりも細い先細り形状としている。具体的には、例えば前記吸熱板を、外表面に前記フィンが鉛直方向に多数設けられた中空部材と、前記中空部材内にて前記配管を案内支持するガイド部材を有する構成とし、前記吸熱板の外形を、水平断面形状が扁平であり、前記中空部材の端部が前記ガイド部材部分よりも細い先細り形状としている。これにより、強度を確保しつつ、更に軽量化が図れる。特に前記吸熱板の中空部材とガイド部材の一部または全部を押出しによる一体成形品とすることにより、中空部材が分割されることなく一体化され、かつガイド部材が補強材となるので、更なる強度アップが図れる。この一体成形による強度アップにより、中空部材及びガイド部材を肉薄にでき、その結果、熱伝導効率が良くなり、更なる軽量化も図れる。更に、前記中空部材の端部を先細り形状とすることにより、意匠性が高くなり、部屋の一部または置物などのインテリアとして美観を向上させることができる。   Moreover, in addition to the said structure, the external shape of the said heat absorption board is made into the taper shape whose horizontal cross-sectional shape is flat, and an edge part is thinner than a center part. Specifically, for example, the heat absorption plate includes a hollow member in which a large number of fins are provided on the outer surface in the vertical direction, and a guide member that guides and supports the pipe in the hollow member. As for the external shape, the horizontal cross-sectional shape is flat, and the end of the hollow member has a tapered shape that is narrower than the guide member portion. Thereby, further weight reduction can be achieved while ensuring the strength. In particular, by forming a part or all of the hollow member and the guide member of the heat-absorbing plate by integral molding by extrusion, the hollow member is integrated without being divided, and the guide member becomes a reinforcing material. Increases strength. By increasing the strength by this integral molding, the hollow member and the guide member can be thinned. As a result, the heat conduction efficiency is improved and the weight can be further reduced. Furthermore, by making the end of the hollow member into a tapered shape, the design is enhanced, and the appearance can be improved as an interior of a part of a room or an ornament.

以下、図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
図1〜図7を用いて、第1実施形態に係る多数枚の吸熱板からなる冷却パネルについて詳しく説明する。図1は本発明の第1実施形態に係る多数枚の吸熱板からなる冷却パネルの模式構成図である。
[First Embodiment]
The cooling panel composed of a large number of heat absorbing plates according to the first embodiment will be described in detail with reference to FIGS. FIG. 1 is a schematic configuration diagram of a cooling panel including a plurality of heat absorbing plates according to the first embodiment of the present invention.

図1に示すように、本実施形態に係る冷却パネル1は、熱媒体を流すための流路を有する吸熱板2が鉛直方向に多数枚並設されてなる。ここでは吸熱板2として、12枚の吸熱板2a1〜2a6,2b1〜2b6を鉛直方向に並設する構成を例示しているが、吸熱板の枚数や並べ方については用途に応じて適宜設定すればよく、前述の構成に限定されるものではない。   As shown in FIG. 1, the cooling panel 1 according to the present embodiment includes a large number of heat absorbing plates 2 having a flow path for allowing a heat medium to flow in the vertical direction. Here, as the endothermic plate 2, a configuration in which twelve endothermic plates 2a1 to 2a6 and 2b1 to 2b6 are arranged in the vertical direction is illustrated, but the number and arrangement of the endothermic plates may be appropriately set according to the application. Well, it is not limited to the configuration described above.

前記冷却パネル1は、前記並設された多数枚の吸熱板2からなる複数の吸熱板群3を有している。ここでは吸熱板群3として、2つの吸熱板群3A,3Bを有する冷却パネル1を例示しているが、この吸熱板群の数及び1つの群を構成する吸熱板の枚数はこれに限定されるものではなく、用途に応じて適宜設定すれば良い。   The cooling panel 1 has a plurality of endothermic plate groups 3 including the plurality of endothermic plates 2 arranged side by side. Here, the cooling panel 1 having two endothermic plate groups 3A and 3B is illustrated as the endothermic plate group 3, but the number of the endothermic plate groups and the number of endothermic plates constituting one group are limited to this. What is necessary is just to set suitably according to a use.

前記各吸熱板群3A,3Bは、前記吸熱板2の鉛直方向に熱媒体を流しつつ前記吸熱板2の並び方向一方側から他方側に熱媒体を流すための第1の流路7と、前記吸熱板2の鉛直方向に熱媒体を流しつつ前記吸熱板2の並び方向他方側から一方側に熱媒体を流すための第2の流路8と、を有している。   Each of the endothermic plate groups 3A and 3B includes a first flow path 7 for flowing a heat medium from one side to the other side in the arrangement direction of the endothermic plates 2 while flowing a heat medium in the vertical direction of the heat endothermic plate 2. And a second flow path 8 for allowing the heat medium to flow from the other side to the one side in the arrangement direction of the heat absorption plate 2 while flowing the heat medium in the vertical direction of the heat absorption plate 2.

また前記各吸熱板群3をなす多数枚の吸熱板2は、隣接する吸熱板が、前記第1の流路7又は前記第2の流路8のいずれか一方の流路を有する構成となっている。ここでは、図1に示すように、前記第1の流路7を有する吸熱板2a1〜2a6と前記第2の流路8を有する吸熱板2b1〜2b6を前記並び方向に交互に並べた構成となっている。   Further, the large number of heat absorbing plates 2 constituting each of the heat absorbing plate groups 3 has a configuration in which the adjacent heat absorbing plate has one of the first flow path 7 and the second flow path 8. ing. Here, as shown in FIG. 1, the heat absorption plates 2a1 to 2a6 having the first flow path 7 and the heat absorption plates 2b1 to 2b6 having the second flow path 8 are alternately arranged in the arrangement direction. It has become.

更に前記各流路7,8は、熱媒体が前記吸熱板2の鉛直方向に流れつつ前記吸熱板2の並び方向に流れるように直列に連結された流路となっている。   Further, each of the flow paths 7 and 8 is a flow path connected in series so that the heat medium flows in the vertical direction of the heat absorption plate 2 and flows in the direction in which the heat absorption plates 2 are arranged.

また前述した第1の流路7及び第2の流路8は、各々1本の樹脂製の配管9a,9bで形成されている。更に前記流路としての配管は、内径が8mm以下となっている。なお、以下の説明では、第1の流路7を第1の配管9aとし、第2の流路8を第2の配管9bとする。   Further, the first flow path 7 and the second flow path 8 described above are each formed by one resin pipe 9a, 9b. Further, the pipe as the flow path has an inner diameter of 8 mm or less. In the following description, the first flow path 7 is referred to as a first pipe 9a, and the second flow path 8 is referred to as a second pipe 9b.

ここで、図2及び図3を用いて本実施形態に係る冷却パネルを構成する吸熱板について詳しく説明する。図2及び図3は本発明の第1実施形態に係る冷却パネルを構成する吸熱板の説明図である。図2は吸熱板の断面図である。図3において、(a)は吸熱板のA−A断面図、(b)は吸熱板の側面図、(c)は吸熱板の端部正面図である。   Here, the heat absorbing plate constituting the cooling panel according to the present embodiment will be described in detail with reference to FIGS. 2 and 3. 2 and 3 are explanatory views of a heat absorbing plate constituting the cooling panel according to the first embodiment of the present invention. FIG. 2 is a sectional view of the heat absorbing plate. 3, (a) is an AA cross-sectional view of the endothermic plate, (b) is a side view of the endothermic plate, and (c) is an end front view of the endothermic plate.

なお、図1に示す各吸熱板2a1〜2a6,2b1〜2b6は、各流路7,8をなす配管9a,9bのいずれか一方を有するという点で構成が異なるものの、その他の構成は同様であるため、図2及び図3では、各吸熱板2a1〜2a6,2b1〜2b6を吸熱板2とし、各吸熱板が有する配管9a,9bを配管9として説明する。   The heat absorbing plates 2a1 to 2a6 and 2b1 to 2b6 shown in FIG. 1 have different configurations in that they have either one of the pipes 9a and 9b forming the flow paths 7 and 8, but the other configurations are the same. Therefore, in FIG. 2 and FIG. 3, each of the heat absorbing plates 2 a 1 to 2 a 6 and 2 b 1 to 2 b 6 will be described as the heat absorbing plate 2, and the piping 9 a and 9 b that each of the heat absorbing plates has will be described as the piping 9.

図2及び図3に示すように、吸熱板2は、内部に、熱媒体を循環させるための配管9を有している。本実施形態では前述したように樹脂製の配管を用いている。このように樹脂製の配管を用いることにより、屈曲性が良く、小半径に曲げることができ、配管の加工、吸熱板への配管の組み付け作業が容易となる。また配管同士の接続も容易にできる。更に吸熱板の幅を狭くすることも可能である。   As shown in FIGS. 2 and 3, the heat absorbing plate 2 has a pipe 9 for circulating a heat medium therein. In the present embodiment, as described above, resin piping is used. By using the resin pipe in this way, the flexibility is good, the pipe can be bent to a small radius, and the processing of the pipe and the work of assembling the pipe to the heat absorption plate are facilitated. In addition, the pipes can be easily connected. Further, the width of the heat absorbing plate can be reduced.

更に前記配管9として樹脂製の配管を用いることで、配管9内の熱媒体の循環を損なわない程度に、吸熱板2の厚さ方向に、配管9を断面を扁平に加工することも可能である。この場合、吸熱板2の厚さ方向に配管9を平たく加工するため、吸熱板2の厚さを薄くできるだけでなく、吸熱板2と配管9との接触面積を増やすことができ、熱伝導性を向上させることができる。   Furthermore, by using a resin pipe as the pipe 9, it is possible to process the pipe 9 flat in the thickness direction of the heat absorbing plate 2 so as not to impair the circulation of the heat medium in the pipe 9. is there. In this case, since the pipe 9 is processed flat in the thickness direction of the endothermic plate 2, not only can the thickness of the endothermic plate 2 be reduced, but also the contact area between the endothermic plate 2 and the pipe 9 can be increased, and thermal conductivity can be increased. Can be improved.

なお、熱媒体を流すための流路としての配管は前述の樹脂製の配管に限定されるものではなく、熱伝導性や耐性、更には加工や組み付け作業の容易性などを加味して適宜用いれば良い。例えば金属製の配管を用いても良いし、或いは樹脂製の配管であっても、金属強化ポリエチレン管などの金属の補強層を有する架橋ポレオレフィン樹脂管を用いても良い。特に、金属の補強層を有する架橋ポレオレフィン樹脂管を用いた場合、前述の効果に加えて更に、配管の加工が容易であるだけでなく、曲げなどの加工状態を維持することができるため、作業性が更に向上する。また金属補強により更なる強度アップも図れる。また金属層を有するので熱伝導性や耐性を更に高めることができ、金属補強による強度アップにより管を肉薄にでき、その結果熱伝導が更に良くなる。   The piping as the flow path for flowing the heat medium is not limited to the above-mentioned resin piping, and is appropriately used in consideration of thermal conductivity and resistance, and ease of processing and assembly work. It ’s fine. For example, a metal pipe or a resin pipe or a crosslinked polyolefin resin pipe having a metal reinforcing layer such as a metal reinforced polyethylene pipe may be used. In particular, when a crosslinked polyolefin resin tube having a metal reinforcing layer is used, in addition to the above-described effects, not only the processing of the piping is easy, but also the processing state such as bending can be maintained. Workability is further improved. Moreover, the strength can be further increased by metal reinforcement. In addition, since the metal layer is provided, the thermal conductivity and resistance can be further increased, and the tube can be thinned by increasing the strength by reinforcing the metal, and as a result, the heat conduction is further improved.

また図2及び図3に示すように、吸熱板2は、外表面に後述するフィン5が設けられた中空部材6と、前記中空部材6内にて前記配管9を案内支持するガイド部材としての支持部4を有している。本実施形態に係る吸熱板2は、中空部材6と支持部4を一体成形している。   As shown in FIGS. 2 and 3, the heat absorbing plate 2 includes a hollow member 6 provided with fins 5 to be described later on the outer surface, and a guide member that guides and supports the pipe 9 within the hollow member 6. A support part 4 is provided. In the heat absorbing plate 2 according to the present embodiment, the hollow member 6 and the support portion 4 are integrally formed.

更に吸熱板2は、その外形が、水平断面形状が扁平であり、端部6aが中央部6bよりも細い先細り形状に形成されている。具体的には、例えば図2に示すように、中空部材6の端部6aが支持部4が設けられたガイド部材部分6cよりも細い先細り形状に形成されている。   Further, the heat absorbing plate 2 is formed in a tapered shape whose outer cross section is flat in horizontal cross section and whose end portion 6a is thinner than the central portion 6b. Specifically, for example, as shown in FIG. 2, the end 6 a of the hollow member 6 is formed in a tapered shape that is narrower than the guide member portion 6 c provided with the support portion 4.

また前記支持部4は、配管9の組み付け作業がし易いように、中空部材6と一体成形された第1のガイド部4aと、中空部材6に対して着脱可能な第2のガイド部4bとからなる。第1のガイド部4aは、中空部材6の剛性を高めるために、中空部材6内において向かい合う、一方の内壁面から他方の内壁面にわたって一体成形されている。また、第2のガイド部4bも、着脱可能な構成ではあるものの、中空部材6の剛性アップに寄与するために、中空部材6内において向かい合う、一方の内壁面と他方の内壁面とに案内支持されるように構成されている。   The support portion 4 includes a first guide portion 4a formed integrally with the hollow member 6 and a second guide portion 4b detachably attached to the hollow member 6 so that the pipe 9 can be easily assembled. Consists of. In order to increase the rigidity of the hollow member 6, the first guide portion 4 a is integrally formed from one inner wall surface facing the other inside the hollow member 6 to the other inner wall surface. Although the second guide portion 4b is also detachable, the second guide portion 4b is guided and supported by one inner wall surface and the other inner wall surface facing each other in the hollow member 6 in order to contribute to increasing the rigidity of the hollow member 6. It is configured to be.

そして、前記配管9は前記支持部4内に挿入され支持される。この配管2は外周面全体が前記吸熱板3内の支持部4周面と接して熱的に結合しており、熱伝導性の良い構成となっている。   The pipe 9 is inserted and supported in the support portion 4. The entire outer peripheral surface of the pipe 2 is in thermal contact with the peripheral surface of the support portion 4 in the heat absorbing plate 3 and has a good thermal conductivity.

なお、図示していないが、配管は、熱媒体を循環させるために吸熱板内の下方においてU字状に屈曲させて組み付けられる。このため、配管9を支持する支持部4のうち、吸熱板2内において配管9の内側に相当するガイド部分を、着脱可能な第2のガイド部4bとしている。これにより、吸熱板2内において熱媒体を循環させるために、吸熱板2の下方においてU字状に屈曲させる配管9を、容易に吸熱板2内に覆い隠すことができる。ここで、仮に支持部4全体を中空部材6に一体形成した場合、前記配管9のU字状の屈曲部を吸熱板2内に覆い隠すためには、吸熱板2を成形した後に、吸熱板2内の支持部4において前記配管9の屈曲部に相当する部分を切り落とす加工をしなければならない。本実施形態によれば、吸熱板2の成形後の前述の加工が不要となり、且つ吸熱板2内への配管9の組み付け作業も容易になる。   Although not shown, the pipe is assembled by being bent in a U shape in the lower part of the heat absorbing plate in order to circulate the heat medium. For this reason, the guide part corresponding to the inner side of the pipe 9 in the heat absorbing plate 2 in the support part 4 that supports the pipe 9 is a detachable second guide part 4b. Thereby, in order to circulate the heat medium in the heat absorbing plate 2, the pipe 9 bent in a U shape below the heat absorbing plate 2 can be easily covered in the heat absorbing plate 2. Here, if the entire support portion 4 is integrally formed with the hollow member 6, in order to cover the U-shaped bent portion of the pipe 9 in the heat absorption plate 2, the heat absorption plate 2 is formed and then the heat absorption plate 2. 2 must be cut off at a portion corresponding to the bent portion of the pipe 9 in the support portion 4 in the inside. According to the present embodiment, the above-described processing after the heat absorbing plate 2 is molded becomes unnecessary, and the assembly work of the pipe 9 into the heat absorbing plate 2 is facilitated.

更に、図2及び図3に示すように、前記吸熱板2は、中空部材6の外表面に、鉛直方向に連なる断面突起状のフィン5を多数設けている。そして、前記フィン5の突起先端頂部の構造を、結露水が水滴状に発生し、且つ発生水滴が太ることなく頂部を落下しやすい構造としている。すなわち、前記フィン5の突起先端頂部の幅wを、結露水が成長しやすく、しかもその結露水で成長した水滴が自重で滴下しやすい幅に設定している。   Further, as shown in FIGS. 2 and 3, the heat absorbing plate 2 is provided with a large number of fins 5 having cross-sectional protrusions extending in the vertical direction on the outer surface of the hollow member 6. And the structure of the protrusion tip top part of the said fin 5 is made into the structure where dew condensation water generate | occur | produces in the shape of a water droplet, and the top part is easy to fall, without the generated water droplet becoming fat. That is, the width w of the top end of the protrusion of the fin 5 is set to a width at which condensed water is likely to grow and water droplets grown with the condensed water are likely to be dripped by its own weight.

なお、前記フィン5の突起先端頂部の構造において、結露水が水滴状に発生することとは、前述の如く空気中の湿気(水蒸気)が冷却パネルのパネル表面(冷却面)に結露する、いわゆる水蒸気凝縮のうち、凝縮してできた液相の形状が滴状である滴状凝縮が発生することである。また発生水滴が太ることなくとは、前記滴状凝縮が進行することで生じた水滴は前記冷却面との接触角が大きいほど効率よく落下(滴下)するが、この滴下しやすい前記冷却面との接触角が保てないほど水滴が大きく成長しないということである。   In the structure of the tip of the projection of the fin 5, the generation of condensed water in the form of water droplets means that moisture (water vapor) in the air condenses on the panel surface (cooling surface) of the cooling panel as described above. In the steam condensation, a drop-like condensation is generated in which the liquid phase formed by the condensation has a drop-like shape. Also, the generated water droplets do not become thick, and the water droplets generated by the progress of the droplet condensation efficiently drop (drop) as the contact angle with the cooling surface increases. This means that the water droplets do not grow so large that the contact angle cannot be maintained.

具体的には、前記結露水が水滴状に発生し、且つ発生水滴が太ることなく頂部を落下しやすい、前記フィン5の突起先端頂部の構造として、前記フィン5の突起先端頂部の幅wを1.5mm以上としている。更には前記フィン5の突起先端頂部の幅wを2.0mm以上とすることが好ましい。また、前記フィン5の突起先端頂部の幅wを6.0mm以下とすることが好ましく、更には4.0mm以下とすることが好ましい。なお、前記フィン5の突起先端頂部の幅wを、好ましくは2.0mm〜4.0mmとしたことの根拠については、後述する実験およびその結果を用いて説明する。   Specifically, the width w of the protrusion tip apex of the fin 5 is the structure of the protrusion tip apex of the fin 5 in which the condensed water is generated in the form of water droplets and the generated water droplets are easy to fall without getting thick. It is 1.5 mm or more. Furthermore, it is preferable that the width w of the top end of the protrusion of the fin 5 is 2.0 mm or more. In addition, the width w of the tip end of the protrusion of the fin 5 is preferably 6.0 mm or less, and more preferably 4.0 mm or less. In addition, the grounds that the width w of the top end of the protrusion of the fin 5 is preferably set to 2.0 mm to 4.0 mm will be described using experiments and results described later.

また本実施形態における吸熱板3は、強度アップおよび軽量化の観点から一体成形品となっているが、更に熱伝導性および滴下効率の良さを考慮して、前記吸熱板3はアルミニウムなどの導電性軽金属の押出成形品であることが好ましい。これにより、強度アップが図れ、熱伝導性が良く、かつ軽量でハンドリング性が良く、更に安価に提供できる。また、一体成形による強度アップにより、中空部材6及び支持部4を肉薄にでき、その結果、熱伝導効率が良くなり、更なる軽量化も図れる。しかも間仕切り等の建築エレメントと一体となった冷却装置が提供可能である。更には、吸熱板の端部は、前述したように先細り形状となっているため、意匠性が高くなり、部屋の一部または置物などのインテリアとして美観を向上させることもできる。なお、ここでは、導電性軽金属としてアルミニウムを例示したが、本発明はこれに限定されるものではない。   In addition, the heat absorbing plate 3 in the present embodiment is an integrally molded product from the viewpoint of increasing the strength and reducing the weight, but the heat absorbing plate 3 is made of a conductive material such as aluminum in consideration of good thermal conductivity and dropping efficiency. It is preferably an extruded product of a porous light metal. As a result, the strength can be increased, the thermal conductivity is good, the weight is low, the handling property is good, and the cost can be further reduced. Moreover, the hollow member 6 and the support part 4 can be made thin by the strength improvement by integral molding, As a result, heat conduction efficiency improves and the further weight reduction can also be achieved. Moreover, it is possible to provide a cooling device integrated with a building element such as a partition. Furthermore, since the end portion of the endothermic plate has a tapered shape as described above, the design is enhanced, and the appearance can be improved as an interior of a part of a room or an ornament. In addition, although aluminum was illustrated here as an electroconductive light metal, this invention is not limited to this.

本実施形態における吸熱板3は、中空部材6に多数のフィン5が設けられているが、端部6aの一部と、中央部6bの一部にはフィン5を設けていない。端部6aの一部にフィン5を設けないことにより、更に意匠性が高まり、且つ吸熱板3をより細く且つ薄く見せる視覚効果が得られる。また、中央部6bの一部にフィン5を設けないのは、吸熱板3を並設して冷却パネルを構成する際に、吸熱板3同士を連結部材によって連結し易くするためである。   In the heat absorbing plate 3 in the present embodiment, the fins 5 are provided in the hollow member 6, but the fins 5 are not provided in a part of the end 6 a and a part of the central part 6 b. By not providing the fin 5 at a part of the end portion 6a, the design effect is further enhanced, and the visual effect of making the heat absorbing plate 3 thinner and thinner can be obtained. The reason why the fins 5 are not provided in a part of the central portion 6b is to make it easy to connect the endothermic plates 3 with each other when the endothermic plates 3 are arranged in parallel to form a cooling panel.

ここで、図4及び図5を参照して、前記フィン5の突起先端頂部の構造について、実施例と比較例とを用いて詳しく説明する。   Here, with reference to FIG.4 and FIG.5, the structure of the protrusion tip top part of the said fin 5 is demonstrated in detail using an Example and a comparative example.

図4(a)に示す実施例に係る吸熱板10と、図4(b)に示す比較例としての吸熱板20とを用いて、同条件の結露発生雰囲気下で、水滴流下状況を観察した。詳しくは各吸熱板の下部に滴下した水滴を貯水し、その貯水量を測定した。   Using the heat-absorbing plate 10 according to the example shown in FIG. 4A and the heat-absorbing plate 20 as a comparative example shown in FIG. . Specifically, water drops dripped at the lower part of each heat absorbing plate were stored, and the amount of stored water was measured.

両吸熱板10,20は、図4(a),(b)に示すように、同サイズのアルミ板材11,21にチャンネル形材12,22を各ピッチ間隔で取り付けたものを用いた。また、これら吸熱板10,20は、有効結露部以外は吸湿材を貼り付けた。さらに、アルミ板材11,21と各チャンネル形材12,22との接合部は密着させている。   As shown in FIGS. 4 (a) and 4 (b), both heat absorbing plates 10 and 20 were obtained by attaching channel shape members 12 and 22 to each other at pitch intervals on aluminum plate members 11 and 21 of the same size. Further, the heat absorbing plates 10 and 20 were bonded with a hygroscopic material except for the effective dew condensation portion. Further, the joints between the aluminum plate members 11 and 21 and the channel members 12 and 22 are in close contact with each other.

図4(a)に示すように、実施例に係る吸熱板10は、前記チャンネル形材12による複数のフィン12aの一方端部から他方端部までの長さlが92mm、各フィン12aの高さhが20mm、フィン12a同士の間隔tが16mm、フィン12aの突起先端頂部の幅wが2mmである。この実施例に係る吸熱板10の有効結露表面積は0.4203mである。 As shown in FIG. 4A, the heat absorbing plate 10 according to the embodiment has a length l from one end to the other end of the plurality of fins 12a by the channel member 12 of 92 mm, and the height of each fin 12a. The length h is 20 mm, the interval t between the fins 12a is 16 mm, and the width w of the top end of the protrusion of the fin 12a is 2 mm. The effective dew condensation surface area of the heat absorbing plate 10 according to this embodiment is 0.4203 m 2 .

一方、比較例としての吸熱板20は、前記チャンネル形材22による複数のフィン22aの一方端部から他方端部までの長さlが99mm、各フィン22aの高さhが20mm、フィン22a同士の間隔tが13mm、フィン22aの突起先端頂部の幅wが1mmである。この比較例に係る吸熱板20の有効結露表面積は0.55725mである。 On the other hand, the heat absorbing plate 20 as a comparative example has a length l from one end to the other end of the plurality of fins 22a by the channel shape member 99 of 99 mm, the height h of each fin 22a is 20 mm, and the fins 22a The interval t is 13 mm, and the width w of the top end of the protrusion of the fin 22a is 1 mm. The effective dew condensation surface area of the heat absorbing plate 20 according to this comparative example is 0.55725 m 2 .

実験方法は、図4(c)に示す簡易断熱試験装置30に、前述の吸熱板10,20を順に設置し、同条件の結露発生雰囲気下で、滴下し貯水した水の貯水量を測定する。試験装置は、吸熱板10,20を取り付ける仕切壁31に仕切られた、一方の室が低温室32、他方の室が高温室33となっている。前記吸熱板10,20は、フィンが設けられた面が高温室33側に向くように前記仕切壁31に取り付ける。   The experimental method is to install the above-mentioned heat absorbing plates 10 and 20 in order in the simple thermal insulation test apparatus 30 shown in FIG. 4 (c), and measure the amount of water that has been dripped and stored in the condensation-generating atmosphere under the same conditions. . In the test apparatus, one chamber is a low temperature chamber 32 and the other chamber is a high temperature chamber 33 partitioned by a partition wall 31 to which the heat absorbing plates 10 and 20 are attached. The heat absorbing plates 10 and 20 are attached to the partition wall 31 so that the surface on which the fins are provided faces the high temperature chamber 33 side.

そして、試験装置30の環境設定条件は、低温側の温度を0℃、高温側(結露発生側)の温度を30℃、湿度を70%として、3時間加湿を行い、前述の貯水量の測定を行った。   The environment setting conditions of the test apparatus 30 are as follows: the temperature on the low temperature side is 0 ° C., the temperature on the high temperature side (condensation generation side) is 30 ° C., the humidity is 70%, and humidification is performed for 3 hours. Went.

前述の実験の結果、実施例に係る吸熱板10の貯水量は100.3gであり、比較例に係る吸熱板20の貯水量は79.8gであった。この結果から、フィンの突起先端頂部の幅wが2mmである実施例の方が、同幅wが1mmである比較例よりも、有効結露表面積が小さいにもかかわらず、除湿効果が高い(貯水量が多い)ことがわかった。   As a result of the above-described experiment, the amount of water stored in the heat sink plate 10 according to the example was 100.3 g, and the amount of water stored in the heat sink plate 20 according to the comparative example was 79.8 g. From this result, the example in which the width w of the tip end of the projection of the fin is 2 mm has a higher dehumidifying effect than the comparative example in which the width w is 1 mm, although the effective dew condensation surface area is small (water storage It was found that the amount was large).

結露の成長の仕方として、フィンの突起先端頂部から成長し、流下し始める。従って、前記フィン先端頂部の幅wが2mmである実施例の方が、同幅wが1mmである比較例よりも前記幅wが厚く、冷やされたフィン先端頂部が湿気を含んだ空気に触れる面積が大きくなってるため、より結露の成長を助長させていると考えられる。   As a method of growth of condensation, it grows from the top of the tip of the fin protrusion and starts to flow down. Therefore, in the embodiment in which the width w of the tip end of the fin is 2 mm, the width w is thicker than the comparative example in which the width w is 1 mm, and the cooled tip end of the fin touches the air containing moisture. It is thought that the growth of condensation is further promoted because the area increases.

また、結露の発生量は理論的には湿気を含んだ空気と触れ合う表面積(有効結露表面積)を多くとることが有効であると思われたが、上記実験結果では、フィンの突起先端頂部の幅wが2mmである実施例の方が、同幅wが1mmである比較例よりも、有効結露表面積が小さいにもかかわらず、貯水量が多かったことから、前記フィンの突起先端頂部の幅を2mm以上とすることが、結露水が水滴状に発生し、且つ発生水滴が太ることなく頂部を落下しやすくする構造として有効であることがわかる。   In addition, it seems that it is effective to increase the surface area (effective condensation surface area) in contact with moisture-containing air theoretically. However, in the above experimental results, the width of the top of the tip of the fin protrusion is considered to be effective. In the example where w is 2 mm, the amount of stored water was larger in spite of the smaller effective condensation surface area than in the comparative example where the same width w was 1 mm. It can be seen that the thickness of 2 mm or more is effective as a structure in which dew condensation water is generated in the form of water droplets and the top is easily dropped without the generated water droplets becoming thick.

なお、前述の実験時の各吸熱板10,20の結露状況を図5に示す。図5(a)は実施例に係る吸熱板10の結露状況を示す図であり、図5(b)は比較例に係る吸熱板20の結露状況を示す図である。図5(a)に示す実施例に係る吸熱板10の方が、図5(b)に示す比較例に係る吸熱板20よりも、チャンネル形材12によるフィン12aの突起先端頂部で結露している水滴が少なく、フィン先端頂部での流下量が多いことがわかる。   In addition, the dew condensation state of each heat sink plate 10 and 20 at the time of the above-mentioned experiment is shown in FIG. Fig.5 (a) is a figure which shows the dew condensation condition of the heat sink plate 10 which concerns on an Example, FIG.5 (b) is a figure which shows the dew condensation condition of the heat sink plate 20 which concerns on a comparative example. The heat absorption plate 10 according to the embodiment shown in FIG. 5A is condensed at the top end of the protrusion of the fin 12a by the channel shape member 12 than the heat absorption plate 20 according to the comparative example shown in FIG. It can be seen that there are few water droplets and the amount of flow at the top of the fin tip is large.

更にここで、熱媒体の流路を有する多数枚の吸熱板からなる冷却パネルとして、上述した複数の流路を有する冷却パネル(実施例)と、単一の流路を有する冷却パネル(比較例)とを用いて、各冷却パネルにおける吸熱板の温度変化の比較を行った。図6は実施例に係る冷却パネルにおけるの吸熱板の温度変化を示す図であり、図7は比較例に係る冷却パネルにおけるの吸熱板の温度変化を示す図である。   Further, here, as a cooling panel comprising a plurality of heat absorbing plates having a heat medium flow path, the above-described cooling panel having a plurality of flow paths (Example) and a cooling panel having a single flow path (Comparative Example) ) And the temperature change of the endothermic plate in each cooling panel was compared. FIG. 6 is a diagram showing a temperature change of the heat absorbing plate in the cooling panel according to the example, and FIG. 7 is a diagram showing a temperature change of the heat absorbing plate in the cooling panel according to the comparative example.

実施例に係る冷却パネルとしては、12枚の吸熱板が並設され、直列に連結された第1の流路7と第2の流路8が隣接する吸熱板に交互に配された冷却パネルを用いた。一方、比較例では、12枚の吸熱板が並設されてはいるものの、熱媒体が吸熱板の並び方向一方側から他方側へのみ流れるように、各吸熱板内のU字状の配管がヘッダーによって並列に接続された流路を有する冷却パネルを用いた。また、各冷却パネルの吸熱板は、図2及び図3に示す構成の吸熱板を用いた。そして、室温を約22℃に保った環境下において、熱媒体の流量を約1.0l/分に保った状態で、各冷却パネルにおける同位置の温度変化を測定した。各冷却パネルにおける温度検出位置は、冷却パネルに対する配管の入口温度と出口温度、及び3箇所の吸熱板の温度を検出した。3箇所の吸熱板の位置は、実施例、比較例ともに同じ位置であり、吸熱板の並び方向において配管の入口(往き)側である左側から1枚目(左端)、6枚目(中央)、12枚目(右端)の各吸熱板の温度を検出した。図6及び図7において、線Liは入口温度、線Loは出口温度である。また、線Llは左端の吸熱板の温度、線Lcは中央の吸熱板の温度、線Lrは右端の吸熱板の温度である。また、線Lgはグローブ温度である。このグローブ温度とは、放射温度を測定するために用いられる仮想黒体の球(グローブ)を用いて測られる温度である。ここでは、直径15cm、表面は黒色つや消しの 中空銅球の中心におかれた温度計により測定した。なお、前述した条件を除く、吸熱板同士の間隔やその他の環境条件などは、実施例及び比較例ともに同じ条件で実験を行った。   As the cooling panel according to the embodiment, 12 heat absorption plates are arranged in parallel, and the first flow path 7 and the second flow path 8 connected in series are alternately arranged on the adjacent heat absorption plates. Was used. On the other hand, in the comparative example, although twelve endothermic plates are arranged side by side, the U-shaped pipes in each endothermic plate are arranged so that the heat medium flows only from one side to the other side in the direction in which the endothermic plates are arranged. A cooling panel having flow paths connected in parallel by a header was used. Moreover, the heat absorption plate of the structure shown in FIG.2 and FIG.3 was used for the heat absorption plate of each cooling panel. And the temperature change of the same position in each cooling panel was measured in the state which maintained the flow volume of the heat medium at about 1.0 l / min in the environment which kept room temperature at about 22 degreeC. The temperature detection position in each cooling panel detected the inlet temperature and outlet temperature of the piping with respect to the cooling panel, and the temperature of the three endothermic plates. The positions of the three endothermic plates are the same in both the example and the comparative example. The first sheet (left end) and the sixth sheet (center) from the left side, which is the inlet (outward) side of the pipe in the direction of arrangement of the endothermic plates. The temperature of each endothermic plate on the 12th sheet (right end) was detected. 6 and 7, the line Li is the inlet temperature, and the line Lo is the outlet temperature. The line Ll is the temperature of the left end heat absorption plate, the line Lc is the temperature of the center heat absorption plate, and the line Lr is the temperature of the right end heat absorption plate. Line Lg is the globe temperature. The glove temperature is a temperature measured using a virtual black body sphere (glove) used to measure the radiation temperature. Here, the diameter was 15 cm, and the surface was measured with a thermometer placed at the center of a black matte hollow copper sphere. The experiment was performed under the same conditions in both the examples and the comparative examples except for the above-described conditions, such as the interval between the heat absorbing plates and other environmental conditions.

図6に示すように、実施例に係る冷却パネルでは、3箇所の吸熱板の検出温度が全て約36℃を中心に±0.5℃程度の範囲で交叉するように変化している。これに対して、比較例に係る冷却パネルでは、図7に示すように、熱媒体の入口側に近い左端の吸熱板及び中央の吸熱板の検出温度は約35℃を中心に±1.0℃程度の範囲で推移しているものの、熱媒体の出口側に近い右端の吸熱板は約34℃を中心に±1.0℃程度の範囲で推移しており、左端及び中央位置と、右端位置の検出温度変化は交叉することなく一定の温度差を保ったまま推移している。この結果から、実施例に係る冷却パネルでは、第1の流路と第2の流路との作用により、吸熱板の各検出位置において温度ムラが抑制され、パネル全域においてほぼ均一な温度(吸熱量)となっていることがわかる。これに対して比較例に係る冷却パネルでは、熱媒体の流れる方向下流側の吸熱板の温度の方が上流側の温度よりも低くなってしまい、パネル全体において温度ムラが生じていることがわかる。   As shown in FIG. 6, in the cooling panel according to the example, the detected temperatures of the three endothermic plates all change so as to cross within a range of about ± 0.5 ° C. around about 36 ° C. On the other hand, in the cooling panel according to the comparative example, as shown in FIG. 7, the detected temperatures of the left end heat absorption plate and the center endothermic plate near the inlet side of the heat medium are ± 1.0 centering on about 35 ° C. Although the temperature has changed in the range of about ℃, the right end heat absorption plate near the outlet side of the heat medium has moved in the range of about ± 1.0 ℃ centered around about 34 ℃, The change in the detected temperature of the position does not cross and keeps a constant temperature difference. From this result, in the cooling panel according to the example, due to the action of the first flow path and the second flow path, the temperature unevenness is suppressed at each detection position of the heat absorption plate, and the temperature is substantially uniform throughout the panel (absorption of heat). It can be seen that the amount of heat is. On the other hand, in the cooling panel according to the comparative example, it is understood that the temperature of the heat absorption plate on the downstream side in the flow direction of the heat medium is lower than the temperature on the upstream side, and temperature unevenness occurs in the entire panel. .

上述したように、本実施形態によれば、吸熱板の鉛直方向に熱媒体を流しつつ吸熱板の並び方向一方側から他方側に熱媒体を流す第1の流路7と、同様に前記鉛直方向に熱媒体を流しつつ前記並び方向他方側から一方側に熱媒体を流す第2の流路8との作用により、冷却パネル全域において温度ムラを抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、常に冷却パネル全域にわたって輻射による冷房効果を高い状態で維持することができる。   As described above, according to the present embodiment, the vertical flow path is similar to the first flow path 7 in which the heat medium flows from one side to the other side of the heat absorption plate while flowing the heat medium in the vertical direction of the heat absorption plate. Due to the action of the second flow path 8 for flowing the heat medium from the other side to the one side in the arrangement direction while flowing the heat medium in the direction, temperature unevenness can be suppressed in the entire cooling panel, and substantially uniform over the entire panel. A temperature is obtained. Thereby, the cooling effect by radiation can always be maintained in a high state over the entire cooling panel.

更に前記冷却パネル1は、熱媒体の流路を有する吸熱板2を鉛直方向に多数枚並設しているため、鉛直方向上方から見た単位面積当たりの吸熱量を多くでき、前記輻射による冷房効果を更に増すことができる。   Further, since the cooling panel 1 includes a large number of heat absorbing plates 2 having a heat medium flow path arranged in the vertical direction, the amount of heat absorbed per unit area as viewed from above in the vertical direction can be increased. The effect can be further increased.

また前記各流路7,8を、直列に連結された流路とすることにより、仮に流路7,8内に空気が溜まってしまうことがあっても該流路7,8内の空気を確実に押し出すことができる。このため、流路7,8内の熱媒体の流速を一定に保つことができ、流速低下に起因する吸熱不良を防止できる。また、並列接続時に必要なヘッダーが不要となるため、構成を簡易化することができ、軽量化及び低コスト化が図れる。   Moreover, even if air may accumulate in the flow paths 7 and 8 by making each flow path 7 and 8 into the flow path connected in series, the air in the flow paths 7 and 8 is kept. It can be pushed out reliably. For this reason, the flow rate of the heat medium in the flow paths 7 and 8 can be kept constant, and the endothermic failure due to the decrease in the flow rate can be prevented. In addition, since a header necessary for parallel connection is not required, the configuration can be simplified, and the weight and cost can be reduced.

また隣接する吸熱板が、前記第1の流路7又は前記第2の流路8のいずれか一方の流路を有し、更には前記第1の流路7を有する吸熱板2a1〜2a6と前記第2の流路8を有する吸熱板2b1〜2b6を前記並び方向に交互に並べて配置することにより、冷却パネル全域において温度ムラをより抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   Adjacent endothermic plates have either one of the first channel 7 or the second channel 8, and further the endothermic plates 2a1-2a6 having the first channel 7; By arranging the heat absorbing plates 2b1 to 2b6 having the second flow path 8 alternately in the arrangement direction, temperature unevenness can be further suppressed over the entire cooling panel, and a substantially uniform temperature can be obtained over the entire panel. It is done. Thereby, the cooling effect by radiation can be maintained in a higher state over the entire cooling panel.

また前記各流路7,8を、各々1本の樹脂製の配管9a,9bで形成することにより、屈曲性が良く、小半径に曲げることができ、配管の加工、吸熱板への配管の組み付け作業が容易となる。また各吸熱板間の配管同士の接続が不要であるため、配管の組み付け作業が更に容易になり、コストも安くすることができる。更に吸熱板の幅を狭くすることも可能である。あるいは、前記配管として、金属の補強層を有する架橋ポレオレフィン樹脂製の配管を用いることにより、前述の効果に加えて更に、配管の加工が容易であるだけでなく、曲げなどの加工状態を維持することができるため、作業性が更に向上する。また金属補強により更なる強度アップも図れる。また金属層を有するので熱伝導性や耐性を更に高めることができ、金属補強による強度アップにより管を肉薄にでき、その結果熱伝導が更に良くなる。   Further, by forming each of the flow paths 7 and 8 with a single resin pipe 9a and 9b, it has good flexibility and can be bent to a small radius. Assembly work is easy. Moreover, since it is not necessary to connect the pipes between the respective heat absorbing plates, the work of assembling the pipes is further facilitated and the cost can be reduced. Further, the width of the heat absorbing plate can be reduced. Alternatively, by using a pipe made of a crosslinked polyolefin resin having a metal reinforcing layer as the pipe, in addition to the effects described above, the pipe is not only easily processed but also maintained in a processed state such as bending. Therefore, workability is further improved. Moreover, the strength can be further increased by metal reinforcement. In addition, since the metal layer is provided, the thermal conductivity and resistance can be further increased, and the tube can be thinned by increasing the strength by reinforcing the metal, and as a result, the heat conduction is further improved.

また前記配管9の内径を8mm以下とすることにより、吸熱板2の幅を更に狭くすることが可能であり、冷却パネル1の設置スペースに対してより多くの吸熱板2を配置することが可能となる。これにより、設置スペースに対する冷却パネルの吸熱量をより多くでき、前記輻射による冷房効果を更に増すことができる。   In addition, by setting the inner diameter of the pipe 9 to 8 mm or less, the width of the heat absorbing plate 2 can be further reduced, and more heat absorbing plates 2 can be arranged in the installation space of the cooling panel 1. It becomes. Thereby, the heat absorption amount of the cooling panel with respect to the installation space can be increased, and the cooling effect by the radiation can be further increased.

また、前記第1の流路7と前記第2の流路8を有する吸熱板群3を複数有することにより、冷却パネル1は吸熱板群ごとに温度ムラを抑制できる。従って、冷却パネルの全域において温度ムラをより抑制することができ、パネル全域にわたってほぼ均一な温度が得られる。これにより、冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   Moreover, the cooling panel 1 can suppress temperature nonuniformity for every heat absorption board group by having two or more the heat absorption board groups 3 which have the said 1st flow path 7 and the said 2nd flow path 8. FIG. Therefore, temperature unevenness can be further suppressed over the entire area of the cooling panel, and a substantially uniform temperature can be obtained over the entire panel. Thereby, the cooling effect by radiation can be maintained in a higher state over the entire cooling panel.

更に本実施形態では、前述したように、吸熱板2の表面積を広くするために多数枚のフィン5を設けている。常識的にフィンはできるだけ高く、かつ薄くして、時として送風して吸熱効果を高めようとしている。これに対し本実施形態では、吸熱板2の表面積(有効結露表面積)を広くするために多数枚のフィン5を設けただけでなく、更に前記フィン5の突起先端頂部の構造を、結露水が水滴状に発生し、且つ発生水滴が太ることなく頂部を落下しやすい構造としている。具体的には、前記フィン5の突起先端頂部の幅を1.5mm以上とし、さらには前記フィン5の突起先端頂部の幅を6.0mm以下としている。これにより、前記フィン5の突起先端頂部では、結露(滴状凝縮)が発生しやすく且つ該結露が成長しやすく、しかもその結露で成長した水滴が自重で滴下しやすい。つまり、フィン5の突起先端頂部に水滴が付着している時間が短いのである。すなわち、フィン5の突起先端頂部は、常に結露しやすい室温との温度差を有する状態に保たれており、上述の貯水量が多かったことからもわかるように、除湿の効果が高い。さらにそれだけではなく、フィン5の突起先端頂部が、室温との温度差を有する状態に保たれてことからもわかるように、本冷却パネルは前述した流路構成による効果と相まって更に輻射による冷房効果もより高い状態で維持することができ、且つ除湿効果をも高めることができる。   Further, in the present embodiment, as described above, a large number of fins 5 are provided in order to increase the surface area of the heat absorbing plate 2. Common sense is that fins are as high and thin as possible and sometimes blown to increase the endothermic effect. On the other hand, in this embodiment, not only a large number of fins 5 are provided in order to increase the surface area (effective dew condensation surface area) of the heat absorbing plate 2, but also the structure of the top end of the protrusion of the fin 5 It has a structure that is generated in the form of water droplets and is easy to fall without causing the generated water droplets to thicken. Specifically, the width of the top end of the protrusion of the fin 5 is set to 1.5 mm or more, and the width of the top end of the protrusion of the fin 5 is set to 6.0 mm or less. As a result, condensation (drop-like condensation) is likely to occur at the top of the protrusion tip of the fin 5, and the condensation is likely to grow, and water droplets grown by the condensation are likely to be dripped by its own weight. That is, the time during which water droplets are attached to the top of the protrusion tip of the fin 5 is short. In other words, the top of the protrusion tip of the fin 5 is always kept in a state having a temperature difference from room temperature at which condensation easily occurs, and the dehumidifying effect is high, as can be seen from the fact that the amount of stored water is large. Furthermore, as can be seen from the fact that the top of the protrusion tip of the fin 5 is kept in a state having a temperature difference from room temperature, this cooling panel is further combined with the effect of the flow path configuration described above to further increase the cooling effect by radiation. Therefore, the dehumidifying effect can be enhanced.

また前述したように、冷却パネル1を構成する吸熱板2を、前述の中空部材6と支持部4を有する構成とし、更に前記中空部材6の端部6aを前記支持部4が設けられたガイド部材部分6cよりも細い先細り形状としている。これにより、前述した効果が得られるだけでなく更に、強度を確保しつつ、更なる軽量化が図れる。特に前記吸熱板3を押出一体成形品とすることにより、更なる強度アップが図れる。更に一体成形による強度アップにより、中空部材6及び支持部4を肉薄にでき、その結果、更なる軽量化も図れる。更に、前記中空部材6の端部6aを先細り形状とすることにより、意匠性が高くなり、部屋の一部または置物などのインテリアとして美観を向上させることができる。   Further, as described above, the heat absorbing plate 2 constituting the cooling panel 1 is configured to include the hollow member 6 and the support portion 4 described above, and the end portion 6 a of the hollow member 6 is provided with the support portion 4. The taper shape is thinner than the member portion 6c. Thereby, not only the above-described effects can be obtained, but also the weight can be further reduced while securing the strength. In particular, by using the heat absorbing plate 3 as an integrally formed extrusion product, the strength can be further increased. Furthermore, the hollow member 6 and the support part 4 can be made thin by strength improvement by integral molding, and as a result, further weight reduction can be achieved. Furthermore, by making the end 6a of the hollow member 6 into a tapered shape, the design is enhanced, and the appearance can be improved as an interior of a part of a room or an ornament.

なお、本実施形態における冷房パネルの好適な適用例は、冷却パネルの熱媒体循環用の配管を地下3〜5m以下の地中温度が一定した部分を通過する配管と接続し、循環ポンプで熱媒体である水を循環させるだけという極めて簡易な冷房機器にすることである。   In addition, the suitable application example of the cooling panel in this embodiment connects the piping for the heat medium circulation of a cooling panel with the piping which passes the part where the underground temperature of 3-5 m or less underground is constant, and is heated with a circulation pump. It is to make a very simple cooling device that only circulates water as a medium.

〔第2実施形態〕
前述した実施形態では、図2及び図3に示すように、冷却パネル1を構成する吸熱板2を、中空部材6の端部6aを支持部4が設けられたガイド部材部分6cよりも細い先細り形状としたが、吸熱板の形状及び構成はこれに限定されるものではない。
[Second Embodiment]
In the above-described embodiment, as shown in FIGS. 2 and 3, the endothermic plate 2 constituting the cooling panel 1 is tapered such that the end portion 6 a of the hollow member 6 is thinner than the guide member portion 6 c provided with the support portion 4. Although the shape is adopted, the shape and configuration of the heat absorbing plate are not limited to this.

図8は第2実施形態に係る冷却パネルの説明図であり、(a)は冷却パネルを構成する吸熱板の断面図、(b)は冷却パネルの一構成例を示す模式斜視図である。なお、本実施形態において、前述した実施形態と同等の機能を有する部材には同一符号を付している。   FIG. 8 is an explanatory diagram of a cooling panel according to the second embodiment, in which (a) is a cross-sectional view of a heat absorbing plate constituting the cooling panel, and (b) is a schematic perspective view showing one configuration example of the cooling panel. In the present embodiment, members having the same functions as those of the above-described embodiments are denoted by the same reference numerals.

図8(b)に示すように、本実施形態に係る冷却パネル1も、前述した実施形態と同様に、多数枚の吸熱板3を鉛直方向に並設して構成されている。なお、図8(b)では、多数枚の吸熱板からなる冷却パネルとして、各吸熱板を冷却パネル方向(多数枚からなる吸熱板の並び方向)に対して直交するように配置した構成を例示したが、これに限定されるものではない。例えば前記冷却パネル方向に対する吸熱板の角度を変えて吸熱板間を通る風の流れを変更するように構成しても良い。   As shown in FIG. 8B, the cooling panel 1 according to this embodiment is also configured by arranging a large number of heat absorbing plates 3 in parallel in the vertical direction, as in the above-described embodiment. FIG. 8B illustrates a configuration in which each heat absorption plate is arranged so as to be orthogonal to the cooling panel direction (the arrangement direction of the many heat absorption plates) as a cooling panel including a plurality of heat absorption plates. However, the present invention is not limited to this. For example, the flow of wind passing between the heat absorption plates may be changed by changing the angle of the heat absorption plates with respect to the cooling panel direction.

図8(a)に示すように、冷却パネル1を構成する吸熱板2は、内部に、前述した第1の流路7又は第2の流路をなす配管9を有している。本実施形態では配管9として銅管を用いているが、この配管はこれに限定されるものではなく、前述した樹脂管やステンレス管など、熱伝導性や耐性などを加味して適宜用いれば良い。   As shown in FIG. 8 (a), the heat absorbing plate 2 constituting the cooling panel 1 has the pipe 9 that forms the first flow path 7 or the second flow path described above. In the present embodiment, a copper pipe is used as the pipe 9, but this pipe is not limited to this, and may be appropriately used in consideration of thermal conductivity and resistance, such as the resin pipe and the stainless pipe described above. .

また本実施形態に係る吸熱板2は、前述した実施形態の先細り形状とは異なり、内部に配した配管の径に応じたほぼ均一な幅を有する板状の形状となっている。更に配管9を案内支持するガイド部材としての支持部4は、外表面にフィン5が設けられた中空部材6内に一体形成されている。そして、前記配管9は外周面全体が前記吸熱板2内の支持部4周面と圧着して熱的に結合しており、より熱伝導性の良い構成となっている。   Moreover, unlike the taper shape of embodiment mentioned above, the heat absorption board 2 which concerns on this embodiment becomes a plate-shaped shape which has the substantially uniform width | variety according to the diameter of the piping distribute | arranged inside. Further, the support portion 4 as a guide member for guiding and supporting the pipe 9 is integrally formed in a hollow member 6 provided with fins 5 on the outer surface. The entire outer peripheral surface of the pipe 9 is bonded to the peripheral surface of the support portion 4 in the heat absorbing plate 2 and thermally coupled thereto, and has a configuration with better thermal conductivity.

なお、その他の構成は前述した実施形態と同様であるため、その説明を援用するものとし、ここでは詳しい説明は省略する。   Since other configurations are the same as those of the above-described embodiment, the description thereof is used, and detailed description thereof is omitted here.

上記吸熱板を用いても前述した実施形態とほぼ同様の効果が得られる。それだけでなく、本実施形態によれば、金属製の配管9を用い、且つ前記配管9を外周面全体が吸熱板2内の支持部4周面と圧着して熱的に結合しているため、より熱伝導性の良い構成となっている。   Even if the heat absorbing plate is used, substantially the same effect as that of the above-described embodiment can be obtained. In addition, according to this embodiment, the metal pipe 9 is used, and the entire outer peripheral surface of the pipe 9 is thermally bonded to the peripheral surface of the support portion 4 in the heat absorbing plate 2. The structure has better thermal conductivity.

〔他の実施形態〕
上述した吸熱板を用いた冷却パネルは、クーラーなどの冷房機器に用いる冷媒や熱交換器を用いて、冷房機器として用いることが可能である。また、配管を循環させる熱媒体を冷やされた熱媒体から暖められた熱媒体に代えることで、暖房機器として用いることも可能である。
[Other Embodiments]
The cooling panel using the above-described heat absorbing plate can be used as a cooling device using a refrigerant or a heat exchanger used in a cooling device such as a cooler. Moreover, it can also be used as a heating device by replacing the heat medium circulating in the piping with a heated heat medium from a cooled heat medium.

また、地中に埋設した熱媒体循環用の配管や、ヒートポンプを有する熱交換ユニットなどを備えた地中熱利用冷暖房システムにおいて、上述した吸熱板を用いた冷却パネルを利用することで、除湿機能を備えた冷暖房機器として用いることが可能である。   Also, in the underground heat utilization cooling and heating system equipped with a heat medium circulation pipe buried in the ground, a heat exchange unit having a heat pump, etc., the dehumidifying function is achieved by using the cooling panel using the above-described heat absorbing plate. It is possible to use as an air conditioning apparatus provided with.

地中熱利用冷暖房システムを利用した冷暖房機器としては、暖房にのみ用いる輻射系の床暖房パネル、冷暖房に用いるファンコイルユニットを併用する構成が知られている。しかしながら、送風機能を有する冷房機器(ファンコイルユニット)では、例えば帰宅直後の暑いときなどは冷気の送風は心地よいが、一旦涼しくなると、その送風がかえって不快になる場合がある。これに対し、輻射系の冷房機器(冷却パネル)は送風しないので、冷気の心地よさを長時間にわたって維持できる。なお、輻射系の床暖房パネルに冷やされた熱媒体を循環させることで冷房機器として用いることは可能であるが、床暖房パネルは人が直接触れる機器であるため、結露対策として、センサーで露点温度を感知して前述の結露を生じさせないように運転を制御する技術が必要となり、本実施形態に係る冷却パネルに比べてコストがかかる。   2. Description of the Related Art As a cooling / heating device using a geothermal heating / cooling system, a configuration in which a radiation-type floor heating panel used only for heating and a fan coil unit used for cooling / heating are used in combination is known. However, in a cooling device (fan coil unit) having a blowing function, for example, when it is hot immediately after returning home, the blowing of cool air is comfortable, but once it cools down, the blowing may change and become uncomfortable. On the other hand, since the radiant cooling device (cooling panel) does not blow air, the comfort of cold air can be maintained for a long time. Although it is possible to use it as a cooling device by circulating a chilled heat medium through the radiant floor heating panel, the floor heating panel is a device that is directly touched by humans. A technique for controlling the operation so as not to cause the above-mentioned condensation by sensing the temperature is required, which is more expensive than the cooling panel according to the present embodiment.

このようなことから、床暖房パネルとファンコイルユニットを併用することなく、前述した冷却パネル1を地中熱利用冷暖房システムと組み合わせることで、心地よさだけでなく、コスト的にも24時間利用可能な快適な冷暖房が可能である。   For this reason, it is possible to use not only comfort but also 24 hours in terms of cost by combining the above-described cooling panel 1 with an underground heating / cooling system without using a floor heating panel and a fan coil unit. Comfortable air conditioning is possible.

なお、前記冷却パネルを暖房機器として利用する場合は熱交換ユニットを介して熱媒体を循環させ、冷房機器(あるいは除湿機器)として利用する場合は熱交換ユニットを介して熱媒体を循環させても良いし、或いは地中に埋設した配管から熱媒体を直接循環させても良い。ここで、冷却パネルを暖房に用いる場合、所定の強度が求められる床に設けられる床暖房パネルと比べて、冷却パネルは室内に露出させることが可能であるため、循環させる熱媒体の温度が、床暖房パネルに比べて低くて良い。このため、同様に地熱を利用した輻射系の機器であっても、冷却パネルの方が運転コストが安い。   When the cooling panel is used as a heating device, the heat medium is circulated through a heat exchange unit. When the cooling panel is used as a cooling device (or a dehumidifying device), the heat medium is circulated through a heat exchange unit. Alternatively, the heat medium may be directly circulated from a pipe buried in the ground. Here, when the cooling panel is used for heating, compared to the floor heating panel provided on the floor where a predetermined strength is required, the cooling panel can be exposed indoors, so the temperature of the circulating heat medium is Lower than floor heating panel. For this reason, even if it is a radiation type | system | group apparatus using geothermal similarly, the operation cost of the cooling panel is cheaper.

なお、前述した実施形態では、吸熱板の外形が、水平断面形状が扁平であり、端部が中央部よりも細い先細り形状である構成として、図2に示すように、吸熱板の水平断面が2つの円弧を向かい合わせたような略楕円状の形状を例示したが、本発明はこれに限定されるものではない。   In the above-described embodiment, the outer shape of the heat absorbing plate is configured such that the horizontal cross-sectional shape is flat and the end portion is a tapered shape that is thinner than the central portion, as shown in FIG. Although a substantially elliptical shape in which two arcs face each other is illustrated, the present invention is not limited to this.

また、前述した実施形態では、吸熱板が、配管を案内支持するガイド部材(支持部)として、配管の外周面全体を覆う構成のガイド部材を例示したが、これに限定されるものではなく、中空部材内にて配管を案内支持する構成であれば他の構成のガイド部材であっても良い。すなわち、前記ガイド部材は、吸熱板における中空部材内で熱媒体が循環する配管が暴れないように、且つ中空部材と配管とが常に当接(或いは圧接)するように、配管を案内支持できる程度に設けてあれば良い。   In the above-described embodiment, the heat absorbing plate is exemplified as a guide member (support portion) for guiding and supporting the pipe, but the guide member having a configuration covering the entire outer peripheral surface of the pipe is not limited thereto. Any other guide member may be used as long as the pipe is guided and supported in the hollow member. That is, the guide member can guide and support the pipe so that the pipe through which the heat medium circulates in the hollow member of the heat absorption plate does not break and the hollow member and the pipe are always in contact (or pressure contact). If it is provided in.

また、吸熱板が有する配管の本数は、必要に応じて適宜設定されるものであって、前述した形態に限定されるものではない。   Further, the number of pipes included in the heat absorbing plate is appropriately set as necessary, and is not limited to the above-described form.

また前述した実施形態では、第1の流路を有する吸熱板と第2の流路を有する吸熱板が吸熱板の並び方向において1枚ずつ交互に並ぶ構成を例示したが、これに限定されるものではなく、各流路を有する吸熱板を交互に並べる枚数は適宜設定すればよい。   In the above-described embodiment, the heat absorption plate having the first flow path and the heat absorption plate having the second flow path are illustrated as being alternately arranged one by one in the arrangement direction of the heat absorption plates. However, the present invention is not limited to this. What is necessary is just to set suitably the number of sheets which arrange | position the endothermic board which has each flow path alternately instead of a thing.

また前述した実施形態では、隣接する吸熱板が、第1の流路又は第2の流路のいずれか一方の流路を有する構成を例示したが、本発明はこれに限定されるものではなく、多数枚の吸熱板が、各々、第1の流路と第2の流路を有する構成であっても良い。例えば、各吸熱板の鉛直方向上側に第1の流路を設けると共に、各吸熱板の鉛直方向下側に第2の流路を設ける構成としても良い。この構成によっても、同様に、冷却パネル全域において温度ムラを抑制でき、パネル全域にわたってほぼ均一な温度を得ることができる。これにより、常に冷却パネル全域にわたって輻射による冷房効果をより高い状態で維持することができる。   In the above-described embodiment, the configuration in which the adjacent heat absorption plate has one of the first flow path and the second flow path is exemplified, but the present invention is not limited to this. The multiple heat absorbing plates may each have a first flow path and a second flow path. For example, it is good also as a structure which provides a 1st flow path in the perpendicular direction upper side of each heat sink, and a 2nd flow path in the perpendicular direction lower side of each heat sink. Also with this configuration, temperature unevenness can be suppressed over the entire cooling panel, and a substantially uniform temperature can be obtained over the entire panel. Thereby, the cooling effect by radiation can always be maintained in a higher state over the entire cooling panel.

また前述した実施形態では、前記各流路が、熱媒体が吸熱板の鉛直方向に流れつつ吸熱板の並び方向に流れるように直列に連結された構成を例示したが、これに限定されるものではない。第1の流路が前記並び方向において熱媒体が一方向に流れる流路であり、第2の流路が前記並び方向において前記一方向とは逆方向に熱媒体が流れる流路であれば、各吸熱板の配管が並列に接続される構成であっても良い。   In the above-described embodiment, the flow paths are connected in series so that the heat medium flows in the arrangement direction of the heat absorption plates while flowing in the vertical direction of the heat absorption plates. However, the present invention is not limited to this. is not. If the first flow path is a flow path in which the heat medium flows in one direction in the alignment direction, and the second flow path is a flow path in which the heat medium flows in a direction opposite to the one direction in the alignment direction, A configuration in which the pipes of the heat absorbing plates are connected in parallel may be employed.

また前述した実施形態では、第1の流路と第2の流路を各々1本の配管で形成したが、本発明はこれに限定されるものではない。例えば、第1の流路と第2の流路の一方の端部を連結した構成としても良いし、又は第1の流路と第2の流路を1本の配管で形成しても良い。これにより、配管の組み付け作業が更に容易になり、軽量化及び低コスト化も図れる。   In the above-described embodiment, each of the first flow path and the second flow path is formed by one pipe, but the present invention is not limited to this. For example, it is good also as a structure which connected one edge part of the 1st flow path and the 2nd flow path, or you may form the 1st flow path and the 2nd flow path with one piping. . As a result, the work of assembling the piping becomes easier, and the weight and cost can be reduced.

本発明は、戸建住宅や集合住宅だけでなく、事務所ビル、公共建物、保冷倉庫等の冷却装置、除湿装置、又は冷暖房装置に利用することが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used not only for detached houses and apartment houses, but also for cooling devices such as office buildings, public buildings, cold storage warehouses, dehumidifying devices, or air conditioning units.

第1実施形態に係る冷却パネルの流路構成を示す模式斜視図である。It is a model perspective view which shows the flow-path structure of the cooling panel which concerns on 1st Embodiment. 第1実施形態に係る冷却パネルを構成する吸熱板の断面図である。It is sectional drawing of the heat sink plate which comprises the cooling panel which concerns on 1st Embodiment. 第1実施形態に係る冷却パネルを構成する吸熱板の説明図であり、(a)は吸熱板のA−A断面図、(b)は吸熱板の側面図、(c)は吸熱板の端部正面図である。It is explanatory drawing of the heat sink which comprises the cooling panel which concerns on 1st Embodiment, (a) is AA sectional drawing of a heat sink, (b) is a side view of a heat sink, (c) is an end of a heat sink FIG. 冷却パネルにおけるフィンの突起先端頂部の構造に係る実験を説明する図であり、(a)は実施例に係る吸熱板を示す断面図、(b)は比較例に係る吸熱板を示す断面図、(c)は試験装置の概略図である。It is a figure explaining the experiment which concerns on the structure of the protrusion front-end | tip part of the fin in a cooling panel, (a) is sectional drawing which shows the heat sink plate which concerns on an Example, (b) is sectional drawing which shows the heat sink plate which concerns on a comparative example, (C) is a schematic view of a test apparatus. 実験時の各吸熱板の結露状況を示す要部拡大図であり、(a)は実施例に係る吸熱板の結露状況を示す図であり、(b)は比較例に係る吸熱板の結露状況を示す図である。It is a principal part enlarged view which shows the dew condensation condition of each heat absorption board at the time of experiment, (a) is a figure which shows the dew condensation condition of the heat absorption board which concerns on an Example, (b) is the dew condensation condition of the heat absorption board which concerns on a comparative example. FIG. 実施例に係る冷却パネルにおけるの吸熱板の温度変化を示す図である。It is a figure which shows the temperature change of the heat sink in the cooling panel which concerns on an Example. 比較例に係る冷却パネルにおけるの吸熱板の温度変化を示す図である。It is a figure which shows the temperature change of the heat sink in the cooling panel which concerns on a comparative example. 第2実施形態に係る冷却パネルの説明図であり、(a)は冷却パネルを構成する吸熱板の断面図、(b)は冷却パネルの一構成例を示す模式斜視図である。It is explanatory drawing of the cooling panel which concerns on 2nd Embodiment, (a) is sectional drawing of the heat sink plate which comprises a cooling panel, (b) is a model perspective view which shows one structural example of a cooling panel.

符号の説明Explanation of symbols

w …フィンの突起先端頂部の幅
1 …冷却パネル
2,10,20 …吸熱板
2a1〜2a6,2b1〜2b6 …吸熱板
3,3A,3B …吸熱板群
4 …支持部(ガイド部材)
4a …第1のガイド部
4b …第2のガイド部
5,12a,22a …フィン
6 …中空部材
6a …端部
6b …中央部
6c …ガイド部材部分
7 …第1の流路
8 …第2の流路
9,9a,9b …配管
11,21 …アルミ板材
12,22 …チャンネル形材
30 …簡易断熱試験装置
31 …仕切壁
32 …低温室
33 …高温室
w ... width 1 of the tip end of the projection of the fin 1 ... cooling panels 2, 10, 20 ... endothermic plates 2a1-2a6, 2b1-2b6 ... endothermic plates 3, 3A, 3B ... endothermic plate group 4 ... support part (guide member)
4a ... 1st guide part 4b ... 2nd guide part 5,12a, 22a ... Fin 6 ... Hollow member 6a ... End part 6b ... Center part 6c ... Guide member part 7 ... 1st flow path 8 ... 2nd Flow path 9, 9a, 9b ... Piping 11, 21 ... Aluminum plate 12,22 ... Channel shape 30 ... Simple heat insulation test device 31 ... Partition wall 32 ... Low temperature chamber 33 ... High temperature chamber

Claims (17)

熱媒体を流すための流路を有する吸熱板が鉛直方向に多数枚並設されてなる冷却パネルであって、
前記並設された多数枚の吸熱板からなる吸熱板群が、前記吸熱板の鉛直方向に熱媒体を流しつつ前記吸熱板の並び方向一方側から他方側に熱媒体を流すための第1の流路と、前記吸熱板の鉛直方向に熱媒体を流しつつ前記吸熱板の並び方向他方側から一方側に熱媒体を流すための第2の流路と、を有することを特徴とする冷却パネル。
A cooling panel in which a number of heat absorbing plates having flow paths for flowing a heat medium are arranged in a vertical direction,
A heat sink plate group comprising a plurality of the heat sink plates arranged in parallel is a first for flowing a heat medium from one side to the other side in the arrangement direction of the heat sink plates while flowing the heat medium in the vertical direction of the heat sink plate. A cooling panel comprising: a flow path; and a second flow path for flowing the heat medium from the other side in the arrangement direction of the heat absorption plates to the one side while flowing the heat medium in the vertical direction of the heat absorption plates. .
前記各流路は、熱媒体が前記吸熱板の鉛直方向に流れつつ前記吸熱板の並び方向に流れるように直列に連結された流路であることを特徴とする請求項1に記載の冷却パネル。   2. The cooling panel according to claim 1, wherein each of the flow paths is a flow path that is connected in series so that the heat medium flows in the arrangement direction of the heat absorption plates while flowing in the vertical direction of the heat absorption plates. . 前記多数枚の吸熱板は、隣接する吸熱板が、前記第1の流路又は前記第2の流路のいずれか一方の流路を有することを特徴とする請求項1又は2に記載の冷却パネル。   3. The cooling according to claim 1, wherein the plurality of endothermic plates have adjacent ones of the first passage and the second passage. 4. panel. 前記第1の流路を有する吸熱板と前記第2の流路を有する吸熱板が前記並び方向において交互に並んでいることを特徴とする請求項3に記載の冷却パネル。   4. The cooling panel according to claim 3, wherein the heat absorption plate having the first flow path and the heat absorption plate having the second flow path are alternately arranged in the arrangement direction. 5. 前記多数枚の吸熱板は、各々、前記第1の流路と前記第2の流路を有することを特徴とする請求項1又は2に記載の冷却パネル。   The cooling panel according to claim 1 or 2, wherein each of the plurality of heat absorbing plates has the first flow path and the second flow path. 前記各流路は、各々1本の樹脂製の配管で形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の冷却パネル。   The cooling panel according to any one of claims 1 to 5, wherein each of the flow paths is formed by a single resin pipe. 前記配管は、金属の補強層を有する架橋ポレオレフィン樹脂製の配管であることを特徴とする請求項6に記載の冷却パネル。   The cooling panel according to claim 6, wherein the pipe is a pipe made of a crosslinked polyolefin resin having a metal reinforcing layer. 前記配管は、内径が8mm以下であることを特徴とする請求項6又は7に記載の冷却パネル。   The cooling panel according to claim 6 or 7, wherein the pipe has an inner diameter of 8 mm or less. 前記第1の流路と前記第2の流路を有する吸熱板群を複数有することを特徴とする請求項1乃至8のいずれか1項に記載の冷却パネル。   The cooling panel according to claim 1, comprising a plurality of heat absorbing plate groups each having the first flow path and the second flow path. 前記第1の流路と前記第2の流路は、一方の端部が連結され、又は1本の配管で形成されていることを特徴とする請求項1乃至9のいずれか1項に記載の冷却パネル。   The one end of the first channel and the second channel are connected to each other or formed by a single pipe. Cooling panel. 前記吸熱板の外表面に、鉛直方向に連なる断面突起状のフィンを多数設け、前記フィンの突起先端頂部の構造を、結露水が水滴状に発生し、発生水滴が太ることなく頂部を落下しやすくしたことを特徴とする請求項1乃至10のいずれか1項に記載の冷却パネル。   The outer surface of the heat sink plate is provided with a large number of fins with cross-sectional protrusions that run in the vertical direction, and the structure of the top of the protrusion tips of the fins is such that condensed water is generated in the form of water droplets and the generated water droplets fall without falling The cooling panel according to any one of claims 1 to 10, wherein the cooling panel is made easy. 前記吸熱板の外表面に、鉛直方向に連なる断面突起状のフィンを多数設け、前記フィンの突起先端頂部の幅を1.5mm以上にしたことを特徴とする請求項1乃至10のいずれか1項に記載の冷却パネル。   The outer surface of the heat absorbing plate is provided with a plurality of fins having a cross-sectional protrusion extending in a vertical direction, and the width of the top end of the protrusion tip of the fin is 1.5 mm or more. The cooling panel according to item. 前記フィンの突起先端頂部の幅は6.0mm以下であることを特徴とする請求項12に記載の冷却パネル。   The cooling panel according to claim 12, wherein the width of the top end of the protrusion of the fin is 6.0 mm or less. 前記吸熱板は導電性軽金属の押出成形品であることを特徴とする請求項11乃至13のいずれか1項に記載の冷却パネル。   The cooling panel according to any one of claims 11 to 13, wherein the endothermic plate is an extruded product of a conductive light metal. 前記吸熱板の外形は、水平断面形状が扁平であり、端部が中央部よりも細い先細り形状となっていることを特徴とする請求項11乃至14のいずれか1項に記載の冷却パネル。   The cooling panel according to any one of claims 11 to 14, wherein an outer shape of the endothermic plate is flat in a horizontal cross-sectional shape and has a tapered shape with an end portion narrower than a central portion. 前記吸熱板は、外表面に前記フィンが鉛直方向に多数設けられた中空部材と、前記中空部材内にて前記配管を案内支持するガイド部材を有し、前記吸熱板の外形は、水平断面形状が扁平であり、前記中空部材の端部が前記ガイド部材部分よりも細い先細り形状となっていることを特徴とする請求項11乃至14のいずれか1項に記載の冷却パネル。   The endothermic plate has a hollow member in which a large number of fins are provided in the vertical direction on the outer surface, and a guide member that guides and supports the pipe in the hollow member, and the outer shape of the endothermic plate has a horizontal cross-sectional shape. The cooling panel according to claim 11, wherein the end of the hollow member has a tapered shape that is narrower than the guide member portion. 前記吸熱板は、一体成形品であることを特徴とする請求項11乃至16のいずれか1項に記載の冷却パネル。   The cooling panel according to any one of claims 11 to 16, wherein the heat absorbing plate is an integrally molded product.
JP2006115240A 2006-04-19 2006-04-19 Cooling panel Expired - Fee Related JP4810290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115240A JP4810290B2 (en) 2006-04-19 2006-04-19 Cooling panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115240A JP4810290B2 (en) 2006-04-19 2006-04-19 Cooling panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011157354A Division JP5315387B2 (en) 2011-07-19 2011-07-19 Cooling panel

Publications (2)

Publication Number Publication Date
JP2007285643A true JP2007285643A (en) 2007-11-01
JP4810290B2 JP4810290B2 (en) 2011-11-09

Family

ID=38757589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115240A Expired - Fee Related JP4810290B2 (en) 2006-04-19 2006-04-19 Cooling panel

Country Status (1)

Country Link
JP (1) JP4810290B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228959A (en) * 2008-03-21 2009-10-08 Asahi Kasei Homes Co Thermal radiation panel
JP2010243128A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2010243126A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system
JP2011185452A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel material
JP2011185453A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel device
JP2012077931A (en) * 2010-09-30 2012-04-19 Asahi Kasei Homes Co Radiation heating and cooling system
WO2013024824A1 (en) * 2011-08-17 2013-02-21 旭化成ホームズ株式会社 Radiation panel device
WO2013099897A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Outdoor unit for refrigeration device
TWI615588B (en) * 2012-11-26 2018-02-21 Asahi Kasei Homes Corp Radiation panel device
JP2020133937A (en) * 2019-02-14 2020-08-31 清水建設株式会社 Skeleton heat storage air-conditioning system, design method for the same and design device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257132A (en) * 2004-10-28 2011-12-22 Asahi Kasei Homes Co Heat absorbing plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954948U (en) * 1972-08-15 1974-05-15
JPS59155417U (en) * 1983-04-04 1984-10-18 株式会社 昭和鉄工東京製作所 Vertical panel heater
JPH02178536A (en) * 1988-12-29 1990-07-11 Showa Alum Corp Building ceiling provided with cooling and heating function by radiation panel
JPH07207899A (en) * 1994-01-14 1995-08-08 Mitsubishi Kagaku Sanshi Kk Laying method of soft floor heating mat
JPH10185219A (en) * 1996-12-26 1998-07-14 Mitsubishi Materials Corp Floor heater
JPH1163529A (en) * 1997-08-20 1999-03-05 Gastar Corp Floor temperature regulator
JP2001296037A (en) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd Air conditioner
US20040238162A1 (en) * 2003-04-11 2004-12-02 Seiler Thomas F. Heat exchanger with flow circuiting end caps
JP2005147601A (en) * 2003-11-19 2005-06-09 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube having radial fin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954948U (en) * 1972-08-15 1974-05-15
JPS59155417U (en) * 1983-04-04 1984-10-18 株式会社 昭和鉄工東京製作所 Vertical panel heater
JPH02178536A (en) * 1988-12-29 1990-07-11 Showa Alum Corp Building ceiling provided with cooling and heating function by radiation panel
JPH07207899A (en) * 1994-01-14 1995-08-08 Mitsubishi Kagaku Sanshi Kk Laying method of soft floor heating mat
JPH10185219A (en) * 1996-12-26 1998-07-14 Mitsubishi Materials Corp Floor heater
JPH1163529A (en) * 1997-08-20 1999-03-05 Gastar Corp Floor temperature regulator
JP2001296037A (en) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd Air conditioner
US20040238162A1 (en) * 2003-04-11 2004-12-02 Seiler Thomas F. Heat exchanger with flow circuiting end caps
JP2005147601A (en) * 2003-11-19 2005-06-09 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube having radial fin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228959A (en) * 2008-03-21 2009-10-08 Asahi Kasei Homes Co Thermal radiation panel
JP2010243128A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2010243126A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation panel device
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system
JP2011185452A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel material
JP2011185453A (en) * 2010-03-04 2011-09-22 Asahi Kasei Homes Co Radiation panel device
JP2012077931A (en) * 2010-09-30 2012-04-19 Asahi Kasei Homes Co Radiation heating and cooling system
WO2013024824A1 (en) * 2011-08-17 2013-02-21 旭化成ホームズ株式会社 Radiation panel device
CN103890493A (en) * 2011-08-17 2014-06-25 旭化成住宅株式会社 Radiation panel device
CN103890493B (en) * 2011-08-17 2016-09-28 旭化成住宅株式会社 Radiant panel device
TWI615587B (en) * 2011-08-17 2018-02-21 Asahi Kasei Homes Corp Radiation leaf device
WO2013099897A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Outdoor unit for refrigeration device
JP2013139918A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Outdoor unit for refrigeration device
TWI615588B (en) * 2012-11-26 2018-02-21 Asahi Kasei Homes Corp Radiation panel device
JP2020133937A (en) * 2019-02-14 2020-08-31 清水建設株式会社 Skeleton heat storage air-conditioning system, design method for the same and design device

Also Published As

Publication number Publication date
JP4810290B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4810290B2 (en) Cooling panel
KR101497297B1 (en) Evaporative cooling device
US10436458B2 (en) Heat source unit
JP2006153431A (en) Cooling panel
JP6223596B2 (en) Air conditioner indoor unit
JP2017030741A (en) Evaporator having vertical arrangement of header pipe for vehicle air conditioner
US20190376701A1 (en) Dehumidifier
WO2012003724A1 (en) Air guide plate and indoor unit of air conditioner having the same
JP2012017967A (en) Air conditioning device
JP3700481B2 (en) Heat exchanger
JP5315387B2 (en) Cooling panel
KR101887779B1 (en) Ventilation module of ventilation seat
KR101599976B1 (en) Radiator having cooling, heating, dehumidifying function using cool and hot water
JP5512616B2 (en) Cooling panel
JP6188940B2 (en) Air conditioner indoor unit
KR20070103585A (en) A cold or hot air blower
JP5191768B2 (en) Heat exchanger
CN112923437B (en) Indoor unit of air conditioner
CN212362208U (en) Indoor unit of air conditioner
KR20080012515A (en) Fin of heat exchanger
JP2008215758A (en) Heat exchanger
JP6340240B2 (en) Air conditioning panel and ceiling structure
JP2586746B2 (en) Ceiling cooling and heating system
JP2006105490A (en) Cooling and heating system
JPH10339516A (en) Air cooler and constant temperature air supplier

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4810290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees