JP2006214310A - Nox removing device for vehicle - Google Patents

Nox removing device for vehicle Download PDF

Info

Publication number
JP2006214310A
JP2006214310A JP2005026373A JP2005026373A JP2006214310A JP 2006214310 A JP2006214310 A JP 2006214310A JP 2005026373 A JP2005026373 A JP 2005026373A JP 2005026373 A JP2005026373 A JP 2005026373A JP 2006214310 A JP2006214310 A JP 2006214310A
Authority
JP
Japan
Prior art keywords
fuel
nox
reducing agent
reforming
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026373A
Other languages
Japanese (ja)
Inventor
Masahiro Ishitani
雅宏 石谷
Yurio Nomura
由利夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005026373A priority Critical patent/JP2006214310A/en
Publication of JP2006214310A publication Critical patent/JP2006214310A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a NOx removing device for a vehicle using a fuel reforming means for lowering hydro carbon contained in fuel such as light gas oil with little input energy in a simple process. <P>SOLUTION: The NOx removing device has the fuel reforming means 10 equipped with a reforming tank 107 for holding light gas oil and with fine bubble introducing means 101-106 for introducing fine bubbles into the reforming tank 107 and generating a NOx reducing agent, a fuel delivering means 20, and a NOx reducing agent adding means 30 for adding the NOx reducing agent into exhaust gas. If fine bubbles of micro to nano sizes in diameter are mixed with fuel, when minute bubbles vanish, the fuel becomes high temperature and high pressure instantaneously and shock waves are generated. Hydro carbon in the fuel can be dissolved by the shock waves and lower hydro carbon of an objective molecular weight is generated. Fine bubbles are introduced in the fuel reforming means separate from the fuel tank and therefore a treating condition can be chosen without affecting fuel in a fuel tank. A cost and input energy of the device can be reduced remarkably. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気ガス中に含まれるNOxを還元浄化する車載用NOx浄化装置に関する。   The present invention relates to an in-vehicle NOx purification device that reduces and purifies NOx contained in exhaust gas of an internal combustion engine.

自動車など、内燃機関から排出される排気ガス中には、有害物質が多分に含まれている。発生する有害物質の1つにNOx(窒素酸化物)があり、本物質を低減することが現在1つの課題となっている。例えば、ディ−ゼル車におけるNOx発生の一因としては、エンジン筒内での燃焼時に、高温状態で酸素が共存することが挙げられる。ここで、NOxの発生を低減させる方法としては、エンジン筒内の燃焼を短時間で行うことが挙げられるが、その結果、他の有害物質の1つであるPM(粒子状物質)が増加することになる。また、燃焼時の温度を下げることによりNOx発生を低減することも考えられるが、そうすると今度は出力が低下するおそれがある。   Exhaust gas discharged from an internal combustion engine such as an automobile contains a lot of harmful substances. One of the harmful substances generated is NOx (nitrogen oxide), and reducing this substance is currently one of the challenges. For example, one cause of NOx generation in a diesel vehicle is the coexistence of oxygen at a high temperature during combustion in the engine cylinder. Here, as a method for reducing the generation of NOx, combustion in the engine cylinder is performed in a short time. As a result, PM (particulate matter), which is one of other harmful substances, increases. It will be. Further, it is conceivable to reduce NOx generation by lowering the temperature at the time of combustion, but there is a risk that the output will be reduced this time.

これらの不都合を回避する方法として、エンジンで発生した排気ガス中のNOxを後処理にて減少させる方法が挙げられる。その一例として、ディーゼルエンジンの燃料である軽油を排気ガス中に噴射しNOxと反応させることで浄化させる手法がある。つまり、軽油(炭化水素)を反応させることでNOxをN2にまで還元する方法である。その際、添加する炭化水素としては軽油中に含まれる炭化水素よりも低級な成分を採用することが望ましい。低級炭化水素は、蒸発し易く且つ酸素と結合し易いので、NOxから酸素を奪い取る反応が進行しやすい。特に、炭素数12以下の炭化水素が望ましい。従って、排気ガス中に添加する炭化水素としては軽油をそのまま採用するのではなく、低級炭化水素として添加することが望まれている。 As a method of avoiding these disadvantages, there is a method of reducing NOx in exhaust gas generated in the engine by post-processing. As an example, there is a method of purifying by injecting light oil, which is a fuel of a diesel engine, into exhaust gas and reacting with NOx. That is, NOx is reduced to N 2 by reacting light oil (hydrocarbon). In that case, it is desirable to employ a lower component than the hydrocarbon contained in the light oil as the hydrocarbon to be added. Lower hydrocarbons are easy to evaporate and bind to oxygen, so that the reaction of scavenging oxygen from NOx tends to proceed. In particular, hydrocarbons having 12 or less carbon atoms are desirable. Therefore, it is desired that the hydrocarbon added to the exhaust gas is not directly employed as light oil but is added as a lower hydrocarbon.

従来技術としては、軽油中の炭化水素を700℃で加熱することでクラッキングを行って低級炭化水素を得る方法が開示されている(特許文献1)。また、低級炭化水素を生成する代わりに、NOxの還元性を向上する目的でオゾンを添加する方法が開示されている(特許文献2)。
特開2001−132433号公報 特開2001−73744号公報 特開2002−143885号公報 特開2003−181259号公報 特開2003−205228号公報
As a conventional technique, a method of cracking by heating a hydrocarbon in light oil at 700 ° C. to obtain a lower hydrocarbon is disclosed (Patent Document 1). In addition, a method of adding ozone for the purpose of improving the NOx reducibility instead of producing lower hydrocarbons is disclosed (Patent Document 2).
JP 2001-132433 A JP 2001-73744 A JP 2002-143885 A JP 2003-181259 A JP 2003-205228 A

しかしながら、特許文献1に記載の方法では、軽油を加熱分解するために多大なエネルギーが必要で現実的とはいえなかった。また、特許文献2に記載の方法では、オゾン発生装置などの高価なオゾン供給装置が別途必要であり、コストの観点から採用することが困難であった。   However, the method described in Patent Document 1 is not practical because a large amount of energy is required to thermally decompose light oil. In addition, the method described in Patent Document 2 requires an expensive ozone supply device such as an ozone generator, which is difficult to adopt from the viewpoint of cost.

本発明は上記実情に鑑みなされたものであり、小さな投入エネルギー且つ簡便な方法で軽油などの燃料中に含まれる炭化水素を低級化できる燃料改質手段を採用した車載用NOx浄化装置を提供することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and provides an in-vehicle NOx purification device employing fuel reforming means capable of lowering hydrocarbons contained in fuel such as light oil with a small input energy and a simple method. This is a problem to be solved.

上記課題を解決する本発明の車載用NOx浄化装置は、内燃機関用燃料を内部に保持する改質槽と該改質槽内に微小気泡を導入して該内燃機関用燃料からNOx還元剤を生成する微小気泡導入手段とを備える燃料改質手段と、
燃料タンク内の該内燃機関用燃料を該燃料改質手段の該改質槽に送出する燃料送出手段と、
生成した該NOx還元剤を内燃機関からの排気ガス中に添加するNOx還元剤添加手段と、を有することを特徴とする。ここで、導入する微小気泡は直径が10nm以上、20μm以下であることが望ましい。
A vehicle-mounted NOx purification device of the present invention that solves the above problems includes a reforming tank that holds fuel for an internal combustion engine inside, and microbubbles are introduced into the reforming tank so that a NOx reducing agent is supplied from the fuel for the internal combustion engine. A fuel reforming means comprising a microbubble introducing means for generating;
Fuel delivery means for delivering the internal combustion engine fuel in the fuel tank to the reformer tank of the fuel reforming means;
And a NOx reducing agent adding means for adding the generated NOx reducing agent to the exhaust gas from the internal combustion engine. Here, it is desirable that the microbubbles to be introduced have a diameter of 10 nm or more and 20 μm or less.

燃料中に直径がマイクロサイズ、ナノサイズの微小気泡を混入させると、微細気泡が気体成分の溶解により消滅する際に、瞬間的に数千気圧、数千℃の高温高圧になり、衝撃波が発生する。発生した衝撃波によって、燃料中の炭化水素を分解(クラッキング)でき、目的とする分子量の低級炭化水素を得ることができる。   When micro-sized or nano-sized micro-bubbles are mixed in the fuel, when the micro-bubbles disappear due to dissolution of gas components, instantaneously high pressure and high pressure of several thousand atmospheres and several thousand degrees Celsius are generated, generating shock waves. To do. The generated shock wave can decompose (crack) hydrocarbons in the fuel, and obtain lower hydrocarbons of the desired molecular weight.

本発明の車載用NOx浄化装置は、内燃機関用燃料内に微小気泡を導入することで燃料内の炭化水素を分解する。炭化水素の分子量は燃料改質手段における微小気泡の導入量及び微小気泡にさらす時間によって制御できる。また、微小気泡の導入を燃料タンクから独立した燃料改質手段にて行うことで、燃料タンク内の燃料に影響を与えることがなくなるので、NOx還元剤としてのみ最適になるような処理条件を選択することも可能になる。ここで、燃料内への微小気泡の導入に要する装置のコスト及び投入エネルギーは特許文献1及び2に開示されたものより格段に小さくできる。   The in-vehicle NOx purification device of the present invention decomposes hydrocarbons in the fuel by introducing microbubbles into the fuel for the internal combustion engine. The molecular weight of the hydrocarbon can be controlled by the amount of microbubbles introduced in the fuel reforming means and the time of exposure to the microbubbles. In addition, since the introduction of microbubbles is performed by the fuel reforming means independent of the fuel tank, the fuel in the fuel tank is not affected, so the processing conditions that are optimal only for the NOx reducing agent are selected. It is also possible to do. Here, the cost and input energy of the apparatus required for introducing microbubbles into the fuel can be made much smaller than those disclosed in Patent Documents 1 and 2.

(車載用NOx浄化装置)
本実施形態の車載用NOx浄化装置は、内燃機関を搭載した車両に適用される。特にPMの抑制が望まれる内燃機関であるディーゼルエンジンを搭載した車両に好適に適用される。本車載用NOx浄化装置は内燃機関用燃料を改質してNOx還元剤を生成し、そのNOx還元剤を内燃機関の排気ガス中に添加することで排気ガス中のNOxを低減する装置である。本装置は燃料改質手段と燃料送出手段とNOx還元剤添加手段とを有する。ここで、「NOx還元剤」とは内燃機関に用いる内燃機関用燃料(例えば、軽油など)から生成される化合物であり、その内燃機関用燃料よりも低級な炭化水素を主成分としたものである。つまり、適用した内燃機関に用いる内燃機関用燃料中に含まれる炭化水素が分解されて、分子量分布がより低分子側となっているものである。
(In-vehicle NOx purification device)
The in-vehicle NOx purification device of this embodiment is applied to a vehicle equipped with an internal combustion engine. In particular, the present invention is suitably applied to a vehicle equipped with a diesel engine that is an internal combustion engine for which PM suppression is desired. This in-vehicle NOx purification device is a device that reduces NOx in exhaust gas by reforming fuel for an internal combustion engine to generate a NOx reducing agent and adding the NOx reducing agent to the exhaust gas of the internal combustion engine. . The apparatus includes a fuel reforming unit, a fuel delivery unit, and a NOx reducing agent addition unit. Here, the “NOx reducing agent” is a compound produced from a fuel for an internal combustion engine (for example, light oil) used in the internal combustion engine, and is composed mainly of hydrocarbons lower than the fuel for the internal combustion engine. is there. That is, the hydrocarbon contained in the fuel for the internal combustion engine used in the applied internal combustion engine is decomposed, and the molecular weight distribution is on the lower molecular weight side.

燃料改質手段は内燃機関用燃料を低分子化してNOx還元剤を生成する手段であり、内燃機関用燃料内に微小気泡を添加することで低分子化を行いNOx還元剤を生成する。燃料改質手段は改質槽と微小気泡導入手段とを備えている。微小気泡導入手段によって改質槽内に微小気泡を導入することで改質槽内の内燃機関用燃料を改質してNOx還元剤を生成する。   The fuel reforming means is a means for generating a NOx reducing agent by reducing the molecular weight of the fuel for the internal combustion engine. By adding microbubbles to the fuel for the internal combustion engine, the fuel reforming means reduces the molecular weight and generates the NOx reducing agent. The fuel reforming means includes a reforming tank and microbubble introduction means. By introducing microbubbles into the reforming tank by the microbubble introducing means, the fuel for the internal combustion engine in the reforming tank is reformed to generate a NOx reducing agent.

改質槽は内部に内燃機関用燃料を保持する。内燃機関用燃料における好適な分子量(分布)と、NOx還元剤における好適な分子量(分布)とは一致しないことが想定されるので、微小気泡を導入する場所として燃料タンクなどとは別に改質槽を設けている。この改質槽は燃料タンク内に設けることもできる。燃料タンク内に燃料改質手段を設ける場合には両者の間を分離することで、生成したNOx還元剤が燃料タンク内に混合して燃料タンク内の内燃機関用燃料に悪影響を及ぼすことを防止する。従って、完全に分離することは、悪影響を及ぼさない限り必須ではない。   The reformer tank holds fuel for the internal combustion engine inside. Since it is assumed that the preferred molecular weight (distribution) in the fuel for internal combustion engines does not match the preferred molecular weight (distribution) in the NOx reducing agent, a reformer tank separate from the fuel tank or the like as a place for introducing microbubbles Is provided. This reformer can also be provided in the fuel tank. When fuel reforming means is provided in the fuel tank, separation between the two prevents the generated NOx reducing agent from mixing with the fuel tank and adversely affecting the fuel for the internal combustion engine in the fuel tank. To do. Therefore, complete separation is not essential unless it has an adverse effect.

微小気泡導入手段は、改質槽内に微小気泡を導入する手段である。ここで、微小気泡とはナノメーターオーダーからマイクロメーターオーダーの直径を持つ気泡であり、ナノバブル、マイクロバブルなどと称される大きさのもである。具体的には常圧下で微小気泡の直径が10nm以上20μm以下程度が望ましく、10nm以上100nm以下が更に望ましい。微小気泡の直径をこの程度に制御すると、内燃機関用燃料内にて消滅することで衝撃波が発生して内燃機関用燃料における化学結合を切断して低分子量化することができる。微小気泡を構成する気体は特に限定しないが、特に必要がない限り空気を用いることが好ましい。   The microbubble introduction means is a means for introducing microbubbles into the reforming tank. Here, the microbubble is a bubble having a diameter of nanometer order to micrometer order, and has a size called nanobubble or microbubble. Specifically, the diameter of the microbubbles is preferably about 10 nm to 20 μm under normal pressure, and more preferably 10 nm to 100 nm. When the diameter of the microbubbles is controlled to this level, the shock wave is generated by disappearing in the fuel for the internal combustion engine, and the chemical bond in the fuel for the internal combustion engine is cut to reduce the molecular weight. The gas constituting the microbubbles is not particularly limited, but it is preferable to use air unless particularly necessary.

微小気泡の生成法としては特に限定しない。例えば、流体学的方法、水電解法及び超音波生成法などがある。水電解法は内燃機関用燃料中に水を導入しその水を電気分解することで微小気泡を発生させる方法である。超音波生成法は超音波の照射条件を制御することで、微小気泡を発生させる方法である。改質槽内に保持した内燃機関用燃料に対してそのまま超音波を照射したり、気体を導入しながら超音波を照射することで微小気泡が生成できる。気体を導入しながら超音波を照射すると、投入エネルギーを小さくできる。   It does not specifically limit as a production method of microbubbles. For example, there are a rheological method, a water electrolysis method and an ultrasonic wave generation method. The water electrolysis method is a method of generating microbubbles by introducing water into an internal combustion engine fuel and electrolyzing the water. The ultrasonic generation method is a method of generating microbubbles by controlling ultrasonic irradiation conditions. Microbubbles can be generated by irradiating the fuel for the internal combustion engine held in the reforming tank as it is, or by irradiating the ultrasonic wave while introducing the gas. When the ultrasonic wave is irradiated while introducing the gas, the input energy can be reduced.

流体学的方法は、以下に説明するように、投入エネルギーを小さくでき、もっとも微小気泡の発生に適した方法である。流体学的方法により微小気泡を発生する微小気泡導入手段は、頂点に開口部をもつ円錐状の空間を形成する本体部と、円錐状空間に開口しその円錐状空間を構成する円の接線方向に向けて内燃機関用燃料を流入させる内燃機関用燃料導入口と、円錐状空間の底面の中央付近に開口しその円錐状空間を構成する円錐の軸方向に気体を流入させる気体導入口とを有している。   As will be described below, the rheological method can reduce input energy and is the most suitable method for generating microbubbles. The microbubble introduction means for generating microbubbles by a rheological method includes a main body part that forms a conical space having an opening at the apex, and a tangential direction of a circle that opens into the conical space and constitutes the conical space A fuel inlet for an internal combustion engine that allows the fuel for the internal combustion engine to flow toward the bottom, and a gas inlet that opens near the center of the bottom surface of the conical space and allows gas to flow in the axial direction of the cone that constitutes the conical space. Have.

内燃機関用燃料により円錐状空間内を満たした状態で、内燃機関用燃料導入口より内燃機関用燃料を流入させることで、円錐状空間内で旋回流が発生する。その結果、円錐状空間の底部近傍に負圧が発生し、気体導入口から気体が流入する。流入してきた気体は内燃機関用燃料とともに旋回していき、円錐状空間の頂部方向に進んでいく、頂部方向に進むにつれて導入された気体は縮径且つ伸長されることで、微小気泡が形成されて円錐状空間の頂部に設けられた開口部から内燃機関用燃料とともに円筒状空間から導出されていく。円錐状空間の形状(円錐の径、円錐角の大きさ、円錐の長さなど)、内燃機関用燃料の導入速度、内燃機関用燃料導入口及び気体導入口の開口径などを制御することで微小気泡の直径を制御できる。なお、本原理に基づいて微小気泡を発生する方法及び装置については特許文献3〜5に一部開示されている。   In a state where the conical space is filled with the fuel for the internal combustion engine, the swirling flow is generated in the conical space by flowing the fuel for the internal combustion engine from the fuel introduction port for the internal combustion engine. As a result, negative pressure is generated near the bottom of the conical space, and gas flows in from the gas inlet. The inflowing gas swirls together with the fuel for the internal combustion engine and advances toward the top of the conical space, and the introduced gas is reduced in diameter and expanded as it advances toward the top, thereby forming microbubbles. Then, it is led out from the cylindrical space together with the fuel for the internal combustion engine from the opening provided at the top of the conical space. By controlling the shape of the conical space (cone diameter, cone angle size, cone length, etc.), the introduction speed of the fuel for the internal combustion engine, the opening diameters of the fuel inlet and the gas inlet for the internal combustion engine, etc. The diameter of microbubbles can be controlled. Note that methods and apparatuses for generating microbubbles based on this principle are partially disclosed in Patent Documents 3 to 5.

NOx還元剤添加手段は内燃機関の排気ガス中に生成したNOx還元剤を添加する手段である。排気ガス中においてNOx還元剤の添加場所は特に限定しないが、NOx還元触媒に導入される前の排気ガス中にNOx還元剤を添加することが一般的である。その結果、NOx還元触媒により効率的にNOxが還元される。NOx還元触媒は特に限定されず公知の触媒が採用できる。例えば、ゼオライトに触媒金属(銅など)を担持した触媒が挙げられる。NOx還元剤の添加方法についても特に限定されず、霧状にしたり、予め気化させたりすることで適正量を添加する。   The NOx reducing agent adding means is means for adding the NOx reducing agent generated in the exhaust gas of the internal combustion engine. The location of addition of the NOx reducing agent in the exhaust gas is not particularly limited, but it is common to add the NOx reducing agent to the exhaust gas before being introduced into the NOx reduction catalyst. As a result, NOx is efficiently reduced by the NOx reduction catalyst. The NOx reduction catalyst is not particularly limited, and a known catalyst can be employed. For example, a catalyst in which a catalytic metal (such as copper) is supported on zeolite can be used. The addition method of the NOx reducing agent is not particularly limited, and an appropriate amount is added by atomizing or vaporizing in advance.

NOx還元剤添加手段は改質槽内の炭化水素のうち、低分子量のものを分離する分離手段を備えることが望ましい。分離手段としては分子量により透過性が変化する膜(モレキュラーシーブス、ゼオライトなどが例示できる。これらは孔径の制御が容易であり、分離する分子量を制御できる)が好適なものとして例示できる。膜が有する孔の径を制御することで必要な分子量以下の炭化水素を主成分とするNOx還元剤を優先的に分離できる。   The NOx reducing agent addition means desirably includes a separation means for separating low molecular weight hydrocarbons in the reforming tank. As a separation means, a membrane whose molecular weight changes its permeability (molecular sieves, zeolite, etc., which can easily control the pore diameter and control the molecular weight to be separated) can be exemplified as a preferable one. By controlling the diameter of the pores of the membrane, it is possible to preferentially separate the NOx reducing agent whose main component is a hydrocarbon having a molecular weight or less.

本実施例の車載用NOx浄化装置は内燃機関としてのディーゼルエンジンが搭載された車両に用いる装置である。図1に本浄化装置を組み込んだ車両の燃料噴射装置及び排気ガス浄化装置近傍の概略を示す。本浄化装置は、図1に示す装置(手段)のうち、燃料改質手段10、燃料送出手段20及びNOx還元剤添加手段30から構成される。   The in-vehicle NOx purification device of this embodiment is a device used for a vehicle equipped with a diesel engine as an internal combustion engine. FIG. 1 shows an outline of the vicinity of a fuel injection device and an exhaust gas purification device for a vehicle incorporating the present purification device. The purification apparatus includes a fuel reforming means 10, a fuel delivery means 20, and a NOx reducing agent addition means 30 in the apparatus (means) shown in FIG.

燃料改質手段10は微小気泡導入手段101〜106と改質槽107とを備える。微小気泡導入手段101〜106は、図1及び図2(a)に示すように、内部空間101c及び導出口101dをもつ本体部101と、内部空間101cに開口する燃料供給路104及び空気供給路106と、改質槽107内に開口する燃料吸入路103と、燃料吸入路103から吸入した燃料を燃料供給路104に供給するポンプ102と、空気供給路106に流入する空気の流量を測定する流量計105とを備える。   The fuel reforming means 10 includes microbubble introducing means 101 to 106 and a reforming tank 107. As shown in FIG. 1 and FIG. 2A, the microbubble introducing means 101 to 106 include a main body 101 having an internal space 101c and a lead-out port 101d, a fuel supply path 104 and an air supply path that open to the internal space 101c. 106, a fuel suction path 103 that opens into the reforming tank 107, a pump 102 that supplies fuel sucked from the fuel suction path 103 to the fuel supply path 104, and a flow rate of air that flows into the air supply path 106 is measured. A flow meter 105.

本体部101の空間101cは円錐状の空間を形成する。空間101cにはポンプ102からの燃料供給路104が接続される。燃料供給路104は空間101cが形成する円錐を形成する円の接線方向に開口し、燃料供給路104から導入される軽油により空間101c内に旋回流を発生する。円錐状の空間101cの底面側中央には空気供給路106の一端部が開口する。空気供給路106は他端に流量計105が接続され、流量計105を介して大気中に開口する。   The space 101c of the main body 101 forms a conical space. A fuel supply path 104 from the pump 102 is connected to the space 101c. The fuel supply path 104 opens in a tangential direction of a circle forming a cone formed by the space 101 c, and a swirl flow is generated in the space 101 c by light oil introduced from the fuel supply path 104. One end of the air supply path 106 opens at the bottom center of the conical space 101c. A flow meter 105 is connected to the other end of the air supply path 106 and opens into the atmosphere via the flow meter 105.

微小気泡導入手段101〜106は、円錐状空間101c内を軽油で満たした状態で、燃料供給路104の一端部より燃料を流入させることで、円錐状空間101c内で旋回流が発生する。その結果、円錐状空間101cの底部近傍に負圧が発生し、空気供給路106の一端部から空気が流入する。流入する空気の量は流量計105にて制御・測定できる。   In the state where the conical space 101c is filled with light oil, the microbubble introducing means 101 to 106 generate a swirling flow in the conical space 101c by flowing fuel from one end of the fuel supply path 104. As a result, a negative pressure is generated near the bottom of the conical space 101c, and air flows from one end of the air supply path 106. The amount of air flowing in can be controlled and measured by the flow meter 105.

流入してきた空気は円錐状空間101c内を軽油とともに旋回していき、その後、円錐状空間101cの頂部方向に進んでいく。頂部方向に進むにつれて導入された空気は縮径且つ伸長されて、微小気泡が形成されて円錐状空間101cの頂部に設けられた導出口101dから燃料としての軽油とともに改質槽107内に導出されていく。その結果、改質槽107内には微小気泡が分散される。つまり、燃料供給路104から軽油を導入することで、空気供給路106から空気を吸入して、微小気泡を含む軽油が導出口101dから改質槽107内に吐出される。   The inflowing air swirls with the light oil in the conical space 101c, and then proceeds toward the top of the conical space 101c. As the air travels in the top direction, the introduced air is reduced in diameter and expanded to form microbubbles, which are led into the reforming tank 107 together with light oil as fuel from the outlet 101d provided at the top of the conical space 101c. To go. As a result, microbubbles are dispersed in the reforming tank 107. That is, by introducing light oil from the fuel supply path 104, air is sucked from the air supply path 106, and light oil containing microbubbles is discharged into the reforming tank 107 from the outlet 101d.

発生する微小気泡の大きさは直径が10nm以上100nm以下に制御されている。分散された微小気泡は消滅する際に衝撃波を発生し、軽油中の炭化水素に働きかけて炭化水素を分解・低分子化する。軽油中の炭化水素を分解して所定の分子量(分布)になるまで微小気泡導入手段101〜106を作動させる。ここで、所定の分子量としては炭素数12以下の値を採用することが望ましい。特に炭素数10、12又は10〜12程度、12以下、更には10以下が望ましい。   The size of the generated microbubbles is controlled to have a diameter of 10 nm to 100 nm. When the dispersed microbubbles disappear, a shock wave is generated and acts on the hydrocarbons in the gas oil to decompose and reduce the molecular weight of the hydrocarbons. The microbubble introduction means 101 to 106 are operated until the hydrocarbons in the light oil are decomposed to a predetermined molecular weight (distribution). Here, it is desirable to adopt a value having 12 or less carbon atoms as the predetermined molecular weight. In particular, the number of carbon atoms is about 10, 12, or 10 to 12, preferably 12 or less, and more preferably 10 or less.

改質槽107内には燃料送出手段20により燃料タンク40内の軽油が送出される。改質槽107内の圧力が何らかの原因により所定値よりも大きくなった場合にはレギュレータ108が開き改質槽107内の燃料を燃料タンク40内に排出する。   The light oil in the fuel tank 40 is sent into the reforming tank 107 by the fuel sending means 20. When the pressure in the reforming tank 107 becomes larger than a predetermined value for some reason, the regulator 108 is opened and the fuel in the reforming tank 107 is discharged into the fuel tank 40.

NOx還元剤添加手段30は改質槽107内で生成したNOx還元剤を排気ガス中に添加する。NOx還元剤を添加する部位としては酸化触媒82の後、NOx還元触媒83の前に添加する。NOx還元剤を添加する量はNOxの濃度や温度などをセンサ71〜74にて検出した温度やNOx濃度、酸素濃度などに基づき決定することができる。   The NOx reducing agent adding means 30 adds the NOx reducing agent generated in the reforming tank 107 to the exhaust gas. The NOx reducing agent is added after the oxidation catalyst 82 and before the NOx reduction catalyst 83. The amount of the NOx reducing agent to be added can be determined based on the temperature, NOx concentration, oxygen concentration, etc. detected by the sensors 71 to 74 such as the NOx concentration and temperature.

(変形例1)
微小気泡導入手段として、図1及び図2(a)における本体部101、空気供給路106及び流量計105に代えて、図2(b)に示すような超音波照射手段111を採用することができる。超音波照射手段111は扁平した直方体状の内部空間111cを備え、内部空間111cの一端部には燃料供給路104が接続され、内部空間111cの反対側に一端部が開口する導出口111d(他端部が改質槽107内に開口する)を備える。内部空間111c内には超音波振動子112が配設される。
(Modification 1)
As the microbubble introduction means, an ultrasonic irradiation means 111 as shown in FIG. 2B may be adopted instead of the main body 101, the air supply path 106 and the flow meter 105 in FIGS. 1 and 2A. it can. The ultrasonic wave irradiation means 111 includes a flat rectangular parallelepiped internal space 111c, a fuel supply path 104 is connected to one end of the internal space 111c, and a lead-out port 111d (and others) having one end open on the opposite side of the internal space 111c. The end portion opens into the reforming tank 107). An ultrasonic transducer 112 is disposed in the internal space 111c.

燃料供給路104から供給された軽油には超音波振動子112により超音波が照射される。超音波が照射されると、軽油内に微小気泡が発生する。発生した微小気泡が消失する際に衝撃波が発生して軽油中の炭化水素の炭化水素を分解・低分子化する。   The light oil supplied from the fuel supply path 104 is irradiated with ultrasonic waves by the ultrasonic vibrator 112. When ultrasonic waves are irradiated, microbubbles are generated in the light oil. When the generated microbubbles disappear, a shock wave is generated to decompose and reduce the molecular weight of hydrocarbons in the gas oil.

(変形例2)
低分子した炭化水素を選択的に排気ガス中に添加するためにNOx還元剤添加手段30は改質槽107内の炭化水素を分子量により分離する分離手段31(図3)を備えることができる。分離手段31は、ゼオライト膜など分子量(分子サイズ)により分子を分離する分離膜311と、分離膜311にて2分された内部空間31a及び31bとをもつ。内部空間31aは、その一方から改質槽107内の燃料(NOx還元剤)が導入される。導入されたNOx還元剤は低分子量の成分が分離膜を透過して内部空間31bに移動し、高分子量成分が内部空間31aに残留する。低分子量成分が分離された内部空間31bの開口部cは排気ガス中にNOx還元剤を噴射するNOx還元剤添加手段30が接続される。高分子量成分が残留する内部空間31aの開口部bは再び改質槽107内に開口する。従って、改質槽107からは低分子量の成分が選択的に取り出され、生成したNOx還元剤をより効果的に添加することができる。
(Modification 2)
In order to selectively add low molecular weight hydrocarbons into the exhaust gas, the NOx reducing agent addition means 30 can be provided with a separation means 31 (FIG. 3) for separating hydrocarbons in the reforming tank 107 according to molecular weight. The separation means 31 includes a separation membrane 311 that separates molecules by molecular weight (molecular size) such as a zeolite membrane, and internal spaces 31a and 31b divided into two by the separation membrane 311. In the internal space 31a, the fuel (NOx reducing agent) in the reforming tank 107 is introduced from one side. In the introduced NOx reducing agent, low molecular weight components permeate the separation membrane and move to the internal space 31b, and high molecular weight components remain in the internal space 31a. The NOx reducing agent adding means 30 for injecting the NOx reducing agent into the exhaust gas is connected to the opening c of the internal space 31b from which the low molecular weight component has been separated. The opening b of the internal space 31 a where the high molecular weight component remains opens again into the reforming tank 107. Therefore, the low molecular weight component is selectively extracted from the reforming tank 107, and the generated NOx reducing agent can be added more effectively.

実施例の車載用NOx浄化装置を組み込んだ車両の燃料噴射装置及び排気ガス浄化装置近傍の概略を示す図である。It is a figure which shows the outline of the fuel-injection apparatus and exhaust-gas purification apparatus vicinity of the vehicle incorporating the vehicle-mounted NOx purification apparatus of an Example. 実施例において採用した微小気泡発生手段の断面図である。It is sectional drawing of the microbubble generation means employ | adopted in the Example. 実施例において採用した分離手段の断面図である。It is sectional drawing of the isolation | separation means employ | adopted in the Example.

符号の説明Explanation of symbols

10…燃料改質手段(流体学的方法)
101…本体部 101c…内部空間 101d…導出口 102…ポンプ 104…燃料供給路 106…空気供給路 107…改質槽
11…燃料改質手段(超音波生成法)
111…本体部 111c…内部空間 111d…導出口 104…燃料供給路 112…超音波振動子 107…改質槽
20…燃料送出ポンプ
30…NOx還元剤添加手段
31…分離手段
311…分離膜
10. Fuel reforming means (rheological method)
DESCRIPTION OF SYMBOLS 101 ... Main-body part 101c ... Internal space 101d ... Outlet 102 ... Pump 104 ... Fuel supply path 106 ... Air supply path 107 ... Reforming tank 11 ... Fuel reforming means (ultrasonic generation method)
DESCRIPTION OF SYMBOLS 111 ... Main-body part 111c ... Internal space 111d ... Outlet port 104 ... Fuel supply path 112 ... Ultrasonic vibrator 107 ... Reforming tank 20 ... Fuel delivery pump 30 ... NOx reducing agent addition means 31 ... Separation means 311 ... Separation membrane

Claims (3)

内燃機関用燃料を内部に保持する改質槽と該改質槽内に微小気泡を導入して該内燃機関用燃料からNOx還元剤を生成する微小気泡導入手段とを備える燃料改質手段と、
燃料タンク内の該内燃機関用燃料を該燃料改質手段の該改質槽に送出する燃料送出手段と、
生成した該NOx還元剤を内燃機関からの排気ガス中に添加するNOx還元剤添加手段と、
を有することを特徴とする車載用NOx浄化装置。
A fuel reforming means comprising: a reforming tank that holds internal combustion engine fuel; and a microbubble introduction means that introduces microbubbles into the reforming tank and generates NOx reducing agent from the internal combustion engine fuel;
Fuel delivery means for delivering the internal combustion engine fuel in the fuel tank to the reformer tank of the fuel reforming means;
NOx reducing agent addition means for adding the produced NOx reducing agent to exhaust gas from the internal combustion engine;
A vehicle-mounted NOx purification device characterized by comprising:
前記微小気泡は直径が10nm以上、20μm以下である請求項1に記載の車載用NOx浄化装置。   The in-vehicle NOx purification device according to claim 1, wherein the microbubbles have a diameter of 10 nm or more and 20 μm or less. 前記NOx還元剤添加手段は前記NOx還元剤を優先的に分離する分離手段を備える請求項1又は2に記載の車載用NOx浄化装置。   The in-vehicle NOx purification device according to claim 1 or 2, wherein the NOx reducing agent adding means includes separation means for preferentially separating the NOx reducing agent.
JP2005026373A 2005-02-02 2005-02-02 Nox removing device for vehicle Pending JP2006214310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026373A JP2006214310A (en) 2005-02-02 2005-02-02 Nox removing device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026373A JP2006214310A (en) 2005-02-02 2005-02-02 Nox removing device for vehicle

Publications (1)

Publication Number Publication Date
JP2006214310A true JP2006214310A (en) 2006-08-17

Family

ID=36977743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026373A Pending JP2006214310A (en) 2005-02-02 2005-02-02 Nox removing device for vehicle

Country Status (1)

Country Link
JP (1) JP2006214310A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035669A1 (en) * 2008-09-26 2010-04-01 日産ディーゼル工業株式会社 Exhaust gas purifier for engine
JP2014037789A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
JP2014037788A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
CN109424392A (en) * 2017-08-31 2019-03-05 南京理工大学 High-efficient low polluting combustion system based on nano-fluid fuel
CN111068515A (en) * 2019-12-30 2020-04-28 东华大学 Device for indirectly catalyzing and oxidizing diesel vehicle tail gas pollutants by air micro-nano bubbles
WO2021039303A1 (en) * 2019-08-29 2021-03-04 いすゞ自動車株式会社 Liquid injection system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035669A1 (en) * 2008-09-26 2010-04-01 日産ディーゼル工業株式会社 Exhaust gas purifier for engine
JP2010077902A (en) * 2008-09-26 2010-04-08 Ud Trucks Corp Engine exhaust emission control device
US20110162351A1 (en) * 2008-09-26 2011-07-07 Ud Trucks Corporation Exhaust gas purification apparatus for engine
CN102165155A (en) * 2008-09-26 2011-08-24 优迪卡汽车株式会社 Exhaust gas purifier for engine
US8490389B2 (en) 2008-09-26 2013-07-23 Ud Trucks Corporation Exhaust gas purification apparatus for engine
JP2014037789A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
JP2014037788A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
CN109424392A (en) * 2017-08-31 2019-03-05 南京理工大学 High-efficient low polluting combustion system based on nano-fluid fuel
CN109424392B (en) * 2017-08-31 2021-06-04 南京理工大学 Efficient low-pollution combustion system based on nano fluid fuel
WO2021039303A1 (en) * 2019-08-29 2021-03-04 いすゞ自動車株式会社 Liquid injection system
CN111068515A (en) * 2019-12-30 2020-04-28 东华大学 Device for indirectly catalyzing and oxidizing diesel vehicle tail gas pollutants by air micro-nano bubbles

Similar Documents

Publication Publication Date Title
JP4481342B2 (en) Nano bubble water production apparatus and production method
JP2006214310A (en) Nox removing device for vehicle
JP6727121B2 (en) Device and method using ultrasound for gas conversion
JP5873062B2 (en) Contact device, contact method and use thereof
JP5124145B2 (en) Production equipment for fine fluid mixed liquid fuel
JP6051673B2 (en) Exhaust gas aftertreatment device and internal combustion engine equipped with the exhaust gas aftertreatment device
JP2006241243A (en) Fuel improving device for internal-combustion engine
JP2017527681A (en) Fuel purification system and method for ships
TWI621705B (en) Method and device for manufacturing water-added fuel
JP2008074936A (en) Method for modifying fuel oil and apparatus therefor
KR20180007711A (en) Manufacturing apparatus for high-efficiency hybrid fuel with nano gas bubble and manufacturing method using thereof
JP2012236146A (en) Aeration apparatus and seawater flue gas desulfurization apparatus including the same
JP5750337B2 (en) Gas processing method, gas processing apparatus, fine powder forming method and fine powder forming apparatus
KR101556331B1 (en) System for fuel reformer using ultrasonic generator
JP2006177262A (en) Fuel reforming method and apparatus for internal combustion engine
JP4272083B2 (en) Exhaust purification equipment
CN113694696A (en) Ship tail gas desulfurization device and desulfurization method
JP2006177261A (en) Fuel reforming method and apparatus for internal combustion engine, and fuel tank with fuel reforming apparatus
JP2008149270A (en) Ozone reaction apparatus
JP2006282975A (en) Method for producing emulsifier-free oil
JP6128453B1 (en) Hydrolyzed fuel production method and production apparatus
JP2006226227A (en) Fuel reforming device for internal combustion engine
US10323613B2 (en) Engine exhaust particulate removal and utilization
JP7465985B2 (en) Fuel Reformer
JP4453571B2 (en) Fuel reformer for internal combustion engine